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Abstract. We construct private-key and public-key functional encryp-
tion schemes in the bounded-key setting; that is, secure against adver-
saries that obtain an a-priori bounded number of functional keys (also
known as the collusion bound).
An important metric considered in the literature on bounded-key func-
tional encryption schemes is the dependence of the running time of the
encryption algorithm on the collusion bound Q = Q(λ) (where λ is the
security parameter). It is known that bounded-key functional encryp-
tion schemes with encryption complexity growing with Q1−ε, for any
constant ε > 0, implies indistinguishability obfuscation. On the other
hand, in the public-key setting, it was previously unknown whether we
could achieve encryption complexity growing linear with Q, also known
as optimal bounded-key FE, based on well-studied assumptions.
In this work, we give the first construction of an optimal bounded-key
public-key functional encryption scheme under the minimal assumption
of the existence of any public-key encryption scheme. Moreover, our
scheme supports the class of all polynomial-size circuits.
Our techniques also extend to the private-key setting. We achieve a con-
struction of an optimal bounded-key functional encryption in the private-
key setting based on the minimal assumption of one-way functions, in-
stead of learning with errors as achieved in prior works.

1 Introduction

Functional Encryption [SW05,BSW11] (FE) is a powerful type of encryption
where the owner of a secret key sk can generate special-purpose functional
secret keys skF which allow anyone to compute F (x) given an encryption of
x. The standard and demanding security notion for functional encryption is
collusion-resistance which, informally stated, requires that an adversary who
holds functional secret keys for an arbitrary polynomial number of boolean func-
tions F1, F2, . . . , Fm of her choice should learn no more than F1(x), F2(x), . . . , Fm(x)

given an encryption of x. Collusion-resistant functional encryption schemes are
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extremely powerful: [AJ15,BV15,AJS15] show that such FE schemes can be used
to construct indistinguishability obfuscators and therefore, can be used to instan-
tiate a vast majority of cryptographic primitives (see [SW14] and a large number
of followup works.) It is no surprise then that collusion-resistant FE schemes are
very hard to construct and indeed, to this date, we do not know constructions
from well-established cryptographic assumptions.

In many uses of functional encryption, however, the weaker notion of bounded-
key setting might suffice. Bounded-key setting permits the secret-key owner
to release an a priori bounded number Q = Q(λ) of functional keys. (Here
and henceforth, λ denotes the security parameter.) Thus, bounded-key set-
ting is appropriate in scenarios where functional keys are tied to users, and
a large colluding set of users is hard to form. Historically, bounded-collusion
resistance has been well-studied with the goals of improving efficiency, reduc-
ing computational assumptions, and supporting a larger class of functions; see
[DKXY02,HK04,CHH+07,GLW12,SS10,GVW12a,ISV+17,AR17,Agr17] and the
references therein.

Encryption Complexity. An important complexity measure considered in the
FE literature is encryption complexity (defined to be the size of the encryption
circuit). Of particular interest in the setting of bounded-collusion resistance (re-
ferred as bounded-key FE) is the growth of the encryption complexity with the
collusion bound Q. The importance of this measure stems from the recent re-
sults [BV15,AJ15,AJS15,GS16,LM16,BNPW16,KNT18], which tell us that, for
any constant ε > 0, bounded-key FE with encryption complexityQ1−ε·poly(λ, s),
where s is the maximum size of the functions queried, is as powerful as collusion-
resistant FE. Thus, achieving encryption complexity Q1−ε ·poly(λ, s) in bounded-
key FE schemes from well-studied assumptions would be a breakthrough in cryp-
tography.

On the other hand, we could still hope to base bounded-key FE schemes,
in the public-key setting, with encryption complexity Q · poly(λ, s) (henceforth,
referred to as optimal bounded-key FE) on well-studied assumptions. Unfortu-
nately, this question has remained unanswered so far. The best known result,
by Agrawal and Rosen [AR17], managed to reduce the encryption complexity to
Q2 + poly(λ, s).

We ask the following question:

Can we construct optimal bounded-key public-key FE for all functions
in P/poly based on well-studied assumptions?

1.1 Our Results

In this work, we answer the above question in the affirmative and in fact, our
construction can be based on minimal assumptions alone, i.e., existence of any
public-key encryption scheme.

Specifically, we prove the following theorem.



Theorem 1 (Informal). Assuming the existence of public-key encryption, there
exists a bounded-key public-key FE scheme for P/Poly with encryption complex-
ity Q · poly(λ, s), where Q is the collusion bound and s is the maximum size of
the functions queried.

Additionally our scheme has many advantages. It satisfies simulation security
and adaptive security, which is the best possible security notion that we can
achieve in this setting. Moreover, our scheme makes only black box use of the
underlying public-key encryption scheme. We note that even constructing op-
timal public-key attribute-based encryption, a weaker form of FE, based on
minimal assumptions was unknown prior to our work.

Private-Key Setting. In the private-key setting, a recent work of Chen, Vaikun-
tanathan, Waters, Wee and Wichs [CVW+18] showed how to achieve optimal
bounded-key FE based on the assumption of learning with errors. Moreover,
their scheme was only selectively secure. Thus, constructing optimal bounded-
key FE in the private-key setting based on the minimal assumption of one-way
functions was open.

We show,

Theorem 2 (Informal). Assuming the existence of one-way functions, there
exists a bounded-key private-key FE scheme for P/Poly with encryption complex-
ity Q · poly(λ, s), where Q is the collusion bound and s is the maximum size of
the functions queried.

Our private-key scheme has the same attractive features as our public-key scheme,
that is, our private-key scheme satisfies simulation security, adaptive security and
only makes black-box use of the underlying cryptographic primitive.

Dichotomy in Bounded-Key Functional Encryption. We see our work as estab-
lishing a dichotomy in bounded-key functional encryption (in both public-key
and private-key settings): (i) for any constant ε > 0, any bounded-key FE scheme
with encryption complexity Q1−εpoly(λ, s) implies indistinguishability obfus-
cation and, (ii) the existence of bounded-key FE with encryption complexity
Q · poly(λ, s) can be based solely on minimal assumptions.

1.2 Prior Works on Bounded-Collusion FE

Dichotomy in Bounded-Key IBE. Early work by Dodis, Katz, Xu and Yung [DKXY02]
showed how to construct a Q-bounded identity-based encryption (IBE) scheme,
another special case of FE, where the public parameters had size O(Q2λ), and
the ciphertexts and secret keys had size O(Qλ), starting from any public-key
encryption scheme. Goldwasser, Lewko and Wilson [GLW12] later showed a con-
struction with public parameters of size O(Qλ), and ciphertexts and secret keys
of size O(λ), albeit under more structured algebraic assumptions.



More recently, Döttling and Garg [DG17b] and followup works [BLSV18,DG17a]
showed how to bootstrap any bounded collusion IBE with public parameters of
size Q1−ε · poly(λ), irrespective of ciphertext and secret-key length, into a full-
fledged (i.e., fully collusion-resistant) IBE scheme.

This gives us a dichotomy for IBE: Q-bounded IBE with public parameters
of size Ω(Q) exists under the minimal assumption of public-key encryption; and
doing any better in terms of the size of public parameters is as hard as achieving
unbounded-collusion IBE.

Bounded-Key FE. In the other extreme, the situation with general functional
encryption (FE) is less clear-cut. The first construction of bounded-key FE for
Boolean functions3 in NC1 was demonstrated by Gorbunov, Vaikuntanathan and
Wee [GVW12a], who built on the work of Sahai and Seyalioglu [SS10]; the en-
cryption complexity in their scheme was Q4 · poly(λ, s). They also showed how
to extend this to support all poly-time computable functions, but at the expense
of an additional assumption, namely pseudorandom functions that can be com-
puted in NC1, an object that we currently know how to construct based only
on algebraic assumptions such as factoring, DDH and LWE. (See Figure 1 for
a detailed comparison.) Agrawal and Rosen [AR17] showed how to reduce the
ciphertext size to Q2 + poly(λ, s) under the LWE assumption. Chen, Vaikun-
tanathan, Waters, Wee and Wichs [CVW+18] very recently showed how to re-
duce the dependence even further to Q · poly(λ, d) under the LWE assumption,
except they could only achieve private-key FE. The ciphertext size dependence
on Q in this last result is the best possible (without constructing IO) except
that (a) they rely on LWE; and (b) they only achieve private-key FE. Even
in the much weaker setting of public-key attribute-based encryption (ABE), the
best known ciphertext size is Q2 · poly(λ, s) in constructions that rely only on
public-key encryption [ISV+17].

Dependence on the circuit size. We do caution the reader that our focus will
be on the dependence of the ciphertext size on the collusion-bound Q. Cipher-
texts in our scheme grow with the circuit-size of the functions that the scheme
supports (denoted s in Figure 1). On the one hand, for constructions that rely
only on the minimal assumption of public-key encryption, this dependence seems
hard to remove; indeed, even the best 1-bounded FE with ciphertext size sub-
linear in the circuit-size of the (Boolean) functions assumes (subexponential)
LWE [GKP+13]. On the other hand, we show how to translate any improve-
ment in this state of affairs for 1-bounded FE into a corresponding improvement
in Q-bounded FE with ciphertexts that grow linearly in the collusion bound Q.
Concretely, applying our techniques to the 1-bounded FE of [GKP+13] gives us a

3 Handling functions with output size ` is morally the same as increasing the collusion
bound and handling ` functions with Boolean output. Indeed, this is made precise
in the results of [BV15,AJS15,GS16,LM16].



Ciphertext Size Circuit Class Assumptions Remarks

[GVW12a]
Q4poly(λ, s) NC1 PKE Public-Key, Adaptive
Q4poly(λ, s) NC1 OWFs Private-Key, Adaptive
Q4poly(λ, s) P/Poly DDH/LWE Public-Key, Adaptive

[AR17] Q2 + poly(λ, s) P/Poly LWE/Ring-LWE Public-Key, Selective
[CVW+18] Q · poly(λ, s) P/Poly LWE Private-Key, Selective

Our Work Q · poly(λ, s) P/Poly PKE Public-Key, Adaptive
Q · poly(λ, s) P/Poly OWFs Private-Key, Adaptive

Fig. 1. State of the art for bounded key functional encryption schemes in terms of
query dependence. Q denotes the number of circuit queries allowed in the security
experiment and s denotes the size of the circuits for which functional keys are issued.

Q-bounded FE from subexponential LWE where ciphertexts grow asQ·poly(λ, d)
where d is the circuit-depth, improving on [AR17] (who achieve a quadratic de-
pendence in Q) and on [CVW+18] (who construct a private-key FE scheme with
a linear dependence in Q).

1.3 Technical Overview

We give an overview of the techniques. For the current discussion, our focus will
be on the public-key setting; the techniques carry over mutatis mutandis to the
private-key setting as well. We show our result in two steps. In the first step,
we construct a public-key bounded-key FE for P/Poly starting from any public-
key encryption scheme. We will not worry about optimizing the ciphertext size;
indeed, it will be a large polynomial in the collusion bound Q. In the second
step, we show a general way to reduce the ciphertext size: we show how to
transform an FE scheme, where the ciphertext complexity grows polynomial in
the collusion bound, into a FE scheme with linear complexity.

We now describe an overview of the techniques involved in the two steps,
in order. In the technical sections, we invert the order of presentation since the
second step (see section 4) is simpler than the first (see section 5).

First Step: Bounded-Key FE for P/Poly. Our starting point is the ob-
servation from [SS10,GVW12a] that secure multiparty computation protocols
with certain properties can be used to construct FE schemes; for [SS10], it
was Yao’s two-party computation protocol [Yao86] and for [GVW12a], it was
a non-interactive version of the BGW multi-party protocol [BOGW88]. Broadly
speaking, our goal in this paper is to identify the right notion of MPC that can
be turned into optimal bounded-collusion FE.

Towards this end, we define secure multiparty computation protocols in a
client-server framework where there is a single client who wishes to delegate an
a-priori bounded number Q of computations to N servers. We first describe the



syntax of such protocols and then the security we require of them. A protocol in
the client-server framework proceeds in two phases:

– An offline phase where the client encodes a private input x into N encodings,
and the ith server gets the ith encoding.

– An online phase which is executed Q times, once for every function that the
client wishes to delegate. In the jth session, the client encodes a circuit Cj
into N encodings, and sends each server an encoding. At this stage, only
n of the N servers come online, perform some local computation on their
encodings, and output a single message each. (We call the local computa-
tion function Local.) A public decoding algorithm can then reconstruct the
value Cj(x) from these server messages. (We call the reconstruction function
Decode.)
Crucially, we require that the client does not keep any shared state between
the online and offline phases.

As for security, we consider an adversary that corrupts an arbitrary size-t subset
of the servers (for some pre-determined t) and learns (a) the offline phase mes-
sages received by these t servers and (b) the messages of all the servers in the
online phase; that is, the adversary gets to see the entire communication between
the client and the servers in the online phase. We require that such an adversary
does not learn anything more about the client input x other than {Cj(x)}j∈[Q].
This requirement is captured through a simulation-based definition. Two aspects
make it challenging to construct such protocols:

– Reusability: the input encodings generated by the client should be reusable
across different computations; and

– Dynamic Recovery: the ability for only a subset of servers to come together
in the online phase to recover the output.

For the current discussion, we call secure protocols that satisfy both the above
properties as reusable dynamic MPC protocols. In the technical sections, we will
not explicitly use the terminology of reusable dynamic MPC protocols and just
refer to them as client-server protocols.

Implicit in [GVW12a] is a construction of a reusable dynamic MPC protocol,
where the circuits delegated by the client are in NC1. There is a fundamental bar-
rier in extending their approach to handle circuits in P/Poly as they crucially use
a two-round MPC protocol (derived from BGW) that securely computes polyno-
mials. Circuits in P/Poly are believed to not have efficient polynomial represen-
tations. While several recent works [BL18,GS18,ACGJ18,GIS18,ABT18] demon-
strate two-round MPC protocols that securely compute P/Poly, they fail to si-
multaneously satisfy reusability and dynamic recovery. Nonetheless, we will cru-
cially use the construction of reusable dynamic MPC protocol for NC1 [GVW12a],
denoted by ΠNC1 , to build a protocol for P/Poly.



From Client-Server Protocol for P/Poly to Bounded-Key FE for P/Poly. Before
we construct reusable dynamic MPC protocols for P/Poly, we first show how
such protocols are useful in obtaining bounded-collusion FE for P/Poly. As an
intermediate tool, we use a single-key FE scheme for P/Poly. This is a well studied
object and can be based solely on the existence of public-key encryption [SS10].
We call such a scheme 1fe and we denote the bounded-collusion FE scheme that
we wish to construct to be BFE. The construction of BFE, which follows along
the lines of [GVW12a], proceeds as follows:

– The setup of BFE invokes N = poly(Q) instantiations of 1fe. The N public
keys of 1fe form the master public key of BFE and similarly the N secret
keys of 1fe form the master secret key of BFE.

– To encrypt an input x in BFE, run the offline phase of the client-server
framework. Denote the output to be (x̂1, . . . , x̂N ). Encrypt x̂u under the uth

instantiation of 1fe. Output all the N ciphertexts of 1fe.
– The key generation for a circuit C in BFE is done as follows: run the client

delegation procedure CktEnc on C to obtain (Ĉ1, . . . , ĈN ). Pick a random n-
sized subset S ⊆ [N ] and generate 1fe functional keys for Local(Ĉu, ·) (recall
that Local is part of the online phase in client-server framework) for every u
in the set S. Output all the n functional keys of 1fe.
Note that here we crucially use the fact that the client does not share state
between the offline and online phases.

– The decryption proceeds by first decrypting the uth ciphertext of 1fe using
the uth functional key to obtain the encoding ŷu. Then run Decode to recover
the answer.

The correctness of BFE follows from the correctness guarantees of 1fe and the
reusable dynamic MPC framework. To argue security, as in [GVW12a], a simple
combinatorial argument is first invoked to prove that the size of pairwise inter-
sections of the sets chosen during the key-generation procedures of all the Q
functional keys is at most t. For this argument to work, we need to set N to be
a sufficiently large polynomial in Q. Using this observation, we can deduce that
at most t instantiations of 1fe can be rendered insecure. An 1fe instantiation
being rendered insecure means that the corresponding server is corrupted in the
client-server framework; note that there is a one-to-one correspondence between
the number of instantiations of 1fe and the number of servers in the client-server
framework. We can then use the property that the client-server protocol is secure
even if at most t servers are corrupted, to argue that the scheme BFE is secure.

Moreover, since 1fe can be based on public-key encryption (resp., one-way
functions), we obtain a public-key (resp., secret-key) BFE for P/Poly from reusable
dynamic MPC for P/Poly assuming only public-key encryption (resp., one-way
functions).



Reusable Dynamic MPC Protocol for P/Poly. Now that we have shown that
reusable dynamic MPC is useful for constructing bounded-key FE, we shift our
focus to building this object.

Towards this, we first define the abstraction of correlated garbling. This ab-
straction allows for generating multiple garbled circuits from a shared random
string. More specifically, it comprises of two algorithms: CorrGarb and CorrEval.
The correlated garbling algorithm CorrGarb takes as input circuit C, input x, a
random string R (not necessarily uniformly generated) and outputs a garbled
circuit GC and appropriate wire labels Kx. The evaluation algorithm CorrEval
takes as input (GC,Kx) and outputs C(x). We require that all the different
correlated garbled circuits {GCi ← CorrGarb(Ci, x,R) produced using the same
string R do not reveal any information about x beyond {(Ci, Ci(x))}.

We use this abstraction to transformΠNC1 (recall,ΠNC1 is a reusable dynamic
protocol for NC1) into a reusable dynamic for P/Poly as follows:

– Offline Phase: to encode an input x, generate a random string R (as dictated
by correlated garbling) and then encode (x,R) using the offline phase ofΠNC1

to obtain N input encodings.
– Online Phase: in the ith session, let Ci be the circuit delegated by the client.

The client generates the online phase of ΠNC1 on the circuit CorrGarb(Ci, ·, ·)
to obtain N circuit encodings and sends one encoding to each of the servers.
A subset of the servers perform local computation of ΠNC1 and each of them
output a single message. The value Ci(x) can be recovered from the outputs
of the servers in two steps: (i) run the decoding procedure of ΠNC1 to obtain
the correlated garbled circuit-wire keys pair (GCi,K

i
x) of (Ci, x) and then,

(ii) run CorrEval on the correlated garbled circuit to recover the answer.

In order to implement the above construction, it is required that CorrGarb is
representable by an NC1 circuit: this is because ΠNC1 only allows for delegating
computations in NC1. The security of the above construction follows from the fact
that the different correlated garbled circuits along with wire keys {(GCi,Ki

x)}
can be simulated using {(Ci, Ci(x))}: note that all the correlated garbled circuits
are computed as a function of the same random string R. In Section 5, we
give a direct construction of client-server protocol from correlated garbling; in
particular we do not assume that a client-server protocol for NC1 as implicitly
proposed in [GVW12a].

All that remains is to construct a correlated garbling scheme with the garbling
function in NC1. We introduce novel techniques in this construction and this is
the main technical contribution of the paper.

Construction of Correlated Garbling. The main hurdle in constructing a corre-
lated garbling scheme is to ensure the security of different correlated garbled
circuits computed using the same randomness. As a first attempt, we use the
classical garbling scheme of Yao [Yao86]:



– Let s be the number of wires in the circuit to be garbled. For every wire w in
the circuit, generate a large (i.e., poly(λ,Q)) number of uniformly random
keys, denoted by the vector

−→
K0
w, associated with bit 0 and λ number of keys

−→
K1
w for bit 1. Similarly, for every gate G in the circuit, generate a large (i.e.,

poly(λ,Q)) number of random strings, denoted by
−→
RG. The collection of all

the strings form the random string R that will be input to CorrGarb.
– To garble a circuit C, CorrGarb performs the following steps:

- Generation of wire keys and randomness for encryption: It
chooses a random λ-sized subset S; for every wire w, it generates the
wire key K0

w (resp., K1
w) for w by XOR-ing the subset S of keys in

−→
K0
w

(resp.,
−→
K1
w). Similarly, generate RG by XOR-ing the subset S of random

strings in
−→
RG.

- Generating the garbled gates: Using the wire keys and the random
strings generated using the above process, we generate the garbled gates
for every gate in the circuit. The generation process will be performed
as described in [Yao86]. In particular, this process will employ a private-
key encryption scheme to generate four ciphertexts associated with every
gate in the circuit.

– CorrEval is the same as the evaluation algorithm of the garbling scheme
by [Yao86].

In addition to security, we need to argue that CorrGarb can be implemented
in NC1; recall that the latter property was crucially used to construct reusable
dynamic MPC for P/Poly. Let us first give intuition as to why the above template
satisfies security.

Suppose the string R (input to CorrGarb) is reused Q times to generate Q
different collections of wire keys and random strings, with each such collection
generated using a different random set S. Then each collection in turn is used to
generate a single garbled circuit. First we invoke a combinatorial argument to
prove that the joint distribution of the Q collections of wire keys and the random
strings, generated as above, is identical to the product uniform distribution.
Once this is proven, this proof can then be leveraged, using arguments standard
in the garbling literature, to argue the security of the above correlated garbling
candidate.

All is left is to show that CorrGarb can be implemented in NC1. Since the
procedure CorrGarb involves running the encryption algorithm of a private-key
scheme, at the very least we need to start with a private-key scheme with en-
cryption algorithm computable in NC1. Unfortunately such schemes are known
to exist only based on algebraic assumptions, in particular, assuming PRGs in
NC1. Thus, the above candidate does not work for us.

To overcome this barrier, we make the following observation: notice that the
generation of the random string R fed into CorrGarb is “lightweight", meaning
that no cryptographic primitives are used. On the other hand, the algorithm



CorrGarb is “crypto-heavy", meaning that it makes many invocations of a cryp-
tographic primitive and specifically, a private-key encryption scheme. We design
a flipped correlated garbling scheme, where the generation of R is “crypto-heavy"
while CorrGarb is “lightweight".

Specifically, we make the following changes to the above candidate.

– Instead of invoking the PRG during the execution of CorrGarb, we instead
invoke this during the generation of R. While doing so, we observe that it is
no longer necessary that PRG needs to be computable in NC1, since there is
no such restriction when generating R. As a result, we will end up generating
all the keys in {

−→
K0
w,
−→
K1
w} using any pseudorandom generator.

– To maintain correctness, we need to encrypt a subset of the seeds of the
PRG as part of the garbled table. Arguing security is more challenging now.
We need to argue that the joint distribution of the Q collections of the wire
keys and the random strings computed using R, is identical to the product
uniform distribution, even if some of the PRG seeds generating the wire keys
are leaked and this step is crucial to the proof of the correlated garbling
lemma.

The above template is an over-simplified presentation of correlated garbling
and we refer the reader to the technical sections for a precise description.

Summarizing the first step. We summarize the steps to construct a bounded-key
functional encryption for P/Poly.

1. We construct correlated garbling for P/Poly from one-way functions.
2. Combining correlated garbling with techniques from [GVW12a], we con-

struct a protocol in the client-server framework (satisfying both reusability
and dynamic recovery) that handles P/Poly computations.

3. Finally, we construct bounded-key FE for P/Poly from a client-server proto-
col and single-key functional encryption for P/Poly [SS10,GVW12a].

The ciphertext complexity in the resulting FE scheme, however, grows polyno-
mially in Q.

Second Step: Linear Dependence in Query Complexity. In the second
step, we give a generic transformation to turn the FE scheme resulting from the
first step into one that satisfies linear complexity property. This transformation
is remarkably simple and draws connections to the classical load balancing prob-
lem. Recall in the load balancing problem, there are Q reviewers and there are
Q papers to review, with each reviewer having bandwidth to review at most q
papers. Assigning papers at random to the reviewers ensures that each reviewer
has to review one paper on average. By a simple Chernoff argument coupled
with union bound argument, it follows that, as long as q is large enough, the



probability that any reviewer has to review more than q papers is small. We
propose our transformation along these lines: let bfe be the FE scheme obtained
from the first step and let BFE be the FE scheme with linear complexity that we
wish to construct. To tolerate a query bound Q, we consider Q instantiations of
bfe in parallel, where the collusion bound (read as “load") in bfe is set to be q.

– To encrypt a message x in BFE, encrypt x in all the instantiations of bfe.
– To generate a functional key for a circuit C, pick an index i in [Q] at random

and generate a bfe functional key corresponding to the ith instantiation. This
is akin to assigning a paper to a reviewer at random.

If we set q to be security parameter, we can prove (using Chernoff and union
bounds) that it is highly unlikely that the number of bfe functional keys issued
for any given index is greater than q. This allows us to invoke the security of
bfe scheme to prove the security of BFE. Moreover, the ciphertext complexity of
BFE is linear in Q, as desired! (each bfe ciphertext is of size fixed polynomial in
the security parameter and in particular, independent of Q).

2 Preliminaries

We denote the security parameter by λ. Suppose x and y be two strings. Then,
we denote x ◦ y to be the concatenation of x and y.

Let D be a distribution with an efficient sampler. We denote the process of
sampling v from D to be v $←− D. The statistical distance between two distri-
butions D0 and D1 is ε if

∑
v∈V |Pr[v

$←− D0] − Pr[v
$←− D1]| ≤ 2ε, where V is

the support of both D0 and D1. Two distributions D0 and D1 are computation-
ally indistinguishable if for every probabilistic polynomial time (PPT) adversary
A, the following holds:

∣∣∣Pr
v

$←−D0

[0← A(v)]− Pr
v

$←−D1

[0← A(v)]
∣∣∣ ≤ negl(λ), for

some negligible function negl.
We assume that without loss of generality, every polynomial-sized circuit

considered in this work contain only boolean gates (over any universal basis) with
at most two output wires. Note that if every gate in a polynomial-sized circuit
has at most one output wire then this circuit is representable as a polynomial-
sized formula and thus, is in NC1. The class of all polynomial-sized circuits is
denoted by P/Poly.

2.1 Bounded-Key Functional Encryption

A public-key functional encryption scheme bfe associated with a class of boolean
circuits C is defined by the following algorithms.

– Setup, Setup(1λ, 1Q, 1s): On input security parameter λ, query bound Q,
maximum size of the circuits s for which functional keys are issued, output
the master secret key msk and the master public key mpk.



– Key Generation, KeyGen(msk, C): On input master secret key msk and a
circuit C ∈ C, output the functional key skC .

– Encryption, Enc(mpk, x): On input master public key mpk, input x, output
the ciphertext ct.

– Decryption, Dec(skC , ct): On input functional key skC , ciphertext ct, out-
put the value y.

Remark 1. A private-key functional encryption scheme is defined similarly, ex-
cept that Setup(1λ, 1Q, 1s) outputs only the master secret key msk and the en-
cryption algorithm Enc takes as input the master secret key msk and the message
x.

Remark 2. Henceforth, Setup will only take as input (1λ, 1s) in the case when
Q = 1.

A functional encryption scheme satisfies the following properties.

Correctness. Consider an input x and a circuit C ∈ C of size s. We require the
following to hold for every Q ≥ 1:

Pr

[
C(x)← Dec(skC , ct) :

(mpk,msk)←Setup(1λ,1Q,1s);
skC←KeyGen(msk,C);

ct←Enc(mpk,x)

]
≥ 1− negl(λ),

for some negligible function negl.

Efficiency. Setup,KeyGen,Enc and Dec run in time polynomial in their respective
inputs.

We define a measure of efficiency that captures the dependance of the cipher-
text complexity on the query bound. We define this formally below.

Definition 1 (Linear Complexity). A functional encryption scheme bfe =

(Setup,KeyGen,Enc,Dec) is said to have linear complexity if the following holds:

– The time to compute Enc(mpk, x) is Q · poly(λ, s).
– The time to compute KeyGen(msk, C) for a circuit of size s is Q · poly(λ, s).

where (mpk,msk)← Setup(1λ, 1Q, 1s).

Security. To define the security of a bounded-key functional encryption scheme
bfe, we define two experiments Expt0 and Expt1. Experiment Expt0, also re-
ferred to as real experiment, is parameterized by PPT stateful adversary A and
challenger Ch. Experiment Expt1, also referred to as simulated experiment, is
parameterized by PPT adversary A and PPT stateful simulator Sim.

Exptbfe,A,Ch0 (1λ):

– A outputs the query bound Q and the maximum circuit size s.



– Ch executes bfe.Setup(1λ, 1Q, 1s) to obtain the master public key-master se-
cret key pair (mpk,msk).

– Circuit Queries: A, with oracle access to bfe.KeyGen(msk, ·), outputs the
challenge message x.

– Challenge Message Query: Ch outputs the challenge ciphertext ct.
– Circuit Queries: A, with oracle access to bfe.KeyGen(msk, ·), outputs the

bit b.
– If the total number of oracle calls made by A is greater than Q, output ⊥.

Otherwise, output b.

Exptbfe,A,Sim1 (1λ):

– A outputs the query bound Q and the maximum circuit size s.
– Sim, on input (1λ, 1Q, 1s), outputs the master public key mpk.
– Circuit Queries: A, with oracle access to Sim (generating simulated func-

tional keys), outputs the challenge message x.
• Let QSet be the set of circuit queries made by A to Sim.
• Construct the set V as follows: for every C ∈ QSet, include (C,C(x)) in
V.

– Challenge Message Query: Sim(1|x|,V) outputs the challenge ciphertext
ct.

– Circuit Queries: A, with oracle access to Sim (generating simulated func-
tional keys), outputs bit b.

– If the total number of circuit queries made by A is greater than Q, output
⊥. Otherwise, output b.

A public-key functional encryption scheme is adaptively secure if the output dis-
tributions of the above two experiments are computationally indistinguishable.
More formally,

Definition 2 (Adaptive Security). A public-key functional encryption scheme
bfe is adaptively secure if for every large enough security parameter λ ∈ N, ev-
ery PPT adversary A, there exists a PPT simulator Sim such that the following
holds: ∣∣∣Pr [0← Exptbfe,A,Ch0 (1λ)

]
− Pr

[
0← Exptbfe,A,Sim1 (1λ)

]∣∣∣ ≤ negl(λ),

for some negligible function negl.

Remark 3. The selective security notion can be defined by similarly formulating
the real and the simulated experiments. The only difference between selective
security and adaptive security notions is that in the selective security notion, the
adversary is supposed to output the challenge message even before it receives
the master public key or makes any circuit query.

In the private-key setting, selective and adaptive security notions can be
defined similarly.



3 Result Statements

We prove our result in two steps. In the first step, we present a transformation
that converts a bounded-key functional encryption scheme, that doesn’t have
linear complexity property, into one that satisfies linear complexity.

Generic transformation to achieve linear complexity. We prove the following
theorem in Section 4.

Theorem 3. Consider a class C of polynomial-sized circuits. If there exists a
public-key (resp., private-key) bounded-key FE scheme for C then there exists
a public-key (resp., private-key) bounded-key FE scheme for C that additionally
satisfies linear complexity property (Definition 1).

Remark 4. Our transformation does not place any restrictions on C. In particu-
lar, our transformation works for identity-based encryption schemes, attribute-
based encryption schemes, and so on.

The above theorem is restated as Theorem 6 in Section 4.

Bounded key FE for P/Poly. We prove the following theorem in Section 5.

Theorem 4. Assuming the existence of public-key encryption (resp., one-way
functions), there exists a public-key (resp., private-key) bounded-key functional
encryption scheme for P/Poly.

We prove the above theorem by first defining a client-server framework and
then we construct a bounded-key FE from a client-server protocol. Finally, we
instantiate client-server protocols from one-way functions.

The above theorem is restated as Theorem 7 in Section 5.

Bounded key FE for P/Poly satisfying Linear Complexity. By combining the
above two theorems, we achieve our main result.

Theorem 5 (Main Theorem). Assuming the existence of public-key encryp-
tion (resp., one-way functions), there exists a public-key (resp., private-key)
bounded-key functional encryption scheme satisfying linear complexity property
for P/Poly.

Our construction of functional encryption scheme in the above theorem makes
only black box use of public-key encryption (or one-way functions).



4 Achieving Linear Complexity Generically

We show how to generically achieve linear complexity for any bounded-key FE
scheme. In particular, we prove the following:

Theorem 6. If there exists a bounded-key FE scheme, denoted by bfe, for C then
there exists a bounded-key FE scheme, denoted by BFE, for C that additionally
satisfies linear complexity property (Definition 1). Moreover, the following holds:

– If bfe is adaptively secure (resp., selectively secure) then BFE is adaptively
secure (resp., selectively secure).

– If bfe is a public-key (resp., private key) scheme then BFE is a public-key
(resp., private key) scheme.

– If bfe is simulation secure (resp., IND-secure) then BFE is simulation secure
(resp., IND-secure).

Proof. We focus on the case when bfe is adaptively secure, public-key and sim-
ulation secure. Our construction easily extends to the other cases as well.

We describe BFE below.

– Setup(1λ, 1Q, 1s): On input security parameter λ, query bound Q, maximum
circuit size s for which functional keys are issued, generate (mpki,mski) ←
bfe.Setup(1λ, 1q, 1s) for every i ∈ [Q], where q = λ (in fact, q can even be set
to be poly-logarithmic in the security parameter). Output the following:

MSK = (msk1, . . . ,mskQ) , MPK =
(
mpk1, . . . ,mpkQ

)
– KeyGen(msk, C): On input master secret key msk, circuit C ∈ C,
• Sample u $←− [Q].
• Generate skC

$←− bfe.KeyGen(bfe.msku, C).
Output SKC = (u, skC).

– Enc(MPK, x): On input master public key MPK, input x, generate cti ←
bfe.Enc(mpki, x) for every i ∈ [Q]. Output CT = (ct1, . . . , ctQ).

– Dec(SKC ,CT): On input functional key SKC = (u, skC), ciphertext CT =

(ct1, . . . , ctQ), compute bfe.Dec(skC , ctu). Output the result.

The correctness of BFE follows directly from the correctness of bfe. We analyze
the efficiency of the above scheme next.

Suppose the time taken to generate a bfe ciphertext of message x is poly(λ, s)
then the time taken to generate a BFE ciphertext of message x is Q · poly(λ, s).
Similarly, if the time taken to generate a bfe functional key of C is poly(λ, s),
where s is the size of C, then the time taken to generate a BFE functional key
of f is Q · poly(λ, s). Thus, the resulting scheme BFE satisfies linear complexity
property.

The only property left to be proved is the security property, which we prove
next.



Security. Let sim be the stateful simulator of the bfe scheme. Since we invoke
bfe scheme Q times in the scheme, we consider Q instantiations of the stateful
simulator, denoted by sim1, . . . , simQ. We construct a simulator SIM associated
with the BFE scheme. We denote the PPT adversary to be A.

The simulator SIM proceeds as follows:

1. It receives the query bound Q and the maximum circuit size s from A.
2. For every i ∈ [Q], execute simi(1

λ, 1Q, 1s) to obtain the ith master public
key mpki. Set MPK = (mpk1, . . . ,mpkQ). Send MPK to A.

3. Initialize the sets qseti = ∅, for every i ∈ [Q]. For every circuit query C made
by A, do the following:
Sample u $←− [Q] and then generate skC ← simu(C). Add C to qsetu. If
|qsetu| > q then output ⊥. Otherwise, send SKC = (u, skC).
A finally outputs the challenge message x.

4. For every i ∈ [Q], construct the set Vi as follows: for every C ∈ qseti, include
(C,C(x)) in Vi. For every i ∈ [Q], compute simi(1

|x|,Vi) to obtain cti. Set
CT = (ct1, . . . , ctQ). Send CT to A.

5. In the next phase, A makes circuit queries. For every circuit query C made
by the adversary, do the following:
Sample u $←− [Q] and then generate skC ← simu(C,C(x)). Add C to qsetu.
If |qsetu| > q then output ⊥. Otherwise, send SKC = (u, skC).

Consider the following hybrids. The changes are marked in red.

Hyb1: This corresponds to the real experiment. For completeness, we describe
the real experiment here.

1. The challenger Ch receives the query bound Q and the maximum circuit size
s from A.

2. Execute bfe.Setup(1λ, 1Q, 1s) for Q times to obtain {(mski,mpki)}i∈[Q]. Set
MPK = (mpk1, . . . ,mpkQ). Send MPK to A.

3. Initialize the sets qseti = ∅, for every i ∈ [Q]. For every circuit query C made
by A, Ch does the following:
Sample u $←− [Q] and then generate skC ← bfe.KeyGen(msku, C). Add C to
qsetu. Send SKC = (u, skC) to A.
A finally outputs the challenge message x.

4. For every i ∈ [Q], generate cti ← bfe.Enc(mpki, x). Set CT = (ct1, . . . , ctQ).
Send CT to A.

5. In the next phase, A makes circuit queries. For every circuit query C made
by A, do the following:
Sample u $←− [Q] and then generate skC ← bfe.KeyGen(msku, C). Add C to
qsetu. Send SKC = (u, skC) to A.

6. Let b be the output of A. If
∣∣∣⋃Qi=1 qseti

∣∣∣ > Q, output ⊥. Otherwise, output
b.



Remark 5. Note that the experiment described above is phrased differently from
the real experiment of the bounded-key FE scheme. In the real experiment, the
challenger only keeps track of the total number of BFE circuit queries made by
the adversary but in Hyb1, the challenger keeps track of the set of bfe functional
keys issued per index. Since ultimately the challenger only aborts if the size of
the union of all these sets exceeds Q, the output distribution of Hyb1 is the
same as the output distribution of the real experiment.

Hyb2: This hybrid is the same as the previous hybrid except that the real
experiment outputs ⊥ if there exists an index u ∈ [Q] such that |qsetu| > q.

In particular, we make the following changes to bullets 3 and 5 in the exper-
iment described in Hyb1.

3. Initialize the sets qseti = ∅, for every i ∈ [Q]. For every circuit query C made
by A, Ch does the following:
Sample u $←− [Q] and then generate skC ← bfe.KeyGen(msku, C). Add C to
qsetu. If |qsetu| > q then output ⊥. Otherwise, send SKC = (u, skC) to A.
A finally outputs the challenge message x.

5. In the next phase, A makes circuit queries. For every circuit query C made
by A, do the following:
Sample u $←− [Q] and then generate skC ← bfe.KeyGen(msku, C). Add C to
qsetu. If |qsetu| > q then output ⊥. Otherwise, send SKC = (u, skC) to A.

Claim. The statistical distance between the output distributions of Hyb1 and

Hyb2 is at most Q · e−
(q−1)2

1+q and thus, negligible in λ.

Proof. Define Xu,j , for every u ∈ [Q], j ∈ [Q], to be a random variable such that
Xu,j = 1 if in the jth circuit query C made by the adversary, the challenger re-
sponds with SKC = (u, skC); that is, the challenger responds with the functional
key corresponding to the uth instantiation of bfe. Let Xu =

∑Q
j=1 Xu,j .

Note that Pr[Xu,j = 1] = 1
Q . By linearity of expectation, E [Xu] = 1.

By Chernoff bound, we have the following: for every u ∈ Q,

Pr [Xu > q] = Pr [Xu > q · E [Xu]]

≤ 1

e
(q−1)2

2+(q−1)
·E[Xu]

Thus for any fixed u ∈ [Q], the probability that the number of bfe functional

keys per index u issued by the challenger is greater than q is at most e−
(q−1)2

1+q . By
union bound, the probability that there exists an index u such that the challenger

issues more than q functional keys with respect to u is at most Q · e−
(q−1)2

1+q .

Next, we consider a sequence of intermediate hybrids.



Hyb3.j, for all j ∈ [Q]: In this intermediate hybrid, the first u instantiations,
with u < j are simulated. The rest of the instantiations are honestly computed.

We consider j instantiations of the stateful simulator, denoted by sim1, . . . , simj.
We describe the hybrid experiment below.

1. The challenger Ch receives the query bound Q and the maximum circuit size
s from A.

2. For i < j, execute simi(1
λ, 1Q, 1s) to obtain the ith master public key mpki.

For i ≥ j, execute bfe.Setup(1λ, 1Q, 1s) to obtain (mski,mpki). Set MPK =

(mpk1, . . . ,mpkQ). Send MPK to A.
3. Initialize the sets qseti = ∅, for every i ∈ [Q]. For every circuit query C made

by A, Ch does the following:
Sample u $←− [Q] and then generate skC as follows:
– If u < j, generate skC ← simu(C).
– If u ≥ j, generate skC ← bfe.KeyGen(msku, C).

Add C to qsetu. If |qsetu| > q then output⊥. Otherwise, send SKC = (u, skC)
to A.
A finally outputs the challenge message x.

4. For every i ∈ [Q], construct the set Vi as follows: for every C ∈ qseti, include
(C,C(x)) in Vi. Compute CT as follows:
– If i < j, compute simi(1

|x|,Vi) to obtain cti.
– If i ≥ j, compute cti ← bfe.Enc(mpki, x).

Set CT = (ct1, . . . , ctQ). Send CT to A.
5. In the next phase, A makes circuit queries. For every circuit query C made

by A, do the following:
Sample u $←− [Q] and then generate skC as follows:
– If u < j, generate skC ← simu(C,C(x)).
– If u ≥ j, generate skC ← bfe.KeyGen(msku, C).

Add C to qsetu. If |qsetu| > q then output⊥. Otherwise, send SKC = (u, skC)
to A.

6. Let b be the output of A. If
∣∣∣⋃Qi=1 qseti

∣∣∣ > Q, output ⊥. Otherwise, output
b.

The following two claims are immediate.

Claim. The output distributions ofHyb2 andHyb3.1 are identically distributed.

Claim. For every j ∈ [Q− 1], the security of bfe implies that the output distri-
butions of Hyb3.j and Hyb3.j+1 are computationally indistinguishable.

Hyb4: This corresponds to the simulated experiment.

The proof of the following claim is immediate.

Claim. The security of bfe implies that the output distributions of Hyb3.Q and
Hyb4 are computationally indistinguishable.



5 Construction of Bounded-Key FE for P/Poly

We construct a bounded-key FE scheme for P/Poly as follows:

– First we define a client-server framework and show how to construct a
bounded-key FE for P/Poly from a protocol in this client-server framework.

– We then show, in the full version [AV19], how to construct a protocol in the
client-server framework from one-way functions.

We begin by describing the client-server framework.

5.1 Client-Server Framework

The client-server framework consists of a single client and N = N(λ,Q) servers,
where λ is the security parameter. It is additionally parameterized by n =

n(λ,Q) and t = t(λ,Q). The framework consists of the following two phases:

– Offline Phase: In this phase, the client takes as input the number of sessions
Q, size of the circuit delegated s, input x and executes a PPT algorithm
InpEnc that outputs correlated input encodings (x̂1, . . . , x̂N ). It sends the
encoding x̂u to the uth server.

– Online Phase: This phase is executed for Q sessions. In each session, the
client delegates the computation of a circuit C on x to the servers. This is
done in the following steps:
• Client Delegation: This is performed by the client computing a PPT

algorithm CktEnc on input (1λ, 1Q, 1s, C) to obtain (Ĉ1, . . . , ĈN ). It
sends the circuit encoding Ĉu to the uth server. Note that CktEnc is
executed independently of the offline phase and in particular, does not
depend on the randomness used in the offline phase4.

• Local Computation by Servers: Upon receiving the circuit encodings
from the client, a subset S of servers come online and the uth server in
this set S computes Local(Ĉu, x̂u) to obtain the uth output encoding ŷu.

• Decoding: Finally, the output is recovered by computing a PPT algo-
rithm Decode on

(
{ŷu}u∈S ,S

)
.

We describe the properties below. We start with correctness.

Correctness. A protocol Π in the client-server framework is said to be correct if
the following holds:

– Suppose the client computes encodings of input x by computing (x̂1, . . . , x̂N )←
InpEnc(1λ, 1Q, 1s, x).

4 We could define a notion where CktEnc takes as input the randomness of the offline
phase. It is however not clear how to build FE from such a notion.



– In the online phase, let C be the circuit that the client wants to delegate.
The client computes (Ĉ1, . . . , ĈN ) ← CktEnc(1λ, 1Q, 1s, C) and distributes
the circuit encodings to all the servers. A subset of servers S ⊆ [N ], of size n,
then locally compute on the circuit encodings. That is, for every u ∈ S, the
uth server computes ŷu = Local(gc, x̂u). Finally, the output can be recovered
by computing Decode({ŷu}u∈S,S) to obtain y.

We require that y = C(x).

Security We allow the adversary to be able to corrupt a subset of servers.
Once the server is corrupted, the entire state of the server is leaked to the
adversary. The adversary, however, is not allowed to corrupt the client. In every
session, since n servers can recover the output, the number of servers that can
be corrupted has to be less than n5.

Informally, we require the following guarantee: even if the adversary can
corrupt a subset of servers, he cannot learn anything beyond the outputs of
the computation (C1(x), . . . , CQ(x)) in every session, where C1, . . . , CQ are the
circuits delegated by the client. However, the circuits (C1, . . . , CQ) are not hidden
from the adversary. Since our end goal is to build FE for P/Poly, we need to
suitably define the security property that would enable us to prove the security
of FE. Towards this, we incorporate the following in the security definition of
the client-server framework:

– We not only allow the adversary to choose the servers to corrupt but also
allow it to decide the subsets of servers S1, . . . ,SQ participating in the Q
sessions.

– In every session, the adversary is provided all the N circuit encodings. More-
over, the outputs of the local computation of all the servers, including the
honest servers, are visible to the adversary.

To define the security notion formally, we first state the following experiments.
The first experiment Expt0 is parameterized by a PPT adversary A and PPT
challenger Ch and the second experiment Expt1 is parameterized by A and PPT
stateful simulator Simcsf .

ExptA,Ch0 (1λ):

– A outputs the query bound Q, maximum circuit size s, total number of
parties N , number of parties n participating in any session, threshold t,
corruption set Scorr ⊆ [N ] and the input x. If |Scorr| > t then the experiment
aborts. It also outputs the sets S1, . . . ,SQ ⊆ [N ] such that |Si| = n, where
Si is the set of parties participating in the ith session.

5 If n or more servers can be corrupted then the corrupted set can recover C(x) for
any circuit C: this is because the corrupted servers can execute CktEnc on input C,
run the local computation procedure and then decode their outputs. Thus, such a
notion would imply program obfuscation.



– Circuit Queries: A is allowed to make a total of Q circuit queries. First,
it makes Q1 ≤ Q adaptive6 circuit queries C1, . . . , CQ1

.

For the ith circuit query Ci, Ch computes
(
Ĉi

1
, . . . , Ĉi

N
)
← CktEnc(1λ, 1Q, 1s,

Ci) and sends
(
Ĉi

1
, . . . , Ĉi

N
)
.

– Challenge Input Query:A submits the input x. Ch generates InpEnc(1λ, 1Q,
1s, x) to obtain (x̂1, . . . , x̂N ).

Ch sends
(
{x̂u}u∈Scorr ,

{
Local

(
Ĉi

u
, x̂u
)}

i∈[Q1],u∈Si

)
. That is, the challenger

sends the input encodings of the corrupted set of servers along with the
outputs of Local on the circuit encodings received so far.

– Circuit Queries: A then makes Q2 = Q − Q1 adaptive circuit queries
CQ1+1, . . . , CQ.

Ch computes
(
Ĉi

1
, . . . , Ĉi

N
)
← CktEnc(1λ, 1Q, 1s, Ci) and sends{{(

Ĉi
1
, . . . , Ĉi

N
)
, Local

(
Ĉi

u
, x̂u
)}

i∈{Q1+1,...,Q},u∈[Si]

}
.

– A outputs a bit b. The output of the experiment is b.

ExptA,Simcsf

1 (1λ):

– A outputs the query bound Q, maximum circuit size s, total number of
parties N , number of parties n participating in any session, threshold t,
corruption set Scorr ⊆ [N ] and the input x. If |Scorr| > t then the experiment
aborts. It also outputs the sets S1, . . . ,SQ ⊆ [N ] such that |Si| = n, where
Si is the set of parties participating in the ith session.

– Circuit Queries: A makes a total of Q adaptive queries. First it makes
Q1 ≤ Q adaptive circuit queries. For the ith circuit query Ci, the simulator
computes

(
Ĉi

1
, . . . , Ĉi

N
)
← Simcsf(Ci) and sends

(
Ĉi

1
, . . . , Ĉi

N
)
.

– Challenge Input Query: A submits the input x. Construct V as follows:
V = {Ci, Ci(x) : i ∈ [Q1]}.
Simcsf on input (1|x|,Scorr,V) (and in particular, it does not get x as input)
outputs the simulated encodings ({x̂u}u∈Scorr) and the encodings of outputs
{ŷui }i∈[Q1],u∈Si such that ŷui = Local

(
Ĉi

u
, x̂u
)
for every u ∈ Si ∩ Scorr.

– Circuit Queries: A then makes Q2 = Q − Q1 adaptive circuit queries
CQ1+1, . . . , CQ. The simulator Simcsf on input (i, Ci, Ci(x)), for i ∈ {Q1 +

1, . . . , Q}, sends
((
Ĉi

1
, . . . , Ĉi

N
)
, ŷui

)
.

– A outputs a bit b. The output of the experiment is b.

We formally define the security property below.

6 By adaptive, we mean that the adversary can decide each circuit query as a function
of all the previous circuit queries.



Definition 3 (Security). A protocol Π is secure if for every PPT adversary
A, there exists a PPT simulator Simcsf such that the following holds:∣∣∣Pr[0← ExptA,Ch0 (1λ)]− Pr[0← ExptA,Simcsf

1 (1λ)]
∣∣∣ ≤ negl(λ),

for some negligible function negl.

5.2 Bounded-Key FE for P/Poly from Client-Server Framework

We now present a construction of a bounded-key functional encryption for all
polynomial-sized circuits from a protocol in the client-server framework.

Theorem 7. There exists a public-key (resp., private-key) adaptively secure
bounded-key functional encryption scheme BFE for P/Poly assuming,

– A public-key (resp., private-key) adaptively secure single-key functional en-
cryption scheme 1fe for P/Poly and,

– A protocol for P/Poly in the client-server framework, denoted by Π = (InpEnc,
CktEnc, Local,Decode).

Proof. We focus on the public-key setting; the construction and the analysis for
the private-key setting is identical. We describe the algorithms of BFE below.
Let the protocol in the client-server framework be parameterized by t = Θ(Qλ),
N = Θ(Q2t2) and n = Θ(t), where Q is the query bound defined as part of the
scheme.

– Setup(1λ, 1Q, 1s): On input security parameter λ, query bound Q, circuit
size s, generate (mski,mpki) ← 1fe.Setup(1λ, 1s) for i ∈ [N ]. Output the
following:

MSK = (msk1, . . . ,mskN ), MPK = (Q, mpk1, . . . ,mpkN )

– KeyGen(MSK, C): On input master secret key MSK, circuit C,

• Sample a set S $←− [N ], of size n, uniformly at random.
• Compute

(
Ĉ1, . . . , ĈN

)
← CktEnc(1λ, 1Q, 1s, C).

• Let Eu(·) = Local(Ĉu, ·). Generate a functional key for Eu; that is, com-
pute skEu ← 1fe.KeyGen(msku,E

u) for every u ∈ S.
Output SKC =

(
S, {skEu}u∈S

)
.

– Enc(MPK, x): On input master public key MPK,
• Compute (x̂1, . . . , x̂N )← InpEnc

(
1λ, 1Q, 1s, x

)
.

• For every i ∈ [N ], compute cti ← FE.Enc
(
mpki, x̂

i
)
.

Output CT = (ct1, . . . , ctN ).
– Dec(SKC ,CT): On input functional key SKC =

(
S, {skEu}u∈S

)
, ciphertext

CT = (ct1, . . . , ctN ),
• For every u ∈ S, compute ŷu ← 1fe.Dec(skEu , ctu).
• Compute Decode

(
{ŷu}u∈S ,S

)
to obtain y.

Output y.



Correctness. Consider a circuit C and an input x. Suppose CT← Enc(MPK, x)
and SKC ← KeyGen(MSK, C). Let CT = (ct1, . . . , ctN ) and SKC =

(
S, {skEu}u∈S

)
.

By the correctness of 1fe, 1fe.Dec(skEu , ctu) = Local(Ĉu, x̂u) for every u ∈ S.

From the correctness of Π, it follows that Decode

({
Local(Ĉu, x̂u)

}
u∈S

,S

)
=

C(x).

We present the proof of security in the full version [AV19].

Instantiation. The bounded-key functional encryption scheme described above
makes black box usage of InpEnc(·) algorithm of Π. Moreover, in the construc-
tion of Π (described in the full version [AV19]), pseudorandom generators are
only used in InpEnc(·). Furthermore, InpEnc(·) only makes black box calls to
the pseudorandom generator. Thus, assuming that 1fe makes black box usage of
public-key encryption, the bounded-key functional encryption scheme described
above, when instantiated with Π, yields a bounded-key scheme that makes only
oracle calls to cryptographic primitives (public-key encryption and pseudoran-
dom generators). All that is left is to demonstrate the feasibility of a single-key
adaptively-secure public-key functional encryption that makes black box usage
of public-key encryption.

To show this, we first present an informal description of single-key public-key
FE 1fe for P/Poly from [SS10].

– 1fe.Setup
(
1λ, 1s

)
: Sample 2s public keys pki,b (i ∈ [s], b ∈ {0, 1}) and se-

cret keys ski,b (i ∈ [s], b ∈ {0, 1}) corresponding to a public-key encryption
scheme. Call the master public key mpk = (pki,b)i∈[s],b∈{0,1} and the master
secret key msk = (ski,b)i∈[s],b∈{0,1}.

– 1fe.KeyGen(msk, C): Output skC = (ski,Ci), where Ci denotes the ith bit in
the description of C. Output skC .

– 1fe.Enc(msk, x): Generate a garbling of Ux(·), where Ux(·) is a universal cir-
cuit that takes as input a circuit C of size s and outputs C(x). Call the re-
sulting garbled circuit to be GC. Encrypt the (i, b)th wire label, for i ∈ [s], b ∈
{0, 1}, using pki,b; call this ciphertext cti,b. Output ct =

(
GC, (cti,b)i∈[s],b∈{0,1}

)
.

– 1fe.Dec(skC , ct): Decrypt cti,Ci using ski,Ci to obtain the (i, Ci)th wire label.
Using all the wire labels recovered, evaluate the garbled circuit to obtain
C(x).

The above construction only guarantees selective security; this construction was
upgraded to adaptive security by [GVW12a]. This construction is described in
Section 4.3 (page 14) of the ePrint version of [GVW12a] ([GVW12b], version
posted on 06-Sep-2012 17:57:14 UTC). The ONEQFE scheme (that allows a
single function query and adaptive simulation security) described in Section 4.3
is constructed from randomized encodings for P/poly (which can be based on
one-way functions) along with BFFE scheme described in Section 4.2. Moreover,



the BFFE scheme described in Section 4.2 can be based on any PKE scheme
(see the first para of Section 4.2).

BFFE scheme makes black box usage of PKE. Also, the ONEQFE scheme
makes black-box usage of the one-way function (used for randomized encoding)
and the underlying procedures of the BFFE scheme.
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