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Abstra
t. The task of fun
tion inversion is 
entral to 
ryptanalysis:

breaking blo
k 
iphers, forging signatures, and 
ra
king password hashes

are all spe
ial 
ases of the fun
tion-inversion problem. In 1980, Hellman

showed that it is possible to invert a random fun
tion f : [N ] → [N ]
in time T = Õ(N2/3) given only S = Õ(N2/3) bits of pre
omputed

advi
e about f . Hellman's algorithm is the basis for the popular �Rainbow

Tables� te
hnique (Oe
hslin, 2003), whi
h a
hieves the same asymptoti



ost and is widely used in pra
ti
al 
ryptanalysis.

Is Hellman's method the best possible algorithm for inverting fun
tions

with prepro
essed advi
e? The best known lower bound, due to Yao

(1990), shows that ST = Ω̃(N), whi
h still admits the possibility of an

S = T = Õ(N1/2) atta
k. There remains a long-standing and vexing

gap between Hellman's N2/3
upper bound and Yao's N1/2

lower bound.

Understanding the feasibility of an S = T = N1/2
algorithm is 
ryptan-

alyti
ally relevant sin
e su
h an algorithm 
ould perform a key-re
overy

atta
k on AES-128 in time 264 using a pre
omputed table of size 264.

For the past 29 years, there has been no progress either in improving

Hellman's algorithm or in strengthening Yao's lower bound. In this work,

we 
onne
t fun
tion inversion to problems in other areas of theory to

(1) explain why progress may be di�
ult and (2) explore possible ways

forward.

Our results are as follows:

� We show that any improvement on Yao's lower bound on fun
tion-

inversion algorithms will imply new lower bounds on depth-two 
ir-


uits with arbitrary gates. Further, we show that proving strong

lower bounds on non-adaptive fun
tion-inversion algorithms would

imply breakthrough 
ir
uit lower bounds on linear-size log-depth 
ir-


uits.

� We take �rst steps towards the study of the inje
tive fun
tion-inversion

problem, whi
h has manifold 
ryptographi
 appli
ations. In parti
-

ular, we show that improved algorithms for breaking PRGs with

prepro
essing would give improved algorithms for inverting inje
tive

fun
tions with prepro
essing.

� Finally, we show that fun
tion inversion is 
losely related to well-

studied problems in 
ommuni
ation 
omplexity and data stru
tures.

Through these 
onne
tions we immediately obtain the best known

algorithms for problems in these domains.



1 Introdu
tion

A 
entral task in 
ryptanalysis is that of fun
tion inversion. That is, given a

fun
tion f : [N ] → [N ] and a point y ∈ [N ], �nd a value x ∈ [N ] su
h that

f(x) = y, if one exists. The hardness of fun
tion inversion underpins the se
urity

of almost every 
ryptographi
 primitive we use in pra
ti
e: blo
k 
iphers, hash

fun
tions, digital signatures, and so on. Understanding the exa
t 
omplexity of

fun
tion inversion is thus 
riti
al for assessing the se
urity of our most important


ryptosystems.

We are parti
ularly interested in fun
tion-inversion algorithms that only

make bla
k-box use of the fun
tion f�or formally, that have only ora
le a

ess

to f�sin
e these algorithms invert all fun
tions. A straightforward argument

shows that any bla
k-box inversion algorithm that makes at most T queries to

its f -ora
le su

eeds with probability at most O(T/N), over the randomness of

the adversary and the random 
hoi
e of the fun
tion. This argument suggests

that an atta
ker running in o(N) time 
annot invert a bla
k-box fun
tion on

domain [N ] with good probability.

When the inversion algorithm may use prepro
essing, this logi
 breaks down.

An algorithm with prepro
essing runs in two phases: In the prepro
essing phase,

the algorithm repeatedly queries f and then outputs an �advi
e string� about f .
In the subsequent online phase, the algorithm takes as input its prepro
essed

advi
e string and a 
hallenge point y ∈ [N ]. It must then produ
e a value

x ∈ [N ] su
h that f(x) = y. When using these algorithms for 
ryptanalysis, the

atta
ker typi
ally seeks to jointly minimize the bit-length S of the advi
e string

and the running time T of the online algorithm. The 
omputation required to


onstru
t the advi
e string, though usually expensive, 
an often be amortized

over a large number of online inversions.

A trivial prepro
essing algorithm stores a table of f−1
in its entirety as its

advi
e string using S = Õ(N) bits and 
an then invert the fun
tion on all points

using a single lookup into the table. In 
ontrast, 
onstru
ting algorithms that

simultaneously a
hieve sublinear advi
e and online time S = T = o(N) is non-
trivial.

In a seminal paper, Hellman [46℄ introdu
ed time-spa
e tradeo�s as a tool

for 
ryptanalysis and gave a bla
k-box prepro
essing algorithm that inverts a

fun
tion f : [N ] → [N ] using only S = Õ(N2/3) bits of advi
e and online time

T = Õ(N2/3), where the algorithm is guaranteed to su

eed only on a 
onstant

fra
tion of fun
tions. (More pre
isely, the algorithm has a 
onstant su

ess proba-

bility over the uniformly random 
hoi
e of the fun
tion f .) Fiat and Naor [27,28℄

later gave a rigorous analysis of Hellman's algorithm and extended it to invert all

possible fun
tions, albeit with a slightly worse trade-o� of the form S3T = Õ(N3)
for any 
hoi
e of N3/4 ≤ S ≤ N . Hellman's trade-o� is the best known today,

and his algorithm is a fundamental tool in real-world 
ryptanalysis [7, 8, 59,61℄.

In this work, we investigate the following question:

Is it possible to improve upon Hellman's time-spa
e trade-o�?
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Yao �rst asked this question in 1990 [77℄ and proved that any prepro
essing

algorithm for fun
tion inversion that uses S bits of advi
e and T online queries

must satisfy ST = Ω̃(N). (Counting only queries�and not online 
omputation�

only strengthens lower bounds in this model.) Notably, this lower bound does not

rule out an algorithm that a
hieves S = T = Õ(N1/2). In 
ontrast, Hellman's

algorithm only gives an upper bound of S = T = Õ(N2/3), even for the slightly

easier 
ase of inverting a random fun
tion. The question resurfa
es in the work

of Fiat and Naor [28℄, Barkan, Biham, and Shamir [5℄ (who show that Hellman's

method is optimal for a 
ertain natural but restri
ted 
lass of algorithms), De,

Trevisan and Tulsiani [21℄, and Abusalah et al. [1℄.

In addition to the problem's theoreti
al appeal, determining the best pos-

sible time-spa
e trade-o�s for fun
tion inversion is relevant to pra
ti
e, sin
e

the di�eren
e between an online atta
k time of N2/3
and an N1/2

be
omes 
ru-


ial when dealing with 128-bit blo
k 
iphers, su
h as the ubiquitous AES-128.

Hellman's algorithm gives the best known prepro
essing atta
k against AES-

128, with S = T ≈ 286. If we 
ould improve Hellman's algorithm to a
hieve

S = T = N1/2
, mat
hing Yao's lower bound, we 
ould break AES-128 in time

264 with a data stru
ture of size 264, albeit after an expensive prepro
essing

phase. While today's S = T = 286 atta
k is likely far beyond the power of any

realisti
 adversary, an improved S = T = 264 atta
k would leave us with an

alarmingly narrow se
urity margin.

Re
ent work proves new lower bounds on prepro
essing algorithms for various


ryptographi
 problems, using both in
ompressibility arguments [1, 23, 32℄ and

the newer presampling method [19, 65℄. While this progress might give hope

for an improved lower bound for fun
tion inversion as well, both te
hniques

mysteriously fail to break the ST = Ω̃(N) barrier.

Non-adaptive algorithms. Another avenue for study is to explore the role

of parallelism or adaptivity in prepro
essing algorithms for fun
tion inversion.

All non-trivial algorithms for fun
tion inversion, in
luding Hellman's algorithm

and Rainbow-table methods [61℄, 
riti
ally use the adaptivity of their queries.

It would be very interesting to 
onstru
t a highly parallelizable prepro
essing

algorithm for fun
tion inversion. Su
h an algorithm would a
hieve the same

advi
e and time 
omplexity S = T = Õ(N2/3) as Hellman's algorithm, but

would make all Õ(N2/3) of its queries to the f -ora
le in one non-adaptive bat
h.

Su
h a non-adaptive inversion algorithm 
ould speed up fun
tion inversion on


ryptanalyti
 ma
hines with a very large number of parallel pro
essing 
ores.

We do not even know if there exists a non-adaptive algorithm with S =
T = o(N). Can we �nd new non-adaptive inversion algorithms, or is adaptivity

ne
essary for good time-spa
e trade-o�s? Proving lower bounds in this more

restri
ted model 
ould be a stepping stone to improving the general lower bounds

on fun
tion inversion.
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1.1 Our results

This work establishes new 
onne
tions between the fun
tion-inversion problem

and well-studied problems in 
ryptography, 
omplexity theory, and data stru
-

tures. These 
onne
tions are useful in two dire
tions.

First, they shed new light on the fun
tion-inversion problem: a 
onne
tion

to 
ir
uit 
omplexity suggests that improving on the known lower bounds for

fun
tion-inversion will be di�
ult. In parti
ular, we show that new lower bounds

for fun
tion inversion will imply new 
ir
uit lower bounds and 
ould even resolve


omplexity-theoreti
 questions that predate Hellmanâ��s results [66℄. Moreover,

a new 
onne
tion to the problem of breaking PRGs with prepro
essing suggests

a new avenue for better inversion algorithms for inje
tive fun
tions. For many

of the 
ryptanalyti
 appli
ations, progress on this variant of fun
tion inversion

would in fa
t be su�
ient.

Se
ond, these 
onne
tions, together with 
lassi
 
ryptanalyti
 algorithms,

give rise to better algorithms for problems in the other areas of theory. For

example, a 
onne
tion to 
ommuni
ation 
omplexity leads to the best known

algorithm for the multiparty pointer-jumping problem, improving upon a twenty-

year-old upper bound [63℄. Similarly, a 
onne
tion to data stru
tures leads to a

new upper bound for the systemati
 substring-sear
h problem, resolving an open

question [29℄.

We now state our results in detail.

Proving better lower bounds for fun
tion-inversion implies new 
ir
uit

lower bounds. A major question in 
ir
uit 
omplexity, open sin
e the 1970s [66,

67℄, is to give an expli
it family of fun
tions Fn: {0, 1}n → {0, 1}n that 
annot

be 
omputed by fan-in-two 
ir
uits of size O(n) and depth O(log n). Following
ideas of Brody and Larsen [13℄, we demonstrate a 
lose 
onne
tion between this


lassi
 problem in 
ir
uit 
omplexity and non-adaptive prepro
essing algorithms

for fun
tion inversion.

Spe
i�
ally, we show that proving that every non-adaptive bla
k-box fun
tion-

inversion algorithm that uses S = N logN/log logN bits of advi
e requires at

least T = Ω(N ǫ) ora
le queries, for some 
onstant ǫ > 0, would give an expli
it

family of fun
tions that 
annot be 
omputed by linear-size log-depth Boolean


ir
uits. This, in turn, would resolve a long-standing open problem in 
ir
uit


omplexity. Though we 
annot prove it, we suspe
t that the above lower bound

holds even for ǫ = 1.
This 
onne
tion implies that proving lower bounds against non-adaptive

fun
tion-inversion algorithms that use the relatively large amount of advi
e

S = N logN/log logN should be quite di�
ult. A mu
h more modest goal would

be to rule out any non-adaptive algorithm using S = T = Õ(N1/2+ǫ), for some

ǫ > 0. This would represent only a slight strengthening of Yao's ST = Ω̃(N)
bound for adaptive algorithms. However, we show that a
hieving even this far-

more-modest goal would improve the best known lower bound for 
ir
uits in

Valiant's 
ommon-bits model [66, 67℄. This, in turn, would represent substan-

tial progress towards proving lower bounds against linear-size log-depth 
ir
uits.

In parti
ular, sin
e any lower bound against algorithms without a restri
tion
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on adaptivity would only be more general, improving the ST = Ω̃(N) lower

bound for fun
tion inversion would imply new 
ir
uit lower bounds in Valiant's


ommon-bits model.

We believe that the di�
ulty of proving su
h a 
ir
uit lower bound suggests

that beating the square-root barrier exhibited by both the 
ompression [33, 77℄

and presampling [19, 65℄ te
hniques might prove more di�
ult than previously

expe
ted.

One-to-one fun
tion inversion from PRG distinguishers. Many 
ryptan-

alyti
 appli
ations of Hellman tables (
ryptanalysis of blo
k 
iphers, password


ra
king, et
.) only require inverting inje
tive fun
tions. Does there exist a better-

than-Hellman algorithm for inverting inje
tive fun
tions with prepro
essing?

One reason to hope for a better algorithm for inje
tive fun
tions is that for

the very spe
ial 
ase of permutations, there exists an inversion algorithm with

prepro
essing that a
hieves the improved trade-o� ST = Õ(N) (i.e., S = T =
N1/2

) [77℄. Can we a
hieve the same trade-o� for inje
tive fun
tions?

While we have not been able to answer this question yet, we do open one pos-

sible route to answering it. In parti
ular, we show that the problem of inverting

inje
tive fun
tions with prepro
essing has a 
lose 
onne
tion to the problem of

breaking pseudorandom generators (PRGs) with prepro
essing [2, 19, 21, 23, 24℄.

Spe
i�
ally, De, Trevisan, and Tulsiani [21℄ show that bla
k-box PRG distin-

guishers with prepro
essing 
an realize the trade-o� S = Õ(ǫ2N), for T = Õ(1)
and for any 
hoi
e of distinguishing advantage ǫ.

We show that a
hieving a more general trade-o� of the form ST = Õ(ǫ2N),
for any 
onstant ǫ, would imply a better-than-Hellman algorithm for inverting

inje
tive fun
tions. Thus, improving the known PRG distinguishers with prepro-


essing 
an improve the known inje
tive inversion algorithms.

New proto
ols for multiparty pointer jumping. We show that algorithms

for the bla
k-box fun
tion-inversion problem are useful in designing new 
om-

muni
ation proto
ols for a well-studied problem in 
ommuni
ation 
omplexity.

In parti
ular, any bla
k-box prepro
essing algorithm for inverting permutations

yields a proto
ol for the permutation variant of the �k-party pointer-jumping�

problem (MPJ
perm

N,k ) [10,11,14,20,56,63,70℄ in the number-on-the-forehead model

of 
ommuni
ation 
omplexity [15℄.

Then, by instantiating the permutation-inversion algorithm with a variant

of Hellman's method, we obtain the best known proto
ol for MPJ
perm

N,k for k =
ω(logN/log logN) players (this regime is in fa
t the most 
onsequential for the

original motivation for studying this problem), improving the previous best up-

per bound of O(N log logN/logN), by Pudlák et al. [63℄, to Õ(N/k +
√
N).

We thus make progress on understanding the 
ommuni
ation 
omplexity of

multiparty pointer jumping, a problem with signi�
an
e to ACC
0

ir
uit lower

bounds [6, 47,78℄.

Beyond the quantitative improvement, our proto
ol is di�erent from all pre-

vious approa
hes to the problem and is an unexpe
ted appli
ation of a 
rypt-

analyti
 algorithm to a 
ommuni
ation-
omplexity problem. While the use of

a 
ryptanalyti
 algorithm in this 
ontext appears new, prior work has found
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appli
ation of results in 
ommuni
ation 
omplexity to lower bounds [44℄ and


onstru
tions [12℄ in the 
ryptographi
 setting.

This 
onne
tion presents a path forward for proving non-adaptive lower

bounds for permutation inversion. In parti
ular, we show that for every non-

adaptive bla
k-box permutation-inversion algorithm using S bits of advi
e and

T online queries, it must hold that max{S, T} is at least as large as the 
ommuni-


ation 
omplexity ofMPJ
perm

N,3 . Any improvement on the lower bound forMPJ
perm

N,3

would give an improved lower bound for non-adaptive bla
k-box permutation-

inversion algorithms. The best lower bound for MPJ
perm

N,3 is Ω(
√
N) [3, 73℄. Inter-

estingly, this mat
hes the best lower-bound for bla
k-box permutation-inversion

algorithms, regardless of their adaptivity.

New time-spa
e trade-o� for systemati
 substring sear
h. Finally, we

show that improved algorithms for fun
tion inversion will also imply improved

data stru
tures for the systemati
 substring-sear
h problem [22,29,30,40,41℄. In

parti
ular, we prove that there is a prepro
essing algorithm for the fun
tion-

inversion problem using few bits of advi
e and few online queries if and only if

there is a spa
e- and time-e�
ient data stru
ture for systemati
 substring sear
h

in the 
ell-probe model [75℄. In the systemati
 substring-sear
h problem, we are

given a bitstring of length N (the �text�), and from it we must 
onstru
t an

S-bit data stru
ture (the �index�). Given a query string, we should be able to

determine whether the query string appears as a substring of the text by reading

the index and by inspe
ting at most T bits of the original text.

This 
onne
tion is fruitful in two dire
tions: First, we show that instantiating

this 
onne
tion with the Fiat-Naor algorithm for fun
tion inversion [28℄ yields

an S3T = Õ(N3) systemati
 data stru
ture, whi
h is the best known in the

parameter regime S = Õ(Nα) for α < 1. Gál and Miltersen [29℄ ask whether a

very strong S + T = Ω̃(N) lower bound on this problem is possible. By beating

this hypotheti
al lower bound, our algorithm answers their open question in the

negative.

Se
ond, Gál and Miltersen prove an ST = Ω̃(N) lower bound for system-

ati
 substring sear
h. Our barrier to proving lower bounds against bla
k-box

algorithms for fun
tion inversion implies that improving this lower bound would

also imply new lower bounds in Valiant's 
ir
uit model and therefore may be

quite 
hallenging.

1.2 Related work

We now re
all a few salient related results on fun
tion inversion, and we dis
uss

additional related work at relevant points throughout the text.

Fiat and Naor [27,28℄ proved that Hellman's algorithm [46℄ a
hieves a trade-

o� of the form S2T = Õ(N2), when the algorithm needs only to invert a random

fun
tion with 
onstant probability (i.e., in the 
ryptanalyti
ally interesting 
ase).

For the worst-
ase problem of inverting arbitrary fun
tions, Fiat and Naor give

an algorithm that a
hieves a trade-o� of the form S3T = O(N3). De, Trevisan,
and Tulsiani [21℄ improve the Fiat-Naor trade-o� when the algorithm needs only

to invert the fun
tion at a sub-
onstant fra
tion of points.
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For inverting fun
tions, Yao [77℄ proved that every algorithm that uses S
bits of advi
e and makes T online queries must satisfy ST = Ω̃(N) lower bound.
Impagliazzo gives a short alternative proof [48℄. Dodis et al. [23℄, building on

prior work [21, 33℄, extended the lower bound to 
apture algorithms that invert

only a sub-
onstant fra
tion of fun
tions f .
Barkan, Biham, and Shamir [5℄ show that, for a restri
ted 
lass of prepro-


essing algorithms, a Hellman-style trade-o� of the form S2T = Õ(N2) is the

best possible. Their lower bound is powerful enough to 
apture the known inver-

sion s
hemes, in
luding Hellman's algorithm and Oe
hslin's pra
ti
ally e�
ient

�Rainbow tables� te
hnique [61℄. At the same time, this restri
ted lower bound

leaves open the possibility that an entirely new type of algorithm 
ould subvert

their lower bound.

For inverting permutations, Yao [77℄ observed that a Hellman-style algorithm


an a
hieve the ST = Õ(N) upper bound and proved a mat
hing lower bound.

Gennaro and Trevisan [33℄, Wee [71℄, and De, Trevisan, and Tulsiani [21℄ extend

this lower bound to handle randomized algorithms and those that su

eed with

small probability.

Two re
ent works [39, 52℄ use the fun
tion-inversion algorithm of Fiat and

Naor to obtain new algorithms for the prepro
essing version of the 3-SUM prob-

lem.

1.3 Preliminaries

Notation. Through this paper, Z
≥0

denotes the non-negative integers, and Z
>0

denotes the positive integers. For any N ∈ Z
>0

we write [N ] = {1, 2, . . . , N}.
We often identify every element x ∈ [N ] with the binary representation of x− 1
in {0, 1}⌈logN⌉

. We use x ← 4 to denote assignment and, for a �nite set X , we
use x R← X to denote a uniform random draw from X . For a fun
tion f : A→ B
and y ∈ B, we de�ne the preimage set of y as f−1(y) := {x ∈ A | f(x) = y}.
All logarithms are base-two unless stated otherwise. Parameters S and T are

always impli
it fun
tions of the parameter N , and to simplify the bounds, we

always impli
itly take S = T = Ω(1). The notation Ω̃(·) and Õ(·) hides fa
tors
polynomial in logN .

De�nition 1 (Bla
k-box inversion algorithm with prepro
essing). Let

N ∈ Z
>0
. A bla
k-box inversion algorithm with prepro
essing for fun
tions on

[N ] is a pair (A0,A1) of ora
le algorithms, su
h that A0 gets ora
le a

ess to a

fun
tion f : [N ]→ [N ], takes no input, and outputs an advi
e string stf ∈ {0, 1}∗.
Algorithm A1 gets ora
le a

ess to a fun
tion f : [N ] → [N ], takes as input a

string stf ∈ {0, 1}∗ and a point y ∈ [N ], and outputs a point x ∈ [N ]. Moreover,

for every x ∈ [N ], it holds that Af
1 (Af

0 (), f(x)) ∈ f−1(f(x)).

We 
an de�ne a bla
k-box inversion algorithm for permutations analogously

by restri
ting the ora
le f : [N ]→ [N ] to implement an inje
tive fun
tion. In this


ase, we will often denote the ora
le as π instead of f .
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De�nition 2 (Adaptivity). We say that an ora
le algorithm is k-round adap-

tive if the algorithm's ora
le queries 
onsist of k sets, su
h that ea
h set of queries

depends on the advi
e string, the input, and the replies to the previous rounds

of queries. We 
all a 1-round adaptive algorithm non-adaptive. Finally, we say

that an algorithm is strongly non-adaptive if it issues a single set of queries that

only depends on the algorithm's input, but not on the advi
e string. In all of the

above 
ases, when referring to the number of queries made by the algorithm, we

a

ount for the sum over all rounds.

Worst 
ase versus average 
ase. The algorithms in De�nition 1 are deter-

ministi
 and su

essfully invert all fun
tions on all points. It is also interesting

to 
onsider algorithms that invert su

essfully only with probability ǫ < 1, over
the random 
hoi
e of: the fun
tion f : [N ] → [N ], the point to invert, and/or

algorithm's randomness. As most of the results in this paper deal with barri-

ers for improving lower bounds, restri
ting ourselves to deterministi
 algorithms

that always su

eed in inverting only makes these results stronger. In any 
ase,

assume that all algorithms we 
onsider halt with probability 1.

Running time versus query 
omplexity. For the purposes of proving lower

bounds, and redu
tions towards proving lower bounds, it su�
es to 
onsider

the query 
omplexity of a prepro
essing algorithm's online phase. Counting only

queries (and not 
omputation time) only strengthens lower bounds proved in

this model. The algorithms we 
onstru
t 
an be made to use only Õ(N) prepro-

essing time in a suitable RAM model, when they are allowed to fail with small

probability. Furthermore, the running time of our algorithms' T -query online

phase is Õ(T ).

Non-uniformity. Our de�nition allows for �free� non-uniformity in the param-

eter N . Nevertheless, in a model that only �
harges� the online algorithm for

queries to the ora
le and ignores the a
tual running time, non-uniformity makes

little di�eren
e sin
e a uniform algorithm 
an simply sear
h for the optimal


hoi
e of non-uniform advi
e without in
reasing its query 
omplexity.

Shared randomness. We allow the prepro
essing and online phases to a

ess

a 
ommon stream of random bits. Allowing the adversary to a

ess 
orrelated

randomness in both phases only strengthens the lower bounds. Only one of our

upper bounds (Theorem 8) makes use of this 
orrelated randomness.

2 Lower bounds on inversion imply 
ir
uit lower bounds

The motivating question of this work is whether Hellman's S = T = Õ(N2/3)
algorithm for inverting random fun
tions is optimal. In this se
tion, we show

that resolving this question will require proving signi�
ant new lower bounds in

Valiant's �
ommon bits� model of 
ir
uits [66℄. We also show that proving strong

lower bounds on non-adaptive algorithms for fun
tion inversion would imply new

lower bounds against linear-sized logarithmi
-depth 
ir
uits.
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We obtain these 
onne
tions by observing that the fun
tion-inversion prob-

lem is an example of a 
lass of so 
alled �su

in
t� stati
 data-stru
ture prob-

lems [4, 17, 30, 31, 40, 41, 43, 45, 49, 58, 64℄. We show a barrier to proving lower

bounds against systemati
 data stru
tures, whi
h are a spe
ial 
ase of su

in
t

data stru
tures.

Related work. Brody and Larsen [13℄ showed that proving 
ertain lower bounds

against linear data stru
tures for dynami
 problems would imply strong lower

bounds on the wire 
omplexity of linear depth-two 
ir
uits. We follow their

general blueprint, but we instead fo
us on arbitrary algorithms for solving stati


data-stru
ture problems (e.g., fun
tion inversion), and our 
onne
tion is to Valiant's


ommon-bits model of 
ir
uits, rather than to linear depth-two 
ir
uits.

In re
ent independent work, Viola [69, Theorem 3℄ shows that lower bounds

against a large 
lass of stati
 data-stru
tures problems imply 
ir
uit lower bounds.

In his work, Viola 
onsiders an in
omparable 
ir
uit model that, on the one hand,

admits 
ir
uits of depth larger than two, but, on the other hand, restri
ts the

number of wires 
onne
ted to the 
ommon bits. As a result, Viola's work does

not seem to apply to the fun
tion-inversion problem within the relevant parame-

ter regime (namely, in the gap between Hellman's upper bound and Yao's lower

bound).

In another re
ent independent work, Dvir, Golovnev, and Weinstein [26℄ 
on-

ne
t data-stru
ture lower bounds to matrix rigidity and 
ir
uit lower bounds.

Their fo
us is on linear data stru
tures, whereas the fun
tion inversion problem,


onsidered in our work, does not have an apparent linear stru
ture.

Boyle and Naor [9℄ make a surprising 
onne
tion between 
ryptographi
 al-

gorithms and 
ir
uit lower bounds. They show that proving the non-existen
e of


ertain �o�ine� oblivious RAM algorithms (ORAMs) [34,38,62℄ would imply new

lower bounds on the size of Boolean 
ir
uits for sorting lists of integers. Larsen

and Nielsen [54℄ re
ently skirted this barrier by proving a lower bound against

ORAMs in the �online� setting. Following that, Weiss and Wi
hs [72℄ showed

that a variant of the Boyle-Naor barrier still holds against �online read-only�

ORAMs.

2.1 Systemati
 data stru
tures and low-depth 
ir
uits

A major open question in 
ir
uit 
omplexity is whether there exists an ex-

pli
it family of Boolean fun
tions (from n bits to one bit) that 
annot be 
om-

puted by fan-in-two 
ir
uits of size O(n) and depth O(log n). An easier prob-

lem, whi
h is still famously di�
ult, is to �nd an expli
it family of fun
tions

Fn: {0, 1}n → {0, 1}n with n-bit output�often 
alled Boolean operators�that


annot be 
omputed by this same 
lass of 
ir
uits. Even this question has been

open sin
e the 1970s [51,66,67℄.

More pre
isely, we say that a family of Boolean operators {Fn}n∈Z>0
, for

Fn: {0, 1}n → {0, 1}n, is an expli
it operator if the de
ision problem asso
iated

with ea
h bit of the output of Fn is in the 
omplexity 
lass NP.

The main result of this se
tion is that proving a 
ertain type of data-stru
ture

lower bound implies the existen
e of an expli
it Boolean operator on n bits that

9
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Fig. 1: Common-bits 
ir
uit with n = 4 inputs, degree d = 2, and width w = 2.


annot be 
omputed by fan-in-two 
ir
uits of size O(n) and depth O(log n). We

then show that a lower bound on fun
tion-inversion algorithms 
an be 
ast as

a data-stru
ture lower bound, and therefore a fun
tion-inversion lower bound

implies a 
ir
uit lower bound.

We now give the ne
essary ba
kground on data-stru
ture problems. A sys-

temati
 data stru
ture of size s and query 
omplexity t for an operator Fn is a

pair of algorithms:

� a prepro
essing algorithm, whi
h takes as input the data x ∈ {0, 1}n and

outputs a string st ∈ {0, 1}s of length s = o(n), and

� a query algorithm, whi
h takes as input the string st, and an index i ∈ [n],
may probe (read) t bits of the input x, and then outputs the ith bit of Fn(x).

A systemati
 data stru
ture is non-adaptive if the query algorithm probes a set

of bits of the input data x whose lo
ation depends only on the index i and not

on the input data x.
The following theorem is the main result of this se
tion.

Theorem 3. If an expli
it operator {Fn}n∈Z>0
has fan-in-two Boolean 
ir
uits

of size O(n) and depth O(log n) then, for every ǫ > 0, then this operator ad-

mits a non-adaptive systemati
 data stru
ture of size O(n/log log n) and query


omplexity O(nǫ).

To prove this, we �rst re
all Valiant's 
ommon-bits model of 
ir
uits [66,67℄.

Valiant's 
ommon-bits model. A 
ir
uit in the 
ommon-bits model of width

w and degree d 
omputing a Boolean operator Fn: {0, 1}n → {0, 1}n 
ontains an

input layer, a middle layer, and output layer (Figure 1). The input layer 
onsists

of n input bits x1, . . . , xn ∈ {0, 1}, and the output layer 
onsists of n output

gates. There are w gates in the middle layer of the 
ir
uit (the �
ommon bits�);

ea
h input feeds into ea
h of these w middle gates, and the output of ea
h of the

w middle gates feeds into ea
h output gate. Further, ea
h output gate reads from

at most d of the inputs. Unlike in a standard 
ir
uit, the gates in the middle

and output layers of the 
ir
uit 
ompute arbitrary fun
tions of their inputs. The

output of the 
ir
uit is the n-bit string formed at the output gates.

10



It is immediate that any Boolean operator Fn: {0, 1}n → {0, 1}n has 
ommon-

bits 
ir
uits of width n and degree 0 or, alternatively, of width 0 and degree n.
A non-trivial question is: For a given operator Fn and 
hoi
e of degree (e.g.,

d = n1/3
), what is minimal width of a 
ommon-bits 
ir
uit that 
omputes Fn?

Lemma 4. If there exists a 
ir
uit in the 
ommon-bits model of width w and

degree d that 
omputes an operator F : {0, 1}n → {0, 1}n, then there exists a

non-adaptive systemati
 data stru
ture for F of size w and query 
omplexity d.

Proof. Let C be a 
ir
uit in the 
ommon-bits model as in the statement of the

lemma. The data stru
ture 
onsists of the outputs of the w middle-layer gates

in the 
ir
uit C (i.e., the 
ir
uit's 
ommon bits). On input i ∈ [n], the algorithm
reads all the input bits 
onne
ted to the ith output gate of C and 
omputes the

value of the output gate. Sin
e ea
h output gate in the 
ir
uit is 
onne
ted to at

most d input bits, the query 
omplexity of the systemati
 data stru
ture is at

most d.

Theorem 3 then follows from Lemma 4 and the following result of Valiant:

Theorem 5 (Valiant [66,67℄). If every expli
it operator has fan-in-two Boolean


ir
uits of size O(n) and depth O(log n), then for every 
onstant ǫ > 0, every

expli
it operator has 
ir
uits in the 
ommon-bits model of width O(n/log log n)
and degree nǫ

.

Viola [68, Se
tion 3℄ and Jukna [50, Chapter 13℄ give detailed proofs of Theo-

rem 5.

2.2 Consequen
es for fun
tion inversion

Observe that every fun
tion f : [N ]→ [N ] 
an be des
ribed usingO(N logN) bits,
so there is a trivial strongly non-adaptive algorithm that inverts every fun
tion

using O(N logN) bits of advi
e and no queries to the fun
tion in the online

phase. We know of no non-adaptive fun
tion-inversion algorithm that inverts

with 
onstant probability using o(N logN) bits of advi
e and o(N) queries. The
following theorem states that ruling out the existen
e of su
h a non-adaptive

algorithm is as hard as proving lower bounds against linear-size logarithmi
-

depth Boolean 
ir
uits.

Theorem 6. If, for some ǫ > 0, every family of strongly non-adaptive bla
k-

box algorithms for inverting fun
tions f : [N ] → [N ] that uses O(N ǫ) queries

requires ω(N logN/log logN) bits of advi
e, then there exists an expli
it operator

that 
annot be 
omputed by fan-in-two Boolean 
ir
uits of size O(n) and depth

O(log n).

The theorem 
onsiders a restri
ted 
lass of inversion algorithms that: (i) may

only use strongly non-adaptive queries (the most restri
tive type of query), (ii)

are only allowed, for example, O(N0.0001) queries (very few queries), and (iii)

must invert arbitrary fun
tions with probability one (the most di�
ult variant

of the inversion problem).
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So, even though we may suspe
t that there are no algorithms for inverting

fun
tions f : [N ]→ [N ] using O(N logN/log logN) bits of advi
e and O(N0.0001)
non-adaptive queries, proving su
h an assertion seems very 
hallenging.

Proof of Theorem 6. Let n = N logN , where N ∈ Z
>0

is a power of two. (For all

other values of n, de�ne the inversion operator trivially as the identity mapping.)

We de�ne the inversion operator F inv

n : {0, 1}n → {0, 1}n as follows. Let x ∈
{0, 1}n be an input to F inv

n , and view x as the 
on
atenation of N blo
ks of

length logN bits ea
h: x = x1‖x2‖· · · ‖xN . For ea
h i ∈ [N ], let yi ∈ [N ] be the
least j ∈ [N ] su
h that xj = i, if one su
h j exists. If no su
h j exists, set yi = 0.
We de�ne F inv

n (x) = (y1‖y2‖· · · ‖yN ).

Observe that a systemati
 data stru
ture for F inv

n gives a strongly non-adaptive

prepro
essing algorithm that inverts every fun
tion f : [N ] → [N ]. The prepro-


essing phase 
onstru
ts the data stru
ture for operator F inv

n on input f(1)‖f(2)‖. . . ‖f(N)
and outputs this data stru
ture as the advi
e string.

In the online phase, on input i ∈ [N ], the algorithm uses the data stru
ture

in the advi
e string and its ora
le a

ess to f to 
ompute all logN bits of the

ith output blo
k yi of F
inv

n , whi
h is enough to re
over some inverse of i under
f , if it exists.

The theorem now follows from Theorem 3, instantiated with F inv

n . For n of

the form n = N logN , where N > 0 is a power of two, we get that the length

of the advi
e string is O(N logN/log log(N logN)) = O(N logN/log logN) and
the online query 
omplexity is logN · O ((N logN)ǫ) = O(N ǫ′), for any ǫ′ > ǫ.

Theorem 6 suggests the hardness of proving stronger lower bounds for non-

adaptive inversion algorithms, but it applies only to algorithms that use a rel-

atively long advi
e string, of length O(N logN/log logN). We might still hope

to improve upon Yao's ST = Ω̃(N) lower bound for fun
tion inversion without

breaking the aforementioned barrier.

The following 
orollary shows that ruling out fun
tion-inversion algorithms

using advi
e and time S = T = Õ(N1/2+ǫ), for any ǫ > 0, would imply the

existen
e of an expli
it operator that 
annot be 
omputed by 
ir
uits of width

O(n1/2+ǫ′) and degree O(n1/2+ǫ′) in the 
ommon-bits model, for some ǫ′ > 0.
As we will dis
uss, no su
h lower bound in the 
ommon-bits model is known,

so proving the optimality of Hellman's Õ(N2/3) algorithm, or even showing

that inverting fun
tions with prepro
essing is marginally harder than inverting

permutations with prepro
essing, would imply an advan
e in the state of lower

bounds on 
ir
uits in the 
ommon-bits model.

Corollary 7. If, for some ǫ > 0, there does not exist a family of strongly

non-adaptive algorithms for inverting fun
tions f : [N ] → [N ] using O(N1/2+ǫ)
bits of advi
e and O(N1/2+ǫ) queries, then there exists an expli
it operator that

does not have 
ir
uits in the 
ommon-bits model of width O(n1/2+ǫ′) and degree

O(n1/2+ǫ′), for every ǫ′ satisfying 0 < ǫ′ < ǫ.

12



Proof. We prove the 
ontrapositive. Assume that for every ǫ′ > 0, every expli
it

operator has 
ommon-bits 
ir
uits of width O(n1/2+ǫ′) and depth O(n1/2+ǫ′).
Then, as in the proof of Theorem 6, we 
an apply Lemma 4 to operator F inv

n to

show that, for n = N logN , there exists a strongly non-adaptive prepro
essing al-

gorithm that inverts fun
tions f : [N ]→ [N ] usingO(n1/2+ǫ′) = O((N logN)1/2+ǫ′) =
O(N1/2+ǫ′ logN) bits of advi
e and O(n1/2+ǫ′ logN) = O((N logN)1/2+ǫ′ logN)
online queries. Then, for any ǫ > ǫ′, the advi
e usage and number of online

queries is O(N1/2+ǫ).

Noti
e that while the hypothesis of Corollary 7 
onsiders a lower bound

against strongly non-adaptive inversion algorithms, this only strengthens the

statement. This is true be
ause proving a lower bound against adaptive inversion

algorithms implies a lower bound against strongly non-adaptive algorithms as

well.

If we instantiate Corollary 7 with ǫ = 1/6, we �nd that ruling out fun
tion-

inversion algorithms using S = T = o(N2/3), even against the restri
ted 
lass of

strongly non-adaptive algorithms, would give an expli
it operator that does not

have 
ommon-bits 
ir
uits of width w and degree d satisfying w = d = o(n2/3−δ),
for any δ > 0.

Proving su
h a lower bound on 
ommon-bits 
ir
uits is not strong enough to

yield a lower bound against linear-size log-depth 
ir
uits via Valiant's method

(Theorem 5). However, this lower bound would improve the best known lower

bound against 
ir
uits in the 
ommon-bits model. The best known bound, due

to Pudlák, Rödl, and Sgall, gives d = Ω( nw · log( nw )), for a 
ommon-bits 
ir
uit of

width w and degree d [63℄. In parti
ular, they 
onstru
t an expli
it operator that

does not have 
ommon-bits 
ir
uits satisfying w = d = Õ(n1/2). By Corollary 7,

ruling out fun
tion-inversion algorithms with S = T = Õ(N1/2+ǫ), for any ǫ > 0,
would thus improve the best lower bounds on 
ommon-bits 
ir
uits.

2.3 Consequen
es for other su

in
t data-stru
ture problems

Theorem 3 and Lemma 4 together imply that proving strong lower bounds

for any systemati
 data-stru
ture problem�not only for the fun
tion-inversion

problem�will be 
hallenging. To explain how this barrier applies to a 
ompletely

di�erent data-stru
ture problem, we re
all the systemati
 variant of the standard

data-stru
ture problem of polynomial evaluation with prepro
essing [57℄. We give

an informal des
ription of the problem, and the transformation into a formal sys-

temati
 data-stru
ture problem (as in Se
tion 2.1) is straightforward.

The problem of polynomial evaluation with prepro
essing is parameterized

by an integer N ∈ Z
>0

and a �nite �eld F of size Θ(N). The input data is

a polynomial p ∈ F[X] of degree at most N − 1, represented as its ve
tor of


oe�
ients c̄ = (c0, c1, . . . , cN−1) ∈ F
N
. The prepro
essing algorithm reads this

input (the entire polynomial p) and produ
es a prepro
essed S-bit string st. In

a subsequent online phase, the query algorithm takes as input a point x0 ∈ F,

and must output the evaluation p(x0) ∈ F of the polynomial p at point x0.

To produ
e its answer, the query algorithm may read the entire prepro
essed
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string st, query at most T 
oordinates of the 
oe�
ient ve
tor c̄, and perform

an unlimited amount of 
omputation.

For what 
hoi
es of spa
e usage S and query 
omplexity T does there exist

a systemati
 data stru
ture for polynomial evaluation with prepro
essing?

The two naïve approa
hes to solving this problem are:

1. Have the prepro
essing algorithm store in the string st the evaluation of the

polynomial p on every point in the �eld F, using S = Ω(N) spa
e.
2. Have the online-phase algorithm read the entire 
oe�
ient ve
tor c̄, using

T = Ω(N) queries, and then evaluate p(x0) =
∑

i cix0 ∈ F dire
tly.

These solutions both have S + T = Ω̃(N).
It seems very di�
ult to 
onstru
t an algorithm that simultaneously uses a

data stru
ture of size S = N δ
and query 
omplexity T = N δ

, for some δ < 1. And
yet, the best lower bound we have for this problem, implied by a bound of Gál

and Miltersen [30℄, is of the form ST = Ω̃(N). A variant of Corollary 7 implies

that proving stronger lower bounds for this problem�or proving any lower bound

better than ST = Ω̃(N) for any systemati
 or su

in
t data-stru
ture problem,

for that matter�will also imply new lower bounds in Valiant's 
ommon-bits

model. Proving even a stronger lower bound 
ould, via Theorem 3, imply a

lower bound against linear-size log-depth fan-in-two 
ir
uits.

3 Breaking PRGs is as hard as

inverting inje
tive fun
tions

Many 
ryptanalyti
 appli
ations of Hellman tables only require inverting inje
-

tive fun
tions. That is given a inje
tive fun
tion f : [N ] → [M ] and a point

y ∈ [M ], �nd a value x ∈ [N ] su
h that f(x) = y, if one exists.
For example, 
onsider the 
lassi
 appli
ation of Hellman tables to plaintext

atta
ks on blo
k 
iphers: Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blo
k 
ipher,

where k is the key size and n is the blo
k size. If we de�ne fE : {0, 1}k → {0, 1}n
su
h that fE(x) = E(x,m0) for some �xed plaintext m0, then an algorithm

with prepro
essing for the fun
tion fE essentially gives a known-plaintext at-

ta
k on the blo
k 
ipher E. We 
an (heuristi
ally) expe
t the resulting fun
-

tion fE to behave similar to a random fun
tion, and therefore be inje
tive

only beyond the birthday bound k ' 2n. However, even for shorter keys, we


an redu
e a known-plaintext atta
k to the problem of inverting an inje
tive

fun
tion by 
onsidering the en
ryption of multiple known plaintexts m0,m1,m2.

For example, if k = n, then we expe
t fE×3 : {0, 1}n → {0, 1}3n, de�ned as

fE×3(x) = E(x,m0)‖E(x,m1)‖E(x,m2), to have no 
ollisions.

A fun
tion-inversion algorithm 
an invert an inje
tive fun
tion f : [N ]→ [M ]
without taking any advantage of the fa
t that it is inje
tive, so Hellman's S2T =
Õ(N2) upper bound for fun
tion inversion [46℄ applies in this setting as well.

However, the fa
t that for the 
ase of random permutations (i.e., an inje
tive

fun
tion f : [N ] → [N ]), Hellman's algorithm gives a signi�
antly better upper
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bound of ST = Õ(N), gives hope that a similar improvement�or at least some

improvement�is possible for inje
tive length-in
reasing fun
tions.

To the best of our knowledge, the inje
tive variant of the fun
tion-inversion

problem has not been studied dire
tly so far, even though it is a spe
ial 
ase

with wide 
ryptanalyti
 appli
ations. As a �rst step, we 
onne
t the inje
tive

inversion problem to the problem of breaking pseudorandom generators (PRGs)

with prepro
essing [2, 19, 21, 23, 24℄. In that problem, we model a �bla
k-box�

PRG as an ora
le G: [N ] → [M ], with N < M . A PRG distinguisher with

prepro
essing �rst makes arbitrarily many queries to G and outputs an S-bit
advi
e string. In the online phase, the distinguisher 
an then use its advi
e

string, along with T queries to G, to distinguish whether a given sample y ∈ [M ]
has been drawn from the distribution {G(x) | x R← [N ]} or the distribution

{y | y R← [M ]}.
In their work, De, Trevisan, and Tulsiani [21℄ give a distinguisher with

S = O(ǫ2N) and T = Õ(1) that a
hieves a distinguishing advantage ǫ ≤ 1/
√
N .

They ask whether it is possible to realize the trade-o� ST = Õ(ǫ2N) for other pa-
rameter settings as well. The following theorem shows that a PRG distinguisher

that a
hieves 
onstant distinguishing advantage at points on this trade-o� (e.g.,

ǫ = 1/100, S = N1/4
, and T = N3/4

) would imply a better-than-Hellman algo-

rithm for inverting inje
tive fun
tions.

Theorem 8. Suppose that there is a bla
k-box PRG distinguisher that uses S
bits of advi
e, makes T online queries to a PRG G: [N ]→ [M ], and a
hieves dis-

tinguishing advantage ǫ. Then there exists a bla
k-box algorithm that inverts any

inje
tive fun
tion f : [N ] → [M ] using Õ(ǫ−2S) bits of advi
e and Õ(ǫ−2T ) on-

line queries, and that inverts f with probability 1−1/logN (over the algorithm's

randomness).

Furthermore, if the prepro
essing and online phase algorithms have a

ess to

a 
ommon random ora
le, the online phase also runs in time Õ(T ).

Remark 9 (Relation to Goldrei
h-Levin). A 
lassi
 line of results [36, 37, 55, 76℄

shows how to use any inje
tive one-way fun
tion f : [N ]→ [M ] to 
onstru
t an

e�
ient PRG Gf : [N2]→ [2N2] whi
h makes bla
k-box use of f . The proof uses
the Goldrei
h-Levin theorem [37℄ to show that any e�
ient distinguisher for Gf

yields an inversion algorithm for f . (Consult Goldrei
h's textbook [35, Se
tion

3.5℄ for the details.) It is not 
lear to us whether a non-uniform generalization of

these 
lassi
 results dire
tly implies Theorem 8. The problem is that the domain

of the PRG Gf has size N2
, whereas the domain of the original fun
tion f has

size N . Sin
e we are interested in the exa
t exponent of the advi
e and time

usage of fun
tion-inversion algorithms (i.e., S = N3/4
versus S = N1/2

), we

are sensitive to this polynomial expansion in the domain size. For example, say

that we were able to 
onstru
t a bla
k-box PRG distinguisher that a
hieves

S = T = Õ(
√
N). Applying the 
lassi
 redu
tion dire
tly to Gf would only

imply the existen
e of an inverter for the fun
tion f that uses the trivial advi
e

and time 
omplexity S = T = Õ(
√
N2) = Õ(N). In 
ontrast, Theorem 8 implies

that an S = T = Õ(
√
N) distinguisher yields an S = T = Õ(

√
N) inverter.
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Proof idea for Theorem 8. Given a distinguisher for any length-in
reasing gen-

erator G: [N ]→ [M ], we 
onstru
t an inversion algorithm for inje
tive fun
tions

f : [N ]→ [M ] in two steps. First, for ea
h i ∈ [n], we 
onstru
t a bit-re
overy

algorithm Bi that, given f(x), a
hieves a non-trivial advantage in re
overing the

ith bit of x. We then use the algorithms (B1, . . . ,Bn) to 
onstru
t an inversion

algorithm I that, given f(x), re
overs the full preimage x with good probability.

To give the intuition behind the bit-re
overy algorithm Bi: Given a fun
tion

f : [N ]→ [M ] to invert, we 
onstru
t a fun
tion Gi: [N ]→ [M ] su
h that a point

y = f(x) is in the image of Gi if and only if the ith bit of x is 1. Then, we 
an

apply the PRG distinguisher to Gi and re
over the ith bit of y's preimage.

This simple algorithm does not quite work when the PRG distinguisher has

small distinguishing advantage ǫ, sin
e the distinguisher may fail on the point

y. To �x this, we give Bi a

ess to two random permutations π: [N ] → [N ] and
σ: [M ] → [M ] that allow Bi to essentially randomize the point it gives as input

to the PRG distinguisher.

We then 
an run Bi many times with di�erent random permutations and

then take the majority vote of the outputs of these runs. This majority vote will

yield the ith bit of the x with high probability. To 
omplete the 
onstru
tion,

we instantiate the permutations π and σ using 
orrelated randomness between

the prepro
essing and online algorithms. The full des
ription of the 
onstru
tion

appears in the full version of this paper.

4 From 
ryptanalysis to new 
ommuni
ation proto
ols

Communi
ation 
omplexity [53, 74℄ quanti�es the number of bits that a set of

players need to 
ommuni
ate amongst themselves in order to 
ompute a fun
tion

on an input that is split between the players. One of the major open problems

in 
ommuni
ation 
omplexity is to obtain a non-trivial lower bound for some

problem for a super-poly-logarithmi
 number of players. Su
h a bound would

in turn lead to a breakthrough 
ir
uit lower bound for the 
omplexity 
lass

ACC
0
[6, 47, 78℄.

In this se
tion, we develop 
onne
tions between the fun
tion-inversion prob-

lem and the multiparty pointer-jumping problem in the number-on-the-forehead

(NOF) model of 
ommuni
ation 
omplexity [15℄. By 
ombining these new 
on-

ne
tions with the 
lassi
 
y
le-walking algorithm for permutation inversion, we

obtain the best known NOF proto
ols for the permutation variant of the pointer-

jumping problem. Sin
e pointer jumping is a 
andidate hard problem in the

k-party NOF setting, understanding the exa
t 
ommuni
ation 
omplexity of

pointer jumping for a super-poly-logarithmi
 number of players is an important

step towards the eventual goal of proving 
ir
uit lower bounds [10, 11, 14, 20, 56,

63,70℄.

4.1 Multiparty pointer-jumping in the NOF model

A 
lassi
al problem in the NOF model is the pointer-jumping problem. We de-

s
ribe the permutation variant of the problem, and then dis
uss the general
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ase. In the pointer-jumping problem MPJ
perm

N,k , there are k 
omputationally-

unbounded players, denoted P0, P1, . . . , Pk−1, and ea
h has an input �written

on her forehead.� The �rst player P0 has a point x ∈ [N ] written on her fore-

head, the last player Pk−1 has a Boolean mapping β : [N ] → {0, 1} written on

her forehead, and ea
h remaining player Pi, for i = 1, . . . , k − 2, has a permu-

tation πi : [N ] → [N ] written on her forehead. Ea
h player 
an see all k − 1
inputs ex
ept the one written on her own forehead. The goal of the players is to


ompute the value β ◦ πk−2 ◦ · · · ◦ π1(x), whi
h loosely 
orresponds to �following

a trail of pointers� de�ned by the permutations, starting from x (Figure 2). The

players 
an 
ommuni
ate by writing messages on a publi
 bla
kboard. The 
om-

muni
ation 
omplexity of a proto
ol is the total number of bits written on the

bla
kboard for a worst-
ase input.

A one-way proto
ol is a proto
ol in whi
h ea
h player writes a single message

on the bla
kboard in the �xed order P0, . . . , Pk−1, and the last player's message

must be the output. The one-way 
ommuni
ation 
omplexity of a fun
tion f ,
denoted CC

1(f), is the minimum 
ommuni
ation 
omplexity of all one-way pro-

to
ols that su

essfully 
ompute f . Without the �one-way� restri
tion, there are

proto
ols for MPJ
perm

N,k that require only O(logN) bits of 
ommuni
ation.

Known bounds. The best upper bound for MPJ
perm

N,k is due to Pudlák et al. [63℄,

who showed that CC
1(MPJ

perm

N,k ) = O(N log logN/logN). More re
ently, Brody

and San
hez [14℄ showed that this upper bound applies to the more general

pointer-jumping problem, in whi
h we repla
e the permutations π1, . . . , πk−2

with arbitrary fun
tions. In this general 
ase, Wigderson [73℄ proved an Ω(
√
N)

lower bound for k = 3 players (see also [3℄), and Viola and Wigderson [70℄ proved

an Ω̃(N
1

k−1 ) lower bound for k ≥ 3 players.

1
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4

5

1
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3

4
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1
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3

4

5

x π1 π2 π3

Fig. 2: A pointer-jumping instan
e for M̂PJ
perm

k=4,N=5 with π1 = (1 2 4 5 3), π2 = (2 3)(4 5),
π3 = (2 3 4 5) and x = 2. Lemma 11 redu
es this instan
e to inverting the permutation

π−1

1
π−1

2
π−1

3
= (1 3 5 4) on the point x = 2.

17



4.2 A new 
ommuni
ation proto
ol from permutation inversion

We obtain the best known 
ommuni
ation proto
ol for the permutation variant

of the pointer-jumping game on parameter N for k = ω(logN/log logN) players.
Our result improves the previously best known upper bound of Õ(N) to Õ(N/k+√
N). Extending our upper bound to the general multiparty pointer-jumping

problem remains an open problem, whi
h we dis
uss in Remark 13.

On the lower-bound side, this 
onne
tion suggests a path to prove lower

bounds against partially adaptive permutation-inversion algorithms, as in De�-

nition 2. In 
ontrast, the te
hniques of Se
tion 2 
an only prove lower bounds

against strongly non-adaptive algorithms.

In this se
tion, we prove the following new upper bound on CC
1(MPJ

perm

N,k ):

Theorem 10. CC
1(MPJ

perm

N,k ) ≤ O
(
(N/k +

√
N) logN

)
.

To prove Theorem 10, as we do later in this se
tion, we use the integer-

valued version the pointer-jumping problem, 
ommonly denoted M̂PJ
perm

N,k . In this

version, the last player Pk−1 holds a permutation πk−1 : [N ] → [N ], instead of a

boolean mapping, so the output of the problem is a value in [N ]. The following

te
hni
al lemma, whi
h we prove in Appendix A, shows that the boolean-valued

version of the pointer-jumping problem has 
ommuni
ation 
omplexity that is

not mu
h larger than that of the integer-valued pointer-jumping problem.

Lemma 11. CC
1(MPJ

perm

N,k ) ≤ CC
1(M̂PJ

perm

N,k ) + ⌈logN⌉ .

Then, our main lemma te
hni
al uses an arbitrary permutation-inversion

algorithm with prepro
essing to solve the integer-valued problem M̂PJ
perm

N,k :

Lemma 12. If there exists a (k − 2)-round adaptive algorithm for inverting

permutations π : [N ] → [N ] that uses advi
e S and time T , then

CC
1(M̂PJ

perm

N,k ) ≤ S + T ⌈logN⌉ .

Proof. Let (A0,A1) be a (k − 2)-round adaptive algorithm for inverting permu-

tations with prepro
essing. We give a proto
ol for M̂PJ
perm

N,k .

� Player P0 runs the prepro
essing algorithm A0 on the permutation π−1
1 ◦

· · · ◦ π−1
k−1 and writes the advi
e string on the bla
kboard.

� Player P1 runs the online inversion algorithm A1 on the input x (written

on player P0's forehead) using the advi
e string that has been written on

the bla
kboard, to produ
e the �rst round of queries q1,1, . . . , q1,t1 . For ea
h
query q1,ℓ, she 
omputes the partial reply p1,ℓ = π−1

2 (. . . (π−1
k−1(q1,ℓ)) . . . ) and

writes it on the bla
kboard.

� Player Pi, for i ∈ {2, . . . , k− 2}, reads the partial replies pi−1,1, . . . , pi−1,ti−1

written by the previous player, 
omputes the (
omplete) query replies ri−1,1,
. . . , ri−1,ti−1

by 
omputing ri−1,ℓ = π−1
1 (. . . (π−1

i−1(pi−1,ℓ)) . . . ). Player Pi

then runs (in her head) the �rst i − 1 rounds of the online inversion al-

gorithm on input x, using the advi
e string and the replies to the �rst i− 1
rounds of queries, all of whi
h, she 
an 
ompute using the partial replies
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written on the bla
kboard. Player Pi then produ
es the ith round of queries,

on whi
h, similarly to Player P1, she 
omputes the partial replies and writes

them on the bla
kboard.

� Player Pk−1 
ompletes the evaluation of round k − 2 of the queries by eval-

uating the remaining permutations π−1
1 ◦ · · · ◦ π−1

k−2 on the partial replies

written by Pk−2. Player Pk−1 then runs in her head all k − 2 rounds of the

online inversion algorithm and writes the output on the bla
kboard.

By de�nition, the output y of the algorithm satis�es π−1
1 ◦ · · · ◦ π−1

k−1(y) = x.
Sin
e all πi are permutations, it must hold πk−1 ◦ · · · ◦ π1(x) = y and so y is the


orre
t output for M̂PJ
perm

N,k .

The 
ommuni
ation 
onsists of the advi
e string written by Player P0 and

a partial reply for ea
h query, giving a total of S + T ⌈logN⌉. (The last player

writes the ⌈logN⌉-bit output, but does not need to write the response to the

T -th query).

Proof of Theorem 10. To prove Theorem 10, we instantiate Lemma 12 using

Hellman's 
y
le-walking algorithm [46℄, whi
h we re
all in the full version of this

paper. The algorithm inverts permutations using T queries and S bits of advi
e,

for every 
hoi
e of S and T su
h that ST ≥ 2N⌈logN + 1⌉. Furthermore the

algorithm is T -round adaptive. Spe
i�
ally, for k ≤
√
N + 2, using Hellman's

algorithm with T = k − 2 and S = ⌈(2N logN)/T ⌉ gives a proto
ol with 
om-

muni
ation O((N/k) logN). For k >
√
N + 2, we use Hellman's algorithm with

T =
√
N and S = 2

√
N(⌈logN⌉+1) to �nd that CC

1(M̂PJ
perm

N,k ) ≤ O(
√
N logN).

Then, applying Lemma 11 lets us 
on
lude that CC
1(MPJ

perm

N,k ) ≤ O(
√
N logN).

Remark 13 (The fun
tion 
ase). We might hope to show that a good fun
tion-

inversion algorithm, su
h as that of Fiat and Naor [28℄, implies a good proto
ol

for the general multiparty pointer-jumping problem, in whi
h ea
h player i has an
arbitrary fun
tion fi (whi
h may not be a permutation) written on her forehead.

We do not know how to prove su
h a result. The problem is that the redu
tion

of Lemma 12 requires that the 
omposition f−1
1 ◦ f−1

2 ◦ · · · ◦ f−1
k−1 is a fun
tion,

and this is not true in the general 
ase. (In 
ontrast, when f1, . . . , fk are all

permutations it holds that f−1
1 ◦ f−1

2 ◦ · · · ◦ f−1
k−1 is a permutation.) Sin
e several

upper bounds for the permutation variant of the pointer-jumping problem [11,

20, 63℄ have led to subsequent upper bounds for the unrestri
ted 
ase [11, 14℄,

there is still hope to generalize the result.

5 From 
ryptanalysis to data-stru
tures

In this se
tion, we show how to apply the Fiat-Naor algorithm for fun
tion inver-

sion [28℄ to obtain the best known data stru
ture for the systemati
 substring-

sear
h problem [22, 29, 30, 40, 41℄, in a wide range of parameter regimes. As a


onsequen
e of this 
onne
tion, we show that the open problem of improving

the known lower bounds on fun
tion inversion is equivalent to the open problem
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in the data-stru
ture literature of whether it is possible to improve the known

lower bounds for systemati
 substring sear
h.

In the systemati
 substring-sear
h problem, we are given a bitstring of length

N (�the text�) and a bitstring of length P ≪ N (�the pattern�). If the pattern

appears in the text, we must output an index i ∈ [N ] into the text at whi
h the

pattern begins. We take the pattern length to be P = Θ(logN).

An algorithm for systemati
 substring sear
h is a two-part algorithm A =
(A0,A1). The prepro
essing algorithm A0 takes as input only the text, may

perform arbitrary 
omputation on it, and then outputs an S-bit �index� into the

text. The online algorithm A1 takes as input the index and the pattern, queries

T bits of the text, and then outputs the lo
ation of pattern in the text, if one

exists.

By applying the Fiat-Naor fun
tion inversion algorithm [28℄, we obtain the

best known algorithm for systemati
 substring sear
h on texts of length N when

using an index of size O(N ǫ) bits, for any ǫ < 1. Gál and Miltersen [30℄ asked

for a strong lower bound against sear
h algorithms using an O(N/polylogN)-
bit index, and we answer this question by giving an upper bound that beats

their hypotheti
al lower bound. This 
onne
tion also gives eviden
e that �nding

a faster algorithm for systemati
 substring sear
h will require a 
ryptanalyti


breakthrough.

Known lower bounds. Demaine and López-Ortiz [22℄ prove that on texts of length

N with pattern length P = Θ(logN), any algorithm that uses an S-bit index

and makes T = o(P 2/logP ) queries in the online phase must satisfy ST =
Ω(N logN). Golynski [40,41℄ gives a stronger version of this bound that applies

even for larger T = o(
√
N/logN). Gál and Miltersen prove a slightly weaker

bound but that holds for all values of T . They show that for 
ertain pattern

lengths P = Θ(logN), and any 
hoi
e of T , any algorithm must satisfy ST =
Ω(N/logN).1

The main te
hni
al result of this se
tion is the following theorem, whi
h we

prove in the full version of this paper.

Theorem 14. For any integer N ∈ Z
>0

and integral 
onstant c > 2, if there is

an algorithm for systemati
 substring sear
h on texts of length cN · ⌈logN⌉ with

pattern length c · ⌈logN⌉ that uses an S-bit index and reads T bits of the text

in its online phase, then there is a bla
k-box algorithm for inverting fun
tions

f : [N ] → [N ] that uses S bits of advi
e and makes T online queries.

For any integer N ∈ Z
>0

, if there is a bla
k-box algorithm for inverting

fun
tions f : [2N ] → [2N ] that uses S bits of advi
e and T queries, then, for any

integral 
onstant c > 1, there is an algorithm for systemati
 substring sear
h on

1

Gál and Miltersen in fa
t prove their lower bound against algorithms that solve the

de
ision version of the problem, rather than the sear
h version that we des
ribe here.

Using an argument similar to that of Theorem 8, whi
h treats the 
ase of bla
k-box

PRG distinguishers, we 
an show that these problems are equivalent up to log fa
tors

when we demand 
onstant su

ess probability.
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texts of length N with pattern length c · ⌈logN⌉ that uses an Õ(S)-bit index and

reads Õ(T ) bits of the text in its online phase.

Remark 15. It is possible to make the prepro
essing time Õ(N) by allowing

the algorithm to fail with probability O(1/N) over the randomness of the pre-

pro
essing phase. Similarly, the online running time (in addition to the query


omplexity) is Õ(T ).

Proof idea. The full proof appears in the full version of this paper. In the �rst

part, we must use a substring-sear
h algorithm to invert a fun
tion f : [N ] →
[N ]. The idea is to 
onstru
t a text τ of length Θ(N logN) by writing out the

evaluation of f at all points in its domain, in order, with a few extra bits added

as delimiters. To invert a point y ∈ [N ], we use the substring sear
h algorithm

to �nd the lo
ation at whi
h y appears in the text τ . This lo
ation immediately

yields a preimage of y under f . Demaine and López-Ortiz [22℄ use a similar�

but more sophisti
ated en
oding�on the way to proving a data-stru
ture lower

bound for systemati
 substring sear
h. Their en
oding maps a fun
tion f : [N ]→
[N ] into a string of length (1 + o(1))N logN , while ours maps f into a string of

length 3N logN .

In the se
ond part, we must use a fun
tion-inversion algorithm to solve sub-

string sear
h on a text τ of length N with pattern length P = c · ⌈logN⌉, for
some 
onstant c > 1. To do so, we de�ne a fun
tion f ′: [N ] → [N c] su
h that

f ′(i) is equal to the length-P substring that starts from the ith bit of the text τ .
Given a pattern string σ = {0, 1}P , �nding the inverse of y under f ′

is enough

to lo
ate the position of the pattern string σ in the text τ . The only remaining


hallenge is that f ′
is length-in
reasing, rather than length-preserving. We then

use universal hashing to redu
e the problem of inverting length-in
reasing fun
-

tions to the problem of inverting length-preserving fun
tions, whi
h 
ompletes

the proof.

We now apply Theorem 14 to 
onstru
t a new algorithm for systemati
 sub-

string sear
h that resolves an open question of Gál and Miltersen. In their 2007

paper, Gál and Miltersen say that �it would be ni
e to prove a lower bound of,

say, the form,� T < N/polylogN ⇒ S > N/polylogN (using our notation) for

systemati
 substring sear
h [30℄. Goyal and Saks [42℄ use an elegant argument

to show that the spe
i�
 te
hnique of Gál and Miltersen 
annot prove this lower

bound. As a 
orollary of Theorem 14, we 
onstru
t an algorithm for substring

sear
h that beats the hypotheti
al lower bound.

Corollary 16. For any integral 
onstant c > 1 there is an algorithm for sys-

temati
 substring sear
h on texts of length N with pattern length c · ⌈logN⌉, that
uses an S-bit index, reads T bits of the text in its online phase, and a
hieves the

trade-o� S3T = Õ(N3).

Proof. Theorem 14 shows that systemati
 substring sear
h on strings of length

N with pattern length Θ(logN) redu
es to the problem of inverting arbitrary

fun
tions f : [N ] → [N ]. The inversion algorithm of Fiat and Naor [28℄ inverts

su
h fun
tions f a
hieving the desired 
omplexity bounds.
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In parti
ular, we get an algorithm that solves systemati
 substring sear
h using

an index size and time satisfying S = T = Õ(N3/4), for strings of length N
and patterns of length Θ(logN). Furthermore, this 
onne
tion, along with the

results of Se
tion 2.2, shows that improving on the ST = Ω̃(N) bound of Gál

and Miltersen will require advan
es in te
hniques for proving lower bounds on

the power of depth-two 
ir
uits.

6 Dis
ussion and future dire
tions

In this �nal se
tion, we dis
uss a few dire
tions for future work.

6.1 Whi
h lower-bound te
hniques 
an work?

In Se
tion 2, we showed that improving Yao's lower bound on fun
tion-inversion

algorithms requires new 
ir
uit lower bounds in the 
ommon-bits model. What

potential approa
hes do we have to prove su
h a lower bound?

Fun
tion inversion and Yao's �box problem.� Yao's �box problem� [60,

77℄ is a prepro
essing problem that is 
losely related to the fun
tion-inversion

problem. In the box problem, we are given ora
le a

ess to a fun
tion f : [N ]→
{0, 1}. First, we get to look at all of f and write down an S-bit advi
e string stf .

Later on, we are given our advi
e string stf and a point x ∈ [N ]. We may then

make T queries to f , provided that we do not query f(x), and we must then

output a value y ∈ {0, 1} su
h that y = f(x).
The box problem is in some sense the dual of the fun
tion-inversion problem:

we are given an f -ora
le and we must 
ompute f in the forward dire
tion, rather

than in the inverse dire
tion. The same ST = Ω̃(N) lower bound applies to

both problems [77℄. However, in 
ontrast to the inversion problem, for whi
h

we suspe
t that good parallel (i.e., non-adaptive) algorithms do not exist, the

natural algorithm for the box problem is already non-adaptive and a
hieves

ST = O(N logN).2

Puzzlingly, the two main te
hniques for proving time-spa
e lower bounds do

not distinguish between the fun
tion-inversion problem and Yao's box problem.

In parti
ular, the known lower bounds use 
ompression [21, 23, 33, 77℄ or bit-

�xing [18, 19, 65℄. Both te
hniques essentially look at the information that the

ora
le queries and their replies give on the pair (x, f(x)) indu
ed by the 
hallenge,

regardless of whether the a
tual 
hallenge is x, and the algorithm has to �nd

f(x) (as in the 
ase of Yao's box problem), or the 
hallenge is y = f(x), and the

algorithm has to �nd x = f−1(y) (as in the 
ase of the inversion problem).

Sin
e there is an ST = Õ(N) upper bound for Yao's box problem, then any

method that proves a lower bound better than ST = Ω(N) for fun
tion inversion

2

Divide [N ] into disjoint blo
ks of (at most) T + 1 points ea
h. For ea
h blo
k, store

the sum of the values of the fun
tion over all points in the blo
k. In the online phase,

query all the other points in the blo
k given by the 
hallenge point, and use the

stored sum to re
over the value of the fun
tion over the given 
hallenge point.
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must not apply to the box problem. Therefore, a �sanity 
he
k� for any improved

lower bound for the fun
tion-inversion problem is to verify that the same proof

te
hnique does not apply to Yao's box problem.

Strong-multis
ale-entropy. Dru
ker [25℄ shows, at the very least, that im-

proving lower bounds in the 
ommon-bits model will require new types of ar-

guments. In parti
ular, Jukna [50, Chapter 13℄, generalizing earlier arguments

of Cherukhin [16℄ de�ned the �strong multis
ale entropy� (SME) property of

Boolean operators. Jukna proved that an operator on n bits with the SME prop-

erty 
annot be 
omputed by 
ommon-bits 
ir
uits of width o(n1/2) and degree

o(n1/2). (These results are a
tually phrased in terms of the wire 
omplexity of

depth-two 
ir
uits with arbitrary gates, but the impli
ations to the 
ommon-bits

model are straightforward.)

Strengthening Jukna's lower bound on the 
ir
uit 
omplexity of SME op-

erators appeared to be one promising dire
tion for progress on lower bounds.

Thwarting this hope, Dru
ker 
onstru
ts an expli
it operator with the SME

property that has 
ir
uits in the 
ommon-bits model of width O(n1/2) and de-

gree O(n1/2). Thus, SME-type arguments alone are not strong enough to prove

that an operator 
annot be 
omputed by 
ir
uits of width O(n1/2+ǫ) and degree

O(n1/2+ǫ) for ǫ > 0.

6.2 One-to-one fun
tions

Prompted by the fa
t that many 
ryptanalyti
 appli
ations of fun
tion inversion

only require inverting inje
tive fun
tion, we initiated in Se
tion 3 the study of

inje
tive fun
tion inversion. Though we take the �rst step by 
onne
ting this

problem to the problem of distinguishing PRGs, the basi
 question remains: is

it easier to invert a random inje
tive fun
tion f : [N ] → [M ], for N ≪ M , than

it is to invert a random length-preserving fun
tion f : [N ] → [N ]? A better-than-

Hellman atta
k against inje
tive fun
tions would be remarkable. Or, 
an we prove

that inverting inje
tive fun
tions is as hard as inverting random fun
tions?

6.3 Barriers for upper bounds

Is there a barrier to getting an S = T = o(N2/3) algorithm for fun
tion inversion?

Barkan, Biham, and Shamir [5℄ prove a lower bound against a 
ertain restri
ted


lass of Hellman-like algorithms, whi
h suggests that better algorithms must use

new te
hniques. It would be satisfying to show at least that improving Hellman's

upper bound would result in a dramati
 algorithmi
 improvement for a well-

studied problem in another domain.
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A Proof of Lemma 11

The �rst step is to de�ne a permutation πβ : [N ] → [N ], for every fun
tion

β: [N ] → {0, 1}. We then use this permutation πβ to 
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Table 3: Example of the en
oding pro
edure of Lemma 11. N = 23, and β: [N ] → {0, 1}.
Note that the last 
olumn is a permutation over the elements of [N ]. Also note how β


an be re
overed from πβ(x) for all x 6= 0.
x β(x) (x|3, x|2, x|1) β(x|3)β(x|2)β(x|1) y = πβ(x)

000 1 (100, 010, 001) 001 100001 1 (101, 011, 001) 011 101010 0 (110, 010, 001) 101 000011 1 (111, 011, 001) 111 011100 0 (100, 010, 001) 001 010101 0 (101, 011, 001) 011 001110 1 (110, 010, 001) 101 100111 1 (111, 011, 001) 111 111

pointer-jumping instan
e (x, π1, . . . , πk−1, β) to an integer-valued pointer-jumping

instan
e (x, π1, . . . , πk−1, πβ). Solving the integer-valued instan
e using a pro-

to
ol for M̂PJ
perm

N,k is then enough�with a few extra bits of 
ommuni
ation�to

solve the Boolean-valued instan
e of MPJ
perm

N,k .

Towards 
onstru
ting πβ , 
onsider �rst the 
ase when N is a power of two.

For N = 2n, 
onsider the following mapping from {0, 1}N to permutations on

{0, 1, . . . , N − 1} = {0, 1}n. On β: {0, 1}n → {0, 1} we 
onstru
t a permutation

πβ on {0, 1}n as follows: let x ∈ {0, 1}n and let x = xnxn−1 . . . x1 be the binary

representation of x. Set πβ(x) = y = ynyn−1 . . . y1 de�ned by yi = β(x|i)⊕xi⊕1
where x|i= 0 . . . 01xi−1xi−2 . . . x1. The following two properties hold:

� The mapping πβ de�ned above is a permutation. To see this let x 6= x′
be

two distin
t elements in {0, 1}n, and let y = πβ(x) and y′ = πβ(x
′). Let

i ∈ [n] be the rightmost bit position on whi
h x and x′
di�er. Then xi 6= x′

i

but x|i= x′|i. Therefore yi = β(x|i) ⊕ xi ⊕ 1 6= β(x′|i) ⊕ x′

i ⊕ 1 = y′i, so

y 6= y′.

� For any x ∈ {0, 1}n su
h that x = xn . . . x1 6= 0, let i be the leftmost bit

position su
h that xi = 1. It then holds that β(x) is equal to the ith bit of

πβ(x).

Note that the latter property guarantees that the value of β(x) for every x 6= 0

an be re
overed from a single bit of πβ(x).

For N whi
h is not a power of 2, we 
an view N as a sum

∑ℓ
j=1 2

nj
of at

most ⌈logN⌉ powers of 2, and 
onstru
t a permutation πβ on {0, . . . , N − 1} =
{0, 1}n1 ∪· · ·∪{0, 1}nℓ

as a union of permutations on {0, 1}nj
. By the properties

above, for all but ℓ = ⌈logN⌉ bad points, the value of β 
an be re
overed from

the 
orresponding value of πβ . Note that the set of bad points depends only on

N and not on β. We give an example of this en
oding pro
edure in Table 3.

Therefore, given a 
ommuni
ation proto
ol for M̂PJ
perm

N,k , we 
onstru
t a pro-

to
ol for MPJ
perm

N,k as follows. Let β ∈ {0, 1}N be the input (on the forehead)

of the last player. Ea
h of the �rst k − 1 players 
omputes the permutation

πβ from β a

ording to the mapping above. The �rst player also writes on the

bla
kboard the value of β evaluated on all of the bad points of πβ . The players

then run the proto
ol for M̂PJ
perm

N,k on the instan
e (x, π1, . . . , πk−2, πβ).
The last player 
omputes the output of the original proto
ol πβ ◦πk−2 ◦ · · · ◦

π1(x) = πβ(x̂) ∈ {0, 1, . . . , N − 1} where x̂ = πk−2 ◦ · · · ◦ π1(x). If x̂ is not a

bad point she 
an re
over and output β ◦ πk−2 ◦ · · · ◦ π1(x) = β(x̂) ∈ {0, 1} from

πβ(x̂). Otherwise, if x̂ is a bad point, she outputs the value β(x̂), whi
h the �rst

player wrote on the bla
kboard.
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The new proto
ol in
reases the 
ommuni
ation 
omplexity of the original

proto
ol by ⌈logN⌉.
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