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Sahai and Vadhan (JACM, 2003), is an efficient transformation taking
as input a pair of circuits (C0, C1) and an integer k and outputting a new
pair of circuits (D0, D1) such that if SD(C0, C1) ≥ α then SD(D0, D1) ≥
1−2−k and if SD(C0, C1) ≤ β then SD(D0, D1) ≤ 2−k. The polarization
lemma is known to hold for any constant values β < α2, but extending
the lemma to the regime in which α2 ≤ β < α has remained elusive. The
focus of this work is in studying the latter regime of parameters. Our
main results are:

1. Polarization lemmas for different notions of distance, such as Tri-
angular Discrimination (TD) and Jensen-Shannon Divergence (JS),
which enable polarization for some problems where the statistical
distance satisfies α2 < β < α. We also derive a polarization lemma
for statistical distance with any inverse-polynomially small gap be-
tween α2 and β (rather than a constant).

2. The average-case hardness of the statistical difference problem (i.e.,
determining whether the statistical distance between two given cir-
cuits is at least α or at most β), for any values of β < α, implies
the existence of one-way functions. Such a result was previously only
known for β < α2.

3. A (direct) constant-round interactive proof for estimating the sta-
tistical distance between any two distributions (up to any inverse
polynomial error) given circuits that generate them. Proofs of closely
related statements have appeared in the literature but we give a new
proof which we find to be cleaner and more direct.
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1 Introduction

The Statistical Difference Problem, introduced by Sahai and Vadhan
[SV03], is a central computational (promise) problem in complexity theory and
cryptography, which is also intimately related to the study of statistical zero-
knowledge (SZK). The input to this problem is a pair of circuits C0 and C1,
specifying probability distributions (i.e., that are induced by feeding the circuits
with a uniformly random string). YES instances are those in which the statistical
distance1 between the two distributions is at least 2/3 and NO instances are those
in which the distance is at most 1/3. Input circuits that do not fall in one of
these two cases are considered to be outside the promise (and so their value is
left unspecified).

The choice of the constants 1/3 and 2/3 in the above definition is somewhat
arbitrary (although not entirely arbitrary as will soon be discussed in detail).
A more general family of problems can be obtained by considering a suitable
parameterization. More specifically, let 0 ≤ β < α ≤ 1. The (α, β) parameterized
version of the Statistical Difference Problem, denoted SDPα,β , has as its
YES inputs pairs of circuits that induce distributions that have distance at least
α whereas the NO inputs correspond to circuits that induce distributions that
have distance at most β.

Definition 1.1 (Statistical Difference Problem). Let α, β : N → [0, 1]
with α(n) > β(n) for every n. The Statistical Difference Problem with
promise (α, β), denoted SDPα,β, is given by the sets

SDPα,βY =
{

(C0, C1) | SD(C0, C1) ≥ α(n)
}

and

SDPα,βN =
{

(C0, C1) | SD(C0, C1) ≤ β(n)
}
,

where n is the output length of the circuits C0 and C1.2

(Here and below we abuse notation and use C0 and C1 to denote both the circuits
and the respective distributions that they generate.)

The elegant polarization lemma of [SV03] shows how to polarize the statistical
distance between two distributions. In more detail, for any constants α and β
such that β < α2, the lemma gives a transformation that makes distributions
that are at least α-far be extremely far and distributions that are β-close be

1 Recall that the statistical distance between two distributions P and Q over a set Y
is defined as SD(P,Q) = 1

2

∑
y∈Y |Py −Qy|, where Py (resp., Qy) is the probability

mass that P (resp., Q) puts on y ∈ Y.
2 In prior works α and β were typically thought of as constants (and so their depen-

dence on the input was not specified). In contrast, since we will want to think of
them as parameters, we choose to let them depend on the output length of the cir-
cuit since this size seems most relevant to the distributions induced by the circuits.
Other natural choices could have been the input length or the description size of
the circuits. We remark that these different choices do not affect our results in a
fundamental way.
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extremely close. Beyond being of intrinsic interest, the polarization lemma is
used to establish the SZK completeness of SDPα,β , when α2 > β, and has other
important applications in cryptography such as the amplification of weak public
key encryption schemes to full fledged ones [DNR04,HR05].

Sahai and Vadhan left the question of polarization for parameters α and
β that do not meet the requirements of their polarization lemma as an open
question. We refer to this setting of α and β as the non-polarizing regime. We
emphasize that by non-polarizing we merely mean that in this regime polariza-
tion is not currently known and not that it is impossible to achieve (although
some barriers are known and will be discussed further below). The focus of this
work is studying the Statistical Difference Problem in the non-polarizing
regime.

1.1 Our Results

We proceed to describe our results.

1.1.1 Polarization and SZK Completeness for Other Notions of Dis-
tance

The statistical distance metric is one of the central information theoretic tools
used in cryptography as it is very useful for capturing similarity between dis-
tributions. However, in information theory there are other central notions that
measure similarity such as mutual information and KL divergence as well as
others.

Loosely speaking, our first main result shows that polarization is possible
even in some cases in which β ≥ α2. However, this result actually stems from
a more general study showing that polarization is possible for other notions of
distance between distributions from information theory, which we find to be of
independent interest.

When distributions are extremely similar or extremely dissimilar, these dif-
ferent notions of distance are often (but not always) closely related and hence
interchangeable. This equivalence is particularly beneficial when considering ap-
plications of SZK—for some applications one distance measure may be easier to
use than others. For example, showing that the average-case hardness of SZK im-
plies one-way functions can be analyzed using statistical distance (e.g., [Vad99,
Section 4.8]), but showing that every language in SZK has instance-dependent
commitments is naturally analyzed using entropy (e.g., [OV08]).

However, as the gaps in the relevant distances get smaller (i.e., the distri-
butions are only somewhat similar or dissimilar), the relation between different
statistical properties becomes less clear (for example, the reduction from SDPα,β

to the Entropy Difference Problem of [GV99] only works when roughly
α2 > β). This motivates studying the computational complexity of problems de-
fined using different notions of distance in this small gap regime. Studying this
question can be (and, as we shall soon see, indeed is) beneficial in two aspects.
First, providing a wider bag of statistical properties related to SZK, which can
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make certain applications easier to analyze. Second, the computational complex-
ity of these distance notions might shed light on the computational complexity
of problems involving existing distance notions (e.g., SDPα,β when α2 < β).

We focus here on two specific distance notions—the triangular discrimination
and the Jensen-Shannon divergence, defined next.

Definition 1.2 (Triangular Discrimination). The Triangular Discrimination
(a.k.a. Le Cam divergence) between two distributions P and Q is defined as

TD(P,Q) =
1

2

∑
y∈Y

(Py −Qy)2

Py +Qy
,

where Y is the union of the supports of P and Q.
The Triangular Discrimination Problem with promise (α, β), denoted

TDPα,β, is defined analogously to SDPα,β, but with respect to TD rather than
SD.

The triangular discrimination is commonly used, among many other appli-
cations, in statistical learning theory for parameter estimation with quadratic
loss, see [Cam86, P. 48] (in a similar manner to how statistical distance char-
acterizes the 0-1 loss function in hypothesis testing). Jumping ahead, while the
definition of triangular discrimination seems somewhat arbitrary at first glance,
in Section 2 we will show that this distance notion characterizes some basic
phenomena in the study of statistical zero-knowledge. Triangular discrimination
has recently found usage in theoretical computer science, and even specifically
in problems related to SZK. Yehudayoff [Yeh16] showed that using TD yields
a tighter analysis of the pointer chasing problem in communication complexity.
The work of Komargodski and Yogev [KY18] uses triangular discrimination to
show that the average-case hardness of SZK implies the existence of distribu-
tional collision resistant hash functions.

Next, we define the Jensen-Shannon Divergence. To start with, recall that the
KL-divergence between two distributions P and Q is defined3 as KL(P ||Q) =∑
y∈Y Py log(Py/Qy). Also, given distributions P0 and P1 we define the dis-

tribution 1
2P0 + 1

2P1 as the distribution obtained by sampling a random coin
b ∈ {0, 1} and outputting a sample y from Pb (indeed, this notation corresponds
to arithmetic operations on the probability mass functions). The Jensen-Shannon
divergence measures the mutual information between b and y.

Definition 1.3 (Jensen-Shannon Divergence). The Jensen-Shannon diver-
gence between two distributions P and Q is defined as

JS(P,Q) =
1

2
KL

(
P

∥∥∥∥P +Q

2

)
+

1

2
KL

(
Q

∥∥∥∥P +Q

2

)
.

The Jensen-Shannon Divergence Problem with promise (α, β), denoted
JSPα,β, is defined analogously to SDPα,β, but with respect to JS rather than SD.

3 To be more precise, in this definition we view 0 · log 0
0

as 0 and define the KL-
divergence to be ∞ if the support of P is not contained in that of Q.
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The Jensen-Shannon divergence enjoys a couple of important properties (in our
context) that the KL-divergence lacks: it is symmetric and bounded. Both tri-
angular discrimination and Jensen-Shannon divergence (as well as statistical
distance and KL-divergence) are types of f -divergences, a central concept in in-
formation theory (see [PW17, Section 6] and references therein). They are both
non-negative and bounded by one.4 Finally, the Jensen-Shannon divergence is a
metric, while the triangular discrimination is a square of a metric.

With these notions of distance and corresponding computational problems
in hand, we are almost ready to state our first set of results. Before doing so, we
introduce an additional useful technical definition.

Definition 1.4 (Separated functions). Let g : N→ [0, 1]. A pair of poly(n)-
time computable functions (α, β), where α = α(n) ∈ [0, 1] and β = β(n) ∈ [0, 1],
is g-separated if α(n) ≥ β(n) + g(n) for every n ∈ N.

We denote by (1/poly)-separated the set of all pairs of functions that are
(1/p)-separated for some polynomial p. Similarly, we denote by (1/log)-separated
the set of all pairs of functions that are (1/(c log))-separated for some constant
c > 0.

We can now state our first set of results: that both TDP and JSP, with a
noticeable gap, are SZK complete.

Theorem 1.5. Let (α, β) be (1/poly)-separated functions such that there exists

a constant ε ∈ (0, 1/2) such that 2−n
1/2−ε ≤ β(n) and α(n) ≤ 1 − 2−n

1/2−ε
, for

every n ∈ N. Then, TDPα,β is SZK complete.

Theorem 1.6. For (α, β) as in Theorem 1.5, the problem JSPα,β is SZK com-
plete.

The restriction on 2−n
1/2−ε ≤ β(n) and α(n) ≤ 1−2−n

1/2−ε
should be interpreted

as a non-degeneracy requirement (which we did not attempt to optimize), where
we note that some restriction seems inherent. Moreover, we can actually decouple
the assumptions in Theorems 1.5 and 1.6 as follows. To show that TDPα,β and

JSPα,β are SZK-hard, only the non-degeneracy assumption (i.e., 2−n
1/2−ε ≤ β(n)

and α(n) ≤ 1 − 2−n
1/2−ε

) is needed. On the other hand, to show that these
problems are in SZK we only require that (α, β) are (1/poly)-separated.

Note that in particular, Theorems 1.5 and 1.6 imply polarization lemmas for
both TD and JS. For example, for triangular discrimination, since TDPα,β ∈
SZK and TDP1−2−k,2−k is SZK-hard, one can reduce the former to the latter.

Beyond showing polarization for triangular discrimination, Theorem 1.5 has
implications regarding the question of polarizing statistical distance, which was
our original motivation. It is known that the triangular discrimination is sand-
wiched between the statistical distance and its square; namely, for every two

4 In the literature these distances are sometimes defined to be twice as much as our
definitions. In our context, it is natural to have the distances bounded by one.
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distributions P and Q it holds that (see [Top00, Eq. (11)]):

SD(P,Q)2 ≤ TD(P,Q) ≤ SD(P,Q) (1.1)

Thus, the problem SDPα,β is immediately reducible to TDPα
2,β , which The-

orem 1.5 shows to be SZK-complete, as long as the gap between α2 and β is
noticeable. Specifically, we have the following corollary.

Corollary 1.7. Let (α, β) be as in Theorem 1.5, with the exception that (α2, β)
are (1/poly)-separated (note that here α is squared). Then, the promise problem
SDPα,β is SZK complete.

We highlight two implications of Theorem 1.5 and Corollary 1.7 (which were
also briefly mentioned above).

Polarization with Inverse Polynomial Gap. Observe that Corollary 1.7 implies
polarization of statistical distance in a regime in which α and β are functions
of n, the output length of the two circuits, and α2 and β are only separated by
an inverse polynomial. This is in contrast to most prior works which focus on α
and β that are constants. In particular, Sahai and Vadhan’s [SV03] proof of the
polarization lemma focuses on constant α and β and can be extended to handle
an inverse logarithmic gap, but does not seem to extend to an inverse polynomial
gap.5 Corollary 1.7 does yield such a result, by relying on a somewhat different
approach.

Polarization Beyond α2 > β. Theorem 1.5 can sometimes go beyond the re-
quirement that α2 > β for polarizing statistical distance. Specifically, it shows
that any problem with noticeable gap in the triangular discrimination can be
polarized. Indeed, there are distributions (P,Q) and (P ′, Q′) with SD(P,Q) >
SD(P ′, Q′) > SD(P,Q)2 but still TD(P,Q) > TD(P ′, Q′).6 Circuits generating
such distributions were until now not known to be in the polarizing regime, but
can now be polarized by combining Theorem 1.5 and Eq. (1.1).

1.1.2 From Statistical Difference to One-way Functions

We continue our study of the Statistical Difference Problem, focusing
on the regime where β < α (and in particular even when β ≥ α2). We show
that in this regime the SDPα,β problem shares many important properties of
SZK (although we fall short of actually showing that it lies in SZK—which is
equivalent to polarization for any β < α).

5 Actually, it was claimed in [GV11] that the [SV03] proof does extend to the setting
of an inverse polynomial gap between α2 and β but this claim was later retracted,
see http://www.wisdom.weizmann.ac.il/~/oded/entropy.html.

6 For example, for a parameter γ ∈ [0, 1] consider the distributions Rγ0 and Rγ1 over
{0, 1, 2}: Rγb puts γ mass on b and 1 − γ mass on 2. It holds that SD(Rγ0 , R

γ
1 ) =

TD(Rγ0 , R
γ
1 ) = γ. If, say, (P,Q) = (R

1/2
0 , R

1/2
1 ) and (P ′, Q′) = (R

1/3
0 , R

1/3
1 ), then

SD(P,Q) > SD(P ′, Q′) > SD(P,Q)2 but TD(P,Q) > TD(P ′, Q′).

http://www.wisdom.weizmann.ac.il/~/oded/entropy.html
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First, we show that similarly to SZK, the average-case hardness of SDPα,β

implies the existence of one-way functions. The fact that average-case hardness
of SZK (or equivalently SDPα,β for β < α2) implies the existence of one-way
functions was shown by Ostrovsky [Ost91]. Indeed, our contribution is in showing
that the weaker condition of β < α (rather than β < α2) suffices for this result.

Theorem 1.8. Let (α, β) be (1/poly)-separated functions. Suppose that SDPα,β

is average-case hard. Then, there exists a one-way function.

The question of constructing one-way functions from the (average-case) hard-
ness of SDP is closely related to a result of Goldreich’s [Gol90] showing that
the existence of efficiently sampleable distributions that are statistically far but
computationally indistinguishable implies the existence of one-way functions.
Our proof of Theorem 1.8 allows us to re-derive the following strengthening
of [Gol90], due to Naor and Rothblum [NR06, Theorem 4.1]: for any (1/poly)-
separated (α, β), the existence of efficiently sampleable distributions whose sta-
tistical distance is α but no efficient algorithm can distinguish between them
with advantage more than β, implies the existence of one-way functions. See
further discussion in Theorem 2.1.

1.1.3 Interactive Proof for Statistical Distance Approximation

As our last main result, we construct a new interactive protocol that lets a
verifier estimate the statistical distance between two given circuits up to any
noticeable precision.

Theorem 1.9. There exists a constant-round public-coin interactive protocol
between a prover and a verifier that, given as input a pair of circuits (C0, C1), a
claim ∆ ∈ [0, 1] for their statistical distance, and a tolerance parameter δ ∈ [0, 1],
satisfies the following properties:

– Completeness: If SD(C0, C1) = ∆, then the verifier accepts with probability
at least 2/3 when interacting with the honest prover.

– Soundness: If |SD(C0, C1)−∆| ≥ δ, then when interacting with any (pos-
sibly cheating) prover, the verifier accepts with probability at most 1/3.

– Efficiency: The verifier runs in time poly(|C0|, |C1|, 1/δ).

(As usual the completeness and soundness errors can be reduced by applying
parallel repetition. We can also achieve perfect completeness using a result from
[FGM+89].)

Theorem 1.9 is actually equivalent to the following statement.

Theorem 1.10 ([BL13, Theorem 6],[BBF16, Theorem 2]). For any (α, β)
that are (1/poly)-separated, it holds that SDPα,β ∈ AM ∩ coAM.7

7 Recall that AM is the class of problems that have constant-round public-coin inter-
active proofs. coAM is simply the complement of AM.
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It is believed that AM∩ coAM lies just above SZK, and if we could show that
SDPα,β is in SZK, that would imply SD polarization for such α and β.

Since Theorem 1.9 can be derived from existing results in the literature, we
view our main contribution to be the proof which is via a single protocol that
we find to be cleaner and more direct than alternate approaches.

Going into a bit more detail, [BL13,BBF16]’s proofs are in fact a combination
of two separate constant-round protocols. The first protocol is meant to show
that SDPα,β ∈ AM and follows directly by taking the interactive proof for SDP
presented by Sahai and Vadhan (which has completeness error (1 − α)/2 and
soundness error (1+β)/2), and applying parallel repetition (and the private-coin
to public-coin transformation of [GS89]).

The second protocol is meant to show that SDPα,β ∈ coAM, and is based on
a protocol by Bhatnagar, Bogdanov, and Mossel [BBM11]. Another approach for
proving that SDPα,β ∈ coAM is by combining results of [GVW02] and [SV03].
Goldreich, Vadhan and Wigderson [GVW02] showed that problems with laconic
interactive proofs, that is proofs where the communication from the prover to
the verifier is small, have coAM proofs. Sahai and Vadhan [SV03], as described
earlier, showed that SDPα,β , and SZK in general, has an interactive proof where
the prover communicates a single bit. Combining these results immediately gives
a coAM protocol for SDPα,β when (α, β) are Ω(1)-separated. As for (α, β) that
are only (1/poly)-separated, while the [GVW02] result as-stated does not suffice,
it seems that their protocol can be adapted to handle this case as well.8

As mentioned above, we give a different, and direct, proof of Theorem 1.9 that
we find to be simpler and more natural than the above approach. In particular,
our proof utilizes the techniques developed for our other results, which enable us
to give a single and more general protocol—one that approximates the statistical
difference (as in Theorem 1.9), rather than just deciding if that distance is large
or small.

At a very high level, our protocol may be viewed as an application of the
set-lower-bound-based techniques of Akavia et al [AGGM06] or Bogdanov and
Brzuska [BB15] to our construction of a one-way function from the average-case
hardness of SDP (i.e., Theorem 1.8), though there are technical differences in
our setting. Both these papers show how to construct a coAM protocol for any
language that can be reduced, to inverting a size-verifiable one-way function.9

While we do not know how to reduce solving SDP in the worst-case to inverting
any specific function, we make use of the fact that associated with each instance
of SDP, there is an instance-dependent function [OW93], that is size-verifiable
on the average.

8 In more detail, the [GVW02] result is stated for protocols in which the gap between
completeness and soundness is constant (specifically 1/3). In case α and β are only
1/poly-separated, the [SV03] protocol only has a 1/poly gap (and we cannot afford
repetition since it will increase the communication). Nevertheless, by inspecting the
[GVW02] proof, it seems as though it can be adapted to cover any noticeable gap.

9 Informally, a function f is size-verifiable if given an output y = f(x), there exists an
AM protocol to estimate |f−1(y)|.
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1.2 Additional Related Works

Barriers to Improved Polarization. Holenstein and Renner [HR05] show that
in a limited model dubbed “oblivious polarization”, the condition α2 > β on
the statistical distance is necessary for polarizing statistical distance.10 All the
past polarization reductions fit in this framework and so do ours. Specifically,
Holenstein and Renner show distributions where α2 < β and cannot be polar-
ized in this model. We show a condition that suffices for polarization, even for
distributions where α2 ≤ β. This does not contradict the [HR05] result because
their distributions do not satisfy this condition.

In a more general model, [LZ17,CGVZ18] showed lower bounds for SZK-
related distribution manipulation tasks. The model they consider allows the
reduction arbitrary oracle access to the circuits that sample the distributions,
as opposed to the more restricted model of oblivious polarization. In this model,
Lovett and Zhang [LZ17] show that efficient entropy reversal is impossible11,
and Chen, Göös, Vadhan and Zhang [CGVZ18] showed that entropy flattening
requires Ω(n2) invocations to the underlying circuit. Showing lower bounds for
polarization in this more general model remains an interesting open question.

Polarization for other Notions of Distance. In the process of characterizing zero-
knowledge in the help model, Ben-Or and Gutfreund [BG03] and Chailloux et
al. [CCKV08] gave a polarization procedure that considers two different distances
for every (1/log)-separated α > β: if the statistical distance is at most β, then it
decreases to 2−k; and if the mutual disjointness12 is at least α, then it increases
to 1− 2−k. Fehr and Vaudenay [FV17] raise the question of polarization for the
fidelity measure13 but leave resolving it as an open problem (see Section 2.3.3
for details).

SDP and Cryptography. We show that average-case hardness of SDPα,β implies
one-way functions. In the reverse direction, Bitansky et al. [BDV17] show that
one-way functions do not imply even worst-case hardness of SDPα,β in a black-
box manner for any (1/poly)-separated α, β.14

10 Roughly speaking, an oblivious polarization is a randomized procedure to polarize
without invoking the circuits; it takes as input a bit σ and an integer k, and outputs
a sequence of bits (bσ1 , . . . , b

σ
` ) and a string rσ. Given a pair of circuits (C0, C1), such

a procedure defines a pair of circuits (D0, D1) as follows: Dσ samples (bσ1 , . . . , b
σ
` )

and rσ and outputs (Cbσ1 , . . . , Cbσ` , r
σ). We are guaranteed that if SD(C0, C1) ≥ α,

then SD(D0, D1) ≥ 1− 2−k, and if SD(C0, C1) ≤ β, then SD(D0, D1) ≤ 2−k.
11 Entropy reversal refers to the task of given circuit C and parameter t output (C′, t′)

such that when H(C) > t, then H(C′) < t′− 1 and if H(C) < t− 1, then H(C′) > t′.
12 For an ordered pair of distributions P and Q, their disjointness is

Disj(P,Q) = Pry∼P [y 6∈ Supp(Q)], and their mutual disjointness is MutDisj(P,Q) =
min(Disj(P,Q),Disj(Q,P )).

13 For two distributions P and Q, their fidelity is defined as Fidelity(P,Q) =∑
y

√
Py ·Qy.

14 While [BDV17] state the result for constant α, β, the construction and analysis
extend to our setting.



10 Authors Suppressed Due to Excessive Length

2 Techniques

We begin in Section 2.1 by describing how to construct a one-way function
from the average-case hardness of SD with any noticeable gap (Theorem 1.8).
The techniques used there are also central in our interactive protocol for SD
estimation (Theorem 1.9), which is described in Section 2.2, as well as in our
proof that triangular discrimination and Jensen-Shannon divergence are SZK
complete (Theorems 1.5 and 1.6), which are outlined in Section 2.3 below.

2.1 One-Way Function From Statistical Difference with Any
Noticeable Gap

We first show the existence of distributionally one-way functions. Namely, an
efficiently computable function f for which it is hard to sample a uniformly
random pre-image for a random output y (rather than an arbitrary pre-image as
in a standard one-way function). This suffices since Impagliazzo and Luby [IL89]
showed how to convert a distributionally one-way function into a standard one.

Assume that we are given a distribution over a pair of circuits (C0, C1) such
that it is hard to distinguish between the cases SD(C0, C1) ≥ α or SD(C0, C1) ≤
β, for some α > β + 1/poly. A natural candidate for a one-way function is the
(efficiently computable) function

fC0,C1
(b, x) = Cb(x). (2.1)

Namely, f is parameterized by the circuits (C0, C1) (which are to be sampled
according to the hard distribution), and the bit b chooses which of the two circuits
would be evaluated on the string x. This function appears throughout the SZK
literature (e.g., it corresponds to the verifier’s message in the SDP protocol of
[SV03]).

Assume that f is not distributionally one-way, and let A be an algorithm that
given (C0, C1) and a random input y—sampled by first drawing a uniformly ran-
dom bit b and a string x and then computing y = Cb(x)—outputs a uniformly
random element (b′, x′) from the set f−1C0,C1

(y) = {(b, x) : Cb(x) = y}. For sim-
plicity, we assume that A is a perfect distributional inverter, that is for every
fixed (C0, C1, y) it outputs uniformly random elements of f−1C0,C1

(y).

Arguably, the most natural approach for distinguishing between the cases of
high or low statistical distance given the two circuits and the inverter, is to choose
x and b at random, invoke the inverter to obtain (b′, x′), and check whether
b = b′. Indeed, if SD(C0, C1) = 1, then Pr[b = b′] = 1, and if SD(C0, C1) = 0,
then Pr[b = b′] = 1

2 . Thus, we can distinguish between the cases with constant
advantage.

But what happens when the gap in the statistical distance is smaller? To
analyze this case we want to better understand the quantity Pr[b = b′]. It turns
out that this quantity is characterized by the triangular discrimination between
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the circuits. Let Pb denote the output distribution of Cb. Using elementary ma-
nipulations (and the fact that 1

2 (P0 + P1) is a distribution), it holds that15

Pr[b = b′] =
1

2
Pr
y∼P0

[b′ = 0] +
1

2
Pr
y∼P1

[b′ = 1] (2.2)

=
1

2

∑
y

P0(y)2 + P1(y)2

P0(y) + P1(y)

=
1

4

∑
y

(P0(y) + P1(y))2

P0(y) + P1(y)
+

1

4

∑
y

(P0(y)− P1(y))2

P0(y) + P1(y)

=
1

2
+

1

4

∑
y

(P0(y)− P1(y))2

P0(y) + P1(y)

=
1 + TD(C0, C1)

2
.

Based on the general bounds between triangular discrimination and statistical
distance (Eq. (1.1)), which are known to be tight, all we are guaranteed is

SD(C0, C1) ≥ α =⇒ Pr[b = b′] ≥ 1 + α2

2

SD(C0, C1) ≤ β =⇒ Pr[b = b′] ≤ 1 + β

2
.

So, this approach is limited to settings in which α2 > β.

To overcome this limitation we want to find a quantity that is more tightly
characterized by the statistical distance of the circuits. This quantity, which we
call imbalance, will be central in all of the proofs in this work. The imbalance
measures how likely it is that an output string y was generated from C1 versus
C0. Formally,

θy
∆
= Pr[b = 1|y]− Pr[b = 0|y] =

P1(y)− P0(y)

P1(y) + P0(y)
. (2.3)

Elementary manipulations yields that

SD(C0, C1) =
1

2

∑
y

|P1(y)− P0(y)| (2.4)

=
∑
y

1

2
(P1(y) + P0(y)) · |P1(y)− P0(y)|

P1(y) + P0(y)

= E
y∼( 1

2P0+
1
2P1)

[|θy|].

15 In Section 1 we used Py to denoted the probability mass a distribution P puts on an
element y, while here we use P (y). In the rest of this work we choose which notation
to use based on readability and context.
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(Recall that y is sampled by first drawing a uniform random bit b and a string
x, and setting y = Cb(x). Hence, using the notation that Pb denotes the output
distributions of the circuit Cb, the marginal distribution of y is 1

2P0 + 1
2P1.)

Eq. (2.4) naturally gives rise to the following algorithm for approximating
SD(C0, C1):

Algorithm to estimate SD(C0, C1) using the inverter A:

1. Sample polynomially many y1, . . . , yt independently from 1
2P0 + 1

2P1.
2. For every yi:

(a) Call A(yi) polynomially many times to get b′1, . . . , b
′
k.

(b) Let m be the number of ones in b′1, . . . , b
′
k.

(c) Set p1 = m/k, p0 = (k −m)/k and θ̂i = p1 − p0.

3. Return 1
t

∑t
i=1 |θ̂i|.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The quantities p1 and p0 are in fact the empirical distribution of b condi-
tioned on y, computed using k samples. By choosing large enough k, we get
that (p1, p0) ≈ (Pr[b = 1|y],Pr[b = 0|y]) and so θ̂i ≈ θyi . By then choosing large

enough t, we get that 1
t

∑t
i=1 |θ̂i| ≈ SD(C0, C1). Hence, we can distinguish be-

tween the cases SD(C0, C1) ≥ α or SD(C0, C1) ≤ β, for any α > β + 1/poly.
Essentially the same proof continues to work if A is not a perfect distribu-

tional inverter, but is close enough to being so—that is, on input y its output
distribution is close to being uniform over f−1(y) for most (but not all) tuples
C0, C1, y.

The above proof strategy also yields a new proof for the strengthening of
[Gol90] by Naor and Rothblum [NR06].16 See Theorem 2.1 below for a discussion
about the differences between our techniques and those of [NR06].

Distributional Collision Resistant Hash Function. As a matter of fact, the above
proof also shows that the average-case hardness of SDPα,β also implies that the
function fC0,C1

(b, x) = Cb(x) is a distributional k-multi-collision17 resistant hash

function, for k = O
(

logn
(α−β)2

)
. That is, for a random output y of f , it is difficult

to find k random preimages of y. This is because access to such a set of k random
pre-images of random yi’s is all we use the inverter A for in the above reduction,
and it could handily be replaced with a k-distributional multi-collision finder.

Remark 2.1 (Comparison to [NR06]) Naor and Rothblum’s proof implic-
itly attempts to approximate the maximal likelihood bit of y; that is, the bit bml

16 Namely, that for any (1/poly)-separated (α, β), the existence of efficiently sampleable
distributions whose statistical distance is α but no efficient algorithm can distinguish
between them with advantage more than β, implies the existence of one-way func-
tions.

17 Multi-collision hash functions, recently considered in several works
[KNY17,KNY18,BKP18,BDRV18], are hash functions for which it is hard to
find multiple inputs that all hash to the same output.
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such that Pr[b = bml|y] > Pr[b = 1− bml|y] (breaking ties arbitrarily). Indeed,
the maximal likelihood bit, as shown by [SV03], is closely related to the statisti-
cal distance:

Pr[b = bml] =
1 + SD(C0, C1)

2
. (2.5)

To approximate bml, [NR06] make, like us, many calls to A(y), and take the
majority of the answered bits. The idea is that when the statistical distance is
large, the majority is likely to be bml, and when the statistical distance is small,
the majority is equally likely to be bml or 1− bml.

To formally prove this intuition, it must hold that if SD(C0, C1) is large, then
Pr[b = bml|y]−Pr[b = 1− bml|y] is sufficiently large; putting in our terminology
and using Eq. (2.4), if Ey[|θy|] is sufficiently large, then |θy| should be large for
a random y (and the opposite should hold if SD(C0, C1) is small). While these
statements are true, in order to prove them, [NR06]’s analysis involves some
work which results in a more complicated analysis.

We manage to avoid such complications by using the imbalance θy and its
characterization of statistical distance (Eq. (2.4)). Furthermore, [NR06]’s ap-
proach only attempts to distinguish between the cases when SD(C0, C1) is high
or low, while our approach generalizes to approximate SD(C0, C1). Lastly, Naor
and Rothblum do not construct one-way functions based on the average-case hard-
ness of SDPα,β with any noticeable gap as we do. Using their technique to do so
seems to require additional work—work that our analysis significantly simplifies.

2.2 Interactive Proof for Statistical Distance Approximation

We proceed to describe a constant-round public-coin protocol in which a compu-
tationally unbounded prover convinces a computationally bounded verifier that
the statistical difference of a given pair of circuits is what the prover claims it to
be, up to any inverse polynomial (additive) error. Such a protocol simultaneously
establishes the inclusion of SDPα,β in both AM and coAM for any α > β+1/poly.

Our starting point is the algorithm we described above that used a one-way
function inverter to estimate the statistical distance. Specifically, that algorithm
used the inverter to estimate θy for random y’s, and then applied Eq. (2.4). We
would like to use the prover, instead of the inverter, to achieve the same task.

In our protocol, the verifier draws polynomially many y’s and sends them to
the prover. The prover responds with values θ̂i’s, which it claims are the genuine
θyi ’s. But how can the verifier trust that the prover sent the correct values? In
the reduction in Section 2.1, we used k many samples of b conditioned on y to
estimate b’s true distribution. A standard concentration bound shows that as k
grows, the number of ones out of b1, . . . , bk, all sampled from (b|y), is very close
to Pr[b = 1|y] · k. Similarly, the number of zeros is very close to Pr[b = 0|y] · k.
Consider the following typical set for any fixed y and arbitrary value θ:

T k,θy =

{
(b1, x1, b2, x2, . . . , bk, xk)

Cbi(xi) = y for all i,

and
∑k
i=1 bi−

∑k
i=1(1−bi)

k ≈ θ

}
.
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Namely, T k,θy contains every k-tuple of (bi, xi) such that all map to y, and each
tuple can be used to estimate θ well—the difference between the number of ones
and the number of zeros, normalized by k, is close to θ. Also consider the pre-
image set of y: Iy = {(b, x) | Cb(x) = y}. Since as k grows the estimation of

θy improves, we expect that T k,θyy —the typical set of y with the value θy—to
contain almost all tuples. Indeed, standard concentration bounds show that∣∣∣T k,θyy

∣∣∣
|Iy|k

≥ 1− e−Ω(k). (2.6)

On the other hand, the sets T k,θ′y , corresponding to values θ′ that are far from
θy, should be almost empty. Indeed, if |θ′ − θy| ≥ Ω(1), then,∣∣∣T k,θ′y

∣∣∣
|Iy|k

≤ e−Ω(k). (2.7)

So, for the verifier to be convinced that the value θ̂ sent by the prover is

close to θy, the prover can prove that the typical set T k,θ̂y is large. To do so, the
parties will use the public-coin constant round protocol for set lower-bound of
[GS89], which enables the prover to assert statements of the form “the size of
the set S is at least s”.

However, there is still one hurdle to overcome. The typical set T k,θyy is only

large relative to |Iy|k. Since we do not known how to compute |Iy| it is unclear
what should be the size s that we run the set lower-bound protocol with. Our
approach for bypassing this issue is as follows. First observe that the expected
value, over a random y, of the logarithm of the size of Iy is the entropy18 of
(b, x) given y. Namely,

E
y
[log|Iy|] = H(B,X|Y ), (2.8)

where the jointly distributed random variables (B,X, Y ) take the values of ran-
domly drawn (x, b, y). Thus, if we draw t independent elements y1, . . . , yt, the
average of log|Iy| gets closer to t ·H(B,X|Y ), as t grows. Specifically,

Pr

[
t∏
i=1

|Iyi | ≈ 2t·H(B,X|Y )

]
≥ 1− e−Ω(t/n2), (2.9)

where n denotes the output length of the given circuits. For large enough t, we
can thus assume that the size of this product set is approximately 2t·H(B,X|Y ),
and run the set lower bound protocol for all the yi’s together. That is, we ask

18 Recall that the entropy of a random variable X over X is defined as (H(X) =∑
x∈X Pr[X = x] log(1/Pr[X = x]). The conditional entropy of X given Y is

H(X|Y ) = Ey∼Y [H(X|Y = y)].
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the prover to send t estimates (θ̂1, . . . , θ̂t) for the values (θy1 , . . . , θyt), and prove

that the size of the product set T k,θ̂1y1 × · · · × T k,θ̂1y1 is almost 2t·H(B,X|Y ).

So far we have reduced knowing the size of Iy to knowing H(B,X|Y ), but
again it seems difficult for the verifier to compute this quantity on its own.
Actually, standard entropy manipulations show that

H(B,X|Y ) = (m+ 1)−H(Y ),

where m denotes the input length of the given circuits. It thus suffices to ap-
proximate H(Y ). Recall that y is the output of the circuit that maps (x, b) to
Cb(x), so Y is drawn according to an output distribution of a known circuit.
Luckily, Goldreich, Sahai and Vadhan [GSV99] showed that approximating the
output entropy of a given circuit is in NISZK, and thus has a constant-round
public-coin protocol (since NISZK ⊆ AM ∩ coAM).

To conclude, we describe the entirety of our protocol, which proves Theo-
rem 1.9.

Protocol to approximate SD(C0, C1), given the circuits (C0, C1) as input:

1. First, the prover sends the verifier a claim Ĥ of the value of H(Y ).
2. The parties execute [GSV99]’s protocol to convince the verifier that this

claim—that Ĥ ≈ H(Y )—is correct.

3. The verifier uses Ĥ to compute Ĥ(B,X|Y ) as ((m+ 1)− Ĥ).
4. The verifier samples y1, . . . , yt from C0+C1

2 and sends them to the prover.

5. The prover responds with θ̂1, . . . , θ̂t as claims for the values θy1 , . . . , θyt .

6. The parties run a set lower-bound protocol to prove that the set T θ̂1,ky1 ×
· · · × T θ̂t,kyt is almost as large as (Iy1 × · · · × Iyt)k.

– Here, they use 2tkĤ(B,X|Y ) as a proxy for (|Iy1 | · · · · · |Iyt |)k.

7. If the verifier has not rejected so far, it outputs 1
t

∑t
i=1 |θ̂i|.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3 TDP and JSP are SZK-Complete

We show that both TDPα,β and JSPα,β with α > β+ 1/poly are SZK-complete.
Since the proof of the former uses that of the latter we start by giving an outline
that JSPα,β is SZK-complete.

2.3.1 Jensen-Shannon Divergence Problem is SZK-complete

We need to show that JSPα,β with α > β + 1/poly is both in SZK and SZK-
hard. In both parts we use the following characterization of the Jensen-Shannon
divergence, which follows from its definition. Given a pair of circuits C0 and
C1, consider the jointly distributed random variables (B,X, Y ), where B is a



16 Authors Suppressed Due to Excessive Length

uniformly random bit, X is a uniformly random string and Y = CB(X). Then,
it follows from some elementary manipulationsthat:

JS(C0, C1) = 1−H(B|Y ). (2.10)

We use this characterization to tie Jensen-Shannon Divergence Prob-
lem to another SZK-complete problem—the Entropy Difference Problem
(EDP) with a gap function g. The input to EDPg is also a pair of circuits C0

and C1. YES instances are those in which the entropy gap H(C0)−H(C1) is at
least g(n) (where n is the output length of the circuits) and NO instances are
those in which the gap is at most −g(n). Goldreich and Vadhan [GV99] showed
that EDPg is SZK-complete for any noticeable function g. Our proof that JSPα,β

is SZK-complete closely follows the reduction from the reverse problem of SDP
(i.e., in which YES instances are distributions that are statistically close) to
EDP [Vad99, Section 4.4].

JSPα,β is in SZK: We reduce JSPα,β to ED(α−β)/2. Given C0 and C1, the re-
duction outputs a pair of circuits D0 and D1 such that D1 outputs a sample
from (B, Y ) and D0 outputs a sample from (B′, Y ), where B′ is an indepen-
dent random bit with H(B′) = 1− α+β

2 . The chain rule for entropy19 implies
that

H(D0)−H(D1) = 1− α+ β

2
−H(B|Y ) = JS(C0, C1)− α+ β

2
,

where the second equality follows from Eq. (2.10). Thus, if JS(C0, C1) ≥ α,
then H(D0)−H(D1) ≥ α−β

2 ; and if JS(C0, C1) ≤ β, then H(D0)−H(D1) ≤
−α−β2 . And since ED(α−β)/2 ∈ SZK, we get that JSPα,β ∈ SZK.

JSPα,β is SZK-hard: We reduce SDP1−2−k,2−k to the problem JSPα,β , for some

large enough k. This is sufficient since SDP1−2−k,2−k is known to be SZK-
hard [SV03].20 In the presentation of related results in his thesis, Vadhan
relates the statistical distance of the circuits to the entropy of B given
Y [Vad99, Claim 4.4.2]. For example, if SD(C0, C1) = 0 (i.e., the distributions
are identical), then B|Y is a uniformly random bit, and so H(B|Y ) = 1; and
if SD(C0, C1) = 1 (i.e., the distributions are disjoint), then B is completely
determined by Y , and so H(B|Y ) = 0. More generally, Vadhan showed that
if SD(C0, C1) = δ, then21

1− δ ≤ H(B|Y ) ≤ h
(

1 + δ

2

)
. (2.11)

19 For a jointly distributed random variables X and Y , it holds that H(X,Y ) = H(X)+
H(Y |X).

20 For the simplicity of presentation, we are ignoring subtle details about the relation
of k to the output length of the circuits. See the full version for the formal proof.

21 The function h is the binary entropy function. That is, h(p) = −p log(p) − (1 −
p) log(1− p) is the entropy of a Bernoulli random variable with parameter p.
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By taking k to be large enough (as a function of α and β), and apply-
ing Eqs. (2.10) and (2.11), we have that if SD(C0, C1) ≥ 1 − 2−k, then
JS(C0, C1) ≥ α; and if SD(C0, C1) ≤ 2−k, then JS(C0, C1) ≤ β. Thus, the
desired reduction is simply the identity function that outputs the input cir-
cuits.

2.3.2 Triangular Discrimination Problem is SZK-complete.

We need to show that TDPα,β with α > β+1/poly is both in SZK and SZK-hard.
Showing the latter is very similar to showing that JSPα,β is SZK-hard, but using
Eq. (1.1) to relate the triangular discrimination to statistical distance (instead
of Eq. (2.11) that relates the Jensen-Shannon divergence to statistical distance).
We leave the formal details to the body of this paper and focus here on showing
that TDPα,β is in SZK.

A natural approach to show that TDPα,β is in SZK is to follow Sahai and
Vadhan’s proof that SDP2/3,1/3 is in SZK. Specifically, a main ingredient in that
proof is to polarize the statistical distance of the circuits (to reduce the simu-
lation error). Indeed, if we can reduce TDPα,β to, say, TDP0.9,0.1 by polarizing
the triangular discrimination, then Eq. (1.1) would imply that we also reduce

TDPα,β to SDP2/3,1/3, which we know is in SZK.
We are indeed able to show such a polarization lemma for triangular discrim-

ination (using similar techniques to [SV03]’s polarization lemma). However, this
lemma only works when the gap between α and β is roughly 1/ log. Actually,
the polarization lemma of [SV03] also suffers the same limitation with respect
to the gap between α2 and β.

Still, we would like to handle also the case that the gap between α and β
is only 1/poly. To do so we take a slightly different approach. Specifically, we

reduce TDPα,β to JSPα
′,β′ , where α′ and β′ are also noticeably separated.

An important step toward showing this reduction is to characterize the tri-
angular discrimination and the Jensen-Shannon divergence via the imbalance
θy (see Eq. (2.3)), as we already did for statistical distance. Recall that given

Y = y, the random variable B takes the value 1 with probability
1+θy

2 , and 0
otherwise. Hence, Eq. (2.10) can also be written as

JS(C0, C1) = 1− E
y∼Y

[
h

(
1 + θy

2

)]
. (2.12)

As for the triangular discrimination, it follows from the definition that

TD(C0, C1) = E
y∼Y

[
θ2y
]
. (2.13)

Furthermore, by Taylor approximation, for small values of θ, it holds that

h

(
1 + θ

2

)
≈ 1− θ2. (2.14)
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As we can see, the above equations imply that if all the θy’s were small, a gap
in the triangular discrimination would also imply a gap in the Jensen-Shannon
divergence. Thus, we would like an operation that reduces all the θy.

The main technical tool we use to reduce θy is to consider the convex combi-
nation of the two input circuits. Given a pair of circuits C0 and C1, consider the
pair of circuits D0 and D1 such that Db = λ·Cb+(1−λ)· C0+C1

2 .22 Let Qb denote
the output distribution of Db, and recall that Pb denotes the output distribution
of Cb. We also let θ′y be defined similarly to θy, but with respect to D0 and D1

(rather than C0 and C1). Using this notation, we have that θy = P1(y)−P0(y)
P1(y)+P0(y)

,

and it may be seen that

θ′y =
Q1(y)−Q0(y)

Q1(y) +Q0(y)
= λ · θy. (2.15)

So, our reduction chooses a sufficiently small λ, and outputs the circuits D0

and D1. Some care is needed when choosing λ. Eqs. (2.13) and (2.15) yield that
TD(D0, D1) = λ2 ·TD(C0, C1). Hence, the convex combination also shrinks the
gap in triangular discrimination. We show that by choosing λ ≈

√
α− β, the ap-

proximation error in Eq. (2.14) is smaller than the aforementioned shrinkage, and
the reduction goes through. The resulting gap in the Jensen-Shannon divergence
is roughly (α− β)2, which is noticeable by the assumption that α > β + 1/poly.

This shows that TDPα,β is in SZK if α > β + 1/poly. By the relationship
between TD and SD (Eq. (1.1)), this implies that SDPα,β is in SZK if α2 >

β + 1/poly. This, in turn, by the SZK-hardness of SDP2/3,1/3 and the known
polarization lemma that applies for the same, implies polarization for statistical
distance for any (α, β) such that α2 > β + 1/poly.

2.3.3 Reflections and an Open Problem

Many f -divergences of interest can be expressed as an expectation, over y ∼ Y ,
of a simple function of θy. That is, an expression of the form Ey∼Y [g(θy)], for
some function g : [−1, 1]→ [0, 1]. For example:

– SD(C0, C1) = Ey∼Y [|θy|] (i.e., g(z) = |z|, see Eq. (2.4));
– TD(C0, C1) = Ey∼Y

[
θ2y
]

(i.e., g(z) = z2, see Eq. (2.13)); and

– JS(C0, C1) = Ey∼Y
[
1− h

(
1+θy

2

)]
(i.e., g(z) = 1− h

(
1+z
2

)
, see Eq. (2.12)).

To reduce TDP to JSP, we took a convex combination of the two circuits and

used the fact that 1−h
(

1+θy
2

)
≈ O(θ2y) for small values of θy. While this worked

for polarization of TD (which corresponds to g(z) = z2), it seems unlikely to
yield a polarization lemma for SD for an arbitrarily small (but noticeable) gap.
The reason is that the function g(z) = |z| — the g-function corresponding to
SD — is not differentiable at 0 and in particular does not act like z2 for small

22 This definition of convex combination is more convenient to analyze than perhaps
the more natural definition of Db = λ · Cb + (1− λ) · C1−b.
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values of z. As we find this similarity between the different notions of distance
striking, and indeed our proofs leverage the relations between them, we provide
in Fig. 2.1 a plot comparing the different choices for the function g.

Another popular f -divergence that we have not discussed thusfar23 is the

squared Hellinger distance, defined as H2(P,Q) = 1
2

∑
y

(√
Py −

√
Qy
)2

. It can

be shown that H2(C0, C1) = Ey∼Y
[
1−

√
1− θ2y

]
, and so also this distance falls

within the above framework (i.e., by considering g(z) = 1−
√

1− z2).
Notably, the squared Hellinger distance also acts like JS (and TD) around 0;

namely, 1 −
√

1− θ2y ≈ O(θ2y) for small values of θy. However, unlike TDPα,β ,

we do not know how to show that the Hellinger Difference Problem, de-
noted HDPα,β and defined analogously to TDPα,β (while replacing the distance
TD with H2), is in SZK for all (1/poly)-separated (α, β). We do mention that
H2(P,Q) ≤ TD(P,Q) ≤ 2 H2(P,Q), and thus HDPα,β is in SZK if α and β/2
are (1/poly)-separated. However, the proof described above does not go through
if we try to apply it to the Hellinger distance—we cannot guarantee that the
gap in the Hellinger distance after taking the convex combination is larger than
the error in the Taylor approximation. Indeed, the question whether HDPα,β

is in SZK for any (1/poly)-separated (α, β), first raised by Fehr and Vaudenay
[FV17], remains open.
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CCKV08. André Chailloux, Dragos Florin Ciocan, Iordanis Kerenidis, and Salil P.
Vadhan. Interactive and noninteractive zero knowledge are equivalent in
the help model. In Theory of Cryptography, Fifth Theory of Cryptography
Conference, TCC 2008, New York, USA, March 19-21, 2008., pages 501–
534, 2008.
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