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Abstrat. The task of funtion inversion is entral to ryptanalysis:

breaking blok iphers, forging signatures, and raking password hashes

are all speial ases of the funtion-inversion problem. In 1980, Hellman

showed that it is possible to invert a random funtion f : [N ] → [N ]
in time T = Õ(N2/3) given only S = Õ(N2/3) bits of preomputed

advie about f . Hellman's algorithm is the basis for the popular �Rainbow

Tables� tehnique (Oehslin, 2003), whih ahieves the same asymptoti

ost and is widely used in pratial ryptanalysis.

Is Hellman's method the best possible algorithm for inverting funtions

with preproessed advie? The best known lower bound, due to Yao

(1990), shows that ST = Ω̃(N), whih still admits the possibility of an

S = T = Õ(N1/2) attak. There remains a long-standing and vexing

gap between Hellman's N2/3
upper bound and Yao's N1/2

lower bound.

Understanding the feasibility of an S = T = N1/2
algorithm is ryptan-

alytially relevant sine suh an algorithm ould perform a key-reovery

attak on AES-128 in time 264 using a preomputed table of size 264.

For the past 29 years, there has been no progress either in improving

Hellman's algorithm or in strengthening Yao's lower bound. In this work,

we onnet funtion inversion to problems in other areas of theory to

(1) explain why progress may be di�ult and (2) explore possible ways

forward.

Our results are as follows:

� We show that any improvement on Yao's lower bound on funtion-

inversion algorithms will imply new lower bounds on depth-two ir-

uits with arbitrary gates. Further, we show that proving strong

lower bounds on non-adaptive funtion-inversion algorithms would

imply breakthrough iruit lower bounds on linear-size log-depth ir-

uits.

� We take �rst steps towards the study of the injetive funtion-inversion

problem, whih has manifold ryptographi appliations. In parti-

ular, we show that improved algorithms for breaking PRGs with

preproessing would give improved algorithms for inverting injetive

funtions with preproessing.

� Finally, we show that funtion inversion is losely related to well-

studied problems in ommuniation omplexity and data strutures.

Through these onnetions we immediately obtain the best known

algorithms for problems in these domains.



1 Introdution

A entral task in ryptanalysis is that of funtion inversion. That is, given a

funtion f : [N ] → [N ] and a point y ∈ [N ], �nd a value x ∈ [N ] suh that

f(x) = y, if one exists. The hardness of funtion inversion underpins the seurity

of almost every ryptographi primitive we use in pratie: blok iphers, hash

funtions, digital signatures, and so on. Understanding the exat omplexity of

funtion inversion is thus ritial for assessing the seurity of our most important

ryptosystems.

We are partiularly interested in funtion-inversion algorithms that only

make blak-box use of the funtion f�or formally, that have only orale aess

to f�sine these algorithms invert all funtions. A straightforward argument

shows that any blak-box inversion algorithm that makes at most T queries to

its f -orale sueeds with probability at most O(T/N), over the randomness of

the adversary and the random hoie of the funtion. This argument suggests

that an attaker running in o(N) time annot invert a blak-box funtion on

domain [N ] with good probability.

When the inversion algorithm may use preproessing, this logi breaks down.

An algorithm with preproessing runs in two phases: In the preproessing phase,

the algorithm repeatedly queries f and then outputs an �advie string� about f .
In the subsequent online phase, the algorithm takes as input its preproessed

advie string and a hallenge point y ∈ [N ]. It must then produe a value

x ∈ [N ] suh that f(x) = y. When using these algorithms for ryptanalysis, the

attaker typially seeks to jointly minimize the bit-length S of the advie string

and the running time T of the online algorithm. The omputation required to

onstrut the advie string, though usually expensive, an often be amortized

over a large number of online inversions.

A trivial preproessing algorithm stores a table of f−1
in its entirety as its

advie string using S = Õ(N) bits and an then invert the funtion on all points

using a single lookup into the table. In ontrast, onstruting algorithms that

simultaneously ahieve sublinear advie and online time S = T = o(N) is non-
trivial.

In a seminal paper, Hellman [46℄ introdued time-spae tradeo�s as a tool

for ryptanalysis and gave a blak-box preproessing algorithm that inverts a

funtion f : [N ] → [N ] using only S = Õ(N2/3) bits of advie and online time

T = Õ(N2/3), where the algorithm is guaranteed to sueed only on a onstant

fration of funtions. (More preisely, the algorithm has a onstant suess proba-

bility over the uniformly random hoie of the funtion f .) Fiat and Naor [27,28℄

later gave a rigorous analysis of Hellman's algorithm and extended it to invert all

possible funtions, albeit with a slightly worse trade-o� of the form S3T = Õ(N3)
for any hoie of N3/4 ≤ S ≤ N . Hellman's trade-o� is the best known today,

and his algorithm is a fundamental tool in real-world ryptanalysis [7, 8, 59,61℄.

In this work, we investigate the following question:

Is it possible to improve upon Hellman's time-spae trade-o�?
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Yao �rst asked this question in 1990 [77℄ and proved that any preproessing

algorithm for funtion inversion that uses S bits of advie and T online queries

must satisfy ST = Ω̃(N). (Counting only queries�and not online omputation�

only strengthens lower bounds in this model.) Notably, this lower bound does not

rule out an algorithm that ahieves S = T = Õ(N1/2). In ontrast, Hellman's

algorithm only gives an upper bound of S = T = Õ(N2/3), even for the slightly

easier ase of inverting a random funtion. The question resurfaes in the work

of Fiat and Naor [28℄, Barkan, Biham, and Shamir [5℄ (who show that Hellman's

method is optimal for a ertain natural but restrited lass of algorithms), De,

Trevisan and Tulsiani [21℄, and Abusalah et al. [1℄.

In addition to the problem's theoretial appeal, determining the best pos-

sible time-spae trade-o�s for funtion inversion is relevant to pratie, sine

the di�erene between an online attak time of N2/3
and an N1/2

beomes ru-

ial when dealing with 128-bit blok iphers, suh as the ubiquitous AES-128.

Hellman's algorithm gives the best known preproessing attak against AES-

128, with S = T ≈ 286. If we ould improve Hellman's algorithm to ahieve

S = T = N1/2
, mathing Yao's lower bound, we ould break AES-128 in time

264 with a data struture of size 264, albeit after an expensive preproessing

phase. While today's S = T = 286 attak is likely far beyond the power of any

realisti adversary, an improved S = T = 264 attak would leave us with an

alarmingly narrow seurity margin.

Reent work proves new lower bounds on preproessing algorithms for various

ryptographi problems, using both inompressibility arguments [1, 23, 32℄ and

the newer presampling method [19, 65℄. While this progress might give hope

for an improved lower bound for funtion inversion as well, both tehniques

mysteriously fail to break the ST = Ω̃(N) barrier.

Non-adaptive algorithms. Another avenue for study is to explore the role

of parallelism or adaptivity in preproessing algorithms for funtion inversion.

All non-trivial algorithms for funtion inversion, inluding Hellman's algorithm

and Rainbow-table methods [61℄, ritially use the adaptivity of their queries.

It would be very interesting to onstrut a highly parallelizable preproessing

algorithm for funtion inversion. Suh an algorithm would ahieve the same

advie and time omplexity S = T = Õ(N2/3) as Hellman's algorithm, but

would make all Õ(N2/3) of its queries to the f -orale in one non-adaptive bath.

Suh a non-adaptive inversion algorithm ould speed up funtion inversion on

ryptanalyti mahines with a very large number of parallel proessing ores.

We do not even know if there exists a non-adaptive algorithm with S =
T = o(N). Can we �nd new non-adaptive inversion algorithms, or is adaptivity

neessary for good time-spae trade-o�s? Proving lower bounds in this more

restrited model ould be a stepping stone to improving the general lower bounds

on funtion inversion.
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1.1 Our results

This work establishes new onnetions between the funtion-inversion problem

and well-studied problems in ryptography, omplexity theory, and data stru-

tures. These onnetions are useful in two diretions.

First, they shed new light on the funtion-inversion problem: a onnetion

to iruit omplexity suggests that improving on the known lower bounds for

funtion-inversion will be di�ult. In partiular, we show that new lower bounds

for funtion inversion will imply new iruit lower bounds and ould even resolve

omplexity-theoreti questions that predate Hellmanâ��s results [66℄. Moreover,

a new onnetion to the problem of breaking PRGs with preproessing suggests

a new avenue for better inversion algorithms for injetive funtions. For many

of the ryptanalyti appliations, progress on this variant of funtion inversion

would in fat be su�ient.

Seond, these onnetions, together with lassi ryptanalyti algorithms,

give rise to better algorithms for problems in the other areas of theory. For

example, a onnetion to ommuniation omplexity leads to the best known

algorithm for the multiparty pointer-jumping problem, improving upon a twenty-

year-old upper bound [63℄. Similarly, a onnetion to data strutures leads to a

new upper bound for the systemati substring-searh problem, resolving an open

question [29℄.

We now state our results in detail.

Proving better lower bounds for funtion-inversion implies new iruit

lower bounds. A major question in iruit omplexity, open sine the 1970s [66,

67℄, is to give an expliit family of funtions Fn: {0, 1}n → {0, 1}n that annot

be omputed by fan-in-two iruits of size O(n) and depth O(log n). Following
ideas of Brody and Larsen [13℄, we demonstrate a lose onnetion between this

lassi problem in iruit omplexity and non-adaptive preproessing algorithms

for funtion inversion.

Spei�ally, we show that proving that every non-adaptive blak-box funtion-

inversion algorithm that uses S = N logN/log logN bits of advie requires at

least T = Ω(N ǫ) orale queries, for some onstant ǫ > 0, would give an expliit

family of funtions that annot be omputed by linear-size log-depth Boolean

iruits. This, in turn, would resolve a long-standing open problem in iruit

omplexity. Though we annot prove it, we suspet that the above lower bound

holds even for ǫ = 1.
This onnetion implies that proving lower bounds against non-adaptive

funtion-inversion algorithms that use the relatively large amount of advie

S = N logN/log logN should be quite di�ult. A muh more modest goal would

be to rule out any non-adaptive algorithm using S = T = Õ(N1/2+ǫ), for some

ǫ > 0. This would represent only a slight strengthening of Yao's ST = Ω̃(N)
bound for adaptive algorithms. However, we show that ahieving even this far-

more-modest goal would improve the best known lower bound for iruits in

Valiant's ommon-bits model [66, 67℄. This, in turn, would represent substan-

tial progress towards proving lower bounds against linear-size log-depth iruits.

In partiular, sine any lower bound against algorithms without a restrition
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on adaptivity would only be more general, improving the ST = Ω̃(N) lower

bound for funtion inversion would imply new iruit lower bounds in Valiant's

ommon-bits model.

We believe that the di�ulty of proving suh a iruit lower bound suggests

that beating the square-root barrier exhibited by both the ompression [33, 77℄

and presampling [19, 65℄ tehniques might prove more di�ult than previously

expeted.

One-to-one funtion inversion from PRG distinguishers. Many ryptan-

alyti appliations of Hellman tables (ryptanalysis of blok iphers, password

raking, et.) only require inverting injetive funtions. Does there exist a better-

than-Hellman algorithm for inverting injetive funtions with preproessing?

One reason to hope for a better algorithm for injetive funtions is that for

the very speial ase of permutations, there exists an inversion algorithm with

preproessing that ahieves the improved trade-o� ST = Õ(N) (i.e., S = T =
N1/2

) [77℄. Can we ahieve the same trade-o� for injetive funtions?

While we have not been able to answer this question yet, we do open one pos-

sible route to answering it. In partiular, we show that the problem of inverting

injetive funtions with preproessing has a lose onnetion to the problem of

breaking pseudorandom generators (PRGs) with preproessing [2, 19, 21, 23, 24℄.

Spei�ally, De, Trevisan, and Tulsiani [21℄ show that blak-box PRG distin-

guishers with preproessing an realize the trade-o� S = Õ(ǫ2N), for T = Õ(1)
and for any hoie of distinguishing advantage ǫ.

We show that ahieving a more general trade-o� of the form ST = Õ(ǫ2N),
for any onstant ǫ, would imply a better-than-Hellman algorithm for inverting

injetive funtions. Thus, improving the known PRG distinguishers with prepro-

essing an improve the known injetive inversion algorithms.

New protools for multiparty pointer jumping. We show that algorithms

for the blak-box funtion-inversion problem are useful in designing new om-

muniation protools for a well-studied problem in ommuniation omplexity.

In partiular, any blak-box preproessing algorithm for inverting permutations

yields a protool for the permutation variant of the �k-party pointer-jumping�

problem (MPJ
perm

N,k ) [10,11,14,20,56,63,70℄ in the number-on-the-forehead model

of ommuniation omplexity [15℄.

Then, by instantiating the permutation-inversion algorithm with a variant

of Hellman's method, we obtain the best known protool for MPJ
perm

N,k for k =
ω(logN/log logN) players (this regime is in fat the most onsequential for the

original motivation for studying this problem), improving the previous best up-

per bound of O(N log logN/logN), by Pudlák et al. [63℄, to Õ(N/k +
√
N).

We thus make progress on understanding the ommuniation omplexity of

multiparty pointer jumping, a problem with signi�ane to ACC
0
iruit lower

bounds [6, 47,78℄.

Beyond the quantitative improvement, our protool is di�erent from all pre-

vious approahes to the problem and is an unexpeted appliation of a rypt-

analyti algorithm to a ommuniation-omplexity problem. While the use of

a ryptanalyti algorithm in this ontext appears new, prior work has found
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appliation of results in ommuniation omplexity to lower bounds [44℄ and

onstrutions [12℄ in the ryptographi setting.

This onnetion presents a path forward for proving non-adaptive lower

bounds for permutation inversion. In partiular, we show that for every non-

adaptive blak-box permutation-inversion algorithm using S bits of advie and

T online queries, it must hold that max{S, T} is at least as large as the ommuni-

ation omplexity ofMPJ
perm

N,3 . Any improvement on the lower bound forMPJ
perm

N,3

would give an improved lower bound for non-adaptive blak-box permutation-

inversion algorithms. The best lower bound for MPJ
perm

N,3 is Ω(
√
N) [3, 73℄. Inter-

estingly, this mathes the best lower-bound for blak-box permutation-inversion

algorithms, regardless of their adaptivity.

New time-spae trade-o� for systemati substring searh. Finally, we

show that improved algorithms for funtion inversion will also imply improved

data strutures for the systemati substring-searh problem [22,29,30,40,41℄. In

partiular, we prove that there is a preproessing algorithm for the funtion-

inversion problem using few bits of advie and few online queries if and only if

there is a spae- and time-e�ient data struture for systemati substring searh

in the ell-probe model [75℄. In the systemati substring-searh problem, we are

given a bitstring of length N (the �text�), and from it we must onstrut an

S-bit data struture (the �index�). Given a query string, we should be able to

determine whether the query string appears as a substring of the text by reading

the index and by inspeting at most T bits of the original text.

This onnetion is fruitful in two diretions: First, we show that instantiating

this onnetion with the Fiat-Naor algorithm for funtion inversion [28℄ yields

an S3T = Õ(N3) systemati data struture, whih is the best known in the

parameter regime S = Õ(Nα) for α < 1. Gál and Miltersen [29℄ ask whether a

very strong S + T = Ω̃(N) lower bound on this problem is possible. By beating

this hypothetial lower bound, our algorithm answers their open question in the

negative.

Seond, Gál and Miltersen prove an ST = Ω̃(N) lower bound for system-

ati substring searh. Our barrier to proving lower bounds against blak-box

algorithms for funtion inversion implies that improving this lower bound would

also imply new lower bounds in Valiant's iruit model and therefore may be

quite hallenging.

1.2 Related work

We now reall a few salient related results on funtion inversion, and we disuss

additional related work at relevant points throughout the text.

Fiat and Naor [27,28℄ proved that Hellman's algorithm [46℄ ahieves a trade-

o� of the form S2T = Õ(N2), when the algorithm needs only to invert a random

funtion with onstant probability (i.e., in the ryptanalytially interesting ase).

For the worst-ase problem of inverting arbitrary funtions, Fiat and Naor give

an algorithm that ahieves a trade-o� of the form S3T = O(N3). De, Trevisan,
and Tulsiani [21℄ improve the Fiat-Naor trade-o� when the algorithm needs only

to invert the funtion at a sub-onstant fration of points.
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For inverting funtions, Yao [77℄ proved that every algorithm that uses S
bits of advie and makes T online queries must satisfy ST = Ω̃(N) lower bound.
Impagliazzo gives a short alternative proof [48℄. Dodis et al. [23℄, building on

prior work [21, 33℄, extended the lower bound to apture algorithms that invert

only a sub-onstant fration of funtions f .
Barkan, Biham, and Shamir [5℄ show that, for a restrited lass of prepro-

essing algorithms, a Hellman-style trade-o� of the form S2T = Õ(N2) is the

best possible. Their lower bound is powerful enough to apture the known inver-

sion shemes, inluding Hellman's algorithm and Oehslin's pratially e�ient

�Rainbow tables� tehnique [61℄. At the same time, this restrited lower bound

leaves open the possibility that an entirely new type of algorithm ould subvert

their lower bound.

For inverting permutations, Yao [77℄ observed that a Hellman-style algorithm

an ahieve the ST = Õ(N) upper bound and proved a mathing lower bound.

Gennaro and Trevisan [33℄, Wee [71℄, and De, Trevisan, and Tulsiani [21℄ extend

this lower bound to handle randomized algorithms and those that sueed with

small probability.

Two reent works [39, 52℄ use the funtion-inversion algorithm of Fiat and

Naor to obtain new algorithms for the preproessing version of the 3-SUM prob-

lem.

1.3 Preliminaries

Notation. Through this paper, Z
≥0

denotes the non-negative integers, and Z
>0

denotes the positive integers. For any N ∈ Z
>0

we write [N ] = {1, 2, . . . , N}.
We often identify every element x ∈ [N ] with the binary representation of x− 1
in {0, 1}⌈logN⌉

. We use x ← 4 to denote assignment and, for a �nite set X , we
use x R← X to denote a uniform random draw from X . For a funtion f : A→ B
and y ∈ B, we de�ne the preimage set of y as f−1(y) := {x ∈ A | f(x) = y}.
All logarithms are base-two unless stated otherwise. Parameters S and T are

always impliit funtions of the parameter N , and to simplify the bounds, we

always impliitly take S = T = Ω(1). The notation Ω̃(·) and Õ(·) hides fators
polynomial in logN .

De�nition 1 (Blak-box inversion algorithm with preproessing). Let

N ∈ Z
>0
. A blak-box inversion algorithm with preproessing for funtions on

[N ] is a pair (A0,A1) of orale algorithms, suh that A0 gets orale aess to a

funtion f : [N ]→ [N ], takes no input, and outputs an advie string stf ∈ {0, 1}∗.
Algorithm A1 gets orale aess to a funtion f : [N ] → [N ], takes as input a

string stf ∈ {0, 1}∗ and a point y ∈ [N ], and outputs a point x ∈ [N ]. Moreover,

for every x ∈ [N ], it holds that Af
1 (Af

0 (), f(x)) ∈ f−1(f(x)).

We an de�ne a blak-box inversion algorithm for permutations analogously

by restriting the orale f : [N ]→ [N ] to implement an injetive funtion. In this

ase, we will often denote the orale as π instead of f .
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De�nition 2 (Adaptivity). We say that an orale algorithm is k-round adap-

tive if the algorithm's orale queries onsist of k sets, suh that eah set of queries

depends on the advie string, the input, and the replies to the previous rounds

of queries. We all a 1-round adaptive algorithm non-adaptive. Finally, we say

that an algorithm is strongly non-adaptive if it issues a single set of queries that

only depends on the algorithm's input, but not on the advie string. In all of the

above ases, when referring to the number of queries made by the algorithm, we

aount for the sum over all rounds.

Worst ase versus average ase. The algorithms in De�nition 1 are deter-

ministi and suessfully invert all funtions on all points. It is also interesting

to onsider algorithms that invert suessfully only with probability ǫ < 1, over
the random hoie of: the funtion f : [N ] → [N ], the point to invert, and/or

algorithm's randomness. As most of the results in this paper deal with barri-

ers for improving lower bounds, restriting ourselves to deterministi algorithms

that always sueed in inverting only makes these results stronger. In any ase,

assume that all algorithms we onsider halt with probability 1.

Running time versus query omplexity. For the purposes of proving lower

bounds, and redutions towards proving lower bounds, it su�es to onsider

the query omplexity of a preproessing algorithm's online phase. Counting only

queries (and not omputation time) only strengthens lower bounds proved in

this model. The algorithms we onstrut an be made to use only Õ(N) prepro-
essing time in a suitable RAM model, when they are allowed to fail with small

probability. Furthermore, the running time of our algorithms' T -query online

phase is Õ(T ).

Non-uniformity. Our de�nition allows for �free� non-uniformity in the param-

eter N . Nevertheless, in a model that only �harges� the online algorithm for

queries to the orale and ignores the atual running time, non-uniformity makes

little di�erene sine a uniform algorithm an simply searh for the optimal

hoie of non-uniform advie without inreasing its query omplexity.

Shared randomness. We allow the preproessing and online phases to aess

a ommon stream of random bits. Allowing the adversary to aess orrelated

randomness in both phases only strengthens the lower bounds. Only one of our

upper bounds (Theorem 8) makes use of this orrelated randomness.

2 Lower bounds on inversion imply iruit lower bounds

The motivating question of this work is whether Hellman's S = T = Õ(N2/3)
algorithm for inverting random funtions is optimal. In this setion, we show

that resolving this question will require proving signi�ant new lower bounds in

Valiant's �ommon bits� model of iruits [66℄. We also show that proving strong

lower bounds on non-adaptive algorithms for funtion inversion would imply new

lower bounds against linear-sized logarithmi-depth iruits.
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We obtain these onnetions by observing that the funtion-inversion prob-

lem is an example of a lass of so alled �suint� stati data-struture prob-

lems [4, 17, 30, 31, 40, 41, 43, 45, 49, 58, 64℄. We show a barrier to proving lower

bounds against systemati data strutures, whih are a speial ase of suint

data strutures.

Related work. Brody and Larsen [13℄ showed that proving ertain lower bounds

against linear data strutures for dynami problems would imply strong lower

bounds on the wire omplexity of linear depth-two iruits. We follow their

general blueprint, but we instead fous on arbitrary algorithms for solving stati

data-struture problems (e.g., funtion inversion), and our onnetion is to Valiant's

ommon-bits model of iruits, rather than to linear depth-two iruits.

In reent independent work, Viola [69, Theorem 3℄ shows that lower bounds

against a large lass of stati data-strutures problems imply iruit lower bounds.

In his work, Viola onsiders an inomparable iruit model that, on the one hand,

admits iruits of depth larger than two, but, on the other hand, restrits the

number of wires onneted to the ommon bits. As a result, Viola's work does

not seem to apply to the funtion-inversion problem within the relevant parame-

ter regime (namely, in the gap between Hellman's upper bound and Yao's lower

bound).

In another reent independent work, Dvir, Golovnev, and Weinstein [26℄ on-

net data-struture lower bounds to matrix rigidity and iruit lower bounds.

Their fous is on linear data strutures, whereas the funtion inversion problem,

onsidered in our work, does not have an apparent linear struture.

Boyle and Naor [9℄ make a surprising onnetion between ryptographi al-

gorithms and iruit lower bounds. They show that proving the non-existene of

ertain �o�ine� oblivious RAM algorithms (ORAMs) [34,38,62℄ would imply new

lower bounds on the size of Boolean iruits for sorting lists of integers. Larsen

and Nielsen [54℄ reently skirted this barrier by proving a lower bound against

ORAMs in the �online� setting. Following that, Weiss and Wihs [72℄ showed

that a variant of the Boyle-Naor barrier still holds against �online read-only�

ORAMs.

2.1 Systemati data strutures and low-depth iruits

A major open question in iruit omplexity is whether there exists an ex-

pliit family of Boolean funtions (from n bits to one bit) that annot be om-

puted by fan-in-two iruits of size O(n) and depth O(log n). An easier prob-

lem, whih is still famously di�ult, is to �nd an expliit family of funtions

Fn: {0, 1}n → {0, 1}n with n-bit output�often alled Boolean operators�that

annot be omputed by this same lass of iruits. Even this question has been

open sine the 1970s [51,66,67℄.

More preisely, we say that a family of Boolean operators {Fn}n∈Z>0
, for

Fn: {0, 1}n → {0, 1}n, is an expliit operator if the deision problem assoiated

with eah bit of the output of Fn is in the omplexity lass NP.

The main result of this setion is that proving a ertain type of data-struture

lower bound implies the existene of an expliit Boolean operator on n bits that
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x1 x2 x3 x4

Inputs

Commonbits

Outputs

Fig. 1: Common-bits iruit with n = 4 inputs, degree d = 2, and width w = 2.

annot be omputed by fan-in-two iruits of size O(n) and depth O(log n). We

then show that a lower bound on funtion-inversion algorithms an be ast as

a data-struture lower bound, and therefore a funtion-inversion lower bound

implies a iruit lower bound.

We now give the neessary bakground on data-struture problems. A sys-

temati data struture of size s and query omplexity t for an operator Fn is a

pair of algorithms:

� a preproessing algorithm, whih takes as input the data x ∈ {0, 1}n and

outputs a string st ∈ {0, 1}s of length s = o(n), and

� a query algorithm, whih takes as input the string st, and an index i ∈ [n],
may probe (read) t bits of the input x, and then outputs the ith bit of Fn(x).

A systemati data struture is non-adaptive if the query algorithm probes a set

of bits of the input data x whose loation depends only on the index i and not

on the input data x.
The following theorem is the main result of this setion.

Theorem 3. If an expliit operator {Fn}n∈Z>0
has fan-in-two Boolean iruits

of size O(n) and depth O(log n) then, for every ǫ > 0, then this operator ad-

mits a non-adaptive systemati data struture of size O(n/log log n) and query

omplexity O(nǫ).

To prove this, we �rst reall Valiant's ommon-bits model of iruits [66,67℄.

Valiant's ommon-bits model. A iruit in the ommon-bits model of width

w and degree d omputing a Boolean operator Fn: {0, 1}n → {0, 1}n ontains an

input layer, a middle layer, and output layer (Figure 1). The input layer onsists

of n input bits x1, . . . , xn ∈ {0, 1}, and the output layer onsists of n output

gates. There are w gates in the middle layer of the iruit (the �ommon bits�);

eah input feeds into eah of these w middle gates, and the output of eah of the

w middle gates feeds into eah output gate. Further, eah output gate reads from

at most d of the inputs. Unlike in a standard iruit, the gates in the middle

and output layers of the iruit ompute arbitrary funtions of their inputs. The

output of the iruit is the n-bit string formed at the output gates.

10



It is immediate that any Boolean operator Fn: {0, 1}n → {0, 1}n has ommon-

bits iruits of width n and degree 0 or, alternatively, of width 0 and degree n.
A non-trivial question is: For a given operator Fn and hoie of degree (e.g.,

d = n1/3
), what is minimal width of a ommon-bits iruit that omputes Fn?

Lemma 4. If there exists a iruit in the ommon-bits model of width w and

degree d that omputes an operator F : {0, 1}n → {0, 1}n, then there exists a

non-adaptive systemati data struture for F of size w and query omplexity d.

Proof. Let C be a iruit in the ommon-bits model as in the statement of the

lemma. The data struture onsists of the outputs of the w middle-layer gates

in the iruit C (i.e., the iruit's ommon bits). On input i ∈ [n], the algorithm
reads all the input bits onneted to the ith output gate of C and omputes the

value of the output gate. Sine eah output gate in the iruit is onneted to at

most d input bits, the query omplexity of the systemati data struture is at

most d.

Theorem 3 then follows from Lemma 4 and the following result of Valiant:

Theorem 5 (Valiant [66,67℄). If every expliit operator has fan-in-two Boolean

iruits of size O(n) and depth O(log n), then for every onstant ǫ > 0, every

expliit operator has iruits in the ommon-bits model of width O(n/log log n)
and degree nǫ

.

Viola [68, Setion 3℄ and Jukna [50, Chapter 13℄ give detailed proofs of Theo-

rem 5.

2.2 Consequenes for funtion inversion

Observe that every funtion f : [N ]→ [N ] an be desribed usingO(N logN) bits,
so there is a trivial strongly non-adaptive algorithm that inverts every funtion

using O(N logN) bits of advie and no queries to the funtion in the online

phase. We know of no non-adaptive funtion-inversion algorithm that inverts

with onstant probability using o(N logN) bits of advie and o(N) queries. The
following theorem states that ruling out the existene of suh a non-adaptive

algorithm is as hard as proving lower bounds against linear-size logarithmi-

depth Boolean iruits.

Theorem 6. If, for some ǫ > 0, every family of strongly non-adaptive blak-

box algorithms for inverting funtions f : [N ] → [N ] that uses O(N ǫ) queries

requires ω(N logN/log logN) bits of advie, then there exists an expliit operator

that annot be omputed by fan-in-two Boolean iruits of size O(n) and depth

O(log n).

The theorem onsiders a restrited lass of inversion algorithms that: (i) may

only use strongly non-adaptive queries (the most restritive type of query), (ii)

are only allowed, for example, O(N0.0001) queries (very few queries), and (iii)

must invert arbitrary funtions with probability one (the most di�ult variant

of the inversion problem).

11



So, even though we may suspet that there are no algorithms for inverting

funtions f : [N ]→ [N ] using O(N logN/log logN) bits of advie and O(N0.0001)
non-adaptive queries, proving suh an assertion seems very hallenging.

Proof of Theorem 6. Let n = N logN , where N ∈ Z
>0

is a power of two. (For all

other values of n, de�ne the inversion operator trivially as the identity mapping.)

We de�ne the inversion operator F inv

n : {0, 1}n → {0, 1}n as follows. Let x ∈
{0, 1}n be an input to F inv

n , and view x as the onatenation of N bloks of

length logN bits eah: x = x1‖x2‖· · · ‖xN . For eah i ∈ [N ], let yi ∈ [N ] be the
least j ∈ [N ] suh that xj = i, if one suh j exists. If no suh j exists, set yi = 0.
We de�ne F inv

n (x) = (y1‖y2‖· · · ‖yN ).

Observe that a systemati data struture for F inv

n gives a strongly non-adaptive

preproessing algorithm that inverts every funtion f : [N ] → [N ]. The prepro-

essing phase onstruts the data struture for operator F inv

n on input f(1)‖f(2)‖. . . ‖f(N)
and outputs this data struture as the advie string.

In the online phase, on input i ∈ [N ], the algorithm uses the data struture

in the advie string and its orale aess to f to ompute all logN bits of the

ith output blok yi of F
inv

n , whih is enough to reover some inverse of i under
f , if it exists.

The theorem now follows from Theorem 3, instantiated with F inv

n . For n of

the form n = N logN , where N > 0 is a power of two, we get that the length

of the advie string is O(N logN/log log(N logN)) = O(N logN/log logN) and
the online query omplexity is logN · O ((N logN)ǫ) = O(N ǫ′), for any ǫ′ > ǫ.

Theorem 6 suggests the hardness of proving stronger lower bounds for non-

adaptive inversion algorithms, but it applies only to algorithms that use a rel-

atively long advie string, of length O(N logN/log logN). We might still hope

to improve upon Yao's ST = Ω̃(N) lower bound for funtion inversion without

breaking the aforementioned barrier.

The following orollary shows that ruling out funtion-inversion algorithms

using advie and time S = T = Õ(N1/2+ǫ), for any ǫ > 0, would imply the

existene of an expliit operator that annot be omputed by iruits of width

O(n1/2+ǫ′) and degree O(n1/2+ǫ′) in the ommon-bits model, for some ǫ′ > 0.
As we will disuss, no suh lower bound in the ommon-bits model is known,

so proving the optimality of Hellman's Õ(N2/3) algorithm, or even showing

that inverting funtions with preproessing is marginally harder than inverting

permutations with preproessing, would imply an advane in the state of lower

bounds on iruits in the ommon-bits model.

Corollary 7. If, for some ǫ > 0, there does not exist a family of strongly

non-adaptive algorithms for inverting funtions f : [N ] → [N ] using O(N1/2+ǫ)
bits of advie and O(N1/2+ǫ) queries, then there exists an expliit operator that

does not have iruits in the ommon-bits model of width O(n1/2+ǫ′) and degree

O(n1/2+ǫ′), for every ǫ′ satisfying 0 < ǫ′ < ǫ.
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Proof. We prove the ontrapositive. Assume that for every ǫ′ > 0, every expliit

operator has ommon-bits iruits of width O(n1/2+ǫ′) and depth O(n1/2+ǫ′).
Then, as in the proof of Theorem 6, we an apply Lemma 4 to operator F inv

n to

show that, for n = N logN , there exists a strongly non-adaptive preproessing al-

gorithm that inverts funtions f : [N ]→ [N ] usingO(n1/2+ǫ′) = O((N logN)1/2+ǫ′) =
O(N1/2+ǫ′ logN) bits of advie and O(n1/2+ǫ′ logN) = O((N logN)1/2+ǫ′ logN)
online queries. Then, for any ǫ > ǫ′, the advie usage and number of online

queries is O(N1/2+ǫ).

Notie that while the hypothesis of Corollary 7 onsiders a lower bound

against strongly non-adaptive inversion algorithms, this only strengthens the

statement. This is true beause proving a lower bound against adaptive inversion

algorithms implies a lower bound against strongly non-adaptive algorithms as

well.

If we instantiate Corollary 7 with ǫ = 1/6, we �nd that ruling out funtion-

inversion algorithms using S = T = o(N2/3), even against the restrited lass of

strongly non-adaptive algorithms, would give an expliit operator that does not

have ommon-bits iruits of width w and degree d satisfying w = d = o(n2/3−δ),
for any δ > 0.

Proving suh a lower bound on ommon-bits iruits is not strong enough to

yield a lower bound against linear-size log-depth iruits via Valiant's method

(Theorem 5). However, this lower bound would improve the best known lower

bound against iruits in the ommon-bits model. The best known bound, due

to Pudlák, Rödl, and Sgall, gives d = Ω( nw · log( nw )), for a ommon-bits iruit of

width w and degree d [63℄. In partiular, they onstrut an expliit operator that

does not have ommon-bits iruits satisfying w = d = Õ(n1/2). By Corollary 7,

ruling out funtion-inversion algorithms with S = T = Õ(N1/2+ǫ), for any ǫ > 0,
would thus improve the best lower bounds on ommon-bits iruits.

2.3 Consequenes for other suint data-struture problems

Theorem 3 and Lemma 4 together imply that proving strong lower bounds

for any systemati data-struture problem�not only for the funtion-inversion

problem�will be hallenging. To explain how this barrier applies to a ompletely

di�erent data-struture problem, we reall the systemati variant of the standard

data-struture problem of polynomial evaluation with preproessing [57℄. We give

an informal desription of the problem, and the transformation into a formal sys-

temati data-struture problem (as in Setion 2.1) is straightforward.

The problem of polynomial evaluation with preproessing is parameterized

by an integer N ∈ Z
>0

and a �nite �eld F of size Θ(N). The input data is

a polynomial p ∈ F[X] of degree at most N − 1, represented as its vetor of

oe�ients c̄ = (c0, c1, . . . , cN−1) ∈ F
N
. The preproessing algorithm reads this

input (the entire polynomial p) and produes a preproessed S-bit string st. In

a subsequent online phase, the query algorithm takes as input a point x0 ∈ F,

and must output the evaluation p(x0) ∈ F of the polynomial p at point x0.

To produe its answer, the query algorithm may read the entire preproessed
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string st, query at most T oordinates of the oe�ient vetor c̄, and perform

an unlimited amount of omputation.

For what hoies of spae usage S and query omplexity T does there exist

a systemati data struture for polynomial evaluation with preproessing?

The two naïve approahes to solving this problem are:

1. Have the preproessing algorithm store in the string st the evaluation of the

polynomial p on every point in the �eld F, using S = Ω(N) spae.
2. Have the online-phase algorithm read the entire oe�ient vetor c̄, using

T = Ω(N) queries, and then evaluate p(x0) =
∑

i cix0 ∈ F diretly.

These solutions both have S + T = Ω̃(N).
It seems very di�ult to onstrut an algorithm that simultaneously uses a

data struture of size S = N δ
and query omplexity T = N δ

, for some δ < 1. And
yet, the best lower bound we have for this problem, implied by a bound of Gál

and Miltersen [30℄, is of the form ST = Ω̃(N). A variant of Corollary 7 implies

that proving stronger lower bounds for this problem�or proving any lower bound

better than ST = Ω̃(N) for any systemati or suint data-struture problem,

for that matter�will also imply new lower bounds in Valiant's ommon-bits

model. Proving even a stronger lower bound ould, via Theorem 3, imply a

lower bound against linear-size log-depth fan-in-two iruits.

3 Breaking PRGs is as hard as

inverting injetive funtions

Many ryptanalyti appliations of Hellman tables only require inverting inje-

tive funtions. That is given a injetive funtion f : [N ] → [M ] and a point

y ∈ [M ], �nd a value x ∈ [N ] suh that f(x) = y, if one exists.
For example, onsider the lassi appliation of Hellman tables to plaintext

attaks on blok iphers: Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blok ipher,

where k is the key size and n is the blok size. If we de�ne fE : {0, 1}k → {0, 1}n
suh that fE(x) = E(x,m0) for some �xed plaintext m0, then an algorithm

with preproessing for the funtion fE essentially gives a known-plaintext at-

tak on the blok ipher E. We an (heuristially) expet the resulting fun-

tion fE to behave similar to a random funtion, and therefore be injetive

only beyond the birthday bound k ' 2n. However, even for shorter keys, we

an redue a known-plaintext attak to the problem of inverting an injetive

funtion by onsidering the enryption of multiple known plaintexts m0,m1,m2.

For example, if k = n, then we expet fE×3 : {0, 1}n → {0, 1}3n, de�ned as

fE×3(x) = E(x,m0)‖E(x,m1)‖E(x,m2), to have no ollisions.

A funtion-inversion algorithm an invert an injetive funtion f : [N ]→ [M ]
without taking any advantage of the fat that it is injetive, so Hellman's S2T =
Õ(N2) upper bound for funtion inversion [46℄ applies in this setting as well.

However, the fat that for the ase of random permutations (i.e., an injetive

funtion f : [N ] → [N ]), Hellman's algorithm gives a signi�antly better upper
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bound of ST = Õ(N), gives hope that a similar improvement�or at least some

improvement�is possible for injetive length-inreasing funtions.

To the best of our knowledge, the injetive variant of the funtion-inversion

problem has not been studied diretly so far, even though it is a speial ase

with wide ryptanalyti appliations. As a �rst step, we onnet the injetive

inversion problem to the problem of breaking pseudorandom generators (PRGs)

with preproessing [2, 19, 21, 23, 24℄. In that problem, we model a �blak-box�

PRG as an orale G: [N ] → [M ], with N < M . A PRG distinguisher with

preproessing �rst makes arbitrarily many queries to G and outputs an S-bit
advie string. In the online phase, the distinguisher an then use its advie

string, along with T queries to G, to distinguish whether a given sample y ∈ [M ]
has been drawn from the distribution {G(x) | x R← [N ]} or the distribution

{y | y R← [M ]}.
In their work, De, Trevisan, and Tulsiani [21℄ give a distinguisher with

S = O(ǫ2N) and T = Õ(1) that ahieves a distinguishing advantage ǫ ≤ 1/
√
N .

They ask whether it is possible to realize the trade-o� ST = Õ(ǫ2N) for other pa-
rameter settings as well. The following theorem shows that a PRG distinguisher

that ahieves onstant distinguishing advantage at points on this trade-o� (e.g.,

ǫ = 1/100, S = N1/4
, and T = N3/4

) would imply a better-than-Hellman algo-

rithm for inverting injetive funtions.

Theorem 8. Suppose that there is a blak-box PRG distinguisher that uses S
bits of advie, makes T online queries to a PRG G: [N ]→ [M ], and ahieves dis-

tinguishing advantage ǫ. Then there exists a blak-box algorithm that inverts any

injetive funtion f : [N ] → [M ] using Õ(ǫ−2S) bits of advie and Õ(ǫ−2T ) on-

line queries, and that inverts f with probability 1−1/logN (over the algorithm's

randomness).

Furthermore, if the preproessing and online phase algorithms have aess to

a ommon random orale, the online phase also runs in time Õ(T ).

Remark 9 (Relation to Goldreih-Levin). A lassi line of results [36, 37, 55, 76℄

shows how to use any injetive one-way funtion f : [N ]→ [M ] to onstrut an

e�ient PRG Gf : [N2]→ [2N2] whih makes blak-box use of f . The proof uses
the Goldreih-Levin theorem [37℄ to show that any e�ient distinguisher for Gf

yields an inversion algorithm for f . (Consult Goldreih's textbook [35, Setion

3.5℄ for the details.) It is not lear to us whether a non-uniform generalization of

these lassi results diretly implies Theorem 8. The problem is that the domain

of the PRG Gf has size N2
, whereas the domain of the original funtion f has

size N . Sine we are interested in the exat exponent of the advie and time

usage of funtion-inversion algorithms (i.e., S = N3/4
versus S = N1/2

), we

are sensitive to this polynomial expansion in the domain size. For example, say

that we were able to onstrut a blak-box PRG distinguisher that ahieves

S = T = Õ(
√
N). Applying the lassi redution diretly to Gf would only

imply the existene of an inverter for the funtion f that uses the trivial advie

and time omplexity S = T = Õ(
√
N2) = Õ(N). In ontrast, Theorem 8 implies

that an S = T = Õ(
√
N) distinguisher yields an S = T = Õ(

√
N) inverter.
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Proof idea for Theorem 8. Given a distinguisher for any length-inreasing gen-

erator G: [N ]→ [M ], we onstrut an inversion algorithm for injetive funtions

f : [N ]→ [M ] in two steps. First, for eah i ∈ [n], we onstrut a bit-reovery

algorithm Bi that, given f(x), ahieves a non-trivial advantage in reovering the

ith bit of x. We then use the algorithms (B1, . . . ,Bn) to onstrut an inversion

algorithm I that, given f(x), reovers the full preimage x with good probability.

To give the intuition behind the bit-reovery algorithm Bi: Given a funtion

f : [N ]→ [M ] to invert, we onstrut a funtion Gi: [N ]→ [M ] suh that a point

y = f(x) is in the image of Gi if and only if the ith bit of x is 1. Then, we an

apply the PRG distinguisher to Gi and reover the ith bit of y's preimage.

This simple algorithm does not quite work when the PRG distinguisher has

small distinguishing advantage ǫ, sine the distinguisher may fail on the point

y. To �x this, we give Bi aess to two random permutations π: [N ] → [N ] and
σ: [M ] → [M ] that allow Bi to essentially randomize the point it gives as input

to the PRG distinguisher.

We then an run Bi many times with di�erent random permutations and

then take the majority vote of the outputs of these runs. This majority vote will

yield the ith bit of the x with high probability. To omplete the onstrution,

we instantiate the permutations π and σ using orrelated randomness between

the preproessing and online algorithms. The full desription of the onstrution

appears in the full version of this paper.

4 From ryptanalysis to new ommuniation protools

Communiation omplexity [53, 74℄ quanti�es the number of bits that a set of

players need to ommuniate amongst themselves in order to ompute a funtion

on an input that is split between the players. One of the major open problems

in ommuniation omplexity is to obtain a non-trivial lower bound for some

problem for a super-poly-logarithmi number of players. Suh a bound would

in turn lead to a breakthrough iruit lower bound for the omplexity lass

ACC
0
[6, 47, 78℄.

In this setion, we develop onnetions between the funtion-inversion prob-

lem and the multiparty pointer-jumping problem in the number-on-the-forehead

(NOF) model of ommuniation omplexity [15℄. By ombining these new on-

netions with the lassi yle-walking algorithm for permutation inversion, we

obtain the best known NOF protools for the permutation variant of the pointer-

jumping problem. Sine pointer jumping is a andidate hard problem in the

k-party NOF setting, understanding the exat ommuniation omplexity of

pointer jumping for a super-poly-logarithmi number of players is an important

step towards the eventual goal of proving iruit lower bounds [10, 11, 14, 20, 56,

63,70℄.

4.1 Multiparty pointer-jumping in the NOF model

A lassial problem in the NOF model is the pointer-jumping problem. We de-

sribe the permutation variant of the problem, and then disuss the general
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ase. In the pointer-jumping problem MPJ
perm

N,k , there are k omputationally-

unbounded players, denoted P0, P1, . . . , Pk−1, and eah has an input �written

on her forehead.� The �rst player P0 has a point x ∈ [N ] written on her fore-

head, the last player Pk−1 has a Boolean mapping β : [N ] → {0, 1} written on

her forehead, and eah remaining player Pi, for i = 1, . . . , k − 2, has a permu-

tation πi : [N ] → [N ] written on her forehead. Eah player an see all k − 1
inputs exept the one written on her own forehead. The goal of the players is to

ompute the value β ◦ πk−2 ◦ · · · ◦ π1(x), whih loosely orresponds to �following

a trail of pointers� de�ned by the permutations, starting from x (Figure 2). The

players an ommuniate by writing messages on a publi blakboard. The om-

muniation omplexity of a protool is the total number of bits written on the

blakboard for a worst-ase input.

A one-way protool is a protool in whih eah player writes a single message

on the blakboard in the �xed order P0, . . . , Pk−1, and the last player's message

must be the output. The one-way ommuniation omplexity of a funtion f ,
denoted CC

1(f), is the minimum ommuniation omplexity of all one-way pro-

tools that suessfully ompute f . Without the �one-way� restrition, there are

protools for MPJ
perm

N,k that require only O(logN) bits of ommuniation.

Known bounds. The best upper bound for MPJ
perm

N,k is due to Pudlák et al. [63℄,

who showed that CC
1(MPJ

perm

N,k ) = O(N log logN/logN). More reently, Brody

and Sanhez [14℄ showed that this upper bound applies to the more general

pointer-jumping problem, in whih we replae the permutations π1, . . . , πk−2

with arbitrary funtions. In this general ase, Wigderson [73℄ proved an Ω(
√
N)

lower bound for k = 3 players (see also [3℄), and Viola and Wigderson [70℄ proved

an Ω̃(N
1

k−1 ) lower bound for k ≥ 3 players.
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Fig. 2: A pointer-jumping instane for M̂PJ
perm

k=4,N=5 with π1 = (1 2 4 5 3), π2 = (2 3)(4 5),
π3 = (2 3 4 5) and x = 2. Lemma 11 redues this instane to inverting the permutation

π−1

1
π−1

2
π−1

3
= (1 3 5 4) on the point x = 2.
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4.2 A new ommuniation protool from permutation inversion

We obtain the best known ommuniation protool for the permutation variant

of the pointer-jumping game on parameter N for k = ω(logN/log logN) players.
Our result improves the previously best known upper bound of Õ(N) to Õ(N/k+√
N). Extending our upper bound to the general multiparty pointer-jumping

problem remains an open problem, whih we disuss in Remark 13.

On the lower-bound side, this onnetion suggests a path to prove lower

bounds against partially adaptive permutation-inversion algorithms, as in De�-

nition 2. In ontrast, the tehniques of Setion 2 an only prove lower bounds

against strongly non-adaptive algorithms.

In this setion, we prove the following new upper bound on CC
1(MPJ

perm

N,k ):

Theorem 10. CC
1(MPJ

perm

N,k ) ≤ O
(
(N/k +

√
N) logN

)
.

To prove Theorem 10, as we do later in this setion, we use the integer-

valued version the pointer-jumping problem, ommonly denoted M̂PJ
perm

N,k . In this

version, the last player Pk−1 holds a permutation πk−1 : [N ] → [N ], instead of a

boolean mapping, so the output of the problem is a value in [N ]. The following

tehnial lemma, whih we prove in Appendix A, shows that the boolean-valued

version of the pointer-jumping problem has ommuniation omplexity that is

not muh larger than that of the integer-valued pointer-jumping problem.

Lemma 11. CC
1(MPJ

perm

N,k ) ≤ CC
1(M̂PJ

perm

N,k ) + ⌈logN⌉ .

Then, our main lemma tehnial uses an arbitrary permutation-inversion

algorithm with preproessing to solve the integer-valued problem M̂PJ
perm

N,k :

Lemma 12. If there exists a (k − 2)-round adaptive algorithm for inverting

permutations π : [N ] → [N ] that uses advie S and time T , then

CC
1(M̂PJ

perm

N,k ) ≤ S + T ⌈logN⌉ .

Proof. Let (A0,A1) be a (k − 2)-round adaptive algorithm for inverting permu-

tations with preproessing. We give a protool for M̂PJ
perm

N,k .

� Player P0 runs the preproessing algorithm A0 on the permutation π−1
1 ◦

· · · ◦ π−1
k−1 and writes the advie string on the blakboard.

� Player P1 runs the online inversion algorithm A1 on the input x (written

on player P0's forehead) using the advie string that has been written on

the blakboard, to produe the �rst round of queries q1,1, . . . , q1,t1 . For eah
query q1,ℓ, she omputes the partial reply p1,ℓ = π−1

2 (. . . (π−1
k−1(q1,ℓ)) . . . ) and

writes it on the blakboard.

� Player Pi, for i ∈ {2, . . . , k− 2}, reads the partial replies pi−1,1, . . . , pi−1,ti−1

written by the previous player, omputes the (omplete) query replies ri−1,1,
. . . , ri−1,ti−1

by omputing ri−1,ℓ = π−1
1 (. . . (π−1

i−1(pi−1,ℓ)) . . . ). Player Pi

then runs (in her head) the �rst i − 1 rounds of the online inversion al-

gorithm on input x, using the advie string and the replies to the �rst i− 1
rounds of queries, all of whih, she an ompute using the partial replies
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written on the blakboard. Player Pi then produes the ith round of queries,

on whih, similarly to Player P1, she omputes the partial replies and writes

them on the blakboard.

� Player Pk−1 ompletes the evaluation of round k − 2 of the queries by eval-

uating the remaining permutations π−1
1 ◦ · · · ◦ π−1

k−2 on the partial replies

written by Pk−2. Player Pk−1 then runs in her head all k − 2 rounds of the

online inversion algorithm and writes the output on the blakboard.

By de�nition, the output y of the algorithm satis�es π−1
1 ◦ · · · ◦ π−1

k−1(y) = x.
Sine all πi are permutations, it must hold πk−1 ◦ · · · ◦ π1(x) = y and so y is the

orret output for M̂PJ
perm

N,k .

The ommuniation onsists of the advie string written by Player P0 and

a partial reply for eah query, giving a total of S + T ⌈logN⌉. (The last player

writes the ⌈logN⌉-bit output, but does not need to write the response to the

T -th query).

Proof of Theorem 10. To prove Theorem 10, we instantiate Lemma 12 using

Hellman's yle-walking algorithm [46℄, whih we reall in the full version of this

paper. The algorithm inverts permutations using T queries and S bits of advie,

for every hoie of S and T suh that ST ≥ 2N⌈logN + 1⌉. Furthermore the

algorithm is T -round adaptive. Spei�ally, for k ≤
√
N + 2, using Hellman's

algorithm with T = k − 2 and S = ⌈(2N logN)/T ⌉ gives a protool with om-

muniation O((N/k) logN). For k >
√
N + 2, we use Hellman's algorithm with

T =
√
N and S = 2

√
N(⌈logN⌉+1) to �nd that CC

1(M̂PJ
perm

N,k ) ≤ O(
√
N logN).

Then, applying Lemma 11 lets us onlude that CC
1(MPJ

perm

N,k ) ≤ O(
√
N logN).

Remark 13 (The funtion ase). We might hope to show that a good funtion-

inversion algorithm, suh as that of Fiat and Naor [28℄, implies a good protool

for the general multiparty pointer-jumping problem, in whih eah player i has an
arbitrary funtion fi (whih may not be a permutation) written on her forehead.

We do not know how to prove suh a result. The problem is that the redution

of Lemma 12 requires that the omposition f−1
1 ◦ f−1

2 ◦ · · · ◦ f−1
k−1 is a funtion,

and this is not true in the general ase. (In ontrast, when f1, . . . , fk are all

permutations it holds that f−1
1 ◦ f−1

2 ◦ · · · ◦ f−1
k−1 is a permutation.) Sine several

upper bounds for the permutation variant of the pointer-jumping problem [11,

20, 63℄ have led to subsequent upper bounds for the unrestrited ase [11, 14℄,

there is still hope to generalize the result.

5 From ryptanalysis to data-strutures

In this setion, we show how to apply the Fiat-Naor algorithm for funtion inver-

sion [28℄ to obtain the best known data struture for the systemati substring-

searh problem [22, 29, 30, 40, 41℄, in a wide range of parameter regimes. As a

onsequene of this onnetion, we show that the open problem of improving

the known lower bounds on funtion inversion is equivalent to the open problem
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in the data-struture literature of whether it is possible to improve the known

lower bounds for systemati substring searh.

In the systemati substring-searh problem, we are given a bitstring of length

N (�the text�) and a bitstring of length P ≪ N (�the pattern�). If the pattern

appears in the text, we must output an index i ∈ [N ] into the text at whih the

pattern begins. We take the pattern length to be P = Θ(logN).

An algorithm for systemati substring searh is a two-part algorithm A =
(A0,A1). The preproessing algorithm A0 takes as input only the text, may

perform arbitrary omputation on it, and then outputs an S-bit �index� into the

text. The online algorithm A1 takes as input the index and the pattern, queries

T bits of the text, and then outputs the loation of pattern in the text, if one

exists.

By applying the Fiat-Naor funtion inversion algorithm [28℄, we obtain the

best known algorithm for systemati substring searh on texts of length N when

using an index of size O(N ǫ) bits, for any ǫ < 1. Gál and Miltersen [30℄ asked

for a strong lower bound against searh algorithms using an O(N/polylogN)-
bit index, and we answer this question by giving an upper bound that beats

their hypothetial lower bound. This onnetion also gives evidene that �nding

a faster algorithm for systemati substring searh will require a ryptanalyti

breakthrough.

Known lower bounds. Demaine and López-Ortiz [22℄ prove that on texts of length

N with pattern length P = Θ(logN), any algorithm that uses an S-bit index

and makes T = o(P 2/logP ) queries in the online phase must satisfy ST =
Ω(N logN). Golynski [40,41℄ gives a stronger version of this bound that applies

even for larger T = o(
√
N/logN). Gál and Miltersen prove a slightly weaker

bound but that holds for all values of T . They show that for ertain pattern

lengths P = Θ(logN), and any hoie of T , any algorithm must satisfy ST =
Ω(N/logN).1

The main tehnial result of this setion is the following theorem, whih we

prove in the full version of this paper.

Theorem 14. For any integer N ∈ Z
>0

and integral onstant c > 2, if there is

an algorithm for systemati substring searh on texts of length cN · ⌈logN⌉ with

pattern length c · ⌈logN⌉ that uses an S-bit index and reads T bits of the text

in its online phase, then there is a blak-box algorithm for inverting funtions

f : [N ] → [N ] that uses S bits of advie and makes T online queries.

For any integer N ∈ Z
>0

, if there is a blak-box algorithm for inverting

funtions f : [2N ] → [2N ] that uses S bits of advie and T queries, then, for any

integral onstant c > 1, there is an algorithm for systemati substring searh on

1

Gál and Miltersen in fat prove their lower bound against algorithms that solve the

deision version of the problem, rather than the searh version that we desribe here.

Using an argument similar to that of Theorem 8, whih treats the ase of blak-box

PRG distinguishers, we an show that these problems are equivalent up to log fators

when we demand onstant suess probability.

20



texts of length N with pattern length c · ⌈logN⌉ that uses an Õ(S)-bit index and

reads Õ(T ) bits of the text in its online phase.

Remark 15. It is possible to make the preproessing time Õ(N) by allowing

the algorithm to fail with probability O(1/N) over the randomness of the pre-

proessing phase. Similarly, the online running time (in addition to the query

omplexity) is Õ(T ).

Proof idea. The full proof appears in the full version of this paper. In the �rst

part, we must use a substring-searh algorithm to invert a funtion f : [N ] →
[N ]. The idea is to onstrut a text τ of length Θ(N logN) by writing out the

evaluation of f at all points in its domain, in order, with a few extra bits added

as delimiters. To invert a point y ∈ [N ], we use the substring searh algorithm

to �nd the loation at whih y appears in the text τ . This loation immediately

yields a preimage of y under f . Demaine and López-Ortiz [22℄ use a similar�

but more sophistiated enoding�on the way to proving a data-struture lower

bound for systemati substring searh. Their enoding maps a funtion f : [N ]→
[N ] into a string of length (1 + o(1))N logN , while ours maps f into a string of

length 3N logN .

In the seond part, we must use a funtion-inversion algorithm to solve sub-

string searh on a text τ of length N with pattern length P = c · ⌈logN⌉, for
some onstant c > 1. To do so, we de�ne a funtion f ′: [N ] → [N c] suh that

f ′(i) is equal to the length-P substring that starts from the ith bit of the text τ .
Given a pattern string σ = {0, 1}P , �nding the inverse of y under f ′

is enough

to loate the position of the pattern string σ in the text τ . The only remaining

hallenge is that f ′
is length-inreasing, rather than length-preserving. We then

use universal hashing to redue the problem of inverting length-inreasing fun-

tions to the problem of inverting length-preserving funtions, whih ompletes

the proof.

We now apply Theorem 14 to onstrut a new algorithm for systemati sub-

string searh that resolves an open question of Gál and Miltersen. In their 2007

paper, Gál and Miltersen say that �it would be nie to prove a lower bound of,

say, the form,� T < N/polylogN ⇒ S > N/polylogN (using our notation) for

systemati substring searh [30℄. Goyal and Saks [42℄ use an elegant argument

to show that the spei� tehnique of Gál and Miltersen annot prove this lower

bound. As a orollary of Theorem 14, we onstrut an algorithm for substring

searh that beats the hypothetial lower bound.

Corollary 16. For any integral onstant c > 1 there is an algorithm for sys-

temati substring searh on texts of length N with pattern length c · ⌈logN⌉, that
uses an S-bit index, reads T bits of the text in its online phase, and ahieves the

trade-o� S3T = Õ(N3).

Proof. Theorem 14 shows that systemati substring searh on strings of length

N with pattern length Θ(logN) redues to the problem of inverting arbitrary

funtions f : [N ] → [N ]. The inversion algorithm of Fiat and Naor [28℄ inverts

suh funtions f ahieving the desired omplexity bounds.
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In partiular, we get an algorithm that solves systemati substring searh using

an index size and time satisfying S = T = Õ(N3/4), for strings of length N
and patterns of length Θ(logN). Furthermore, this onnetion, along with the

results of Setion 2.2, shows that improving on the ST = Ω̃(N) bound of Gál

and Miltersen will require advanes in tehniques for proving lower bounds on

the power of depth-two iruits.

6 Disussion and future diretions

In this �nal setion, we disuss a few diretions for future work.

6.1 Whih lower-bound tehniques an work?

In Setion 2, we showed that improving Yao's lower bound on funtion-inversion

algorithms requires new iruit lower bounds in the ommon-bits model. What

potential approahes do we have to prove suh a lower bound?

Funtion inversion and Yao's �box problem.� Yao's �box problem� [60,

77℄ is a preproessing problem that is losely related to the funtion-inversion

problem. In the box problem, we are given orale aess to a funtion f : [N ]→
{0, 1}. First, we get to look at all of f and write down an S-bit advie string stf .

Later on, we are given our advie string stf and a point x ∈ [N ]. We may then

make T queries to f , provided that we do not query f(x), and we must then

output a value y ∈ {0, 1} suh that y = f(x).
The box problem is in some sense the dual of the funtion-inversion problem:

we are given an f -orale and we must ompute f in the forward diretion, rather

than in the inverse diretion. The same ST = Ω̃(N) lower bound applies to

both problems [77℄. However, in ontrast to the inversion problem, for whih

we suspet that good parallel (i.e., non-adaptive) algorithms do not exist, the

natural algorithm for the box problem is already non-adaptive and ahieves

ST = O(N logN).2

Puzzlingly, the two main tehniques for proving time-spae lower bounds do

not distinguish between the funtion-inversion problem and Yao's box problem.

In partiular, the known lower bounds use ompression [21, 23, 33, 77℄ or bit-

�xing [18, 19, 65℄. Both tehniques essentially look at the information that the

orale queries and their replies give on the pair (x, f(x)) indued by the hallenge,

regardless of whether the atual hallenge is x, and the algorithm has to �nd

f(x) (as in the ase of Yao's box problem), or the hallenge is y = f(x), and the

algorithm has to �nd x = f−1(y) (as in the ase of the inversion problem).

Sine there is an ST = Õ(N) upper bound for Yao's box problem, then any

method that proves a lower bound better than ST = Ω(N) for funtion inversion

2

Divide [N ] into disjoint bloks of (at most) T + 1 points eah. For eah blok, store

the sum of the values of the funtion over all points in the blok. In the online phase,

query all the other points in the blok given by the hallenge point, and use the

stored sum to reover the value of the funtion over the given hallenge point.
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must not apply to the box problem. Therefore, a �sanity hek� for any improved

lower bound for the funtion-inversion problem is to verify that the same proof

tehnique does not apply to Yao's box problem.

Strong-multisale-entropy. Druker [25℄ shows, at the very least, that im-

proving lower bounds in the ommon-bits model will require new types of ar-

guments. In partiular, Jukna [50, Chapter 13℄, generalizing earlier arguments

of Cherukhin [16℄ de�ned the �strong multisale entropy� (SME) property of

Boolean operators. Jukna proved that an operator on n bits with the SME prop-

erty annot be omputed by ommon-bits iruits of width o(n1/2) and degree

o(n1/2). (These results are atually phrased in terms of the wire omplexity of

depth-two iruits with arbitrary gates, but the impliations to the ommon-bits

model are straightforward.)

Strengthening Jukna's lower bound on the iruit omplexity of SME op-

erators appeared to be one promising diretion for progress on lower bounds.

Thwarting this hope, Druker onstruts an expliit operator with the SME

property that has iruits in the ommon-bits model of width O(n1/2) and de-

gree O(n1/2). Thus, SME-type arguments alone are not strong enough to prove

that an operator annot be omputed by iruits of width O(n1/2+ǫ) and degree

O(n1/2+ǫ) for ǫ > 0.

6.2 One-to-one funtions

Prompted by the fat that many ryptanalyti appliations of funtion inversion

only require inverting injetive funtion, we initiated in Setion 3 the study of

injetive funtion inversion. Though we take the �rst step by onneting this

problem to the problem of distinguishing PRGs, the basi question remains: is

it easier to invert a random injetive funtion f : [N ] → [M ], for N ≪ M , than

it is to invert a random length-preserving funtion f : [N ] → [N ]? A better-than-

Hellman attak against injetive funtions would be remarkable. Or, an we prove

that inverting injetive funtions is as hard as inverting random funtions?

6.3 Barriers for upper bounds

Is there a barrier to getting an S = T = o(N2/3) algorithm for funtion inversion?

Barkan, Biham, and Shamir [5℄ prove a lower bound against a ertain restrited

lass of Hellman-like algorithms, whih suggests that better algorithms must use

new tehniques. It would be satisfying to show at least that improving Hellman's

upper bound would result in a dramati algorithmi improvement for a well-

studied problem in another domain.
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A Proof of Lemma 11

The �rst step is to de�ne a permutation πβ : [N ] → [N ], for every funtion

β: [N ] → {0, 1}. We then use this permutation πβ to onvert a Boolean-valued
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Table 3: Example of the enoding proedure of Lemma 11. N = 23, and β: [N ] → {0, 1}.
Note that the last olumn is a permutation over the elements of [N ]. Also note how β

an be reovered from πβ(x) for all x 6= 0.
x β(x) (x|3, x|2, x|1) β(x|3)β(x|2)β(x|1) y = πβ(x)

000 1 (100, 010, 001) 001 100001 1 (101, 011, 001) 011 101010 0 (110, 010, 001) 101 000011 1 (111, 011, 001) 111 011100 0 (100, 010, 001) 001 010101 0 (101, 011, 001) 011 001110 1 (110, 010, 001) 101 100111 1 (111, 011, 001) 111 111

pointer-jumping instane (x, π1, . . . , πk−1, β) to an integer-valued pointer-jumping

instane (x, π1, . . . , πk−1, πβ). Solving the integer-valued instane using a pro-

tool for M̂PJ
perm

N,k is then enough�with a few extra bits of ommuniation�to

solve the Boolean-valued instane of MPJ
perm

N,k .

Towards onstruting πβ , onsider �rst the ase when N is a power of two.

For N = 2n, onsider the following mapping from {0, 1}N to permutations on

{0, 1, . . . , N − 1} = {0, 1}n. On β: {0, 1}n → {0, 1} we onstrut a permutation

πβ on {0, 1}n as follows: let x ∈ {0, 1}n and let x = xnxn−1 . . . x1 be the binary

representation of x. Set πβ(x) = y = ynyn−1 . . . y1 de�ned by yi = β(x|i)⊕xi⊕1
where x|i= 0 . . . 01xi−1xi−2 . . . x1. The following two properties hold:

� The mapping πβ de�ned above is a permutation. To see this let x 6= x′
be

two distint elements in {0, 1}n, and let y = πβ(x) and y′ = πβ(x
′). Let

i ∈ [n] be the rightmost bit position on whih x and x′
di�er. Then xi 6= x′

i

but x|i= x′|i. Therefore yi = β(x|i) ⊕ xi ⊕ 1 6= β(x′|i) ⊕ x′

i ⊕ 1 = y′i, so

y 6= y′.

� For any x ∈ {0, 1}n suh that x = xn . . . x1 6= 0, let i be the leftmost bit

position suh that xi = 1. It then holds that β(x) is equal to the ith bit of

πβ(x).

Note that the latter property guarantees that the value of β(x) for every x 6= 0
an be reovered from a single bit of πβ(x).

For N whih is not a power of 2, we an view N as a sum

∑ℓ
j=1 2

nj
of at

most ⌈logN⌉ powers of 2, and onstrut a permutation πβ on {0, . . . , N − 1} =
{0, 1}n1 ∪· · ·∪{0, 1}nℓ

as a union of permutations on {0, 1}nj
. By the properties

above, for all but ℓ = ⌈logN⌉ bad points, the value of β an be reovered from

the orresponding value of πβ . Note that the set of bad points depends only on

N and not on β. We give an example of this enoding proedure in Table 3.

Therefore, given a ommuniation protool for M̂PJ
perm

N,k , we onstrut a pro-

tool for MPJ
perm

N,k as follows. Let β ∈ {0, 1}N be the input (on the forehead)

of the last player. Eah of the �rst k − 1 players omputes the permutation

πβ from β aording to the mapping above. The �rst player also writes on the

blakboard the value of β evaluated on all of the bad points of πβ . The players

then run the protool for M̂PJ
perm

N,k on the instane (x, π1, . . . , πk−2, πβ).
The last player omputes the output of the original protool πβ ◦πk−2 ◦ · · · ◦

π1(x) = πβ(x̂) ∈ {0, 1, . . . , N − 1} where x̂ = πk−2 ◦ · · · ◦ π1(x). If x̂ is not a

bad point she an reover and output β ◦ πk−2 ◦ · · · ◦ π1(x) = β(x̂) ∈ {0, 1} from

πβ(x̂). Otherwise, if x̂ is a bad point, she outputs the value β(x̂), whih the �rst

player wrote on the blakboard.
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The new protool inreases the ommuniation omplexity of the original

protool by ⌈logN⌉.
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