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Abstract We consider the problem of obfuscating programs for fuzzy
matching (in other words, testing whether the Hamming distance be-
tween an n-bit input and a fixed n-bit target vector is smaller than
some predetermined threshold). This problem arises in biometric match-
ing and other contexts. We present a virtual-black-box (VBB) secure
and input-hiding obfuscator for fuzzy matching for Hamming distance,
based on certain natural number-theoretic computational assumptions.
In contrast to schemes based on coding theory, our obfuscator is based on
computational hardness rather than information-theoretic hardness, and
can be implemented for a much wider range of parameters. The Ham-
ming distance obfuscator can also be applied to obfuscation of matching
under the `1 norm on Zn.
We also consider obfuscating conjunctions. Conjunctions are equivalent
to pattern matching with wildcards, which can be reduced in some cases
to fuzzy matching. Our approach does not cover as general a range of
parameters as other solutions, but it is much more compact. We study
the relation between our obfuscation schemes and other obfuscators and
give some advantages of our solution.

1 Introduction

Program obfuscation is a major topic in cryptography. Since it was shown that
virtual black box (VBB) obfuscation is impossible in general [3], a large amount
of research has gone into constructing solutions in special cases. One special case
that has attracted attention is evasive functions [2, 37]. Evasive functions are
programs for which it is hard to find an accepting input from black-box access to
the program. There are some classes of evasive functions that are quite efficiently
obfuscated, such as hyperplane membership [12], logical formulae defined by
many conjunctions [9, 10], pattern matching with wild cards [4, 6], root of a
polynomial system of low degree [2], compute-and-compare programs [26, 44],
and more [37].

More general obfuscation tools are less practical. For example, there are
candidates for indistinguishability obfuscation [24], but the downside of all of
these schemes is they are completely infeasible in terms of runtime and are only
able to deal with very simple programs. While general-purpose and efficient
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obfuscation is a “holy grail”, the hope is that by restricting to a narrow class of
programs we are able to construct customised and practical solutions.

Hamming Distance. One very natural class of evasive functions is fuzzy
matching for the Hamming metric. Define the program Px(y), parametrised by
x ∈ {0, 1}n and a threshold 0 < r < n/2, that determines whether or not the
n-bit input y has Hamming distance at most r from x. Let D be a distribution
on {0, 1}n. Then D determines a program collection P = {Px : x ← D}. For P
to be an evasive program collection it is necessary that the distribution D has
high Hamming ball min-entropy (see Definition 2.4; this notion is also known as
fuzzy min-entropy in [23]). The uniform distribution on {0, 1}n is an example of
such a distribution.

We are interested in obfuscating the membership program Px(y), so that the
description of Px does not reveal the value x. Note that once an accepting input
y ∈ {0, 1}n is known then one can easily determine x by a sequence of chosen
executions of Px. Indeed, as with most other solutions to this problem, our
scheme is essentially an error correcting code, and so the computation recovers
the value x.

Fuzzy matching has already been treated by many authors and there is a large
literature on it. For example, Dodis et al. [18, 19, 20] introduced the notion of
secure sketch and a large number of works have built on their approach. They
also show how to obfuscate proximity queries.

One drawback of the secure sketch approach is that the parameters are
strongly constrained by the need for an efficient decoding algorithm. As dis-
cussed by Bringer et al. [11] this leads to “a trade-off between the correction
capacity and the security properties of the scheme”. In contrast, our scheme is
based on computational hardness rather than information-theoretic hardness,
and can be implemented for a much wider range of parameters.

A different solution to fuzzy matching was given by Karabina and Canpo-
lat [33], based on computational assumptions related to the discrete logarithm
problem. Note that they do not mention obfuscation or give a security proof.
Wichs and Zirdelis [44] note that fuzzy matching can be obfuscated using an
obfuscator for compute-and-compare programs.

Our Contribution. We give a full treatment of fuzzy matching based on com-
putational assumptions. We present an extremely practical and efficient obfus-
cator, based on a natural number-theoretic computational assumption we call
the modular subset product problem. In short, given r < n/2, distinct primes
(pi)i=1,...,n, a prime q such that

∏
i∈I pi < q for all subsets I of {1, . . . , n} of size

r, and an integer X =
∏n
i=1 p

xi
i mod q for some secret vector x ∈ {0, 1}n, the

problem is to find x. We call the decisional version of the problem the decisional
modular subset product problem: Distinguish between a modular subset product
instance and uniformly random element of (Z/qZ)∗. If q ≤ 2n, we conjecture
that the statistical distance of the distribution

∏n
i=1 p

xi
i mod q for uniform x
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and the uniform distribution on (Z/qZ)∗ is negligible. For q > 2n we conjecture
that the distributions are computationally indistinguishable.

The modular subset product problem is similar to computational problems
that have been used in previous works in cryptography [15].

In practice our scheme improves upon all previous solutions to this problem:
It handles a wider range of parameters than secure sketches; it is 20 times faster
than [33]; it is many orders of magnitude more compact than [13, 44]; for full
discussion see Section 7.5. Our solution is related to [33], but we think our
approach is simpler and furthermore we give a complete security analysis.

We present two variants of our scheme. One is based only on the subset-
product assumption but when r is very small, it admits the possibility of accept-
ing an input y that is not within the correct Hamming ball. The second variant
(and the one we present in the main body of this work) assumes the existence
of a dependent auxiliary input point function obfuscator [5, 7, 8, 37, 43] and is
perfectly correct. The key idea is to use the point function obfuscator to verify
the Hamming ball center after error correction, see Section 7.3 for details. The
auxiliary input in our case is the tuple ((pi)i=1,...,n, q,X).

The following theorems are both special cases of Theorem 8.1, which we will
prove later. The first one shows that, under the subset product assumption, our
scheme gives a secure obfuscator for the uniform distribution over {0, 1}n when
n is sufficiently large.

Theorem 1.1. Let λ ∈ N be a security parameter. Consider the family of pa-
rameters (n, r) = (6λ, λ). Assuming the decisional modular subset product prob-
lem is hard and that there exists a dependent auxiliary input distributional VBB
point function obfuscator, the Hamming distance obfuscator for a uniformly dis-
tributed x ∈ {0, 1}n is distributional VBB secure.

Taking λ = 170 gives parameters (n, r) = (1020, 170), which are beyond the
reach of practical secure sketches.

Under the further constraint r < n/ log(n log(n)) we prove security under
the discrete logarithm assumption. Taking n = 1000 this allows r = 113. This
gives us the following

Theorem 1.2. Let λ > 20 be a security parameter. Consider the family of pa-
rameters (n, r) = (6λ, n/ log(n log(n))). Under the discrete logarithm assumption
and the assumptions of Theorem 5.1 and assuming that there exists a dependent
auxiliary input distributional VBB point function obfuscator, the Hamming dis-
tance obfuscator for a uniformly distributed x ∈ {0, 1}n is distributional VBB
secure.

Conjunctions. Another class of evasive functions are conjunctions. A conjunc-
tion on Boolean variables b1, . . . , bn is χ(b1, . . . , bn) =

∧k
i=1 ci where each ci is

of the form bj or ¬bj for some 1 ≤ j ≤ n.
An alternative representation of a conjunction is called pattern matching with

wildcards. Consider a vector x ∈ {0, 1, ?}n of length n ∈ N where ? is a special
wildcard symbol. Such an x then corresponds to a conjunction χ : {0, 1}n →
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{0, 1} which, using Boolean variables b1, . . . , bn, can be written as χ(b) =
∧n
i=1 ci

where ci = ¬bi if xi = 0, ci = bi if xi = 1, and ci = 1 if xi = ?.
Conjunction obfuscators have been considered before [4, 6, 9, 10]. It is clear

that, if the number r of wildcards is sufficiently smaller than n/2, one can re-
duce pattern matching with wildcards to fuzzy Hamming matching. Hence our
solution also gives an alternative approach to obfuscating conjunctions that can
be used for certain parameter ranges. We give a full security analysis and com-
parison to existing schemes.

Applications. Hamming distance obfuscators are interesting for a variety of
applications. One major application is biometric matching, where a biometric
reading is taken and matched with a stored template [32, 36, 41, 42]. Since
biometric readings (e.g., fingerprints, iris scans, or facial features) are a noisy
process, the binary string representing the extracted features may not be an
exact match for the template string.

Our Approach. We give a short summary of our Hamming distance obfuscator.
Let r, n ∈ N with r < n/2. We wish to “encode” an element x ∈ {0, 1}n so that
it is hidden, and yet we will be able to recognise if an input y ∈ {0, 1}n is within
Hamming distance r of x. To do this we will sample a sequence of small distinct
primes (pi)i=1,...,n (i.e., pi 6= pj for i 6= j) and a small safe prime q such that∏
i∈I pi < q/2 for all I ⊂ {1, . . . , n} with |I| ≤ r. The encoding of x ∈ {0, 1}n is

X =

n∏
i=1

pxii mod q

along with the primes (pi)i=1,...,n and q. Given an input y ∈ {0, 1}n anyone can
compute the encoding Y =

∏n
i=1 p

yi
i mod q and then compute

XY −1 mod q ≡
n∏
i=1

pxi−yii mod q =

n∏
i=1

pεii mod q

for errors εi = xi − yi ∈ {−1, 0, 1}. If y is close to x then almost all εi are zero,
and so we are able to recover the errors εi using the continued fraction algorithm
and factoring. We give the background theory and explanation in Section 6. In
Remark 1 we explain that this technique also applies to matching vectors in Zn
under the `1-norm.

Note that these ideas have also been used in [39] where they are used to
construct a number theoretic error correcting code. Some major differences to our
scheme are: In [39] the parameters (pi)i=1,...,n and q are fixed for all messages;
the encoding X is appended to each message. A similar application is given
in [21] to construct a lattice with efficient bounded distance decoding.

Outline of This Work. Sections 2, 3,and 4 introduce basic notions in ham-
ming distance/fuzzy matching and obfuscation. Section 5 introduces our new
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computational assumption. Section 6 gives background on continued fractions.
Section 7 presents the obfuscator for fuzzy matching in the Hamming distance,
including parameters and performance. Section 8 proves that the obfuscator is
VBB secure and input-hiding. Section 9 briefly discusses our solution to obfus-
cating conjunctions.

2 Hamming Distance

We want to obfuscate the function that determines if an input binary vector is
close to a fixed target. In our setting, one of the input vectors will be a secret
and the other an arbitrary input. Let us first state some key definitions.

A natural property of a binary vector is its Hamming weight which is the
number of non-zero elements of the vector. For x ∈ {0, 1}n, we will denote this
by wH(x). The Hamming distance between two binary vectors x, y ∈ {0, 1}n is
then given by dH(x, y) = wH(x− y). Finally, a Hamming ball BH,r(x) ⊂ {0, 1}n
of radius r around a point x ∈ {0, 1}n is the set of all points with Hamming
distance at most r from x. We denote by BH,r the Hamming ball around an
unspecified point.

2.1 Hamming Ball Membership over Uniformly Chosen Centers

We are interested in programs that determine if an input binary vector y ∈
{0, 1}n is contained in a Hamming ball of radius r around some secret value x,
i.e., if y ∈ BH,r(x). This problem is only interesting if it is hard for a user to
determine such an input y, because if it is easy to determine values y such that
y ∈ BH,r(x) and also easy to determine values y such that y 6∈ BH,r(x) then an
attacker can easily learn x by binary search. So the first task is to find conditions
that imply it is hard to find a y that is accepted by such a program. In other
words, we need conditions that imply Hamming ball membership is an evasive
problem. As we will see in Figure 1, there are essentially three ways that this
problem can become easy: if the Hamming balls are too big; if there are too few
possible centers x; or if the centers x are clustered together.

Definition 2.1 (Evasive Program Collection). Let P = {Pn}n∈N be a col-
lection of polynomial-size programs such that every P ∈ Pn is a program P :
{0, 1}n → {0, 1}. The collection P is called evasive if there exists a negligible
function ε such that for every n ∈ N and for every y ∈ {0, 1}n:

Pr
P←Pn

[P (y) = 1] ≤ ε(n).

In short, Definition 2.1 means that a random program from an evasive collec-
tion P evaluates to 0 with overwhelming probability. Finally, we call a member
P ∈ Pn for some n ∈ N an evasive program or an evasive function.
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Hamming Ball Program Collection. Let r, n ∈ N with 0 < r < n/2. For
every binary vector x ∈ {0, 1}n there exists a polynomial size program Px :
{0, 1}n → {0, 1} that computes whether the input vector y ∈ {0, 1}n is contained
in a Hamming ball BH,r(x) and evaluates to 1 in this case, otherwise to 0. Any
distribution on {0, 1}n therefore gives rise to a distribution Pn of polynomial-size
programs.

We first consider the uniform distribution on {0, 1}n, so that sampling P ←
Pn means choosing x uniformly in {0, 1}n and setting P = Px. Since the condi-
tion y ∈ BH,r(x) is equivalent to x ∈ BH,r(y) we need to determine the proba-
bility that a random element lies in a Hamming ball. This is done in the next
two lemmas. Note that if r ≥ n/2 then a random element lies in the Hamming
ball with probability ≥ 1/2, which is why we are always taking r < n/2.

Lemma 2.1. Let n ∈ N, x ∈ {0, 1}n. The number of elements in a Hamming
ball BH,r(x) ⊆ {0, 1}n of radius r is given by hr = |BH,r| =

∑r
k=0

(
n
k

)
.

Proof. This can be readily seen from the fact that for each k ∈ [0, r] a vector
has

(
n
k

)
possible ways to be at Hamming distance of k from the origin point. ut

Next we show that the probability for a randomly chosen element in {0, 1}n
to be contained in a Hamming ball BH,r is negligible if the parameters r < n/2
are chosen properly.

Lemma 2.2. Let λ ∈ N be a security parameter and let r, n ∈ N such that
r ≤ n/2 −

√
nλ log(2). Fix a point x ∈ {0, 1}n. Then the probability that a

randomly chosen vector y ∈ {0, 1}n is contained in a Hamming ball of radius r
around x satisfies Pry←{0,1}n [y ∈ BH,r(x)] ≤ 1/2λ.

Proof. The total number of points in {0, 1}n is given by 2n. By Lemma 2.1 we
thus have the probability of a randomly chosen vector y ∈ {0, 1}n to be contained
in a Hamming ball of radius r around a point x given by hr/2

n = 2−n
∑r
k=0

(
n
k

)
.

On the other hand, consider the cumulative binomial distribution for probability
p which for r ≤ np is bounded1 by

Pr(X ≤ r) =

r∑
k=0

(
n

k

)
pk(1− p)n−k ≤ exp

(
− 1

2p

(np− r)2

n

)
.

Substitute p = 1/2 to find Pr(X ≤ r) = hr/2
n. Hence, for r < n/2−

√
nλ log(2)

we have hr/2
n ≤ exp

(
− (n/2− r)2 /n

)
≤ 1/2λ and the result follows. ut

This result shows that Hamming ball membership over the uniform distribu-
tion is evasive when r is small enough.

Lemma 2.3. Let λ(n) be such that the function 1/2λ(n) is negligible. Let r(n) be
a function such that r(n) ≤ n/2−

√
log(2)nλ(n). Let Pn be the set of programs

that tests Hamming ball membership in BH,r(n)(x) ⊆ {0, 1}n over uniformly
sampled x ∈ {0, 1}n. Then Pn is an evasive program collection.
1 Chernoff bound for binomial distribution tail [1, 14].
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Proof. We need to show that, for every n ∈ N and for every y ∈ {0, 1}n,
PrP←Pn [P (y) = 1] is negligible. Note that

Pr
P←Pn

[P (y) = 1] = Pr
x←{0,1}n

[y ∈ BH,r(n)(x)] = Pr
x←{0,1}n

[x ∈ BH,r(n)(y)]

and this is negligible by Lemma 2.2. ut

2.2 Hamming Ball Membership over General Distributions

Biometric templates may not be uniformly distributed in {0, 1}n, so it is im-
portant to have a workable theory for fuzzy matching without assuming that
the input data is uniformly sampled binary strings. For example, in the worst
case, there is only a small number of possible values x ∈ {0, 1}n that arise, in
which case taking y to be one of these x-values will show that Hamming ball
membership is not evasive. More generally, as pictured in the right hand panel
of Figure 1, one could have many centers but if they are too close together then
there might be values for y such that PrP←Pn [P (y) = 1] is not negligible.

{0, 1}n {0, 1}n

x1

x2 x3

y

Figure 1: Two example cases of Hamming ball distributions. The left side de-
picts the ideal distribution of Hamming ball centers. The right one shows what
happens if the balls overlap.

Hence, for Hamming ball membership to be evasive, the centers x must be
chosen from a “reasonably well spread” distribution. Before treating this in detail
we give some definitions related to entropy of distributions in the computational
sense.

Definition 2.2 (Min-Entropy). The min-entropy of a random variable X is
defined as H∞(X) = − log (maxx Pr[X = x]). The (average) conditional min-
entropy of a random variable X conditioned on a correlated variable Y is defined
as H∞(X|Y ) = − log (Ey←Y [maxx Pr[X = x|Y = y]]).

Definition 2.3 (Computational Indistinguishability). We say that two
ensembles of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are compu-

tationally indistinguishable and write X
c
≈ Y if for every (non-uniform) PPT
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distinguisher A it holds that Pr[A(Xλ) = 1]− Pr[A(Yλ) = 1] ≤ ε(λ) where ε(λ)
is some negligible function.

Now suppose we have a distribution Dn on {0, 1}n, which defines a distribu-
tion Pn of Hamming ball membership programs. For the program collection to
be evasive (i.e., to satisfy Definition 2.1), it is necessary that for any y ∈ {0, 1}n
we have PrP←Pn [P (y) = 1] being negligible. But note that

Pr
P←Pn

[P (y) = 1] = Pr
x←Dn

[y ∈ BH,r(x)] = Pr
x←Dn

[x ∈ BH,r(y)].

So the requirement for evasiveness is that this probability is negligible. In other
words, we need that Dn has large min-entropy in the following sense.

Definition 2.4 (Hamming Ball Min-Entropy). (Also known as fuzzy min-
entropy [23, Definition 3].) The Hamming ball min-entropy of a random variable
X on {0, 1}n is defined to be

HH,∞(X) = − log

(
max

y∈{0,1}n
Pr[X ∈ BH,r(y)]

)
.

For convenience, we give some necessary conditions to have Hamming ball
min-entropy at least λ. Let |Dn| = {x ∈ {0, 1}n : Pr(x ← Dn) > 0} be the
support of Dn. If for any y ∈ {0, 1}n∣∣∣⋃x∈|Dn|BH,r(x)

∣∣∣
|BH,r(y)|

< 2λ

then we certainly do not have min-entropy at least λ. Hence at the very least
it is required that points in Dn are well-spread-out, as pictured in the left-hand
panel of Figure 1.

Intuitively, we can say that if there are enough points in |Dn| and if they are
spread out such that the overlap between the Hamming balls is relatively small,
then Hamming ball membership is an evasive problem.

Definition 2.5 (Hamming Distance Evasive Distribution). Consider an
ensemble of distributions Dλ over {0, 1}n(λ), call it D = {Dλ}λ∈N. Let r(λ) <
n(λ)/2 be some function. We say that D is Hamming distance evasive if the
Hamming ball min-entropy of Dλ for Hamming balls in {0, 1}n(λ) of radius r(λ)
(as in Definition 2.4) is at least λ.

3 Conjunctions

Similar to Section 2, we will first give basic definitions regarding conjunctions
and then determine necessary conditions for a given conjunction to be evasive.
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Definition 3.1 (Conjunction/Pattern Matching With Wildcards). Let
n ∈ N and let x ∈ {0, 1, ?}n where ? is a special wildcard symbol. Such an x
then corresponds to a conjunction χ : {0, 1}n → {0, 1} which, using a vector of
Boolean variables b = (b1, . . . , bn), can be written as χ(b) =

∧n
i=1 ci where ci =

¬bi if xi = 0, ci = bi if xi = 1, and ci = 1 if xi = ?. Denote by Wx = {i|xi = ?}
the set of all wildcard positions and let r = |W | ∈ N be the number of wildcards.

Note that a priori the input is considered a plaintext and directly visible
to the evaluating party. The wildcard positions of an obfuscated conjunction
are only secret as long as no matching input is known. Once such an input is
presented to the evaluator, it is straightforward to work out all wildcard positions
in time linear in the input length: Simply flip each input bit and check whether
this changed input still matches, in which case the flipped position must be a
wildcard.

Lemma 3.1. Let λ ∈ N be a security parameter and let r < n/2 ∈ N such that
r ≤ n−λ. Fix a conjunction χ corresponding to a vector x ∈ {0, 1, ?}n such that
r = |{i|xi = ?}|. Then the probability that χ evaluates to true on a randomly
chosen vector y ∈ {0, 1}n satisfies Pry←{0,1}n [χ(y) = 1] ≤ 1/2λ.

Proof. The total number of points in {0, 1}n is given by 2n. We thus have the
probability of a randomly chosen vector y ∈ {0, 1}n to be matched by χ to
be Pry←{0,1}n [χ(y) = 1] = 2r/2n. This probability is upper-bounded by 1/2λ if
r ≤ n− λ.

Lemma 3.1 shows that all conjunctions which have their non-wildcard values
uniformly distributed over {0, 1}n−r are evasive. For general distributions we
need to consider the following

Definition 3.2 (Conjunction Evasive Distribution). Consider an ensem-
ble D = {Dλ}λ∈N of distributions Dλ over {0, 1, ?}n(λ) with r(λ)-many wild-
cards for functions r(λ) < n(λ). We say that D is conjunction evasive if the
min-entropy of Dλ is at least λ.

4 Obfuscation Definitions

Our ultimate goal is to prove that our obfuscators are distributional virtual black
box (VBB) secure. For this we first state the definition of such a distributional
VBB obfuscator.

Definition 4.1 (Distributional Virtual Black-Box Obfuscator [2, 3]).
Let P = {Pn}n∈N be a family of polynomial-size programs with input size n and
let O be a PPT algorithm which takes as input a program P ∈ P, a security
parameter λ ∈ N and outputs a program O(P ) (which itself is not necessarily
in P). Let D be a class of distribution ensembles D = {Dλ}λ∈N that sample
P ← Dλ with P ∈ P. The algorithm O is a VBB obfuscator for the distribution
class D over the program family P if it satisfies the following properties:



10 Steven D. Galbraith and Lukas Zobernig

– Functionality preserving: There exists a negligible function ε(λ) such that for
all P ∈ P

1− Pr [∀x ∈ {0, 1}n : P (x) = O(P )(x)] ≤ ε(λ)

where the probability is over the coin tosses of O.

– Polynomial slowdown: For every λ ∈ N and P ∈ P, we have |O(P )| ≤
poly(|P |, λ).

– Virtual black-box: For every (non-uniform) polynomial size adversary A,
there exists a (non-uniform) polynomial size simulator S with oracle access
to P , such that for every D = {Dλ}λ∈N ∈ D, and every (non-uniform)
polynomial size predicate ϕ : P → {0, 1}:∣∣∣∣ Pr

P←Dλ,O,A
[A(O(P )) = ϕ(P )]− Pr

P←Dλ,S

[
SP (|P |) = ϕ(P )

]∣∣∣∣ ≤ ε(λ)

where ε(λ) is a negligible function.

In simple terms, Definition 4.1 states that a VBB obfuscated program O(P )
does not reveal anything more than would be revealed from having black box
access to the program P itself.

A definition that is more convenient to work with is distributional indistin-
guishability.

Definition 4.2 (Distributional Indistinguishability [44]). An obfuscator
O for the distribution class D over a family of programs P satisfies distributional
indistinguishability if there exists a (non-uniform) PPT simulator S such that
for every distribution ensemble D = {Dλ}λ∈N ∈ D the following distributions
are computationally indistinguishable

(O(P ), α)
c
≈ (S(|P |), α) (4.1)

where (P, α)← Dλ. Here α denotes some auxiliary information.

Note that the sampling procedure for the left and right side of Equation (4.1)
in Definition 4.2 is slightly different. For both we sample (P, α) ← Dλ and for
the left side we simply output (O(P ), α) immediately. On the other hand, for
the right side we record |P |, discard P and finally output (S(|P |), α) instead.

It can be shown that distributional indistinguishability implies VBB security
under certain conditions. To see this, we first require the following

Definition 4.3 (Predicate Augmentation [44]). For a distribution class
D, its augmentation under predicates aug(D) is defined as follows: For any
(non-uniform) polynomial-time predicate ϕ : {0, 1}∗ → {0, 1} and any D =
{Dλ}λ∈N ∈ D, the class aug(D) indicates the distribution D′ = {D′λ}λ∈N where
D′λ samples (P, α)← Dλ, computes α′ = (α,ϕ(P )) and outputs (P, α′). Here α
denotes some auxiliary information.
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Theorem 4.1 (Distributional Indistinguishability Implies VBB [10]).
For any family of programs P and a distribution class D over P, if an obfus-
cator satisfies distributional indistinguishability (Definition 4.2) for the class of
distributions aug(D) then it also satisfies distributional VBB security for the
distribution class D (Definition 4.1).

Lastly, we also want to prove that our obfuscator is input hiding. For this we
state the definition of an input hiding obfuscator.

Definition 4.4 (Input Hiding Obfuscator [2]). An obfuscator O for a col-
lection of evasive programs P is input hiding, if for every PPT adversary A there
exists a negligible function ε such that for every n ∈ N and for every auxiliary
input α ∈ {0, 1}poly(n) to A:

Pr
P←Pn

[P (A(α,O(P ))) = 1] ≤ ε(n),

where the probability is also over the randomness of O.

To summarise, Definition 4.4 states that given the obfuscated program O(P )
it is hard to find an input that evaluates to 1.

5 Computational Assumptions

In this section we introduce our new computational assumptions. We start with
the definition of a safe prime.

Definition 5.1 (Safe Prime, Sophie Germain Prime). A prime q is called
a safe prime if q is of the form q = 2p + 1 for a prime p. The prime p is then
called a Sophie Germain prime.

Problem 5.1 (Distributional Modular Subset Product Problem). Let
r < n ∈ N, D be a distribution over {0, 1}n. Given a sequence of distinct primes
(pi)i=1,...,n, a safe prime q such that∏

i∈I
pi <

q

2
< (1 + o(1)) max{pi}r for all I ⊂ {1, . . . , n} with |I| ≤ r (5.1)

and an integer

X =

n∏
i=1

pxii mod q (5.2)

for some vector x ← D, the (r, n,D)-distributional modular subset product
problem (MSPr,n,D) is to find x.

We also state a decisional version of the problem.
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Problem 5.2 (Decisional Distrib. Modular Subset Product Problem).
Let r < n ∈ N, D be a distribution over {0, 1}n. Define the distribution

D0 = ((pi)i=1,...,n, q,X)

where (pi)i=1,...,n are distinct primes, q satisfies Equation (5.1), and X satisfies
Equation (5.2) for some vector x← D. Define the distribution

D1 = ((pi)i=1,...,n, q,X
′)

where (pi)i=1,...,n and q are as in D0, but

X ′ ← (Z/qZ)∗.

Then the (r, n,D)-decisional distributional modular subset product problem
(D-MSPr,n,D) is to distinguish D0 from D1. In other words, given a sample
from Db for uniform b ∈ {0, 1}, the problem is to determine b.

We believe these computational problems are hard whenever the fuzzy match-
ing problem itself is evasive. Precisely we make the following conjecture that
covers all possible distributions D.

Conjecture 1. Fix r < n/2 ∈ N. If D is a distribution on {0, 1}n with Hamming
ball min-entropy at least λ (i.e. D is a Hamming distance evasive distribution
in the sense of Definition 2.5) then solving D-MSPr,n,D (Problem 5.2) requires
Ω(min{2λ, 2n/2}) operations.

Note that Problem 5.2 only makes sense if the two distributions are different.
In the case 2n � q we conjecture that the values X =

∏n
i=1 p

xi
i mod q are

distributed close to uniformly if x is sampled uniformly, and so it makes no sense
to ask for a distinguisher between this distribution and the uniform distribution.
For the proof of Theorem 5.1 we need a more precise version of this statement,
so we make the following conjecture that we believe is very reasonable.

Conjecture 2. Let r, n, (pi)i=1,...,n, q be as in Problem 5.1, with the extra con-
dition that q ≤ 2n. Let D be the uniform distribution on {0, 1}n. Then the
statistical distance of the distribution

∏n
i=1 p

xi
i mod q over x ← D and the

uniform distribution on (Z/qZ)∗ is negligible.

The situation is summarised in the following diagram. The left hand side
is the low-density case. The right hand side is the high-density case where for
every value X there are likely (multiple) solutions. As can be seen in Figure 2
our interest reaches over all density cases.

q � 2n q ≈ 2n q � 2n

injective: given X
then x is unique both assumed hard

decisional: impossible
search: not unique



Obfuscated Fuzzy Hamming Distance 13

A “search-to-decision” reduction in the low-density or density one case (i.e.,
2n < q) is possible by borrowing techniques from [31, 38]. One can obtain the
result that a decision oracle for Problem 5.2 in this case can be used to solve
the search problem Problem 5.1 in polynomially many queries to the decision
oracle. This gives further evidence that Problem 5.2 should be hard (recall that
the assumption makes no sense in the high-density case).

5.1 Algorithms

We now consider algorithms for Problem 5.1. If the Hamming weight of x is
too small, or if q is too large, then it might happen that

∏n
i=1 p

xi
i < q and

hence Problem 5.1 can be solved by factoring X over the integers. This is the
low-density case. More generally, an approach to Problem 5.1 is to guess some
xi for i ∈ I and try to factor X

∏
i∈I p

−xi
i mod q. It can be shown that if

q = O((n log(n))r) and if x is sampled from a distribution with large Hamming
ball min-entropy then this approach does not lead to an efficient attack. In short,
the requirement that the Hamming ball membership program is evasive already
implies that such an attack requires exponential time.

We now consider algorithms that are appropriate in general. There is an
obvious meet-in-the-middle algorithm: Let m = bn/2c. Given X we compute a
list L of pairs (z, Z) where Z =

∏m
i=1 p

zi
i mod q for all z ∈ {0, 1}m. Then for

all z′ ∈ {0, 1}n−m compute Z ′ = X
∏n−m
i=1 p

−z′i
m+i mod q and check if Z ′ is in L.

If there is a match then we have found x = z‖z′. This attack requires O(2n/2)
operations. It follows that n must be sufficiently large for the problem to be
hard.

5.2 Hardness

We now give evidence that Problems 5.1 and 5.2 are hard in the high-density case.
Our argument is based on ideas from index calculus algorithms in finite fields.
We prove that if one can solve Problem 5.1 (in the medium-/high-density case) in
time T then can solve the discrete logarithm problem (DLP) in (Z/qZ)∗ in time
poly(T ). Note that this result gives at best a subexponential hardness guarantee,
and does not say anything about post-quantum security. A similar computational
assumption (called the very smooth number discrete log) was considered in [15],
where a similar reduction to the discrete logarithm problem is also given.

Theorem 5.1. Fix r, n ∈ N such that r < n/2. Let q be prime such that q ≤ 2n

and (pi)i=1,...,n be a sequence of distinct primes such that pi ∈ [2, O(n log(n))].
Assume Conjecture 2 holds and suppose MSPr,n,D (Problem 5.1) can be solved
with probability 1 in time T . Then there is an algorithm to solve the DLP in
(Z/qZ)∗ with expected time Õ(nT ).

Proof. Let g, h ∈ Z∗q be a DLP instance and let A be an oracle for Problem 5.1
that runs in time T and succeeds with probability 1. Let g be a generator of
(Z/qZ)∗ so that its order is M = q − 1. Choose random 1 < a < q and compute
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C = ga mod q. Call A on C. Due to the assumptions in the theorem, with
probability bounded below by a constant, A succeeds and outputs a solution x.
Store (a, x). Note that each relation implies a linear relation a ≡

∑n
i=1 xi logg(pi)

mod M . Repeat until we have n linearly independent relation vectors x, and
hence use linear algebra to solve for logg(pi). Finally, choose a random b and set

C = hgb mod q. Call A on C to get, with high probability, one more relation
(b, y). Knowing logg(pi) we now compute logg(h) = −b+

∑
i yi logg(pi). ut

The above proof can be generalised to any group whose order is known. When
q = (n log(n))r then the condition 2n ≥ q boils down to r < n/ log2(n log(n)).
Hence, when r < n/ log2(n log(n)) the hardness of Problem 5.1 follows from the
discrete log assumption.

It follows that Problem 5.1 has a spectrum of difficulty, ranging from easy
in the extreme low-density case to hard in the medium-/high-density case. We
visualise the situation below.

r = n r = n/2 r = 1r = n/ log2(n log(n))

easy

non-neg. gap√
log(2)nλ

conjectured
hard hard

All index calculus algorithms for factoring and discrete logarithms are based
on smoothness. A typical situation is to generate certain random elements x
modulo N (or p), and check if they are equal to

∏
i p
ei
i for primes pi less than

some bound. If one could efficiently compute a smooth product
∏
i p
ei
i that

is congruent to x modulo N (or p) then factorization and discrete logarithm
algorithms would be revolutionised (and classical public key crypto broken).

Our subset product problem is slightly different, since we impose the re-
striction ei ∈ {0, 1}. But we still believe any fundamentally new algorithmic
approach to the problem would likely lead to major advances. The only algo-
rithms we know for this problem are “combinatorial” (in other words, requiring
some kind of brute-force search), apart from when the density is extremely low
and we can just factor. Note that our parameter choices (e.g. in Figure 2) are
very far from such low density (as we require r < n/2 by Lemma 2.3).

We briefly discuss the relation with lattice problems in the next section and in
Section 7.3. Our feeling is that the subset product problem is not really a lattice
problem but a number-theoretical problem. As evidence, references [21, 39] use
similar number theory ideas to solve coding/lattice type problems. Nevertheless,
any new algorithms to solve Problem 5.1 would have implications in lattices,
such as giving an improvement on the work of [21].

Ultimately, we are making a new assumption based on our experience and
knowledge. A similar assumption was made in [15]. We hope this work will inspire
further study of these problems.
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5.3 Post-Quantum Security

To the best of our knowledge there exists no classical nor quantum algorithm
that efficiently solves either of Problem 5.1 or Problem 5.2 in general.

Consider an adversary that has access to a quantum computer for computing
discrete logarithms. Given an encoding ((pi)i=1,...,n, q,X) of a secret x ∈ {0, 1}n,
the adversary may then turn it into a modular subset sum instance logg(X) =∑
i xi logg(pi) mod q−1. Such a modular subset sum problem may be classified

by its density d, see [16, 34]. In our case, when x is chosen from the uniform
distribution, the density is d = n/ log2(q).

There is a polynomial time algorithm for low-density subset sum instances
where d < 0.645 [34] which was later improved to d < 0.941 [16]. This algorithm
requires access to a perfect lattice oracle (just using LLL [35] is not enough). It
is furthermore assumed that the lattice oracle is perfect.

In our case, we can give an estimate for when we expect post-quantum secu-
rity. By the prime number theorem, we have q ∼ (n log n)r. Thus we can estimate
the density by d ∼ n/(r log2(n log n)). To ensure density of d > 1 we can require

r <
n

log2(n log n)
= rPQ(n). (5.3)

Hence we conjecture post-quantum hardness of the modular subset product prob-
lem when r < rPQ(n), and potentially even for slightly larger values for r.

6 Continued Fractions

The background can be found in any number theory textbook, such as [27]. Con-
sider a rational number x ∈ Q. It has a finite continued fraction representation
of the form

x = a0 +
1

a1 +
1

. . . +
1

aN

for ai ∈ N. We define the notation x = [a0; a1, a2, . . . , aN ] for such a representa-
tion. In the more general case of x ∈ R such a representation also exists, though
it is not necessarily finite.

We call the fractions hi/ki for an index i ∈ N defined by the recursion

hi = aihi−1 + hi−2, h−1 = 1, h−2 = 0,

ki = aiki−1 + ki−2, k−1 = 0, k−2 = 1
(6.1)

the convergents of x.

Theorem 6.1 (Diophantine Approximation [30]). Let α ∈ R then there

exist fractions p/q ∈ Q such that
∣∣∣α− p

q

∣∣∣ < 1√
5q2
. If, on the other hand, there

exist p/q ∈ Q such that
∣∣∣α− p

q

∣∣∣ < 1
2q2 , then p/q is a convergent of α.



16 Steven D. Galbraith and Lukas Zobernig

To find the continued fraction representation it is useful to review the ex-
tended Euclidean algorithm first.

Extended Euclidean Algorithm. For a pair of integers a, b, the extended eu-
clidean algorithm finds integers x, y such that ax+by = gcd(a, b). The algorithm
proceeds as follows: First, it initialises variables ri, si, ti for i = 0, 1 as

r0 = a, r1 = b, s0 = 1, s1 = 0, t0 = 0, t1 = 1.

Then it iteratively produces the sequence

ri+1 = ri−1 − qiri, si+1 = si−1 − qisi, ti+1 = ti−1 − qiti. (6.2)

Here ri+1 and qi are found using Euclidean division (ri−1 = qiri + ri+1) such
that 0 ≤ ri+1 < |ri|. Finally, the algorithms stops when ri+1 = 0.

It can be shown that the worst-case runtime of the extended Euclidean algo-
rithm is of the order O(log(b)) assuming that b < a; the average runtime is of a
similar order [17, 28].

Finding Convergents. Comparison of Equation (6.1) with Equation (6.2)
shows that the convergents of a fraction p/q ∈ Q are exactly produced by the
integers si, ti (up to signs) in the steps of the extended Euclidean algorithm
applied to p and q. Thus the runtime for computing the continued fraction rep-
resentation is essentially the same as that of the extended Euclidean algorithm.
Furthermore, we see that the number of convergents is linear in the input size.

7 Obfuscating Hamming Distance

In this section we will present our Hamming distance obfuscator in detail and
then give some examples for parameter choices. The obfuscator is given in Sec-
tion 7.1.

The Hamming Distance Obfuscator. Let r, n ∈ N with r < n/2. Choose
a random sequence of small distinct primes (pi)i=1,...,n (i.e., pi 6= pj for i 6= j).
By the prime number theorem it suffices to randomly sample each pi from the
interval [2, O(n log(n))]. Choose then a safe prime q such that

∏
i∈I pi < q/2 for

all I ⊂ {1, . . . , n} with |I| ≤ r. The prime q should be sampled to satisfy the
bound q/2 < (1+o(1)) max{pi}r as in Equation (5.1). We refer to the discussion
regarding Equation (9.3) to justify why we may assume that such a suitable safe
prime exists.

To encode an element x ∈ {0, 1}n, publish

X =

n∏
i=1

pxii mod q (7.1)
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along with the list of primes (pi)i=1,...,n and q. Note that, for this encoding to
hide x, we require that wH(x) > r and

∏n
i=1 p

xi
i > q.

Given another element y ∈ {0, 1}n we can now check if y ∈ BH,r(x) using
the encoding X. First we compute Y =

∏n
i=1 p

yi
i mod q from which we can find

E = XY −1 mod q =

n∏
i=1

pxi−yii mod q =

n∏
i=1

pεii mod q (7.2)

where εi ∈ {−1, 0, 1}. We show in Lemma 7.1 that if y ∈ BH,r(x) then we are able
to recover the errors εi using continued fraction decomposition and factoring.

Legendre Symbol. Recall that the Legendre symbol (aq ) is +1 if a is a non-zero
square modulo q and −1 if a is a non-zero non-square. It is multiplicative in the
sense that (abp ) = (ap )( bp ). Thus for X as in Equation (7.1) the Legendre symbol

(Xq ) is equal to the product
∏
i(
pi
q )xi , which reveals a linear equation in the

secret (xi)i=1,...,n. In other words, the encoding X leaks one bit of information
about x. Note that this does not violate the definition of VBB security: since
the primes pi are chosen randomly by the obfuscator, we cannot fix in advance
a predicate and compute it using the Legendre symbol.

Why a Safe Prime. As mentioned, the Legendre symbol leaks a linear equation
in (xi). If there were other small prime divisors of q − 1 then one could extend
this idea to get further linear equations. Hence we choose q to be a safe prime to
ensure that only the single bit of leakage arises. An alternative solution would be
to square X, but this would mean we need to use larger parameters to do fuzzy
matching with Hamming weight r, so we prefer to use the minimal parameters.

7.1 Obfuscator and Obfuscated Program

To be precise, for every pair of integers r < n/2 ∈ N and every binary vector
x ∈ {0, 1}n there exists a polynomial size program Px : {0, 1}n → {0, 1} that
computes whether the input vector y ∈ {0, 1}n is contained in a Hamming ball
BH,r(x) and evaluates to 1 in this case, otherwise to 0. Denote the family of all
such programs with P.

The Hamming distance obfuscator OH : P → P ′ takes one such program
Px ∈ P and uses Algorithm 7.2 to output another polynomial size program in a
different family denoted by P ′. In our case this is the decoding algorithm along
with the polynomial size elements (pi)i=1,...,n, q and X ∈ Z/qZ.

We furthermore require a dependent auxiliary input point function obfuscator
[7, 8] that we call OPT . Let Rz : {0, 1}n → {0, 1} be a program that takes
an input y ∈ {0, 1}n and outputs 1 if and only if y = z. The point function
obfuscator outputs an obfuscated version OPT (Rz) of Rz. In addition to the
output of Algorithm 7.2, our obfuscator OH also outputs Q = OPT (Rx).
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As the decoding algorithm is a universal algorithm, we will simply denote the
obfuscated program OH(P ) with the tuple ((pi)i=1,...,n, q,X,Q). During the exe-
cution of the obfuscated program, Algorithm 7.4 is run on (n, (pi)i=1,...,n, q,X, y)
and returns either ⊥ (in which case the program returns 0) or a candidate value
x′. The obfuscated program then outputs Q(x′), which is 1 if and only if x′ = x.
Formally, the obfuscated program is given in Algorithm 7.1.

Algorithm 7.1 Obfuscated Program (with embedded data (pi)i=1,...,n, q,X,Q)

procedure Execute(y ∈ {0, 1}n)
x′ = Decode(n, (pi)i=1,...,n, q,X, y)
if x′ =⊥ then return 0
return Q(x′)

end procedure

The encoder (Algorithm 7.2) receives as an input the distance threshold r, the
vector size n and the target vector x. It then outputs the encoding represented
by a triple ((pi)i=1,...,n, q,X).

Algorithm 7.2 Encoding (Obfuscation)

procedure Encode(r < n/2 ∈ N; x ∈ {0, 1}n)
sample a random sequence of distinct primes (pi)i=1,...,n from [2, O(n log(n))]
sample small safe prime q such that ∀I ⊂ {1, . . . , n} with |I| ≤ r,

∏
i∈I pi < q/2

compute X =
∏n

i=1 p
xi
i mod q

return ((pi)i=1,...,n, q,X)
end procedure

The constrained factoring algorithm (Algorithm 7.3) factors an input number
using a fixed list of primes and outputs the factors respectively fails if the input
is composite with factors that are not in the list of primes.

Algorithm 7.3 Constrained Factoring

procedure CFactor(n, (pi)i=1,...,n, x ∈ N)
set F = {}
for i = 1, . . . , n do

if pi | x then append pi to F and reduce x← x/pi
end for
return F if x = 1 else ⊥

end procedure
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The decoder (Algorithm 7.4) receives as an input an encoding in the form
of a triple ((pi)i=1,...,n, q,X) and a test vector. It then attempts to decode the
triple and outputs the original target vector or fails if the test vector was not
within the required distance threshold.

Algorithm 7.4 Decoding (Executing the obfuscated program)

procedure Decode(n, (pi)i=1,...,n, q ∈ N; X ∈ Z/qZ; y ∈ {0, 1}n)
compute Y −1 =

∏n
i=1 p

−yi
i mod q

compute E = XY −1 mod q
compute the continued fraction representation of E/q, with convergents C
for all h/k ∈ C do

F ← CFactor(n, (pi)i=1,...,n, k), F ′ ← CFactor(n, (pi)i=1,...,n, kE mod q)
if F 6= ⊥ and F ′ 6= ⊥ then

let m = (0, . . . , 0) ∈ {0, 1}n be the zero vector
for i = 1, . . . , n do

if pi ∈ F ∪ F ′ then set mi = 1
end for
return y ⊕m

end if
end for
return ⊥

end procedure

7.2 Decoding

In this section we will analyse decoding complexity and efficiency. For decoding
we have to factor the product Equation (7.2). First, we note that it can be
written as ND−1 modulo q, or in other words ED = N + sq, N =

∏n
i=1 p

µi
i ,

and D =
∏n
i=1 p

νi
i for some s ∈ Z and where now µi, νi ∈ {0, 1}, µiνi = 0 for

all i. By expanding E/q into a continued fraction we are then able to recover
s/D from one of the convergents hi/ki for some i ∈ N under the condition that
ND < q/2. Hence decoding always succeeds since we have chosen the primes
(pi)i=1,...,n and q such that ND =

∏
i∈I pi < q/2 for some I ⊂ {1, . . . , n} with

|I| ≤ r.

Lemma 7.1 (Correctness). Consider the algorithms Encode (Algorithm 7.2)
and Decode (Algorithm 7.4). For every r < n/2 ∈ N, x ∈ {0, 1}n, for ev-
ery ((pi)i=1,...,n, q,X) ← Encode(r, n, x) and for every y ∈ {0, 1}n such that
dH(x, y) < r it holds that Decode(n, (pi)i=1,...,n, q,X, y) = x.

Proof. To see why we require ND < q/2, note that there exists an s ∈ Z such

that ED − sq = N . Therefore
∣∣∣Eq − s

D

∣∣∣ = N
qD . Now Theorem 6.1 asserts us that

s/D is a convergent of E/q if
∣∣∣Eq − s

D

∣∣∣ < 1
2D2 and so we find the requirement

ND < q/2.
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For each convergent hi/ki of E/q, ki respectively (kiE mod q) can be fac-
tored separately using the pi to recover the νi and µi from which x ∈ {0, 1}n can
then finally be recovered using y ∈ {0, 1}n. This all works assuming y ∈ BH,r(x)
since then the factors of N and D will be unique (of multiplicity 1) and contained
in the sequence (pi)i=1,...,n. If now y /∈ BH,r(x) then with high probability (de-
pendent on r, n) the factors of N and D will not be unique and/or not contained
in (pi)i=1,...,n in which case the decoding fails. ut
Remark 1. Note that our decoding algorithm can also be used to solve the prob-
lem of matching distance in Zn under the `1 norm. If X =

∏
i p
xi
i mod q is an

encoding of x ∈ Zn and if y ∈ Zn is such that ‖x − y‖1 ≤ r then by taking
continued fractions and factoring still reveals the error vector e = x− y ∈ Zn.

Decoding Efficiency. We will now argue that decoding E is efficient. Assum-
ing that E = XY −1 for some x, y ∈ {0, 1}n such that dH(x, y) < r, one of
the convergents hi/ki will yield s/D. From Section 6 we know that in our case
the number of convergents we have to factor is of the order O(log(q)) in the
worst case. Because we fixed a list of small primes pi beforehand, we can test
for a proper convergent hi/ki and simultaneously factor N and D efficiently.
Thus decoding is of the order O(n log(q)) in the number of (modular) multipli-
cations/divisions. By the prime number theorem we may take q ∼ (n log n)r and
thus decoding is also of the order O(nr log(n log n)).

7.3 Avoiding False Accepts

We define a false accept to be an input y that is far from x but such that E
has a smooth product representation. Recall that the obfuscator OH defined in
Section 7.1 additionally outputs Q = OPT (Rx) which is used to prevent such
false accepts. We will explain in this section that the additional step can be
omitted if r is chosen such that

r > log(2
√

2πe)
n

log(n log(n))
= rf (n). (7.3)

Let y be a false accept, which means XY −1 ≡
∏
i p
εi
i mod q as in Equa-

tion (7.2), where εi ∈ {−1, 0, 1}. Then
∏n
i=1 p

xi−yi−εi
i = 1 mod q where −2 ≤

xi − yi − εi ≤ 2. It follows that there is a non-zero vector in the lattice Λ =
{x ∈ Zn |

∏n
i=1 p

xi
i = 1 mod q } with norm bounded by 2

√
n.

Treating the lattice Λ as a random lattice, the Gaussian heuristic (see [29,
Section 7.5.3]) estimates the size of the shortest non-zero vector in Λ as λ1 ∼√

n
2πe vol(Λ)

1
n ≤

√
n

2πe (q−1)
1
n , where equality holds if the pi generate (Z/qZ)∗.

We use this bound to argue that there is no vector of length bounded by 2
√
n,

and hence no false accept, Indeed, to have λ1 > 2
√
n we need

√
n

2πe (n log(n))
r
n >

2
√
n and so

(n log(n))
r
n > 2

√
2πe. (7.4)

Equation (7.4) assumes that q ∼ (n log(n))r, i.e. the size of the primes pi is
as small as possible. If we want to be able to use a smaller r we may also choose
the primes pi > n log(n).
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7.4 Example Parameters

The parameters of the Hamming distance obfuscator can be chosen fairly flexibly.
We want to emphasize that a priori any vector size n ∈ N is possible. The
actual security level of the obfuscator depends on the error parameter r < n/2
which we expect to be fixed by the demands of the application. Note that it is
naturally bounded by Lemma 2.2. Assuming a uniform distribution of possible
target vectors x, the bit-security (meaning logarithm to base 2 of the expected
number of operations to find an accepting input) of a parameter set (r, n) can
be calculated using λr,n = − log2(hr/2

n) where hr is defined in Lemma 2.1. We
give some example parameter sets along with their bit-security in Figure 2.

r bλr,nc blog2(q)c
155 64 1804
128 102 1490
32 346 372

(a) n = 512 (rf (n) = 134, rPQ(n) = 44)

r bλr,nc blog2(q)c
306 128 3915
256 199 2546
64 686 818

(b) n = 1024 (rf (n) = 244, rPQ(n) = 80)

Figure 2: Example parameter sets for obfuscated Hamming distance with r < n/2
and bit-security parameter λr,n. We estimate the size of q by q ∼ (n log n)r.
When r > rf (n) (see Equation (7.3)) we do not expect false accepts, and so do
not need to use the point obfuscator. When r < rPQ(n) (see Equation (5.3))
then the scheme is conjectured to be post-quantum secure (as long as the point
obfuscator is post-quantum secure).

7.5 Performance

For completeness, we have implemented (an unoptimised version of) the Ham-
ming distance obfuscator using the C programming language and conducted ex-
periments on a desktop computer (Intel(R) Core(TM) i7-4770 CPU 3.40 GHz).
We take n = 511 and r = 85 (i.e. bλ85,511c = 185 and blog2(q)c = 989) to allow
comparison with [42] and [33]. We measured the time to produce and decode
1000 obfuscation instances. We found an average encoding time of 52 ms and
an average decoding time of 14 ms. In comparison Karabina and Canpolat [33]
found 100 ms for encoding and 350 ms for decoding respectively on a similar
computer (Intel(R) Xeon(R) CPU E31240 3.30 GHz). It is possible to further
speed up encoding by choosing a good safe prime generating algorithm and de-
coding can be parallelised in the factoring steps instead of attempting to factor
after computing each new convergent. Note that the data ((pi)i=1,...,n, q,X) can
be stored in less than one kilobyte.

An interactive model of program obfuscation called token based obfuscation
was first considered by Goldwasser et al. [25] and an LWE based implementa-
tion was presented by Chen et al. [13]. They found experimentally that “For the
case of the Hamming distance threshold of 3 and 24-bit strings, the TBO con-
struction requires 213 GB to store the obfuscated program.” Obfuscation took
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72.6 minutes. Of course, the parameters (n, r) = (24, 3) are much too small for
the function to be evasive. Further, this problem is easily solved using a secure
sketch. In comparison our scheme can be implemented with realistic parameters
like (n, r) = (511, 85) and requires less than a kilobyte of storage and less than
a second to run. Clearly the ring-LWE approach in [13] is orders of magnitude
worse than in our scheme. Also for comparison, the scheme of Bishop et al [6]
(using the optimised variant in [4]) requires n + 1 elements of a group with a
hard discrete logarithm problem. With n = 511 and a group of size 2256 this
would require at least 16 kilobytes to store the program.

7.6 Polynomial Ring Variant

There is a variant of our Hamming distance obfuscator that uses a polynomial
ring over a finite field to encode binary vectors. Note that this variant works
analogously for the conjunction obfuscator.

Let k be a field and let R = k[z]. The idea is to replace Z/qZ by R/Q where
the ideal Q = (q(z)) is generated by some suitable irreducible polynomial q ∈ R
of sufficiently large degree. For the ground field we may take a finite field of
suitable order.

Given r < n/2 ∈ N, encoding a target vector x ∈ {0, 1}n follows the same
process as before. We choose a random sequence of small distinct irreducible
polynomials (pi)i=1,...,n in R and an irreducible polynomial q such that∑

i∈I
deg(pi) < deg(q)

for all I ⊂ {1, . . . , n} with |I| ≤ r. To encode x ∈ {0, 1}n, publish X =
∏n
i=1 p

xi
i

mod q along with the polynomials (pi)i=1,...,n and q. Given another element
y ∈ {0, 1}n we can check if y ∈ BH,r(x) using the encoding X. Again, to recover
the errors εi we use continued fraction decomposition and factoring, though now
in R. We refer to the full version of this work for details.

Comparison to Z/qZ case. Using polynomials has several advantages: The
ground field k can be of small order since the order of R/Q is given by |R/Q| =
|k|deg(q) and thus controllable by the size of q ∈ R. We may furthermore choose
a compact representation of the irreducibles (pi)i=1,...,n and q to shrink encoding
size and speed up computation. Working out an exact comparisons of parameters,
encoding sizes, and computational aspects we leave as a future open question.

8 Security

Here we analyse the security of our Hamming distance obfuscator. We will show
distributional VBB security and that the obfuscator is input-hiding. Our results
will depend on the hardness of the distributional modular subset product problem
that was introduced in Section 5.
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8.1 Security of the Obfuscator

To show that the Hamming distance obfuscator is a distributional VBB obfusca-
tor, we need to show that it satisfies all the properties of Definition 4.1. Note that
Definition 4.1 for VBB obfuscation is given in asymptotic terms with respect to
a security parameter λ. On the other hand, Problem 5.1 and Problem 5.2 are
given in terms of explicit parameters r, n ∈ N. Thus in the following, let the
parameters r, n ∈ N be implicitly dependent on the security parameter λ, i.e.
r = r(λ), n = n(λ). Taking (n(λ), r(λ)) = (16λ, λ) gives Theorem 1.1 of the
introduction.

Theorem 8.1. Let (n(λ), r(λ)) be a sequence of parameters for λ ∈ N. Let
D = {Dλ}λ∈N be an ensemble of Hamming distance evasive distributions (as in
Definition 2.5). Suppose that D-MSPr,n,D (Problem 5.2) is hard and that OPT is
a dependent auxiliary input distributional VBB point function obfuscator. Then
the Hamming distance obfuscator OH is a distributional VBB obfuscator.

Proof. The obfuscator is functionality preserving by Lemma 7.1. It is also clear
that the obfuscator causes only a polynomial slowdown when compared to an
unobfuscated Hamming distance calculation since the evaluation algorithm runs
in time polynomial in all the involved parameters.

By Theorem 4.1 it is sufficient to show that there exists a (non-uniform) PPT
simulator S such that, for every distribution ensemble D = {Dλ}λ∈N ∈ D, it
holds that (where α denotes any auxiliary information, if required)

(OH(P ), α)
c
≈ (S(|P |), α).

Let D now be a class of distribution ensembles such that each D ∈ D is a
Hamming distance evasive distribution as in Definition 2.5. We will construct
the simulator S. First the simulator S takes as input |P | and determines the
parameters r, n ∈ N. Then it runs Algorithm 8.1 which will generate the first
half of the eventual output.

Algorithm 8.1 Encoding Simulator

procedure SimulateEncode(r < n/2 ∈ N)
sample random sequence of distinct primes (pi)i=1,...,n from [2, O(n log(n))]
sample small safe prime q such that ∀I ⊂ {1, . . . , n} with |I| ≤ r:

∏
i∈I pi < q/2

sample X ′ ← Z/qZ uniformly
return ((pi)i=1,...,n, q,X

′)
end procedure

Lastly, the simulator S samples a uniformly random Q′ from the codomain
of OPT (using the simulator SPT that exists due to the assumption of OPT
being a distributional VBB obfuscator). The simulator SPT receives the auxiliary
information ((pi)i=1,...,n, q,X

′) as additional input, provided by the top-level
simulator S.
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Denote the simulator output by the tuple ((pi)i=1,...,n, q,X
′, Q′). It is clear

that S is polynomial-time since Algorithm 8.1 is too. Finally, assuming that
Problem 5.2 is hard, a real obfuscation ((pi)i=1,...,n, q,X,Q) obtained from the
Hamming distance obfuscator OH described in Section 7.1 and the simulator
output are computationally indistinguishable:

((pi)i=1,...,n, q,X,Q)
c
≈ ((pi)i=1,...,n, q,X

′, Q′). (8.1)

This completes the proof. ut

Remark 2. As noted in Section 7.3, the obfuscator OH can be modified to omit
the point obfuscation step. Hence Theorem 8.1 can be restated without requiring
a distributional VBB obfuscator OPT by assuming an ensemble of Hamming
distance evasive distributions {Dλ}λ∈N that satisfy Equation (7.3).

Next, we will show that the Hamming distance obfuscator is input hiding
according to Definition 4.4.

Theorem 8.2. Let (n(λ), r(λ)) be parameters satisfying r > rf (n) (recall Equa-
tion (7.3)). Let D = {Dλ}λ∈N be an ensemble of Hamming distance evasive dis-
tributions (as in Definition 2.5). Suppose that MSPr,n,D (Problem 5.1) is hard.
Then the Hamming distance obfuscator OH is input hiding.

Proof. The ensemble {Dλ}λ∈N of Hamming distance evasive distributions in-
duces an ensemble of programs {Pn}n∈N (see Section 7.1). Suppose there exists
a PPT adversary A such that the success probability is bounded by

Pr
P←Pn

[P (A(α,OH(P ))) = 1] ≤ g(n)

for some function g(n) (recall Definition 4.4 of an input hiding obfuscator).
We will now construct an algorithm A′ that solves Problem 5.1 given A with

success probability bounded by g(n). Let ((pi)i=1,...,n, q,X) be an instance of
Problem 5.1. Since r > rf (n), this instance uniquely defines x ∈ {0, 1}n such that
X =

∏n
i=1 p

xi
i mod q, and hence defines a program P . Then ((pi)i=1,...,n, q,X)

is a correct obfuscation of P . The algorithm A′ runs the adversary on A on
((pi)i=1,...,n, q,X) and A outputs a vector y ∈ {0, 1}n that is accepted by P
with probability g(n). Note that in Definition 4.4 the adversary outputs a valid
input for P , not OH(P ). Hence, y is close to x as r > rf (n). Finally, A′ decodes
X given y using Algorithm 7.4 and thus outputs x with probability g(n).

But we assumed that Problem 5.1 is hard and hence g(n) is negligible. ut

9 Obfuscating Conjunctions

In this section we describe a new obfuscator for conjunctions, based on the
Hamming distance obfuscator of Section 7. Recall the notation χ(x) from Defi-
nition 3.1.
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We first give a generic reduction of pattern matching with wildcards to ham-
ming distance. Let x ∈ {0, 1, ?}n be a pattern and let r be the number of
wildcards. Let x′ ∈ {0, 1}n be any string such that x′i = xi for all non-wildcard
positions 1 ≤ i ≤ n. Then it is clear that any y ∈ {0, 1}n that satisfies the
pattern has Hamming distance at most r from x′. The problem is that there are
many other vectors y that have Hamming distance at most r from x′ but which
do not satisfy the pattern. Further, pattern matching with wildcards can be eva-
sive with r as large as n−λ where λ is a security parameter (e.g., n = 1000 and
r = 900), while Hamming distance is not evasive if r > n/2). So it is clear that
this is not a general reduction of obfuscating conjunctions to fuzzy matching.

However, in certain parameter ranges (where r < n/2) one can consider
using fuzzy matching to give an approach to obfuscating conjunctions. As we
will explain in this section, our scheme has some advantages over the generic
reduction because inputs y that match the pattern are more easily identified
than vectors y that are close to x′ in the Hamming metric but do not match the
pattern. Indeed, we will explain that, for certain parameter ranges, our approach
is much more compact than other solutions to the conjunction problem.

The Conjunction Obfuscator. Let n ∈ N and x ∈ {0, 1, ?}n. Choose a
random sequence of small distinct primes (pi)i=1,...,n (i.e. pi 6= pj for i 6= j). It
suffices to randomly sample each pi from the interval [(n log(n))2, ((n+1) log(n+
1))2]. Denote by Wx = {i |xi = ?} the set of indices such that xi is a wildcard.
Assume we can choose a safe prime q such that∏

i∈Wx

pi <
q

2
<

∏
i∈Wx∪{j}

pi (9.1)

for all j ∈ {1, . . . , n} \Wx. Set r = |Wx|; we furthermore require that r < n/2
as we will see shortly.

To encode x, consider the map σ : {0, 1, ?} → {−1, 0, 1} that acts in the
following fashion

0 7→ −1, 1 7→ 1, ? 7→ 0.

Publish then

X =

n∏
i=1

p
σ(xi)
i mod q

along with the list of primes (pi)i=1,...,n and the modulus q. Note that, for this

encoding to hide x, we require
∏n
i=1 p

σ(xi)
i > q.

Given a vector y ∈ {0, 1}n such that χ(y) = 1, we compute Y =
∏n
i=1 p

σ(yi)
i

mod q from which we can immediately find

E = XY −1 mod q =

n∏
i=1

p
σ(xi)−σ(yi)
i mod q =

n∏
i=1

pεii mod q (9.2)

where εi ∈ {−1, 0, 1}. We then recover the errors εi using continued fraction
decomposition and factoring. The errors εi directly correspond to the wildcard
positions Wx.
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If χ(y) 6= 1 then yi 6= xi in some non-wildcard positions, i.e. Equation (9.2)
includes values εi ∈ {−2, 2} and so decoding fails with high probability. The
fact that incorrect inputs give factors p±2i in the product (while wildcard posi-
tions introduce simply pi) is a nice feature that makes our scheme more secure
than the generic transformation of conjunctions to Hamming matching. It means
we are not reducing conjunctions to Hamming distance, but to a weighted `1-
distance on Z, where the non-wildcard positions are weighted double. Hence,
even if an attacker guesses some wildcard positions (and so does not include the
corresponding pi in their product Y ), the value XY −1 mod q has p±2i terms for
each incorrect non-wildcard position and so the attacker still needs to correctly
guess the correct bits in most non-wildcard positions.

Obfuscator and Obfuscated Program. The conjunction obfuscator works
as follows: For every conjunction x ∈ {0, 1, ?}n with |Wx| < n/2 there exists a
polynomial size program P : {0, 1}n → {0, 1} that computes whether the input
vector y ∈ {0, 1}n matches x and evaluates to 1 in this case, otherwise to 0.
Denote the family of all such programs with P.

The conjunction obfuscator OC : P → P ′ takes one such program P ∈ P and
outputs another polynomial size program in a different family P ′. In our case this
is the decoding algorithm along with the polynomial size elements (pi)i=1,...,n,
q and X ∈ Z/qZ. The obfuscator also outputs Q = OPT (Rx′) where x′ denotes
the vector x with the wildcards replaced with 0.

We again identify the obfuscated program with the tuple ((pi)i=1,...,n, q,X,Q).
The obfuscated program outputs 1 if evaluation succeeds for an input y ∈ {0, 1}n
and if the program Q, when executed on the decoded conjunction with its wild-
cards replaced with 0, outputs 1, else the output is 0. See the full version of this
work for details.

Parameters. The same considerations regarding the use of a safe prime and
decoding efficiency as in Section 7 apply here. Let us now argue that a safe prime
q which is bounded as in Equation (9.1) exists. We use the following heuristic:
The density of Sophie Germain primes is given by πSG(n) ∼ 2Cn/ log2(n) for
a constant 2C ≈ 1.32032 [40]. An asymptotic inverse is given by n log2(n) and
so we can expect the m-th Sophie Germain prime to be of size approximately
m log2(m). Hence, assuming that the pi are sampled from [(n log(n))2, ((n +
1) log(n+ 1))2], we require that there exists an index m ∈ N such that

((n+ 1) log(n+ 1))2r < m log2(m) < (n log(n))2(r+1) (9.3)

which, heuristically, we may convince ourselves to hold by considering the expo-
nential nature of the bounding expressions in r. We refer to the full version of
this work for details.

9.1 Relation to Hamming Distance

Our conjunction obfuscator construction is related to our Hamming distance
obfuscator (cf. Section 7) and thus exhibits several limitations.
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Firstly, the construction limits the number of wildcards |Wx| < n/2.
Secondly, due to the construction, the problem of finding a match to x ∈

{0, 1, ?}n reduces to the problem of finding a vector y ∈ {−1, 0, 1}n ⊂ Zn such
that ‖σ(x) − y‖1 < |Wx|. Note that we took the representatives of Z/3Z to be
{−1, 0, 1} such that the wildcard primes never appear as factors of X. We may
compute the number of possible vectors in an `1-ball of radius r (0 ≤ r ≤ n(q−1)
for Z/qZ) using |B1,q,r| =

∑r
k=0

〈
n
k

〉
q

where
〈
n
k

〉
q

=
∑n
i=0(−1)i

(
n
i

)(
k+n−1−iq

n−1
)

is the q-nomial triangle. The upper limit of the sum may actually be taken as
b(k+n−1)/qc instead of n. The symbol

〈
n
k

〉
q

counts the number of compositions

of k into n parts pi such that 0 ≤ pi ≤ q − 1 for each pi [22].
Finally, an input conjunction x ∈ {0, 1, ?}n needs to be evasive. Assuming a

uniform conjunction, this will be the case if |B1,3,r|/3n < 1/2λ is negligible.

9.2 Parameter Choices

In Section 9.1 we have learned that the possible parameter choices of the conjunc-
tion obfuscator are more limited. Assuming a uniform and evasive conjunction
distribution, we find from Lemma 3.1 and Section 9.1 that the bit-security is
given by λr,n = min {n− r,− log2(|B1,3,r|/3n)}. On the other hand, the con-
junction obfuscators given in [4, 6] allow for a wider range of r < n−O(log(n))
at the cost of assuming a generic group model.

Brakerski et al. [10] give no estimate of encoding size or security parame-
ters for their graded coding scheme based obfuscator. Chen et al. [13] found
experimentally that “The TBO of 32-bit conjunctions is close to being practical,
with a total evaluation runtime of 11.6 milliseconds, obfuscation runtime of 5.1
minutes, and program size of 11.6 GB for a setting with more than 80 bits of
security.” This program size and obfuscation time is orders of magnitude worse
than the encoding size of our scheme or the schemes of [4, 6].

9.3 Security

Showing security of the conjunction obfuscator works in essentially the same way
as for the Hamming distance obfuscator in Section 8.1. Note that Problem 5.1
respectively Problem 5.2 also makes sense when the distribution D is consid-
ered to be over {−1, 0, 1}n instead of {0, 1}n. Note that Remark 2 applies to
Theorem 9.1 as well.

Theorem 9.1. Let D = {Dλ}λ∈N be an ensemble of conjunction evasive dis-
tributions (as in Definition 3.2). Suppose that D-MSPr,n,D (Problem 5.2) with
the distribution D over {−1, 0, 1}n is hard and that OPT is a dependent auxil-
iary input distributional VBB point function obfuscator. Then the Conjunction
obfuscator OC is a distributional VBB obfuscator.

Theorem 9.2. Let D = {Dλ}λ∈N be an ensemble of conjunction evasive dis-
tributions (as in Definition 3.2). Suppose that MSPr,n,D (Problem 5.1) with the
distribution D over {−1, 0, 1}n is hard for r > rf (n) (recall Equation (7.3)).
Then the Conjunction obfuscator OC is input hiding.
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10 Conclusion

We have introduced a new special purpose obfuscator for fuzzy matching under
Hamming distance as well as a new special purpose obfuscator for conjunctions.
We have shown that our obfuscators are virtual-black-box secure and input hid-
ing, based on the search and decision versions of the distributional modular
subset product problem. We believe our obfuscators are post-quantum secure.
The Hamming distance obfuscator can cover a wider range of parameters than
previous solutions based on secure sketches.

Open problems include finding optimal parameters. More speculative open
problems include obfuscating fuzzy matching with respect to edit distance or
other metrics.
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