
The Fun
tion-Inversion Problem:

Barriers and Opportunities

Henry Corrigan-Gibbs and Dmitry Kogan

Stanford University

{henry
g,dkogan}�
s.stanford.edu

Abstra
t. The task of fun
tion inversion is
entral to
ryptanalysis:

breaking blo
k
iphers, forging signatures, and
ra
king password hashes

are all spe
ial
ases of the fun
tion-inversion problem. In 1980, Hellman

showed that it is possible to invert a random fun
tion f : [N] → [N]
in time T = Õ(N2/3) given only S = Õ(N2/3) bits of pre
omputed

advi
e about f . Hellman's algorithm is the basis for the popular �Rainbow

Tables� te
hnique (Oe
hslin, 2003), whi
h a
hieves the same asymptoti

ost and is widely used in pra
ti
al
ryptanalysis.

Is Hellman's method the best possible algorithm for inverting fun
tions

with prepro
essed advi
e? The best known lower bound, due to Yao

(1990), shows that ST = Ω̃(N), whi
h still admits the possibility of an

S = T = Õ(N1/2) atta
k. There remains a long-standing and vexing

gap between Hellman's N2/3
upper bound and Yao's N1/2

lower bound.

Understanding the feasibility of an S = T = N1/2
algorithm is
ryptan-

alyti
ally relevant sin
e su
h an algorithm
ould perform a key-re
overy

atta
k on AES-128 in time 264 using a pre
omputed table of size 264.

For the past 29 years, there has been no progress either in improving

Hellman's algorithm or in strengthening Yao's lower bound. In this work,

we
onne
t fun
tion inversion to problems in other areas of theory to

(1) explain why progress may be di�
ult and (2) explore possible ways

forward.

Our results are as follows:

� We show that any improvement on Yao's lower bound on fun
tion-

inversion algorithms will imply new lower bounds on depth-two
ir-

uits with arbitrary gates. Further, we show that proving strong

lower bounds on non-adaptive fun
tion-inversion algorithms would

imply breakthrough
ir
uit lower bounds on linear-size log-depth
ir-

uits.

� We take �rst steps towards the study of the inje
tive fun
tion-inversion

problem, whi
h has manifold
ryptographi
 appli
ations. In parti
-

ular, we show that improved algorithms for breaking PRGs with

prepro
essing would give improved algorithms for inverting inje
tive

fun
tions with prepro
essing.

� Finally, we show that fun
tion inversion is
losely related to well-

studied problems in
ommuni
ation
omplexity and data stru
tures.

Through these
onne
tions we immediately obtain the best known

algorithms for problems in these domains.

1 Introdu
tion

A
entral task in
ryptanalysis is that of fun
tion inversion. That is, given a

fun
tion f : [N] → [N] and a point y ∈ [N], �nd a value x ∈ [N] su
h that

f(x) = y, if one exists. The hardness of fun
tion inversion underpins the se
urity

of almost every
ryptographi
 primitive we use in pra
ti
e: blo
k
iphers, hash

fun
tions, digital signatures, and so on. Understanding the exa
t
omplexity of

fun
tion inversion is thus
riti
al for assessing the se
urity of our most important

ryptosystems.

We are parti
ularly interested in fun
tion-inversion algorithms that only

make bla
k-box use of the fun
tion f�or formally, that have only ora
le a

ess

to f�sin
e these algorithms invert all fun
tions. A straightforward argument

shows that any bla
k-box inversion algorithm that makes at most T queries to

its f -ora
le su

eeds with probability at most O(T/N), over the randomness of

the adversary and the random
hoi
e of the fun
tion. This argument suggests

that an atta
ker running in o(N) time
annot invert a bla
k-box fun
tion on

domain [N] with good probability.

When the inversion algorithm may use prepro
essing, this logi
 breaks down.

An algorithm with prepro
essing runs in two phases: In the prepro
essing phase,

the algorithm repeatedly queries f and then outputs an �advi
e string� about f .
In the subsequent online phase, the algorithm takes as input its prepro
essed

advi
e string and a
hallenge point y ∈ [N]. It must then produ
e a value

x ∈ [N] su
h that f(x) = y. When using these algorithms for
ryptanalysis, the

atta
ker typi
ally seeks to jointly minimize the bit-length S of the advi
e string

and the running time T of the online algorithm. The
omputation required to

onstru
t the advi
e string, though usually expensive,
an often be amortized

over a large number of online inversions.

A trivial prepro
essing algorithm stores a table of f−1
in its entirety as its

advi
e string using S = Õ(N) bits and
an then invert the fun
tion on all points

using a single lookup into the table. In
ontrast,
onstru
ting algorithms that

simultaneously a
hieve sublinear advi
e and online time S = T = o(N) is non-
trivial.

In a seminal paper, Hellman [46℄ introdu
ed time-spa
e tradeo�s as a tool

for
ryptanalysis and gave a bla
k-box prepro
essing algorithm that inverts a

fun
tion f : [N] → [N] using only S = Õ(N2/3) bits of advi
e and online time

T = Õ(N2/3), where the algorithm is guaranteed to su

eed only on a
onstant

fra
tion of fun
tions. (More pre
isely, the algorithm has a
onstant su

ess proba-

bility over the uniformly random
hoi
e of the fun
tion f .) Fiat and Naor [27,28℄

later gave a rigorous analysis of Hellman's algorithm and extended it to invert all

possible fun
tions, albeit with a slightly worse trade-o� of the form S3T = Õ(N3)
for any
hoi
e of N3/4 ≤ S ≤ N . Hellman's trade-o� is the best known today,

and his algorithm is a fundamental tool in real-world
ryptanalysis [7, 8, 59,61℄.

In this work, we investigate the following question:

Is it possible to improve upon Hellman's time-spa
e trade-o�?

2

Yao �rst asked this question in 1990 [77℄ and proved that any prepro
essing

algorithm for fun
tion inversion that uses S bits of advi
e and T online queries

must satisfy ST = Ω̃(N). (Counting only queries�and not online
omputation�

only strengthens lower bounds in this model.) Notably, this lower bound does not

rule out an algorithm that a
hieves S = T = Õ(N1/2). In
ontrast, Hellman's

algorithm only gives an upper bound of S = T = Õ(N2/3), even for the slightly

easier
ase of inverting a random fun
tion. The question resurfa
es in the work

of Fiat and Naor [28℄, Barkan, Biham, and Shamir [5℄ (who show that Hellman's

method is optimal for a
ertain natural but restri
ted
lass of algorithms), De,

Trevisan and Tulsiani [21℄, and Abusalah et al. [1℄.

In addition to the problem's theoreti
al appeal, determining the best pos-

sible time-spa
e trade-o�s for fun
tion inversion is relevant to pra
ti
e, sin
e

the di�eren
e between an online atta
k time of N2/3
and an N1/2

be
omes
ru-

ial when dealing with 128-bit blo
k
iphers, su
h as the ubiquitous AES-128.

Hellman's algorithm gives the best known prepro
essing atta
k against AES-

128, with S = T ≈ 286. If we
ould improve Hellman's algorithm to a
hieve

S = T = N1/2
, mat
hing Yao's lower bound, we
ould break AES-128 in time

264 with a data stru
ture of size 264, albeit after an expensive prepro
essing

phase. While today's S = T = 286 atta
k is likely far beyond the power of any

realisti
 adversary, an improved S = T = 264 atta
k would leave us with an

alarmingly narrow se
urity margin.

Re
ent work proves new lower bounds on prepro
essing algorithms for various

ryptographi
 problems, using both in
ompressibility arguments [1, 23, 32℄ and

the newer presampling method [19, 65℄. While this progress might give hope

for an improved lower bound for fun
tion inversion as well, both te
hniques

mysteriously fail to break the ST = Ω̃(N) barrier.

Non-adaptive algorithms. Another avenue for study is to explore the role

of parallelism or adaptivity in prepro
essing algorithms for fun
tion inversion.

All non-trivial algorithms for fun
tion inversion, in
luding Hellman's algorithm

and Rainbow-table methods [61℄,
riti
ally use the adaptivity of their queries.

It would be very interesting to
onstru
t a highly parallelizable prepro
essing

algorithm for fun
tion inversion. Su
h an algorithm would a
hieve the same

advi
e and time
omplexity S = T = Õ(N2/3) as Hellman's algorithm, but

would make all Õ(N2/3) of its queries to the f -ora
le in one non-adaptive bat
h.

Su
h a non-adaptive inversion algorithm
ould speed up fun
tion inversion on

ryptanalyti
 ma
hines with a very large number of parallel pro
essing
ores.

We do not even know if there exists a non-adaptive algorithm with S =
T = o(N). Can we �nd new non-adaptive inversion algorithms, or is adaptivity

ne
essary for good time-spa
e trade-o�s? Proving lower bounds in this more

restri
ted model
ould be a stepping stone to improving the general lower bounds

on fun
tion inversion.

3

1.1 Our results

This work establishes new
onne
tions between the fun
tion-inversion problem

and well-studied problems in
ryptography,
omplexity theory, and data stru
-

tures. These
onne
tions are useful in two dire
tions.

First, they shed new light on the fun
tion-inversion problem: a
onne
tion

to
ir
uit
omplexity suggests that improving on the known lower bounds for

fun
tion-inversion will be di�
ult. In parti
ular, we show that new lower bounds

for fun
tion inversion will imply new
ir
uit lower bounds and
ould even resolve

omplexity-theoreti
 questions that predate Hellmanâ��s results [66℄. Moreover,

a new
onne
tion to the problem of breaking PRGs with prepro
essing suggests

a new avenue for better inversion algorithms for inje
tive fun
tions. For many

of the
ryptanalyti
 appli
ations, progress on this variant of fun
tion inversion

would in fa
t be su�
ient.

Se
ond, these
onne
tions, together with
lassi

ryptanalyti
 algorithms,

give rise to better algorithms for problems in the other areas of theory. For

example, a
onne
tion to
ommuni
ation
omplexity leads to the best known

algorithm for the multiparty pointer-jumping problem, improving upon a twenty-

year-old upper bound [63℄. Similarly, a
onne
tion to data stru
tures leads to a

new upper bound for the systemati
 substring-sear
h problem, resolving an open

question [29℄.

We now state our results in detail.

Proving better lower bounds for fun
tion-inversion implies new
ir
uit

lower bounds. A major question in
ir
uit
omplexity, open sin
e the 1970s [66,

67℄, is to give an expli
it family of fun
tions Fn: {0, 1}n → {0, 1}n that
annot

be
omputed by fan-in-two
ir
uits of size O(n) and depth O(log n). Following
ideas of Brody and Larsen [13℄, we demonstrate a
lose
onne
tion between this

lassi
 problem in
ir
uit
omplexity and non-adaptive prepro
essing algorithms

for fun
tion inversion.

Spe
i�
ally, we show that proving that every non-adaptive bla
k-box fun
tion-

inversion algorithm that uses S = N logN/log logN bits of advi
e requires at

least T = Ω(N ǫ) ora
le queries, for some
onstant ǫ > 0, would give an expli
it

family of fun
tions that
annot be
omputed by linear-size log-depth Boolean

ir
uits. This, in turn, would resolve a long-standing open problem in
ir
uit

omplexity. Though we
annot prove it, we suspe
t that the above lower bound

holds even for ǫ = 1.
This
onne
tion implies that proving lower bounds against non-adaptive

fun
tion-inversion algorithms that use the relatively large amount of advi
e

S = N logN/log logN should be quite di�
ult. A mu
h more modest goal would

be to rule out any non-adaptive algorithm using S = T = Õ(N1/2+ǫ), for some

ǫ > 0. This would represent only a slight strengthening of Yao's ST = Ω̃(N)
bound for adaptive algorithms. However, we show that a
hieving even this far-

more-modest goal would improve the best known lower bound for
ir
uits in

Valiant's
ommon-bits model [66, 67℄. This, in turn, would represent substan-

tial progress towards proving lower bounds against linear-size log-depth
ir
uits.

In parti
ular, sin
e any lower bound against algorithms without a restri
tion

4

on adaptivity would only be more general, improving the ST = Ω̃(N) lower

bound for fun
tion inversion would imply new
ir
uit lower bounds in Valiant's

ommon-bits model.

We believe that the di�
ulty of proving su
h a
ir
uit lower bound suggests

that beating the square-root barrier exhibited by both the
ompression [33, 77℄

and presampling [19, 65℄ te
hniques might prove more di�
ult than previously

expe
ted.

One-to-one fun
tion inversion from PRG distinguishers. Many
ryptan-

alyti
 appli
ations of Hellman tables (
ryptanalysis of blo
k
iphers, password

ra
king, et
.) only require inverting inje
tive fun
tions. Does there exist a better-

than-Hellman algorithm for inverting inje
tive fun
tions with prepro
essing?

One reason to hope for a better algorithm for inje
tive fun
tions is that for

the very spe
ial
ase of permutations, there exists an inversion algorithm with

prepro
essing that a
hieves the improved trade-o� ST = Õ(N) (i.e., S = T =
N1/2

) [77℄. Can we a
hieve the same trade-o� for inje
tive fun
tions?

While we have not been able to answer this question yet, we do open one pos-

sible route to answering it. In parti
ular, we show that the problem of inverting

inje
tive fun
tions with prepro
essing has a
lose
onne
tion to the problem of

breaking pseudorandom generators (PRGs) with prepro
essing [2, 19, 21, 23, 24℄.

Spe
i�
ally, De, Trevisan, and Tulsiani [21℄ show that bla
k-box PRG distin-

guishers with prepro
essing
an realize the trade-o� S = Õ(ǫ2N), for T = Õ(1)
and for any
hoi
e of distinguishing advantage ǫ.

We show that a
hieving a more general trade-o� of the form ST = Õ(ǫ2N),
for any
onstant ǫ, would imply a better-than-Hellman algorithm for inverting

inje
tive fun
tions. Thus, improving the known PRG distinguishers with prepro-

essing
an improve the known inje
tive inversion algorithms.

New proto
ols for multiparty pointer jumping. We show that algorithms

for the bla
k-box fun
tion-inversion problem are useful in designing new
om-

muni
ation proto
ols for a well-studied problem in
ommuni
ation
omplexity.

In parti
ular, any bla
k-box prepro
essing algorithm for inverting permutations

yields a proto
ol for the permutation variant of the �k-party pointer-jumping�

problem (MPJ
perm

N,k) [10,11,14,20,56,63,70℄ in the number-on-the-forehead model

of
ommuni
ation
omplexity [15℄.

Then, by instantiating the permutation-inversion algorithm with a variant

of Hellman's method, we obtain the best known proto
ol for MPJ
perm

N,k for k =
ω(logN/log logN) players (this regime is in fa
t the most
onsequential for the

original motivation for studying this problem), improving the previous best up-

per bound of O(N log logN/logN), by Pudlák et al. [63℄, to Õ(N/k +
√
N).

We thus make progress on understanding the
ommuni
ation
omplexity of

multiparty pointer jumping, a problem with signi�
an
e to ACC
0

ir
uit lower

bounds [6, 47,78℄.

Beyond the quantitative improvement, our proto
ol is di�erent from all pre-

vious approa
hes to the problem and is an unexpe
ted appli
ation of a
rypt-

analyti
 algorithm to a
ommuni
ation-
omplexity problem. While the use of

a
ryptanalyti
 algorithm in this
ontext appears new, prior work has found

5

appli
ation of results in
ommuni
ation
omplexity to lower bounds [44℄ and

onstru
tions [12℄ in the
ryptographi
 setting.

This
onne
tion presents a path forward for proving non-adaptive lower

bounds for permutation inversion. In parti
ular, we show that for every non-

adaptive bla
k-box permutation-inversion algorithm using S bits of advi
e and

T online queries, it must hold that max{S, T} is at least as large as the
ommuni-

ation
omplexity ofMPJ
perm

N,3 . Any improvement on the lower bound forMPJ
perm

N,3

would give an improved lower bound for non-adaptive bla
k-box permutation-

inversion algorithms. The best lower bound for MPJ
perm

N,3 is Ω(
√
N) [3, 73℄. Inter-

estingly, this mat
hes the best lower-bound for bla
k-box permutation-inversion

algorithms, regardless of their adaptivity.

New time-spa
e trade-o� for systemati
 substring sear
h. Finally, we

show that improved algorithms for fun
tion inversion will also imply improved

data stru
tures for the systemati
 substring-sear
h problem [22,29,30,40,41℄. In

parti
ular, we prove that there is a prepro
essing algorithm for the fun
tion-

inversion problem using few bits of advi
e and few online queries if and only if

there is a spa
e- and time-e�
ient data stru
ture for systemati
 substring sear
h

in the
ell-probe model [75℄. In the systemati
 substring-sear
h problem, we are

given a bitstring of length N (the �text�), and from it we must
onstru
t an

S-bit data stru
ture (the �index�). Given a query string, we should be able to

determine whether the query string appears as a substring of the text by reading

the index and by inspe
ting at most T bits of the original text.

This
onne
tion is fruitful in two dire
tions: First, we show that instantiating

this
onne
tion with the Fiat-Naor algorithm for fun
tion inversion [28℄ yields

an S3T = Õ(N3) systemati
 data stru
ture, whi
h is the best known in the

parameter regime S = Õ(Nα) for α < 1. Gál and Miltersen [29℄ ask whether a

very strong S + T = Ω̃(N) lower bound on this problem is possible. By beating

this hypotheti
al lower bound, our algorithm answers their open question in the

negative.

Se
ond, Gál and Miltersen prove an ST = Ω̃(N) lower bound for system-

ati
 substring sear
h. Our barrier to proving lower bounds against bla
k-box

algorithms for fun
tion inversion implies that improving this lower bound would

also imply new lower bounds in Valiant's
ir
uit model and therefore may be

quite
hallenging.

1.2 Related work

We now re
all a few salient related results on fun
tion inversion, and we dis
uss

additional related work at relevant points throughout the text.

Fiat and Naor [27,28℄ proved that Hellman's algorithm [46℄ a
hieves a trade-

o� of the form S2T = Õ(N2), when the algorithm needs only to invert a random

fun
tion with
onstant probability (i.e., in the
ryptanalyti
ally interesting
ase).

For the worst-
ase problem of inverting arbitrary fun
tions, Fiat and Naor give

an algorithm that a
hieves a trade-o� of the form S3T = O(N3). De, Trevisan,
and Tulsiani [21℄ improve the Fiat-Naor trade-o� when the algorithm needs only

to invert the fun
tion at a sub-
onstant fra
tion of points.

6

For inverting fun
tions, Yao [77℄ proved that every algorithm that uses S
bits of advi
e and makes T online queries must satisfy ST = Ω̃(N) lower bound.
Impagliazzo gives a short alternative proof [48℄. Dodis et al. [23℄, building on

prior work [21, 33℄, extended the lower bound to
apture algorithms that invert

only a sub-
onstant fra
tion of fun
tions f .
Barkan, Biham, and Shamir [5℄ show that, for a restri
ted
lass of prepro-

essing algorithms, a Hellman-style trade-o� of the form S2T = Õ(N2) is the

best possible. Their lower bound is powerful enough to
apture the known inver-

sion s
hemes, in
luding Hellman's algorithm and Oe
hslin's pra
ti
ally e�
ient

�Rainbow tables� te
hnique [61℄. At the same time, this restri
ted lower bound

leaves open the possibility that an entirely new type of algorithm
ould subvert

their lower bound.

For inverting permutations, Yao [77℄ observed that a Hellman-style algorithm

an a
hieve the ST = Õ(N) upper bound and proved a mat
hing lower bound.

Gennaro and Trevisan [33℄, Wee [71℄, and De, Trevisan, and Tulsiani [21℄ extend

this lower bound to handle randomized algorithms and those that su

eed with

small probability.

Two re
ent works [39, 52℄ use the fun
tion-inversion algorithm of Fiat and

Naor to obtain new algorithms for the prepro
essing version of the 3-SUM prob-

lem.

1.3 Preliminaries

Notation. Through this paper, Z
≥0

denotes the non-negative integers, and Z
>0

denotes the positive integers. For any N ∈ Z
>0

we write [N] = {1, 2, . . . , N}.
We often identify every element x ∈ [N] with the binary representation of x− 1
in {0, 1}⌈logN⌉

. We use x ← 4 to denote assignment and, for a �nite set X , we
use x R← X to denote a uniform random draw from X . For a fun
tion f : A→ B
and y ∈ B, we de�ne the preimage set of y as f−1(y) := {x ∈ A | f(x) = y}.
All logarithms are base-two unless stated otherwise. Parameters S and T are

always impli
it fun
tions of the parameter N , and to simplify the bounds, we

always impli
itly take S = T = Ω(1). The notation Ω̃(·) and Õ(·) hides fa
tors
polynomial in logN .

De�nition 1 (Bla
k-box inversion algorithm with prepro
essing). Let

N ∈ Z
>0
. A bla
k-box inversion algorithm with prepro
essing for fun
tions on

[N] is a pair (A0,A1) of ora
le algorithms, su
h that A0 gets ora
le a

ess to a

fun
tion f : [N]→ [N], takes no input, and outputs an advi
e string stf ∈ {0, 1}∗.
Algorithm A1 gets ora
le a

ess to a fun
tion f : [N] → [N], takes as input a

string stf ∈ {0, 1}∗ and a point y ∈ [N], and outputs a point x ∈ [N]. Moreover,

for every x ∈ [N], it holds that Af
1 (Af

0 (), f(x)) ∈ f−1(f(x)).

We
an de�ne a bla
k-box inversion algorithm for permutations analogously

by restri
ting the ora
le f : [N]→ [N] to implement an inje
tive fun
tion. In this

ase, we will often denote the ora
le as π instead of f .

7

De�nition 2 (Adaptivity). We say that an ora
le algorithm is k-round adap-

tive if the algorithm's ora
le queries
onsist of k sets, su
h that ea
h set of queries

depends on the advi
e string, the input, and the replies to the previous rounds

of queries. We
all a 1-round adaptive algorithm non-adaptive. Finally, we say

that an algorithm is strongly non-adaptive if it issues a single set of queries that

only depends on the algorithm's input, but not on the advi
e string. In all of the

above
ases, when referring to the number of queries made by the algorithm, we

a

ount for the sum over all rounds.

Worst
ase versus average
ase. The algorithms in De�nition 1 are deter-

ministi
 and su

essfully invert all fun
tions on all points. It is also interesting

to
onsider algorithms that invert su

essfully only with probability ǫ < 1, over
the random
hoi
e of: the fun
tion f : [N] → [N], the point to invert, and/or

algorithm's randomness. As most of the results in this paper deal with barri-

ers for improving lower bounds, restri
ting ourselves to deterministi
 algorithms

that always su

eed in inverting only makes these results stronger. In any
ase,

assume that all algorithms we
onsider halt with probability 1.

Running time versus query
omplexity. For the purposes of proving lower

bounds, and redu
tions towards proving lower bounds, it su�
es to
onsider

the query
omplexity of a prepro
essing algorithm's online phase. Counting only

queries (and not
omputation time) only strengthens lower bounds proved in

this model. The algorithms we
onstru
t
an be made to use only Õ(N) prepro-

essing time in a suitable RAM model, when they are allowed to fail with small

probability. Furthermore, the running time of our algorithms' T -query online

phase is Õ(T).

Non-uniformity. Our de�nition allows for �free� non-uniformity in the param-

eter N . Nevertheless, in a model that only �
harges� the online algorithm for

queries to the ora
le and ignores the a
tual running time, non-uniformity makes

little di�eren
e sin
e a uniform algorithm
an simply sear
h for the optimal

hoi
e of non-uniform advi
e without in
reasing its query
omplexity.

Shared randomness. We allow the prepro
essing and online phases to a

ess

a
ommon stream of random bits. Allowing the adversary to a

ess
orrelated

randomness in both phases only strengthens the lower bounds. Only one of our

upper bounds (Theorem 8) makes use of this
orrelated randomness.

2 Lower bounds on inversion imply
ir
uit lower bounds

The motivating question of this work is whether Hellman's S = T = Õ(N2/3)
algorithm for inverting random fun
tions is optimal. In this se
tion, we show

that resolving this question will require proving signi�
ant new lower bounds in

Valiant's �
ommon bits� model of
ir
uits [66℄. We also show that proving strong

lower bounds on non-adaptive algorithms for fun
tion inversion would imply new

lower bounds against linear-sized logarithmi
-depth
ir
uits.

8

We obtain these
onne
tions by observing that the fun
tion-inversion prob-

lem is an example of a
lass of so
alled �su

in
t� stati
 data-stru
ture prob-

lems [4, 17, 30, 31, 40, 41, 43, 45, 49, 58, 64℄. We show a barrier to proving lower

bounds against systemati
 data stru
tures, whi
h are a spe
ial
ase of su

in
t

data stru
tures.

Related work. Brody and Larsen [13℄ showed that proving
ertain lower bounds

against linear data stru
tures for dynami
 problems would imply strong lower

bounds on the wire
omplexity of linear depth-two
ir
uits. We follow their

general blueprint, but we instead fo
us on arbitrary algorithms for solving stati

data-stru
ture problems (e.g., fun
tion inversion), and our
onne
tion is to Valiant's

ommon-bits model of
ir
uits, rather than to linear depth-two
ir
uits.

In re
ent independent work, Viola [69, Theorem 3℄ shows that lower bounds

against a large
lass of stati
 data-stru
tures problems imply
ir
uit lower bounds.

In his work, Viola
onsiders an in
omparable
ir
uit model that, on the one hand,

admits
ir
uits of depth larger than two, but, on the other hand, restri
ts the

number of wires
onne
ted to the
ommon bits. As a result, Viola's work does

not seem to apply to the fun
tion-inversion problem within the relevant parame-

ter regime (namely, in the gap between Hellman's upper bound and Yao's lower

bound).

In another re
ent independent work, Dvir, Golovnev, and Weinstein [26℄
on-

ne
t data-stru
ture lower bounds to matrix rigidity and
ir
uit lower bounds.

Their fo
us is on linear data stru
tures, whereas the fun
tion inversion problem,

onsidered in our work, does not have an apparent linear stru
ture.

Boyle and Naor [9℄ make a surprising
onne
tion between
ryptographi
 al-

gorithms and
ir
uit lower bounds. They show that proving the non-existen
e of

ertain �o�ine� oblivious RAM algorithms (ORAMs) [34,38,62℄ would imply new

lower bounds on the size of Boolean
ir
uits for sorting lists of integers. Larsen

and Nielsen [54℄ re
ently skirted this barrier by proving a lower bound against

ORAMs in the �online� setting. Following that, Weiss and Wi
hs [72℄ showed

that a variant of the Boyle-Naor barrier still holds against �online read-only�

ORAMs.

2.1 Systemati
 data stru
tures and low-depth
ir
uits

A major open question in
ir
uit
omplexity is whether there exists an ex-

pli
it family of Boolean fun
tions (from n bits to one bit) that
annot be
om-

puted by fan-in-two
ir
uits of size O(n) and depth O(log n). An easier prob-

lem, whi
h is still famously di�
ult, is to �nd an expli
it family of fun
tions

Fn: {0, 1}n → {0, 1}n with n-bit output�often
alled Boolean operators�that

annot be
omputed by this same
lass of
ir
uits. Even this question has been

open sin
e the 1970s [51,66,67℄.

More pre
isely, we say that a family of Boolean operators {Fn}n∈Z>0
, for

Fn: {0, 1}n → {0, 1}n, is an expli
it operator if the de
ision problem asso
iated

with ea
h bit of the output of Fn is in the
omplexity
lass NP.

The main result of this se
tion is that proving a
ertain type of data-stru
ture

lower bound implies the existen
e of an expli
it Boolean operator on n bits that

9

x1 x2 x3 x4

Inputs

Commonbits

Outputs

Fig. 1: Common-bits
ir
uit with n = 4 inputs, degree d = 2, and width w = 2.

annot be
omputed by fan-in-two
ir
uits of size O(n) and depth O(log n). We

then show that a lower bound on fun
tion-inversion algorithms
an be
ast as

a data-stru
ture lower bound, and therefore a fun
tion-inversion lower bound

implies a
ir
uit lower bound.

We now give the ne
essary ba
kground on data-stru
ture problems. A sys-

temati
 data stru
ture of size s and query
omplexity t for an operator Fn is a

pair of algorithms:

� a prepro
essing algorithm, whi
h takes as input the data x ∈ {0, 1}n and

outputs a string st ∈ {0, 1}s of length s = o(n), and

� a query algorithm, whi
h takes as input the string st, and an index i ∈ [n],
may probe (read) t bits of the input x, and then outputs the ith bit of Fn(x).

A systemati
 data stru
ture is non-adaptive if the query algorithm probes a set

of bits of the input data x whose lo
ation depends only on the index i and not

on the input data x.
The following theorem is the main result of this se
tion.

Theorem 3. If an expli
it operator {Fn}n∈Z>0
has fan-in-two Boolean
ir
uits

of size O(n) and depth O(log n) then, for every ǫ > 0, then this operator ad-

mits a non-adaptive systemati
 data stru
ture of size O(n/log log n) and query

omplexity O(nǫ).

To prove this, we �rst re
all Valiant's
ommon-bits model of
ir
uits [66,67℄.

Valiant's
ommon-bits model. A
ir
uit in the
ommon-bits model of width

w and degree d
omputing a Boolean operator Fn: {0, 1}n → {0, 1}n
ontains an

input layer, a middle layer, and output layer (Figure 1). The input layer
onsists

of n input bits x1, . . . , xn ∈ {0, 1}, and the output layer
onsists of n output

gates. There are w gates in the middle layer of the
ir
uit (the �
ommon bits�);

ea
h input feeds into ea
h of these w middle gates, and the output of ea
h of the

w middle gates feeds into ea
h output gate. Further, ea
h output gate reads from

at most d of the inputs. Unlike in a standard
ir
uit, the gates in the middle

and output layers of the
ir
uit
ompute arbitrary fun
tions of their inputs. The

output of the
ir
uit is the n-bit string formed at the output gates.

10

It is immediate that any Boolean operator Fn: {0, 1}n → {0, 1}n has
ommon-

bits
ir
uits of width n and degree 0 or, alternatively, of width 0 and degree n.
A non-trivial question is: For a given operator Fn and
hoi
e of degree (e.g.,

d = n1/3
), what is minimal width of a
ommon-bits
ir
uit that
omputes Fn?

Lemma 4. If there exists a
ir
uit in the
ommon-bits model of width w and

degree d that
omputes an operator F : {0, 1}n → {0, 1}n, then there exists a

non-adaptive systemati
 data stru
ture for F of size w and query
omplexity d.

Proof. Let C be a
ir
uit in the
ommon-bits model as in the statement of the

lemma. The data stru
ture
onsists of the outputs of the w middle-layer gates

in the
ir
uit C (i.e., the
ir
uit's
ommon bits). On input i ∈ [n], the algorithm
reads all the input bits
onne
ted to the ith output gate of C and
omputes the

value of the output gate. Sin
e ea
h output gate in the
ir
uit is
onne
ted to at

most d input bits, the query
omplexity of the systemati
 data stru
ture is at

most d.

Theorem 3 then follows from Lemma 4 and the following result of Valiant:

Theorem 5 (Valiant [66,67℄). If every expli
it operator has fan-in-two Boolean

ir
uits of size O(n) and depth O(log n), then for every
onstant ǫ > 0, every

expli
it operator has
ir
uits in the
ommon-bits model of width O(n/log log n)
and degree nǫ

.

Viola [68, Se
tion 3℄ and Jukna [50, Chapter 13℄ give detailed proofs of Theo-

rem 5.

2.2 Consequen
es for fun
tion inversion

Observe that every fun
tion f : [N]→ [N]
an be des
ribed usingO(N logN) bits,
so there is a trivial strongly non-adaptive algorithm that inverts every fun
tion

using O(N logN) bits of advi
e and no queries to the fun
tion in the online

phase. We know of no non-adaptive fun
tion-inversion algorithm that inverts

with
onstant probability using o(N logN) bits of advi
e and o(N) queries. The
following theorem states that ruling out the existen
e of su
h a non-adaptive

algorithm is as hard as proving lower bounds against linear-size logarithmi
-

depth Boolean
ir
uits.

Theorem 6. If, for some ǫ > 0, every family of strongly non-adaptive bla
k-

box algorithms for inverting fun
tions f : [N] → [N] that uses O(N ǫ) queries

requires ω(N logN/log logN) bits of advi
e, then there exists an expli
it operator

that
annot be
omputed by fan-in-two Boolean
ir
uits of size O(n) and depth

O(log n).

The theorem
onsiders a restri
ted
lass of inversion algorithms that: (i) may

only use strongly non-adaptive queries (the most restri
tive type of query), (ii)

are only allowed, for example, O(N0.0001) queries (very few queries), and (iii)

must invert arbitrary fun
tions with probability one (the most di�
ult variant

of the inversion problem).

11

So, even though we may suspe
t that there are no algorithms for inverting

fun
tions f : [N]→ [N] using O(N logN/log logN) bits of advi
e and O(N0.0001)
non-adaptive queries, proving su
h an assertion seems very
hallenging.

Proof of Theorem 6. Let n = N logN , where N ∈ Z
>0

is a power of two. (For all

other values of n, de�ne the inversion operator trivially as the identity mapping.)

We de�ne the inversion operator F inv

n : {0, 1}n → {0, 1}n as follows. Let x ∈
{0, 1}n be an input to F inv

n , and view x as the
on
atenation of N blo
ks of

length logN bits ea
h: x = x1‖x2‖· · · ‖xN . For ea
h i ∈ [N], let yi ∈ [N] be the
least j ∈ [N] su
h that xj = i, if one su
h j exists. If no su
h j exists, set yi = 0.
We de�ne F inv

n (x) = (y1‖y2‖· · · ‖yN).

Observe that a systemati
 data stru
ture for F inv

n gives a strongly non-adaptive

prepro
essing algorithm that inverts every fun
tion f : [N] → [N]. The prepro-

essing phase
onstru
ts the data stru
ture for operator F inv

n on input f(1)‖f(2)‖. . . ‖f(N)
and outputs this data stru
ture as the advi
e string.

In the online phase, on input i ∈ [N], the algorithm uses the data stru
ture

in the advi
e string and its ora
le a

ess to f to
ompute all logN bits of the

ith output blo
k yi of F
inv

n , whi
h is enough to re
over some inverse of i under
f , if it exists.

The theorem now follows from Theorem 3, instantiated with F inv

n . For n of

the form n = N logN , where N > 0 is a power of two, we get that the length

of the advi
e string is O(N logN/log log(N logN)) = O(N logN/log logN) and
the online query
omplexity is logN · O ((N logN)ǫ) = O(N ǫ′), for any ǫ′ > ǫ.

Theorem 6 suggests the hardness of proving stronger lower bounds for non-

adaptive inversion algorithms, but it applies only to algorithms that use a rel-

atively long advi
e string, of length O(N logN/log logN). We might still hope

to improve upon Yao's ST = Ω̃(N) lower bound for fun
tion inversion without

breaking the aforementioned barrier.

The following
orollary shows that ruling out fun
tion-inversion algorithms

using advi
e and time S = T = Õ(N1/2+ǫ), for any ǫ > 0, would imply the

existen
e of an expli
it operator that
annot be
omputed by
ir
uits of width

O(n1/2+ǫ′) and degree O(n1/2+ǫ′) in the
ommon-bits model, for some ǫ′ > 0.
As we will dis
uss, no su
h lower bound in the
ommon-bits model is known,

so proving the optimality of Hellman's Õ(N2/3) algorithm, or even showing

that inverting fun
tions with prepro
essing is marginally harder than inverting

permutations with prepro
essing, would imply an advan
e in the state of lower

bounds on
ir
uits in the
ommon-bits model.

Corollary 7. If, for some ǫ > 0, there does not exist a family of strongly

non-adaptive algorithms for inverting fun
tions f : [N] → [N] using O(N1/2+ǫ)
bits of advi
e and O(N1/2+ǫ) queries, then there exists an expli
it operator that

does not have
ir
uits in the
ommon-bits model of width O(n1/2+ǫ′) and degree

O(n1/2+ǫ′), for every ǫ′ satisfying 0 < ǫ′ < ǫ.

12

Proof. We prove the
ontrapositive. Assume that for every ǫ′ > 0, every expli
it

operator has
ommon-bits
ir
uits of width O(n1/2+ǫ′) and depth O(n1/2+ǫ′).
Then, as in the proof of Theorem 6, we
an apply Lemma 4 to operator F inv

n to

show that, for n = N logN , there exists a strongly non-adaptive prepro
essing al-

gorithm that inverts fun
tions f : [N]→ [N] usingO(n1/2+ǫ′) = O((N logN)1/2+ǫ′) =
O(N1/2+ǫ′ logN) bits of advi
e and O(n1/2+ǫ′ logN) = O((N logN)1/2+ǫ′ logN)
online queries. Then, for any ǫ > ǫ′, the advi
e usage and number of online

queries is O(N1/2+ǫ).

Noti
e that while the hypothesis of Corollary 7
onsiders a lower bound

against strongly non-adaptive inversion algorithms, this only strengthens the

statement. This is true be
ause proving a lower bound against adaptive inversion

algorithms implies a lower bound against strongly non-adaptive algorithms as

well.

If we instantiate Corollary 7 with ǫ = 1/6, we �nd that ruling out fun
tion-

inversion algorithms using S = T = o(N2/3), even against the restri
ted
lass of

strongly non-adaptive algorithms, would give an expli
it operator that does not

have
ommon-bits
ir
uits of width w and degree d satisfying w = d = o(n2/3−δ),
for any δ > 0.

Proving su
h a lower bound on
ommon-bits
ir
uits is not strong enough to

yield a lower bound against linear-size log-depth
ir
uits via Valiant's method

(Theorem 5). However, this lower bound would improve the best known lower

bound against
ir
uits in the
ommon-bits model. The best known bound, due

to Pudlák, Rödl, and Sgall, gives d = Ω(nw · log(nw)), for a
ommon-bits
ir
uit of

width w and degree d [63℄. In parti
ular, they
onstru
t an expli
it operator that

does not have
ommon-bits
ir
uits satisfying w = d = Õ(n1/2). By Corollary 7,

ruling out fun
tion-inversion algorithms with S = T = Õ(N1/2+ǫ), for any ǫ > 0,
would thus improve the best lower bounds on
ommon-bits
ir
uits.

2.3 Consequen
es for other su

in
t data-stru
ture problems

Theorem 3 and Lemma 4 together imply that proving strong lower bounds

for any systemati
 data-stru
ture problem�not only for the fun
tion-inversion

problem�will be
hallenging. To explain how this barrier applies to a
ompletely

di�erent data-stru
ture problem, we re
all the systemati
 variant of the standard

data-stru
ture problem of polynomial evaluation with prepro
essing [57℄. We give

an informal des
ription of the problem, and the transformation into a formal sys-

temati
 data-stru
ture problem (as in Se
tion 2.1) is straightforward.

The problem of polynomial evaluation with prepro
essing is parameterized

by an integer N ∈ Z
>0

and a �nite �eld F of size Θ(N). The input data is

a polynomial p ∈ F[X] of degree at most N − 1, represented as its ve
tor of

oe�
ients c̄ = (c0, c1, . . . , cN−1) ∈ F
N
. The prepro
essing algorithm reads this

input (the entire polynomial p) and produ
es a prepro
essed S-bit string st. In

a subsequent online phase, the query algorithm takes as input a point x0 ∈ F,

and must output the evaluation p(x0) ∈ F of the polynomial p at point x0.

To produ
e its answer, the query algorithm may read the entire prepro
essed

13

string st, query at most T
oordinates of the
oe�
ient ve
tor c̄, and perform

an unlimited amount of
omputation.

For what
hoi
es of spa
e usage S and query
omplexity T does there exist

a systemati
 data stru
ture for polynomial evaluation with prepro
essing?

The two naïve approa
hes to solving this problem are:

1. Have the prepro
essing algorithm store in the string st the evaluation of the

polynomial p on every point in the �eld F, using S = Ω(N) spa
e.
2. Have the online-phase algorithm read the entire
oe�
ient ve
tor c̄, using

T = Ω(N) queries, and then evaluate p(x0) =
∑

i cix0 ∈ F dire
tly.

These solutions both have S + T = Ω̃(N).
It seems very di�
ult to
onstru
t an algorithm that simultaneously uses a

data stru
ture of size S = N δ
and query
omplexity T = N δ

, for some δ < 1. And
yet, the best lower bound we have for this problem, implied by a bound of Gál

and Miltersen [30℄, is of the form ST = Ω̃(N). A variant of Corollary 7 implies

that proving stronger lower bounds for this problem�or proving any lower bound

better than ST = Ω̃(N) for any systemati
 or su

in
t data-stru
ture problem,

for that matter�will also imply new lower bounds in Valiant's
ommon-bits

model. Proving even a stronger lower bound
ould, via Theorem 3, imply a

lower bound against linear-size log-depth fan-in-two
ir
uits.

3 Breaking PRGs is as hard as

inverting inje
tive fun
tions

Many
ryptanalyti
 appli
ations of Hellman tables only require inverting inje
-

tive fun
tions. That is given a inje
tive fun
tion f : [N] → [M] and a point

y ∈ [M], �nd a value x ∈ [N] su
h that f(x) = y, if one exists.
For example,
onsider the
lassi
 appli
ation of Hellman tables to plaintext

atta
ks on blo
k
iphers: Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blo
k
ipher,

where k is the key size and n is the blo
k size. If we de�ne fE : {0, 1}k → {0, 1}n
su
h that fE(x) = E(x,m0) for some �xed plaintext m0, then an algorithm

with prepro
essing for the fun
tion fE essentially gives a known-plaintext at-

ta
k on the blo
k
ipher E. We
an (heuristi
ally) expe
t the resulting fun
-

tion fE to behave similar to a random fun
tion, and therefore be inje
tive

only beyond the birthday bound k ' 2n. However, even for shorter keys, we

an redu
e a known-plaintext atta
k to the problem of inverting an inje
tive

fun
tion by
onsidering the en
ryption of multiple known plaintexts m0,m1,m2.

For example, if k = n, then we expe
t fE×3 : {0, 1}n → {0, 1}3n, de�ned as

fE×3(x) = E(x,m0)‖E(x,m1)‖E(x,m2), to have no
ollisions.

A fun
tion-inversion algorithm
an invert an inje
tive fun
tion f : [N]→ [M]
without taking any advantage of the fa
t that it is inje
tive, so Hellman's S2T =
Õ(N2) upper bound for fun
tion inversion [46℄ applies in this setting as well.

However, the fa
t that for the
ase of random permutations (i.e., an inje
tive

fun
tion f : [N] → [N]), Hellman's algorithm gives a signi�
antly better upper

14

bound of ST = Õ(N), gives hope that a similar improvement�or at least some

improvement�is possible for inje
tive length-in
reasing fun
tions.

To the best of our knowledge, the inje
tive variant of the fun
tion-inversion

problem has not been studied dire
tly so far, even though it is a spe
ial
ase

with wide
ryptanalyti
 appli
ations. As a �rst step, we
onne
t the inje
tive

inversion problem to the problem of breaking pseudorandom generators (PRGs)

with prepro
essing [2, 19, 21, 23, 24℄. In that problem, we model a �bla
k-box�

PRG as an ora
le G: [N] → [M], with N < M . A PRG distinguisher with

prepro
essing �rst makes arbitrarily many queries to G and outputs an S-bit
advi
e string. In the online phase, the distinguisher
an then use its advi
e

string, along with T queries to G, to distinguish whether a given sample y ∈ [M]
has been drawn from the distribution {G(x) | x R← [N]} or the distribution

{y | y R← [M]}.
In their work, De, Trevisan, and Tulsiani [21℄ give a distinguisher with

S = O(ǫ2N) and T = Õ(1) that a
hieves a distinguishing advantage ǫ ≤ 1/
√
N .

They ask whether it is possible to realize the trade-o� ST = Õ(ǫ2N) for other pa-
rameter settings as well. The following theorem shows that a PRG distinguisher

that a
hieves
onstant distinguishing advantage at points on this trade-o� (e.g.,

ǫ = 1/100, S = N1/4
, and T = N3/4

) would imply a better-than-Hellman algo-

rithm for inverting inje
tive fun
tions.

Theorem 8. Suppose that there is a bla
k-box PRG distinguisher that uses S
bits of advi
e, makes T online queries to a PRG G: [N]→ [M], and a
hieves dis-

tinguishing advantage ǫ. Then there exists a bla
k-box algorithm that inverts any

inje
tive fun
tion f : [N] → [M] using Õ(ǫ−2S) bits of advi
e and Õ(ǫ−2T) on-

line queries, and that inverts f with probability 1−1/logN (over the algorithm's

randomness).

Furthermore, if the prepro
essing and online phase algorithms have a

ess to

a
ommon random ora
le, the online phase also runs in time Õ(T).

Remark 9 (Relation to Goldrei
h-Levin). A
lassi
 line of results [36, 37, 55, 76℄

shows how to use any inje
tive one-way fun
tion f : [N]→ [M] to
onstru
t an

e�
ient PRG Gf : [N2]→ [2N2] whi
h makes bla
k-box use of f . The proof uses
the Goldrei
h-Levin theorem [37℄ to show that any e�
ient distinguisher for Gf

yields an inversion algorithm for f . (Consult Goldrei
h's textbook [35, Se
tion

3.5℄ for the details.) It is not
lear to us whether a non-uniform generalization of

these
lassi
 results dire
tly implies Theorem 8. The problem is that the domain

of the PRG Gf has size N2
, whereas the domain of the original fun
tion f has

size N . Sin
e we are interested in the exa
t exponent of the advi
e and time

usage of fun
tion-inversion algorithms (i.e., S = N3/4
versus S = N1/2

), we

are sensitive to this polynomial expansion in the domain size. For example, say

that we were able to
onstru
t a bla
k-box PRG distinguisher that a
hieves

S = T = Õ(
√
N). Applying the
lassi
 redu
tion dire
tly to Gf would only

imply the existen
e of an inverter for the fun
tion f that uses the trivial advi
e

and time
omplexity S = T = Õ(
√
N2) = Õ(N). In
ontrast, Theorem 8 implies

that an S = T = Õ(
√
N) distinguisher yields an S = T = Õ(

√
N) inverter.

15

Proof idea for Theorem 8. Given a distinguisher for any length-in
reasing gen-

erator G: [N]→ [M], we
onstru
t an inversion algorithm for inje
tive fun
tions

f : [N]→ [M] in two steps. First, for ea
h i ∈ [n], we
onstru
t a bit-re
overy

algorithm Bi that, given f(x), a
hieves a non-trivial advantage in re
overing the

ith bit of x. We then use the algorithms (B1, . . . ,Bn) to
onstru
t an inversion

algorithm I that, given f(x), re
overs the full preimage x with good probability.

To give the intuition behind the bit-re
overy algorithm Bi: Given a fun
tion

f : [N]→ [M] to invert, we
onstru
t a fun
tion Gi: [N]→ [M] su
h that a point

y = f(x) is in the image of Gi if and only if the ith bit of x is 1. Then, we
an

apply the PRG distinguisher to Gi and re
over the ith bit of y's preimage.

This simple algorithm does not quite work when the PRG distinguisher has

small distinguishing advantage ǫ, sin
e the distinguisher may fail on the point

y. To �x this, we give Bi a

ess to two random permutations π: [N] → [N] and
σ: [M] → [M] that allow Bi to essentially randomize the point it gives as input

to the PRG distinguisher.

We then
an run Bi many times with di�erent random permutations and

then take the majority vote of the outputs of these runs. This majority vote will

yield the ith bit of the x with high probability. To
omplete the
onstru
tion,

we instantiate the permutations π and σ using
orrelated randomness between

the prepro
essing and online algorithms. The full des
ription of the
onstru
tion

appears in the full version of this paper.

4 From
ryptanalysis to new
ommuni
ation proto
ols

Communi
ation
omplexity [53, 74℄ quanti�es the number of bits that a set of

players need to
ommuni
ate amongst themselves in order to
ompute a fun
tion

on an input that is split between the players. One of the major open problems

in
ommuni
ation
omplexity is to obtain a non-trivial lower bound for some

problem for a super-poly-logarithmi
 number of players. Su
h a bound would

in turn lead to a breakthrough
ir
uit lower bound for the
omplexity
lass

ACC
0
[6, 47, 78℄.

In this se
tion, we develop
onne
tions between the fun
tion-inversion prob-

lem and the multiparty pointer-jumping problem in the number-on-the-forehead

(NOF) model of
ommuni
ation
omplexity [15℄. By
ombining these new
on-

ne
tions with the
lassi

y
le-walking algorithm for permutation inversion, we

obtain the best known NOF proto
ols for the permutation variant of the pointer-

jumping problem. Sin
e pointer jumping is a
andidate hard problem in the

k-party NOF setting, understanding the exa
t
ommuni
ation
omplexity of

pointer jumping for a super-poly-logarithmi
 number of players is an important

step towards the eventual goal of proving
ir
uit lower bounds [10, 11, 14, 20, 56,

63,70℄.

4.1 Multiparty pointer-jumping in the NOF model

A
lassi
al problem in the NOF model is the pointer-jumping problem. We de-

s
ribe the permutation variant of the problem, and then dis
uss the general

16

ase. In the pointer-jumping problem MPJ
perm

N,k , there are k
omputationally-

unbounded players, denoted P0, P1, . . . , Pk−1, and ea
h has an input �written

on her forehead.� The �rst player P0 has a point x ∈ [N] written on her fore-

head, the last player Pk−1 has a Boolean mapping β : [N] → {0, 1} written on

her forehead, and ea
h remaining player Pi, for i = 1, . . . , k − 2, has a permu-

tation πi : [N] → [N] written on her forehead. Ea
h player
an see all k − 1
inputs ex
ept the one written on her own forehead. The goal of the players is to

ompute the value β ◦ πk−2 ◦ · · · ◦ π1(x), whi
h loosely
orresponds to �following

a trail of pointers� de�ned by the permutations, starting from x (Figure 2). The

players
an
ommuni
ate by writing messages on a publi
 bla
kboard. The
om-

muni
ation
omplexity of a proto
ol is the total number of bits written on the

bla
kboard for a worst-
ase input.

A one-way proto
ol is a proto
ol in whi
h ea
h player writes a single message

on the bla
kboard in the �xed order P0, . . . , Pk−1, and the last player's message

must be the output. The one-way
ommuni
ation
omplexity of a fun
tion f ,
denoted CC

1(f), is the minimum
ommuni
ation
omplexity of all one-way pro-

to
ols that su

essfully
ompute f . Without the �one-way� restri
tion, there are

proto
ols for MPJ
perm

N,k that require only O(logN) bits of
ommuni
ation.

Known bounds. The best upper bound for MPJ
perm

N,k is due to Pudlák et al. [63℄,

who showed that CC
1(MPJ

perm

N,k) = O(N log logN/logN). More re
ently, Brody

and San
hez [14℄ showed that this upper bound applies to the more general

pointer-jumping problem, in whi
h we repla
e the permutations π1, . . . , πk−2

with arbitrary fun
tions. In this general
ase, Wigderson [73℄ proved an Ω(
√
N)

lower bound for k = 3 players (see also [3℄), and Viola and Wigderson [70℄ proved

an Ω̃(N
1

k−1) lower bound for k ≥ 3 players.

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

x π1 π2 π3

Fig. 2: A pointer-jumping instan
e for M̂PJ
perm

k=4,N=5 with π1 = (1 2 4 5 3), π2 = (2 3)(4 5),
π3 = (2 3 4 5) and x = 2. Lemma 11 redu
es this instan
e to inverting the permutation

π−1

1
π−1

2
π−1

3
= (1 3 5 4) on the point x = 2.

17

4.2 A new
ommuni
ation proto
ol from permutation inversion

We obtain the best known
ommuni
ation proto
ol for the permutation variant

of the pointer-jumping game on parameter N for k = ω(logN/log logN) players.
Our result improves the previously best known upper bound of Õ(N) to Õ(N/k+√
N). Extending our upper bound to the general multiparty pointer-jumping

problem remains an open problem, whi
h we dis
uss in Remark 13.

On the lower-bound side, this
onne
tion suggests a path to prove lower

bounds against partially adaptive permutation-inversion algorithms, as in De�-

nition 2. In
ontrast, the te
hniques of Se
tion 2
an only prove lower bounds

against strongly non-adaptive algorithms.

In this se
tion, we prove the following new upper bound on CC
1(MPJ

perm

N,k):

Theorem 10. CC
1(MPJ

perm

N,k) ≤ O
(
(N/k +

√
N) logN

)
.

To prove Theorem 10, as we do later in this se
tion, we use the integer-

valued version the pointer-jumping problem,
ommonly denoted M̂PJ
perm

N,k . In this

version, the last player Pk−1 holds a permutation πk−1 : [N] → [N], instead of a

boolean mapping, so the output of the problem is a value in [N]. The following

te
hni
al lemma, whi
h we prove in Appendix A, shows that the boolean-valued

version of the pointer-jumping problem has
ommuni
ation
omplexity that is

not mu
h larger than that of the integer-valued pointer-jumping problem.

Lemma 11. CC
1(MPJ

perm

N,k) ≤ CC
1(M̂PJ

perm

N,k) + ⌈logN⌉ .

Then, our main lemma te
hni
al uses an arbitrary permutation-inversion

algorithm with prepro
essing to solve the integer-valued problem M̂PJ
perm

N,k :

Lemma 12. If there exists a (k − 2)-round adaptive algorithm for inverting

permutations π : [N] → [N] that uses advi
e S and time T , then

CC
1(M̂PJ

perm

N,k) ≤ S + T ⌈logN⌉ .

Proof. Let (A0,A1) be a (k − 2)-round adaptive algorithm for inverting permu-

tations with prepro
essing. We give a proto
ol for M̂PJ
perm

N,k .

� Player P0 runs the prepro
essing algorithm A0 on the permutation π−1
1 ◦

· · · ◦ π−1
k−1 and writes the advi
e string on the bla
kboard.

� Player P1 runs the online inversion algorithm A1 on the input x (written

on player P0's forehead) using the advi
e string that has been written on

the bla
kboard, to produ
e the �rst round of queries q1,1, . . . , q1,t1 . For ea
h
query q1,ℓ, she
omputes the partial reply p1,ℓ = π−1

2 (. . . (π−1
k−1(q1,ℓ)) . . .) and

writes it on the bla
kboard.

� Player Pi, for i ∈ {2, . . . , k− 2}, reads the partial replies pi−1,1, . . . , pi−1,ti−1

written by the previous player,
omputes the (
omplete) query replies ri−1,1,
. . . , ri−1,ti−1

by
omputing ri−1,ℓ = π−1
1 (. . . (π−1

i−1(pi−1,ℓ)) . . .). Player Pi

then runs (in her head) the �rst i − 1 rounds of the online inversion al-

gorithm on input x, using the advi
e string and the replies to the �rst i− 1
rounds of queries, all of whi
h, she
an
ompute using the partial replies

18

written on the bla
kboard. Player Pi then produ
es the ith round of queries,

on whi
h, similarly to Player P1, she
omputes the partial replies and writes

them on the bla
kboard.

� Player Pk−1
ompletes the evaluation of round k − 2 of the queries by eval-

uating the remaining permutations π−1
1 ◦ · · · ◦ π−1

k−2 on the partial replies

written by Pk−2. Player Pk−1 then runs in her head all k − 2 rounds of the

online inversion algorithm and writes the output on the bla
kboard.

By de�nition, the output y of the algorithm satis�es π−1
1 ◦ · · · ◦ π−1

k−1(y) = x.
Sin
e all πi are permutations, it must hold πk−1 ◦ · · · ◦ π1(x) = y and so y is the

orre
t output for M̂PJ
perm

N,k .

The
ommuni
ation
onsists of the advi
e string written by Player P0 and

a partial reply for ea
h query, giving a total of S + T ⌈logN⌉. (The last player

writes the ⌈logN⌉-bit output, but does not need to write the response to the

T -th query).

Proof of Theorem 10. To prove Theorem 10, we instantiate Lemma 12 using

Hellman's
y
le-walking algorithm [46℄, whi
h we re
all in the full version of this

paper. The algorithm inverts permutations using T queries and S bits of advi
e,

for every
hoi
e of S and T su
h that ST ≥ 2N⌈logN + 1⌉. Furthermore the

algorithm is T -round adaptive. Spe
i�
ally, for k ≤
√
N + 2, using Hellman's

algorithm with T = k − 2 and S = ⌈(2N logN)/T ⌉ gives a proto
ol with
om-

muni
ation O((N/k) logN). For k >
√
N + 2, we use Hellman's algorithm with

T =
√
N and S = 2

√
N(⌈logN⌉+1) to �nd that CC

1(M̂PJ
perm

N,k) ≤ O(
√
N logN).

Then, applying Lemma 11 lets us
on
lude that CC
1(MPJ

perm

N,k) ≤ O(
√
N logN).

Remark 13 (The fun
tion
ase). We might hope to show that a good fun
tion-

inversion algorithm, su
h as that of Fiat and Naor [28℄, implies a good proto
ol

for the general multiparty pointer-jumping problem, in whi
h ea
h player i has an
arbitrary fun
tion fi (whi
h may not be a permutation) written on her forehead.

We do not know how to prove su
h a result. The problem is that the redu
tion

of Lemma 12 requires that the
omposition f−1
1 ◦ f−1

2 ◦ · · · ◦ f−1
k−1 is a fun
tion,

and this is not true in the general
ase. (In
ontrast, when f1, . . . , fk are all

permutations it holds that f−1
1 ◦ f−1

2 ◦ · · · ◦ f−1
k−1 is a permutation.) Sin
e several

upper bounds for the permutation variant of the pointer-jumping problem [11,

20, 63℄ have led to subsequent upper bounds for the unrestri
ted
ase [11, 14℄,

there is still hope to generalize the result.

5 From
ryptanalysis to data-stru
tures

In this se
tion, we show how to apply the Fiat-Naor algorithm for fun
tion inver-

sion [28℄ to obtain the best known data stru
ture for the systemati
 substring-

sear
h problem [22, 29, 30, 40, 41℄, in a wide range of parameter regimes. As a

onsequen
e of this
onne
tion, we show that the open problem of improving

the known lower bounds on fun
tion inversion is equivalent to the open problem

19

in the data-stru
ture literature of whether it is possible to improve the known

lower bounds for systemati
 substring sear
h.

In the systemati
 substring-sear
h problem, we are given a bitstring of length

N (�the text�) and a bitstring of length P ≪ N (�the pattern�). If the pattern

appears in the text, we must output an index i ∈ [N] into the text at whi
h the

pattern begins. We take the pattern length to be P = Θ(logN).

An algorithm for systemati
 substring sear
h is a two-part algorithm A =
(A0,A1). The prepro
essing algorithm A0 takes as input only the text, may

perform arbitrary
omputation on it, and then outputs an S-bit �index� into the

text. The online algorithm A1 takes as input the index and the pattern, queries

T bits of the text, and then outputs the lo
ation of pattern in the text, if one

exists.

By applying the Fiat-Naor fun
tion inversion algorithm [28℄, we obtain the

best known algorithm for systemati
 substring sear
h on texts of length N when

using an index of size O(N ǫ) bits, for any ǫ < 1. Gál and Miltersen [30℄ asked

for a strong lower bound against sear
h algorithms using an O(N/polylogN)-
bit index, and we answer this question by giving an upper bound that beats

their hypotheti
al lower bound. This
onne
tion also gives eviden
e that �nding

a faster algorithm for systemati
 substring sear
h will require a
ryptanalyti

breakthrough.

Known lower bounds. Demaine and López-Ortiz [22℄ prove that on texts of length

N with pattern length P = Θ(logN), any algorithm that uses an S-bit index

and makes T = o(P 2/logP) queries in the online phase must satisfy ST =
Ω(N logN). Golynski [40,41℄ gives a stronger version of this bound that applies

even for larger T = o(
√
N/logN). Gál and Miltersen prove a slightly weaker

bound but that holds for all values of T . They show that for
ertain pattern

lengths P = Θ(logN), and any
hoi
e of T , any algorithm must satisfy ST =
Ω(N/logN).1

The main te
hni
al result of this se
tion is the following theorem, whi
h we

prove in the full version of this paper.

Theorem 14. For any integer N ∈ Z
>0

and integral
onstant c > 2, if there is

an algorithm for systemati
 substring sear
h on texts of length cN · ⌈logN⌉ with

pattern length c · ⌈logN⌉ that uses an S-bit index and reads T bits of the text

in its online phase, then there is a bla
k-box algorithm for inverting fun
tions

f : [N] → [N] that uses S bits of advi
e and makes T online queries.

For any integer N ∈ Z
>0

, if there is a bla
k-box algorithm for inverting

fun
tions f : [2N] → [2N] that uses S bits of advi
e and T queries, then, for any

integral
onstant c > 1, there is an algorithm for systemati
 substring sear
h on

1

Gál and Miltersen in fa
t prove their lower bound against algorithms that solve the

de
ision version of the problem, rather than the sear
h version that we des
ribe here.

Using an argument similar to that of Theorem 8, whi
h treats the
ase of bla
k-box

PRG distinguishers, we
an show that these problems are equivalent up to log fa
tors

when we demand
onstant su

ess probability.

20

texts of length N with pattern length c · ⌈logN⌉ that uses an Õ(S)-bit index and

reads Õ(T) bits of the text in its online phase.

Remark 15. It is possible to make the prepro
essing time Õ(N) by allowing

the algorithm to fail with probability O(1/N) over the randomness of the pre-

pro
essing phase. Similarly, the online running time (in addition to the query

omplexity) is Õ(T).

Proof idea. The full proof appears in the full version of this paper. In the �rst

part, we must use a substring-sear
h algorithm to invert a fun
tion f : [N] →
[N]. The idea is to
onstru
t a text τ of length Θ(N logN) by writing out the

evaluation of f at all points in its domain, in order, with a few extra bits added

as delimiters. To invert a point y ∈ [N], we use the substring sear
h algorithm

to �nd the lo
ation at whi
h y appears in the text τ . This lo
ation immediately

yields a preimage of y under f . Demaine and López-Ortiz [22℄ use a similar�

but more sophisti
ated en
oding�on the way to proving a data-stru
ture lower

bound for systemati
 substring sear
h. Their en
oding maps a fun
tion f : [N]→
[N] into a string of length (1 + o(1))N logN , while ours maps f into a string of

length 3N logN .

In the se
ond part, we must use a fun
tion-inversion algorithm to solve sub-

string sear
h on a text τ of length N with pattern length P = c · ⌈logN⌉, for
some
onstant c > 1. To do so, we de�ne a fun
tion f ′: [N] → [N c] su
h that

f ′(i) is equal to the length-P substring that starts from the ith bit of the text τ .
Given a pattern string σ = {0, 1}P , �nding the inverse of y under f ′

is enough

to lo
ate the position of the pattern string σ in the text τ . The only remaining

hallenge is that f ′
is length-in
reasing, rather than length-preserving. We then

use universal hashing to redu
e the problem of inverting length-in
reasing fun
-

tions to the problem of inverting length-preserving fun
tions, whi
h
ompletes

the proof.

We now apply Theorem 14 to
onstru
t a new algorithm for systemati
 sub-

string sear
h that resolves an open question of Gál and Miltersen. In their 2007

paper, Gál and Miltersen say that �it would be ni
e to prove a lower bound of,

say, the form,� T < N/polylogN ⇒ S > N/polylogN (using our notation) for

systemati
 substring sear
h [30℄. Goyal and Saks [42℄ use an elegant argument

to show that the spe
i�
 te
hnique of Gál and Miltersen
annot prove this lower

bound. As a
orollary of Theorem 14, we
onstru
t an algorithm for substring

sear
h that beats the hypotheti
al lower bound.

Corollary 16. For any integral
onstant c > 1 there is an algorithm for sys-

temati
 substring sear
h on texts of length N with pattern length c · ⌈logN⌉, that
uses an S-bit index, reads T bits of the text in its online phase, and a
hieves the

trade-o� S3T = Õ(N3).

Proof. Theorem 14 shows that systemati
 substring sear
h on strings of length

N with pattern length Θ(logN) redu
es to the problem of inverting arbitrary

fun
tions f : [N] → [N]. The inversion algorithm of Fiat and Naor [28℄ inverts

su
h fun
tions f a
hieving the desired
omplexity bounds.

21

In parti
ular, we get an algorithm that solves systemati
 substring sear
h using

an index size and time satisfying S = T = Õ(N3/4), for strings of length N
and patterns of length Θ(logN). Furthermore, this
onne
tion, along with the

results of Se
tion 2.2, shows that improving on the ST = Ω̃(N) bound of Gál

and Miltersen will require advan
es in te
hniques for proving lower bounds on

the power of depth-two
ir
uits.

6 Dis
ussion and future dire
tions

In this �nal se
tion, we dis
uss a few dire
tions for future work.

6.1 Whi
h lower-bound te
hniques
an work?

In Se
tion 2, we showed that improving Yao's lower bound on fun
tion-inversion

algorithms requires new
ir
uit lower bounds in the
ommon-bits model. What

potential approa
hes do we have to prove su
h a lower bound?

Fun
tion inversion and Yao's �box problem.� Yao's �box problem� [60,

77℄ is a prepro
essing problem that is
losely related to the fun
tion-inversion

problem. In the box problem, we are given ora
le a

ess to a fun
tion f : [N]→
{0, 1}. First, we get to look at all of f and write down an S-bit advi
e string stf .

Later on, we are given our advi
e string stf and a point x ∈ [N]. We may then

make T queries to f , provided that we do not query f(x), and we must then

output a value y ∈ {0, 1} su
h that y = f(x).
The box problem is in some sense the dual of the fun
tion-inversion problem:

we are given an f -ora
le and we must
ompute f in the forward dire
tion, rather

than in the inverse dire
tion. The same ST = Ω̃(N) lower bound applies to

both problems [77℄. However, in
ontrast to the inversion problem, for whi
h

we suspe
t that good parallel (i.e., non-adaptive) algorithms do not exist, the

natural algorithm for the box problem is already non-adaptive and a
hieves

ST = O(N logN).2

Puzzlingly, the two main te
hniques for proving time-spa
e lower bounds do

not distinguish between the fun
tion-inversion problem and Yao's box problem.

In parti
ular, the known lower bounds use
ompression [21, 23, 33, 77℄ or bit-

�xing [18, 19, 65℄. Both te
hniques essentially look at the information that the

ora
le queries and their replies give on the pair (x, f(x)) indu
ed by the
hallenge,

regardless of whether the a
tual
hallenge is x, and the algorithm has to �nd

f(x) (as in the
ase of Yao's box problem), or the
hallenge is y = f(x), and the

algorithm has to �nd x = f−1(y) (as in the
ase of the inversion problem).

Sin
e there is an ST = Õ(N) upper bound for Yao's box problem, then any

method that proves a lower bound better than ST = Ω(N) for fun
tion inversion

2

Divide [N] into disjoint blo
ks of (at most) T + 1 points ea
h. For ea
h blo
k, store

the sum of the values of the fun
tion over all points in the blo
k. In the online phase,

query all the other points in the blo
k given by the
hallenge point, and use the

stored sum to re
over the value of the fun
tion over the given
hallenge point.

22

must not apply to the box problem. Therefore, a �sanity
he
k� for any improved

lower bound for the fun
tion-inversion problem is to verify that the same proof

te
hnique does not apply to Yao's box problem.

Strong-multis
ale-entropy. Dru
ker [25℄ shows, at the very least, that im-

proving lower bounds in the
ommon-bits model will require new types of ar-

guments. In parti
ular, Jukna [50, Chapter 13℄, generalizing earlier arguments

of Cherukhin [16℄ de�ned the �strong multis
ale entropy� (SME) property of

Boolean operators. Jukna proved that an operator on n bits with the SME prop-

erty
annot be
omputed by
ommon-bits
ir
uits of width o(n1/2) and degree

o(n1/2). (These results are a
tually phrased in terms of the wire
omplexity of

depth-two
ir
uits with arbitrary gates, but the impli
ations to the
ommon-bits

model are straightforward.)

Strengthening Jukna's lower bound on the
ir
uit
omplexity of SME op-

erators appeared to be one promising dire
tion for progress on lower bounds.

Thwarting this hope, Dru
ker
onstru
ts an expli
it operator with the SME

property that has
ir
uits in the
ommon-bits model of width O(n1/2) and de-

gree O(n1/2). Thus, SME-type arguments alone are not strong enough to prove

that an operator
annot be
omputed by
ir
uits of width O(n1/2+ǫ) and degree

O(n1/2+ǫ) for ǫ > 0.

6.2 One-to-one fun
tions

Prompted by the fa
t that many
ryptanalyti
 appli
ations of fun
tion inversion

only require inverting inje
tive fun
tion, we initiated in Se
tion 3 the study of

inje
tive fun
tion inversion. Though we take the �rst step by
onne
ting this

problem to the problem of distinguishing PRGs, the basi
 question remains: is

it easier to invert a random inje
tive fun
tion f : [N] → [M], for N ≪ M , than

it is to invert a random length-preserving fun
tion f : [N] → [N]? A better-than-

Hellman atta
k against inje
tive fun
tions would be remarkable. Or,
an we prove

that inverting inje
tive fun
tions is as hard as inverting random fun
tions?

6.3 Barriers for upper bounds

Is there a barrier to getting an S = T = o(N2/3) algorithm for fun
tion inversion?

Barkan, Biham, and Shamir [5℄ prove a lower bound against a
ertain restri
ted

lass of Hellman-like algorithms, whi
h suggests that better algorithms must use

new te
hniques. It would be satisfying to show at least that improving Hellman's

upper bound would result in a dramati
 algorithmi
 improvement for a well-

studied problem in another domain.

A
knowledgments. We would like to thank Dan Boneh for en
ouraging us to in-

vestigate whether Hellman's method
an be improved and for his
ontinued advi
e as

we undertook this proje
t. Ifta
h Haitner gave us meaningful guidan
e on our resear
h

pro
ess early on and, along with Ronen Shaltiel, suggested many possible approa
hes to-

wards proving new lower bounds. Joshua Brakensiek, Joshua Brody, Clément Canonne,

23

Andrew Dru
ker, Mi
hael Kim, Peter Bro Miltersen, Ilya Mironov, Omer Reingold,

Avishay Tal, Li-Yang Tan, and David Wu made a number of suggestions that improved

the presentation of our results. Finally, we would like to thank the anonymous TCC

reviewers for their many
onstru
tive
omments. This work was supported by CISPA,

DARPA, NSF, ONR, and the Simons Foundation.

Referen
es

1. Abusalah, H., Alwen, J., Cohen, B., Khilko, D., Pietrzak, K., Reyzin, L.: Beyond

Hellman's time-memory trade-o�s with appli
ations to proofs of spa
e. In: ASI-

ACRYPT (2017). https://doi.org/10.1007/978-3-319-70697-9_13

2. Alon, N., Goldrei
h, O., Håstad, J., Peralta, R.: Simple
onstru
tion of almost

k-wise independent random variables. Random Stru
t. Algorithms 3(3), 289�304

(1992). https://doi.org/10.1002/rsa.3240030308

3. Babai, L., Hayes, T.P., Kimmel, P.G.: The
ost of the missing bit: Com-

muni
ation
omplexity with help. Combinatori
a 21(4), 455�488 (2001).

https://doi.org/10.1007/s004930100009

4. Barbay, J., He, M., Munro, J.I., Satti, S.R.: Su

in
t indexes for strings, binary

relations and multilabeled trees. ACM Transa
tions on Algorithms 7(4), 52:1�52:27

(2011). https://doi.org/10.1145/2000807.2000820

5. Barkan, E., Biham, E., Shamir, A.: Rigorous bounds on

ryptanalyti
 time/memory tradeo�s. In: CRYPTO (2006).

https://doi.org/10.1007/11818175_1

6. Beigel, R., Tarui, J.: On ACC. Computational Complexity 4, 350�366 (1994).

https://doi.org/10.1007/BF01263423

7. Biryukov, A., Shamir, A.: Cryptanalyti
 time/memory/data tradeo�s for stream

iphers. In: ASIACRYPT (2000). https://doi.org/10.1007/3-540-44448-3_1

8. Biryukov, A., Shamir, A., Wagner, D.A.: Real time
ryptanalysis of A5/1 on a PC.

In: FSE (2000). https://doi.org/10.1007/3-540-44706-7_1

9. Boyle, E., Naor, M.: Is there an oblivious RAM lower bound? In: ITCS (2016).

https://doi.org/10.1145/2840728.2840761

10. Brody, J.: The maximum
ommuni
ation
omplexity of multi-party pointer jump-

ing. In: CCC (2009). https://doi.org/10.1109/CCC.2009.30

11. Brody, J., Chakrabarti, A.: Sublinear
ommuni
ation proto
ols for multi-

party pointer jumping and a related lower bound. In: STACS (2008).

https://doi.org/10.4230/LIPI
s.STACS.2008.1341

12. Brody, J., Dziembowski, S., Faust, S., Pietrzak, K.: Position-based
ryp-

tography and multiparty
ommuni
ation
omplexity. In: TCC (2017).

https://doi.org/10.1007/978-3-319-70500-2_3

13. Brody, J., Larsen, K.G.: Adapt or die: Polynomial lower bounds for non-

adaptive dynami
 data stru
tures. Theory of Computing 11(19), 471�489 (2015).

https://doi.org/10.4086/to
.2015.v011a019

14. Brody, J., San
hez, M.: Dependent random graphs and

multi-party pointer jumping. In: APPROX/RANDOM (2015).

https://doi.org/10.4230/LIPI
s.APPROX-RANDOM.2015.606

15. Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party proto
ols. In: STOC (1983).

https://doi.org/10.1145/800061.808737

16. Cherukhin, D.Y.: Lower bounds for the
omplexity of boolean
ir
uits of �nite

depth with arbitrary elements. Dis
rete Mathemati
s and Appli
ations 23(4), 39�

47 (2011). https://doi.org/10.1515/dma.2011.031

24

https://doi.org/10.1007/978-3-319-70697-9_13
https://doi.org/10.1002/rsa.3240030308
https://doi.org/10.1007/s004930100009
https://doi.org/10.1145/2000807.2000820
https://doi.org/10.1007/11818175_1
https://doi.org/10.1007/BF01263423
https://doi.org/10.1007/3-540-44448-3_1
https://doi.org/10.1007/3-540-44706-7_1
https://doi.org/10.1145/2840728.2840761
https://doi.org/10.1109/CCC.2009.30
https://doi.org/10.4230/LIPIcs.STACS.2008.1341
https://doi.org/10.1007/978-3-319-70500-2_3
https://doi.org/10.4086/toc.2015.v011a019
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.606
https://doi.org/10.1145/800061.808737
https://doi.org/10.1515/dma.2011.031

17. Clark, D.R., Munro, J.I.: E�
ient su�x trees on se
ondary storage. In: SODA

(1996)

18. Coretti, S., Dodis, Y., Guo, S.: Non-uniform bounds in the random-

permutation, ideal-
ipher, and generi
-group models. In: CRYPTO (2018).

https://doi.org/10.1007/978-3-319-96884-1_23

19. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.P.: Ran-

dom ora
les and non-uniformity. In: EUROCRYPT (2018).

https://doi.org/10.1007/978-3-319-78381-9_9

20. Damm, C., Jukna, S., Sgall, J.: Some bounds on multiparty
ommuni
ation

omplexity of pointer jumping. Computational Complexity 7(2), 109�127 (1998).

https://doi.org/10.1007/PL00001595

21. De, A., Trevisan, L., Tulsiani, M.: Time spa
e tradeo�s for at-

ta
ks against one-way fun
tions and prgs. In: CRYPTO (2010).

https://doi.org/10.1007/978-3-642-14623-7_35

22. Demaine, E.D., López-Ortiz, A.: A linear lower bound on index

size for text retrieval. Journal of Algorithms 48(1), 2�15 (2003).

https://doi.org/10.1016/S0196-6774(03)00043-9

23. Dodis, Y., Guo, S., Katz, J.: Fixing
ra
ks in the
on
rete: Ran-

dom ora
les with auxiliary input, revisited. In: EUROCRYPT (2017).

https://doi.org/10.1007/978-3-319-56614-6_16

24. Dodis, Y., Steinberger, J.P.: Message authenti
ation
odes

from unpredi
table blo
k
iphers. In: CRYPTO (2009).

https://doi.org/10.1007/978-3-642-03356-8_16

25. Dru
ker, A.: Limitations of lower-bound methods for the wire
omplexity of

boolean operators. In: CCC (2012). https://doi.org/10.1109/CCC.2012.39

26. Dvir, Z., Golovnev, A., Weinstein, O.: Stati
 data stru
ture lower bounds imply

rigidity. In: STOC (2019). https://doi.org/10.1145/3313276.3316348

27. Fiat, A., Naor, M.: Rigorous time/spa
e tradeo�s for inverting fun
tions. In: STOC

(1991). https://doi.org/10.1145/103418.103473

28. Fiat, A., Naor, M.: Rigorous time/spa
e trade-o�s for inverting

fun
tions. SIAM Journal on Computing 29(3), 790�803 (1999).

https://doi.org/10.1137/S0097539795280512

29. Gál, A., Miltersen, P.B.: The
ell probe
omplexity of su

in
t data stru
tures. In:

ICALP (2003). https://doi.org/10.1007/3-540-45061-0_28

30. Gál, A., Miltersen, P.B.: The
ell probe
omplexity of su

in
t data

stru
tures. Theoreti
al Computer S
ien
e 379(3), 405�417 (2007).

https://doi.org/10.1016/j.t
s.2007.02.047

31. Geary, R.F., Raman, R., Raman, V.: Su

in
t ordinal trees with level-

an
estor queries. ACM Transa
tions on Algorithms 2(4), 510�534 (2006).

https://doi.org/10.1145/1198513.1198516

32. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the e�
ien
y of generi

ryptographi

onstru
tions. SIAM Journal on Computing 35(1), 217�246 (2005).

https://doi.org/10.1137/S0097539704443276

33. Gennaro, R., Trevisan, L.: Lower bounds on the e�
ien
y of generi

ryptographi

onstru
tions. In: FOCS (2000). https://doi.org/10.1109/SFCS.2000.892119

34. Goldrei
h, O.: Towards a theory of software prote
tion and simulation by oblivious

RAMs. In: STOC (1987). https://doi.org/10.1145/28395.28416

35. Goldrei
h, O.: Foundations of Cryptography, vol. 1. Cambridge University Press

(2006)

36. Goldrei
h, O., Kraw
zyk, H., Luby, M.: On the existen
e of pseudorandom genera-

tors. SIAM J. Comput. 22(6), 1163�1175 (1993). https://doi.org/10.1137/0222069

25

https://doi.org/10.1007/978-3-319-96884-1_23
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/PL00001595
https://doi.org/10.1007/978-3-642-14623-7_35
https://doi.org/10.1016/S0196-6774(03)00043-9
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-642-03356-8_16
https://doi.org/10.1109/CCC.2012.39
https://doi.org/10.1145/3313276.3316348
https://doi.org/10.1145/103418.103473
https://doi.org/10.1137/S0097539795280512
https://doi.org/10.1007/3-540-45061-0_28
https://doi.org/10.1016/j.tcs.2007.02.047
https://doi.org/10.1145/1198513.1198516
https://doi.org/10.1137/S0097539704443276
https://doi.org/10.1109/SFCS.2000.892119
https://doi.org/10.1145/28395.28416
https://doi.org/10.1137/0222069

37. Goldrei
h, O., Levin, L.A.: A hard-
ore predi
ate for all one-way fun
tions. In:

STOC (1989). https://doi.org/10.1145/73007.73010

38. Goldrei
h, O., Ostrovsky, R.: Software prote
tion and simulation

on oblivious RAMs. Journal of the ACM 43(3), 431�473 (1996).

https://doi.org/10.1145/233551.233553

39. Golovnev, A., Guo, S., Horel, T., Park, S., Vaikuntanathan, V.: 3SUM

with prepro
essing: Algorithms, lower bounds and
ryptographi
 appli
ations.

arXiv:1907.08355 [
s.DS℄ (2019), http://arxiv.org/abs/1907.08355

40. Golynski, A.: Stronger lower bounds for text sear
hing and polynomial evaluation

(2007), https://
s.uwaterloo.
a/resear
h/tr/2007/CS-2007-25.pdf

41. Golynski, A.: Cell probe lower bounds for su

in
t data stru
tures. In: SODA

(2009). https://doi.org/10.1137/1.9781611973068.69

42. Goyal, N., Saks, M.: A parallel sear
h game. Random Stru
tures & Algorithms

27(2), 227�234 (2005). https://doi.org/10.1002/rsa.20068

43. Grossi, R., Orlandi, A., Raman, R.: Optimal trade-o�s for su

in
t string indexes.

In: ICALP (2010). https://doi.org/10.1007/978-3-642-14165-2_57

44. Haitner, I., Mazor, N., Oshman, R., Reingold, O., Yehudayo�, A.: On

the
ommuni
ation
omplexity of key-agreement proto
ols. In: ITCS (2019).

https://doi.org/10.4230/LIPI
s.ITCS.2019.40

45. He, M., Munro, J.I., Satti, S.R.: Su

in
t ordinal trees based on tree

overing. ACM Transa
tions on Algorithms 8(4), 42:1�42:32 (2012).

https://doi.org/10.1145/2344422.2344432

46. Hellman, M.: A
ryptanalyti
 time-memory trade-o�. IEEE Transa
tions on Infor-

mation Theory 26(4), 401�406 (1980). https://doi.org/10.1109/TIT.1980.1056220

47. Håstad, J., Goldmann, M.: On the power of small-depth threshold
ir
uits. Com-

putational Complexity 1, 113�129 (1991). https://doi.org/10.1007/BF01272517

48. Impagliazzo, R.: Relativized separations of worst-
ase and average-
ase
omplexi-

ties for NP. In: CCC (2011). https://doi.org/10.1109/CCC.2011.34

49. Ja
obson, G.: Spa
e-e�
ient stati
 trees and graphs. In: FOCS (1989).

https://doi.org/10.1109/SFCS.1989.63533

50. Jukna, S.: Boolean Fun
tion Complexity. No. 27 in Algorithms and Combinatori
s

(2012). https://doi.org/10.1007/978-3-642-24508-4

51. Jukna, S., S
hnitger, G.: Min-rank
onje
ture for log-depth
ir
uits.

Journal of Computer and System S
ien
es 77(6), 1023�1038 (2011).

https://doi.org/10.1016/j.j
ss.2009.09.003

52. Kopelowitz, T., Porat, E.: The strong 3SUM-INDEXING
onje
ture is false.

arXiv:1907.11206 [
s.DS℄ (2019), http://arxiv.org/abs/1907.11206

53. Kushilevitz, E., Nisan, N.: Communi
ation
omplexity. Cambridge University Press

(1997)

54. Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious RAM lower bound! In:

CRYPTO (2018). https://doi.org/10.1007/978-3-319-96881-0_18

55. Levin, L.A.: One-way fun
tions and pseudorandom generators. Combinatori
a 7(4),

357�363 (1987). https://doi.org/10.1007/BF02579323

56. Liang, H.: Optimal
ollapsing proto
ol for multiparty pointer jumping. Theory

Comput. Syst. 54(1), 13�23 (2014). https://doi.org/10.1007/s00224-013-9476-x

57. Miltersen, P.B.: On the
ell probe
omplexity of polynomial eval-

uation. Theoreti
al Computer S
ien
e 143(1), 167�174 (1995).

https://doi.org/10.1016/0304-3975(95)80032-5

58. Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Su

in
t representations of

permutations and fun
tions. Theoreti
al Computer S
ien
e 438, 74�88 (2012).

https://doi.org/10.1016/j.t
s.2012.03.005

26

https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/233551.233553
http://arxiv.org/abs/1907.08355
https://cs.uwaterloo.ca/research/tr/2007/CS-2007-25.pdf
https://doi.org/10.1137/1.9781611973068.69
https://doi.org/10.1002/rsa.20068
https://doi.org/10.1007/978-3-642-14165-2_57
https://doi.org/10.4230/LIPIcs.ITCS.2019.40
https://doi.org/10.1145/2344422.2344432
https://doi.org/10.1109/TIT.1980.1056220
https://doi.org/10.1007/BF01272517
https://doi.org/10.1109/CCC.2011.34
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1016/j.jcss.2009.09.003
http://arxiv.org/abs/1907.11206
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/BF02579323
https://doi.org/10.1007/s00224-013-9476-x
https://doi.org/10.1016/0304-3975(95)80032-5
https://doi.org/10.1016/j.tcs.2012.03.005

59. Narayanan, A., Shmatikov, V.: Fast di
tionary atta
ks on passwords using time-

spa
e tradeo�. In: CCS (2005). https://doi.org/10.1145/1102120.1102168

60. Nayebi, A., Aaronson, S., Belovs, A., Trevisan, L.: Quantum lower bound for invert-

ing a permutation with advi
e. Quantum Information & Computation 15(11-12),

901�913 (2015)

61. Oe
hslin, P.: Making a faster
ryptanalyti
 time-memory trade-o�. In: CRYPTO

(2003). https://doi.org/10.1007/978-3-540-45146-4_36

62. Ostrovsky, R.: E�
ient
omputation on oblivious RAMs. In: STOC (1990).

https://doi.org/10.1145/100216.100289

63. Pudlák, P., Rödl, V., Sgall, J.: Boolean
ir
uits, tensor ranks, and
om-

muni
ation
omplexity. SIAM Journal on Computing 26(3), 605�633 (1997).

https://doi.org/10.1137/S0097539794264809

64. Sadakane, K., Grossi, R.: Squeezing su

in
t data stru
tures into entropy bounds.

In: SODA (2006). https://doi.org/10.1145/1109557.1109693

65. Unruh, D.: Random ora
les and auxiliary input. In: CRYPTO (2007).

https://doi.org/10.1007/978-3-540-74143-5_12

66. Valiant, L.G.: Graph-theoreti
 arguments in low-level
omplexity. In: MFCS (1977).

https://doi.org/10.1007/3-540-08353-7_135

67. Valiant, L.G.: Why is Boolean Complexity Theory Di�
ult, pp. 84�94.

No. 169 in London Mathemati
al So
iety Le
ture Note Series (1992).

https://doi.org/10.1017/
bo9780511526633.008

68. Viola, E.: On the power of small-depth
omputation. Foundations

and Trends in Theoreti
al Computer S
ien
e 5(1), 1�72 (2009).

https://doi.org/10.1561/0400000033

69. Viola, E.: Lower bounds for data stru
tures with spa
e
lose to maximum imply
ir-

uit lower bounds. Ele
troni
 Colloquium on Computational Complexity (ECCC),

Report 2018/186 (2018)

70. Viola, E., Wigderson, A.: One-way multiparty
ommuni
ation lower bound

for pointer jumping with appli
ations. Combinatori
a 29(6), 719�743 (2009).

https://doi.org/10.1007/s00493-009-2667-z

71. Wee, H.: On obfus
ating point fun
tions. In: STOC (2005).

https://doi.org/10.1145/1060590.1060669

72. Weiss, M., Wi
hs, D.: Is there an oblivious RAM lower bound for online reads?

Cryptology ePrint Ar
hive, Report 2018/619 (2018)

73. Wigderson, A.: (1996), unpublished

74. Yao, A.C.: Some
omplexity questions related to distributive
omputing (prelimi-

nary report). In: STOC (1979). https://doi.org/10.1145/800135.804414

75. Yao, A.C.: Should tables be sorted? Journal of the ACM 28(3), 615�628 (1981).

https://doi.org/10.1145/322261.322274

76. Yao, A.C.: Theory and appli
ations of trapdoor fun
tions. In: FOCS (1982).

https://doi.org/10.1109/SFCS.1982.45

77. Yao, A.C.: Coherent fun
tions and program
he
kers (extended abstra
t). In:

STOC (1990). https://doi.org/10.1145/100216.100226

78. Yao, A.C.: On ACC and threshold
ir
uits. In: FOCS (1990).

https://doi.org/10.1109/FSCS.1990.89583

A Proof of Lemma 11

The �rst step is to de�ne a permutation πβ : [N] → [N], for every fun
tion

β: [N] → {0, 1}. We then use this permutation πβ to
onvert a Boolean-valued

27

https://doi.org/10.1145/1102120.1102168
https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1145/100216.100289
https://doi.org/10.1137/S0097539794264809
https://doi.org/10.1145/1109557.1109693
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/3-540-08353-7_135
https://doi.org/10.1017/cbo9780511526633.008
https://doi.org/10.1561/0400000033
https://eccc.weizmann.ac.il/report/2018/186
https://doi.org/10.1007/s00493-009-2667-z
https://doi.org/10.1145/1060590.1060669
https://ia.cr/2018/619
https://doi.org/10.1145/800135.804414
https://doi.org/10.1145/322261.322274
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1145/100216.100226
https://doi.org/10.1109/FSCS.1990.89583

Table 3: Example of the en
oding pro
edure of Lemma 11. N = 23, and β: [N] → {0, 1}.
Note that the last
olumn is a permutation over the elements of [N]. Also note how β

an be re
overed from πβ(x) for all x 6= 0.
x β(x) (x|3, x|2, x|1) β(x|3)β(x|2)β(x|1) y = πβ(x)

000 1 (100, 010, 001) 001 100001 1 (101, 011, 001) 011 101010 0 (110, 010, 001) 101 000011 1 (111, 011, 001) 111 011100 0 (100, 010, 001) 001 010101 0 (101, 011, 001) 011 001110 1 (110, 010, 001) 101 100111 1 (111, 011, 001) 111 111

pointer-jumping instan
e (x, π1, . . . , πk−1, β) to an integer-valued pointer-jumping

instan
e (x, π1, . . . , πk−1, πβ). Solving the integer-valued instan
e using a pro-

to
ol for M̂PJ
perm

N,k is then enough�with a few extra bits of
ommuni
ation�to

solve the Boolean-valued instan
e of MPJ
perm

N,k .

Towards
onstru
ting πβ ,
onsider �rst the
ase when N is a power of two.

For N = 2n,
onsider the following mapping from {0, 1}N to permutations on

{0, 1, . . . , N − 1} = {0, 1}n. On β: {0, 1}n → {0, 1} we
onstru
t a permutation

πβ on {0, 1}n as follows: let x ∈ {0, 1}n and let x = xnxn−1 . . . x1 be the binary

representation of x. Set πβ(x) = y = ynyn−1 . . . y1 de�ned by yi = β(x|i)⊕xi⊕1
where x|i= 0 . . . 01xi−1xi−2 . . . x1. The following two properties hold:

� The mapping πβ de�ned above is a permutation. To see this let x 6= x′
be

two distin
t elements in {0, 1}n, and let y = πβ(x) and y′ = πβ(x
′). Let

i ∈ [n] be the rightmost bit position on whi
h x and x′
di�er. Then xi 6= x′

i

but x|i= x′|i. Therefore yi = β(x|i) ⊕ xi ⊕ 1 6= β(x′|i) ⊕ x′

i ⊕ 1 = y′i, so

y 6= y′.

� For any x ∈ {0, 1}n su
h that x = xn . . . x1 6= 0, let i be the leftmost bit

position su
h that xi = 1. It then holds that β(x) is equal to the ith bit of

πβ(x).

Note that the latter property guarantees that the value of β(x) for every x 6= 0

an be re
overed from a single bit of πβ(x).

For N whi
h is not a power of 2, we
an view N as a sum

∑ℓ
j=1 2

nj
of at

most ⌈logN⌉ powers of 2, and
onstru
t a permutation πβ on {0, . . . , N − 1} =
{0, 1}n1 ∪· · ·∪{0, 1}nℓ

as a union of permutations on {0, 1}nj
. By the properties

above, for all but ℓ = ⌈logN⌉ bad points, the value of β
an be re
overed from

the
orresponding value of πβ . Note that the set of bad points depends only on

N and not on β. We give an example of this en
oding pro
edure in Table 3.

Therefore, given a
ommuni
ation proto
ol for M̂PJ
perm

N,k , we
onstru
t a pro-

to
ol for MPJ
perm

N,k as follows. Let β ∈ {0, 1}N be the input (on the forehead)

of the last player. Ea
h of the �rst k − 1 players
omputes the permutation

πβ from β a

ording to the mapping above. The �rst player also writes on the

bla
kboard the value of β evaluated on all of the bad points of πβ . The players

then run the proto
ol for M̂PJ
perm

N,k on the instan
e (x, π1, . . . , πk−2, πβ).
The last player
omputes the output of the original proto
ol πβ ◦πk−2 ◦ · · · ◦

π1(x) = πβ(x̂) ∈ {0, 1, . . . , N − 1} where x̂ = πk−2 ◦ · · · ◦ π1(x). If x̂ is not a

bad point she
an re
over and output β ◦ πk−2 ◦ · · · ◦ π1(x) = β(x̂) ∈ {0, 1} from

πβ(x̂). Otherwise, if x̂ is a bad point, she outputs the value β(x̂), whi
h the �rst

player wrote on the bla
kboard.

28

The new proto
ol in
reases the
ommuni
ation
omplexity of the original

proto
ol by ⌈logN⌉.

29

	 The Function-Inversion Problem: Barriers and Opportunities
	1 Introduction
	1.1 Our results
	1.2 Related work
	1.3 Preliminaries

	2 Lower bounds on inversion imply circuit lower bounds
	2.1 Systematic data structures and low-depth circuits
	2.2 Consequences for function inversion
	2.3 Consequences for other succinct data-structure problems

	3 Breaking PRGs is as hard as inverting injective functions
	4 From cryptanalysis to new communication protocols
	4.1 Multiparty pointer-jumping in the NOF model
	4.2 A new communication protocol from permutation inversion

	5 From cryptanalysis to data-structures
	6 Discussion and future directions
	6.1 Which lower-bound techniques can work?
	6.2 One-to-one functions
	6.3 Barriers for upper bounds

	 Acknowledgments
	References
	A Proof of Lemma 11

