
Simulating Auxiliary Inputs, Revisited ?

Maciej Skorski ??

maciej.skorski@mimuw.edu.pl

University of Warsaw

Abstract. For any pair (X,Z) of correlated random variables we can
think of Z as a randomized function of X. If the domain of Z is small,
one can make this function computationally efficient by allowing it to be
only approximately correct. In folklore this problem is known as simulat-
ing auxiliary inputs. This idea of simulating auxiliary information turns
out to be a very usefull tool, finding applications in complexity theory,
cryptography, pseudorandomness and zero-knowledge. In this paper we
revisit this problem, achieving the following results:
(a) We present a novel boosting algorithm for constructing the simu-

lator. This boosting proof is of independent interest, as it shows
how to handle ”negative mass” issues when constructing probability
measures by shifting distinguishers in descent algorithms. Our tech-
nique essentially fixes the flaw in the TCC’14 paper ”How to Fake
Auxiliary Inputs”.

(b) The complexity of our simulator is better than in previous works,
including results derived from the uniform min-max theorem due to
Vadhan and Zheng. To achieve (s, ε)-indistinguishability we need the
complexity O

(
s · 25`ε−2

)
in time/circuit size, which improve previ-

ous bounds by a factor of ε−2. In particular, with we get mean-
ingful provable security for the EUROCRYPT’09 leakage-resilient
stream cipher instantiated with a standard 256-bit block cipher, like
AES256.

Our boosting technique utilizes a two-step approach. In the first step we
shift the current result (as in gradient or sub-gradient descent algorithms)
and in the separate step we fix the biggest non-negative mass constraint
violation (if applicable).

Keywords: simulating auxiliary inputs, boosting, leakage-resilient cryptogra-
phy, stream ciphers, computational indistinguishability

1 Introduction

1.1 Simulating Correlated Information.

Informal Problem Statement Let (X,Z) ∈ X × Z be a pair of correlated
random variables. We can think of Z as a randomized function of X. More
? The full (and updated) version of this paper is available at the Cryptology ePrint

archive and the arXiv archive ({http://arxiv.org/abs/1503.00484}).
?? Supported by the National Science Center, Poland (2015/17/N/ST6/03564).

{http://arxiv.org/abs/1503.00484})

precisely, consider the randomized function h : X → Z, which for every x outputs
z with probability Pr[Z = z|X = x]. By definition it satisfies

(X,h(X))
d
= (X,Z) (1)

however the function h is inefficient as we need to hardcode the conditional
probability table of Z|X. It is natural to ask, if this limitation can be overcome

Q1: Can we represent Z as an efficient function of X?

Not surprisingly, it turns out that a positive answer may be given only in com-
putational settings. Note that replacing the equality in Equation (1) by closeness
in the total variation distance (allowing the function h to make some mistakes
with small probability) is not enough 1. This discussion leads to the following
reformulated question

Q1’: Can we efficiently simulate Z as a function of X?

Why it matters? Aside from being very foundational, this question is relevant
to many areas of computer science. We will not discuss these applications in
detail, as they are well explained in [JP14]. Below we only mention where such
a generic simulator can be applied, to show that this problem is indeed well-
motivated.

(a) Complexity Theory. From the simulator one can derive Dense Model The-
orem [RTTV08], Impagliazzo’s hardcore lemma [Imp95] and a version of
Szemeredis Regularity Lemma [FK99].

(b) Cryptography. The simulator can be applied for settings where Z models
short leakage from a secret state X. It provides tools for improving and
simplifying proofs in leakage-resilient cryptography, in particular for leakage-
resilient stream ciphers [JP14].

(c) Pseudorandomness. Using the simulator one can conclude results called chain
rules [GW11], which quantify pseudorandomness in conditioned distribu-
tions. They can be also applied to leakage-resilient cryptography.

(d) Zero-knowledge. The simulator can be applied to represent the text ex-
changed in verifier-prover interactions Z from the common input X [CLP15].

Thus, the simulator may be used as a tool to unify, simplify and improve many
results. Having briefly explained the motivation we now turn to answer the posed
question, leaving a more detailed discussion of some applications to Section 1.6.

1 Indeed, consider the simplest case Z = {0, 1}, define X to be uniform over X =
{0, 1}n, and take Z = f(X) where f is a function which is 0.5-hard to predict by
circuits exponential in n, Then (X,h(X)) and (X,Z) are at least 1

4
-away in total

variation

1.2 Problem Statement

The problem of simulating auxiliary inputs in the computational setting can be
defined precisely as follows

Given a random variables X ∈ {0, 1}n and correlated Z ∈ {0, 1}`, what
is the minimal complexity sh of a (randomized) function h such that the
distributions of h(X) and Z are (ε, s)-indistinguishable given X, that is

|ED(X,h(X))− ED(X,Z)| < ε

holds for all (deterministic) circuits D of size s?

The indistinguishability above is understood with respect to deterministic cir-
cuits. However it doesn’t really matter for distinguishing two distributions, where
randomized and deterministic distinguishers are equally powerful2.

It turns out that it is relatively easy3 to construct a simulator h with a
polynomial blowup in complexity, that is when

sh = poly
(
s, ε−1, 2`

)
.

However, more challenging is to minimize the dependency on ε−1. This problem
is especially important for cryptography, where security definitions require the
advantage ε to be possibly small. Indeed, for meaningful security ε = 2−80 or at
least ε = 2−40 it makes a difference whether we lose ε−2 or ε−4. We will see later
how much inefficient bounds here may affect provable security of stream ciphers.

1.3 Related Works

Original work of Jetchev and Pietrzak (TCC’14) The authors showed
that Z can be “approximately” computed from X by an “efficient” function h.

Theorem 1 ([JP14], corrected). For every distribution (X,Z) on {0, 1}n ×
{0, 1}` and every ε, s, there exists a “simulator” h : {0, 1}n → {0, 1}` such that

(a) (X,h(X)) and (X,Z) are (ε, s)-indistinguishable
(b) h is of complexity sh = O

(
s · 24`ε−4

)
The proof uses the standard min-max theorem. In the statement above we correct
two flaws. One is a missing factor of 2`. The second (and more serious) one is
the (corrected) factor ε−4, claimed incorrectly to be ε−2. The flaws are discussed
in Appendix A.

2 If two distributions can be distinguished by a randomized circuit, we can fix a specific
choice of coins to achieve at least the same advantage

3 We briefly sketch the idea of the proof: note first that it is easy to construct a
simulator for every single distinguisher. Having realized that, we can use the min-
max theorem to switch the quantifiers and get one simulator for all distinguishers.

Vadhan and Zheng (CRYPTO’13) The authors derived a version of Theo-
rem 1 but with incomparable bounds

Theorem 2 ([VZ13]). For every distribution X,Z on {0, 1}n × {0, 1}` and
every ε, s, there exists a “simulator” h : {0, 1}n → {0, 1}` such that

(a) (X,h(X)) and (X,Z) are (s, ε)-indistinguishable
(b) h is of complexity sh = O

(
s · 2`ε−2 + 2`ε−4

)
The proof follows from a general regularity theorem which is based on their uni-
form min-max theorem. The additive loss of O

(
2`ε−4

)
appears as a consequence

of a sophisticated weight-updating procedure. This error is quite large and may
dominate the main term for many settings (whenever s� ε−2).

As we show later, Theorem 2 and Theorem 1 give in fact comparable security
bounds when applied to leakage-resilient stream ciphers (see Section 1.6)

1.4 Our Results

We reduce the dependency of the simulator complexity sh on the advantage ε to
only a factor of ε−2, from the factor of ε−4.

Theorem 3 (Our Simulator). For every distribution X,Z on {0, 1}n×{0, 1}`
and every ε, s, there exists a “simulator” h : {0, 1}n → {0, 1}` such that

(a) (X,h(X)) and (X,Z) are (s, ε)-indistinguishable
(b) h is of complexity sh = O

(
s · 25` log(1/ε)ε−2

)
Below in Table 1 we compare our result to previous works.

Author Technique Advantage Size Cost of simulating

[JP14] (Theorem 1) Min-Max

ε s

sh = O
(
s · 24`ε−4

)
[VZ13] (Theorem 2) Complicated Boosting sh = O

(
s · 2`/ε2 + 2`ε−4

)
This paper (Theorem 3) Simple Boosting sh = O

(
s · 25`ε−2

)
Table 1. The complexity of simulating `-bit auxiliary information given required in-
distinguishability strength, depending on the proof technique. For simplicity, terms
polylog(1/ε) are omitted.

Our result is slightly worse in terms of dependency `, but outperforms pre-
vious results in terms of dependency on ε−1. However, the second dependency
is more crucial for cryptographic applications. Note that the typical choice is
sub-logarithmic leakage, that is ` = o

(
log ε−1

)
is asymptotic settings4 (see for

example [CLP15]). Stated in non-asymptotic settings this assumption translates
to ` < c log ε−1 where c is a small constant (for example c = 1

12 see [Pie09]). In
these settings, we outperform previous results.

4 This is a direct consequence of the fact that we want ` to fit poly-preserving reduc-
tions

To illustrate this, suppose we want to achieve security ε = 2−60 simulating
just one bit from a 256-bit input. As it follows from Table 1, previous bounds
are useless as they give the complexity bigger than 2256 which is the worst
complexity of all boolean functions over the chosen domain. In settings like
this, only our bound can be applied to conclude meaningful results. For more
concrete examples of settings where our bounds are even only meaningful, we
refer to Table 2 in Section 1.6.

1.5 Our Techniques

Our approach utilizes a simple boosting technique: as long as the condition (a)
in Theorem 3 fails, we can use the distinguisher to improve the simulator. This
makes our algorithm constructive with respect to distinguishers obtained from
an oracle5, similarly to other boosting proofs [JP14,VZ13]. In short, if for a
“candidate” solution h there exists D such that

ED(X,Z)− ED(X,h(X)) > ε

then we construct a new solution h′ using D and h, according to the equation6

Pr[h′(x) = z] = Pr[h(x) = z] + γ · Shift (D(x, z)) + Corr(x, z)

where

(a) The parameter γ is afixed step chosen in advance (its optimal value depends
on ε and ` and is calculated in the proof.)

(b) Shift (D(x, z)) is a shifted version of D, so that
∑
z Shift (D(x, z)) = 0. This

restriction correspond to the fact that we want to preserve the constraint∑
z h(x, z) = 1. More precisely, Shift (D(x, z)) = D(x, z)− Ez′←U`

D(x, z)

(c) Corr(x, z) is a correction term used to fix (some of) possibly negative weights.

The procedure is being repeated in a loop, over and over again. The main tech-
nical difficulty is to show that it eventually stops after not so many iterations.

Note that in every such a step the complexity cost of the shifting term is
O
(
2` · size(D)

)
7. The correction term, in our approach, does a search over z

looking for the biggest negative mass, and redistributes it over the remaining
points. Intuitively, it works because the total negative mass is getting smaller
with every step. See Algorithm 1 for a pseudo-code description of the algorithm
and the rest of Section 3 for a proof.

5 The oracle evaluates the distance of the given candidate solution and the simulated
distribution, answering with a distiguisher if the distance is smaller than required.

6 As we already mentioned, we can assume that D is deterministic without loss of
generality. Then all the terms in the equation are well-defined.

7 By definition, it requires computing the average of D(x, ·) over 2` elements

1.6 Applications

Better security for the EUROCRYPT’09 stream cipher. The first con-
struction of leakage-resilient stream cipher was proposed by Dziembowski and
Pietrzak in [DP08]. On Figure 1 below we present a simplified version of this
cipher [Pie09], based on a weak pseudorandom function (wPRF).

K0

x0

K1

F

F

F

F

F

F

F

x1

K3

x2

K2

x3

K4

K5

x5

L0 L2

L1 L3

Fig. 1. The EUROCRYPT’09 stream cipher (adaptive leakage). F denotes a weak
pseudorandom function. By Ki and xi we denote, respectively, values of the secret
state and keystream bits. Leakages are denotted in gray with Li.

Jetchev and Pietrzak in [JP14] showed how to use the simulator theorem to
simplify the security analysis of the EUROCRYPT’09 cipher. The cipher security
depends on the complexity of the simulator as explained in Theorem 1 and
Remark 2. We consider the following setting:

– number of rounds q = 16,
– F instantiated with AES256 (as in [JP14])
– cipher security we aim for ε′ = 2−40

– λ = 3 bits of leakage per round

The concrete bounds for (q, ε′, s′)-security of the cipher (which roughly speaking
means that q consecutive outputs is (s′, ε′)-pseudorandom, see Section 2 for a
formal definition) are given in Table 2 below. We ommit calculations as they
are merely putting parameters from Theorem 1, Theorem 2 and Theorem 3 into
Remark 2 and assuming that AES as a weak PRF is (ε, s)-secure for any pairs
s/ε ≈ 2k (following the similar example in [JP14]).

More generally, we can give the following comparison of security bounds for
different wPRF-based stream ciphers, in terms of time-sccess ratio. The bounds
in Table 3 follow from the simple lemma in Section 4, which shows how the
time-success ratio changes under explicit reduction formulas.

Analysis/Authors wPRF security Leakage Advantage ε′ Size s′

[JP14] (Theorem 1)

256 λ = 3 2−40

0

[VZ13] (Theorem 2) 0

this paper (Theorem 3) 266

Table 2. The security of the EUROCRYPT’09 stream cipher, instantiated with
AES256 as a weak PRF of rouhgly k = 256 bits of security. In this settngs only
our new bounds provide non-trivial bounds.

Cipher Analysis Proof techniques Security level Comments

(1) [Pie09] Pseudoentropy chain rules k′ � 1
8
k large number of blocks

(1) [JP14] Aux. Inputs Simulator (corr.) k′ ≈ k
6
− 5

6
λ

(1) [VZ13] Aux. Inputs Simulator k′ ≈ k
6
− 1

3
λ

(1) This work Aux. Inputs Simulator k′ ≈ k
4
− 4

3
λ

(2) [FPS12] Pseudoentropy chain rules k′ ≈ k
5
− 3

5
λ large public seed

(3) [YS13] Square-friendly apps. k′ ≈ k
4
− 3

4
λ only in minicrypt

Table 3. Different bounds for wPRF-based leakage-resilient stream ciphers. k is the se-
curity level of the underlying wPRF. The value k′ is the security level for the cipher, un-
derstood in terms of time-success ratio. the numbers denote: (1) The EUROCRYPT’09
cipher, (2) The CSS’10/CHESS’12 cipher, (3) The CT-RSA’13 cipher.

1.7 Organization

In Section 2 we discuss basic notions and definitions. The proof of Theorem 3
appears in Section 3.

2 Preliminaries

2.1 Notation

By Ey←Y f(y) we denote an expectation of f under y sampled according to the
distribution Y .

2.2 Basic Notions

Indistinguishability Let V be a finite set, and D be a class of deterministic [0, 1]-
valued functions on V. For any two real functions f1, f2 on V, we say that f1, f2
are (D, ε)-indistinguishable if

∀D ∈ D :

∣∣∣∣∣∑
x∈V

D(x) · f1(x)−
∑
x∈V

D(x) · f2(x))

∣∣∣∣∣ 6 ε

Note that the domain V depends on the context. If X1, X2 are two probability
distributions, we say that they are (s, ε)-indistinguishable if their probability

mass functions are indistinguishable, that is when∣∣∣∣∣∑
x∈V

D(x) · Pr[X1 = x]−
∑
x∈V

D(x) · Pr[X2 = x]

∣∣∣∣∣ 6 ε

for all D ∈ D. If D consists of all circuits of size s we say that f1, f2 are (s, ε)-
indistinguishable.

Remark 1. This an extended notion of indistinguishability, borrowed from [TTV09],
which captures not only probability measures but also real-valued functions.
A good intuition is provided by the following observation [TTV09]: think of
functions over V as |V|-dimensional vectors then ε > |

∑
x∈V D(x) · f1(x) −∑

x∈V D(x) · f2(x)| = |〈f1 − f2,D〉| means that f1 and f2 are nearly orthogonal
for all test functions in D.

Distinguishers In the definition above we consider deterministic distinguishers,
as this is required by our algorithm. However, being randomized doesn’t help in
distinguishing, as any randomized-distinguisher achieving advantage ε when run
on two fixed distributions can be converted into a deterministic distinguishers of
the same size and advantage (by fixing one choice of coins). Moreover, any real-
valued distinguisher can be converted, by a boolean threshold, into a boolean
one with at least the same advantage [FR12].

Relative complexity We say that a function h has complexity at most T relative to
the set of functions D if there are functions D1, . . . ,DT such h can be computed
by combining them using at most T of the following operations: (a) multiplication
by a constant, (b) application of a boolean threshold function, (c) sum, (d)
product.

2.3 Stream ciphers definitions

We start with the definition of weak pseudorandom functions, which are com-
putationally indistinguishable from random functions, when queried on random
inputs and fed with uniform secret key.

Definition 1 (Weak pseudorandom functions). A function F : {0, 1}k ×
{0, 1}n → {0, 1}m is an (ε, s, q)-secure weak PRF if its outputs on q random
inputs are indistinguishable from random by any distinguisher of size s, that is

|Pr [D ((Xi)
q
i=1 ,F((K,Xi)

q
i=1) = 1]− Pr [D ((Xi)

q
i=1 , (Ri)

q
i=1) = 1]| 6 ε

where the probability is over the choice of the random Xi ← {0, 1}n, the choice
of a random key K ← {0, 1}k and Ri ← {0, 1}m conditioned on Ri = Rj if
Xi = Xj for some j < i.

Stream ciphers generate a keystream in a recursive manner. The security requires
the output stream should be indistinguishable from uniform8.

8 We note that in a more standard notion the entire stream X1, . . . , Xq is indistin-
guishable from random. This is implied by the notion above by a standard hybrid
argument, with a loss of a multiplicative factor of q in the distinguishing advantage.

Definition 2 (Stream ciphers). A stream-cipher SC : {0, 1}k → {0, 1}k ×
{0, 1}n is a function that, when initialized with a secret state S0 ∈ {0, 1}k,
produces a sequence of output blocks X1, X2, ... computed as

(Si, Xi) := SC(Si−1).

A stream cipher SC is (ε, s, q)-secure if for all 1 6 i 6 q, the random variable Xi

is (s, ε)-pseudorandom given X1, ..., Xi−1 (the probability is also over the choice
of the initial random key S0).

Now we define leakage resilient stream ciphers, following the “only computation
leaks” assumption.

Definition 3 (Leakage-resilient stream ciphers). A leakage-resilient stream-
cipher is (ε, s, q, λ)-secure if it is (ε, s, q)-secure as defined above, but where
the distinguisher in the j-th round gets λ bits of arbitrary deceptively chosen
leakage about the secret state accessed during this round. More precisely, before
(Sj , Xj) := SC(Sj−1) is computed, the distinguisher can choose any leakage func-

tion fj with range {0, 1}λ, and then not only get Xj, but also Λj := fj(Ŝj−1),

where Ŝj−1 denotes the part of the secret state that was modified (i.e., read
and/or overwritten) in the computation SC(Sj−1).

2.4 Security of leakage-resilient stream ciphers.

Best provable secure constructions of leakage-resilient stream ciphers are based
on so called weak PRFs, primitives which look random when queried on random
inputs ([Pie09,FPS12,JP14,DP10,YS13]). The most recent (TCC’14) analysis is
based on a version of Theorem 1.

Theorem 4 (Proving Security of Stream Ciphers [JP14]). If F is a
(εF , sF , 2)-secure weak PRF then SCF is a (ε′, s′, q, λ)-secure leakage resilient
stream cipher where

ε′ = 4q
√
εF 2λ, s′ = Θ(1) · sF ε

′4

24λ
.

Remark 2 (The exact complexity loss). An inspection of the proof in [JP14]
shows that sF equals the complexity of the simulator h in Theorem 1, with
circuits of size s′ as distingusihers and ε replaced by ε′.

2.5 Time-Success Ratio

The running time (circuit size) s and success probability ε of attacks (practical
and theoretical) against a particular primitive or protocol may vary. For this
reason Luby [LM94] introduced the time-success ratio t

ε as a universal measure
of security. This model is widely used to analyze provable security, cf. [BL13]
and related works.

Definition 4 (Security by Time-Success Ratio [LM94]). A primitive P
is said to be 2k-secure if for every adversary with time resources (circuit size in
the nonuniform model) s, the success probability in breaking P (advantage) is at
most ε < s · 2−k. We also say that the time-success ratio of P is 2k, or that is
has k bits of security.

For example, AES with a 256-bit random key is believed to have 256 bits of
security as a weak PRF9.

3 Proof of Theorem 3

For technical convenience, we attempt to efficiently approximate the conditional
probability function g(x, z) = Pr[Z = z|X = x] rather than building the sam-
pler directly. Once we end with building an efficient approximation h(x, z), we
transform it into a sampler hsim which outputs z with probability h(x, z) (this
transformation yields only a loss of 2` log(1/ε)). We are going to prove the fol-
lowing fact

For every function g on X ×Z which is a X -conditional probability mass
function over Z (that is g(x, z) > 0 for all x, z and

∑
z g(x, z) = 1 for

every x), and for every class D closed under complements10 there exists
h such that
(a) h is a X -conditional probability mass function over Z
(b) h is of complexity sh = O(24`ε−2) with respect to D
(c) (X,Z) and (X,hsim(X)) are indistinguishable, which in terms of g

and h means ∣∣∣∣∣∑
z

E
x∼X

[D(x, z) · (g(x, z)− h(x, z))]

∣∣∣∣∣ 6 ε (2)

The sketch of the construction is shown in Algorithm 1. Here we would like to
point out two things. First, we stress that we do not produce a strictly positive
function; what our algorithm guarantees, is that the total negative mass issmall.
We will see later that this is enough. Second, our algorithm performs essentially
same operations for every x, which is why its complexity depends only on Z.

We denote for shortness D(x, z) = D(x, z)− Ez′←UZ D(x, z′) for any D (the
”shift” transformation)

9 We consider the security of AES256 as a weak PRF, and not a standard PRF, because
of non-uniform attacks which show that no PRF with a k-bit key can have s/ε ≈ 2k

security [DTT09], at least unless we additionally require ε� 2−k/2.
10 This is a standard assumption in indistinguishability proofs. We can always extend

the class by adding −D for every D ∈ D, which increases the complexity only by 1.

Algorithm 1: Construct the Auxiliary Inputs Simulator

input : Function g : {0, 1}n × {0, 1}` → [0, 1], accuracy paramter ε > 0,
class D, step γ

output: Function h which is ε-indistinguishable from g under D, add up to
1 for every x, and with total negative mass smaller γ|Z|3

1 t← 0
2 h0(x, z)← 1

|Z| for every x and z

3 while exists D ∈ D such that Ex∼X

[∑
z D(x, z) ·

(
g(x, z′)− ht(x, z′)

)]
> ε

do /* while the simulator is not good enough */

4 Dt+1 ← D
5 for z′ ∈ Z do /* improve the simulator towards the

distinguisher direction */

6 ht+1(x, z′)← ht(x, z′) + γ ·Dt+1(x, z′)

7 t← t+ 1
8 m← 0
9 for z′ ∈ Z do /* locate the biggest negative point mass */

10 if ht(x, z′) < m then
11 m← ht(x, z′)
12 z− ← z′

13 ht(x, z−) = 0 /* cut the biggest negative mass */ for z′ ∈ Z do
14 ht(x, z′)← ht(x, z′) + m

|Z|−1
/* redestribute the cut mass */

15 return ht(x, z)

Proof. Consider the functions ht. Define h̃t+1(x, z)
def
= ht(x, z) + γ ·Dt+1

(x, z).
According to Algorithm 1, we have

ht+1(x, z) = ht(x, z) + γ ·Dt+1
(x, z) + θt+1(x, z) (3)

with the correction term θt(x, z) that be computed recursively as (see Line 13
in Algorithm 1)

θt(x, z) = 0

θt(x, z) =

−min
(
ht(x, z) + γ ·Dt+1

(x, z), 0
)
, if z = ztmin(x)

min
(
ht(x,ztmin(x)))+γ·D

t+1
(x,ztmin(x)),0

)
#Z−1 if z 6= ztmin(x)

t = 0, 1, . . .

(4)

where ztmin(x) is one of the points z minimizing ht(x, z) + γ ·Dt+1
(x, z) (chosen

and fixed for every t) . In particular

ht(x, ztmin(x))) + γ ·Dt+1
(x, ztmin(x)) < 0⇐⇒ ∃z : ht(x, z) + γ ·Dt+1

(x, z) < 0
(5)

Notation: for notational convenience we indenify the functions Dt(x, z), D
t
(x, z),

θt(x, z), h̃t(x, z) and ht(x, z) with matrices where x are columns and z are rows.

That is htx denotes the |Z|-dimensional vector with entries ht(x, z) for z ∈ Z
and similarly for other functions Dt(x, z), D

t
(x, z), θt(x, z), h̃t(x, z).

Claim 1 (Complextity of Algorithm 1). T executions of the “while loop” can be
realized with time O (T · |Z| · size(D)) and memory O(|Z|). 11.

This claim describes precisely resources required to compute the function hT for
every T . In order to bound T , we define the energy function as follows:

Claim 2 (Energy function). Define the auxiliary function

∆t =

t−1∑
i=0

E
x∼X

[
D
i+1

x ·
(
gx − hix

)]
. (6)

Then we have ∆t = E1 + E2 where

E1 = 1
γ Ex∼X

[(
htx − h0x

)
· gx + 1

2

∑t−1
i=0

(
hi+1
x − hix

)2 − 1
2

(
(htx)

2 −
(
h0x
)2)]

E2 = 1
γ Ex∼X

[
−
∑t−1
i=0 θ

i+1
x ·

(
gx − hi+1

x

)
−
∑t−1
i=0 θ

i+1
x ·

(
hi+1
x − hix

)]
(7)

Note that all the symbols represent vectors and multiplications, including squares,
should be understood as scalar products. The proof is based on simple algebraic
manipulations and appears in Appendix B.

Remark 3 (Technical issues and intuitions). To upper-bound the formulas in
Equation (7), we need the following important properties

(a) Boundedness of correction terms, that is ideally |θi(x.z)| = O(poly(|Z|) · γ).
(b) Acute angle between the correction and the error, that is θix · (gx − hix) > 0.

Below we present an outline of the proof, discussing more technical parts in the
appendix.

Proof outline. Indeed, with these assumptions we prove an upper bound on
the energy function, namely

E1 + E2 6 O
(
poly(|Z|) ·

(
tγ + γ−1

))
, (8)

which follows from the properties (a) and (b) above (they are proved in Claim 4
and Claim 3 below, and the inequality on E1 + E2 is derived in Claim 5). Note
that, except a factor poly(|Z|), our formula (not the proof, though) is identical
to the bound used in [TTV09] (see Claim 3.4 in the eprint version). Indeed, our
theorem is, to some extent, an extension to the main result in [TTV09] to cover
the conditional case, where |X | > 1. The main difference is that we show how to
simulate a short leakage |Z| given X, whereas [TTV09] shows how to simulate

11 The RAM model

Z alone, under the assumption that the distribution of Z is dense in the uniform
distribution (the min-entropy gap being small)12.

Since the bound above is valid for any step t, and since on the other hand
we have tε 6 ∆t after t steps of the algorithm, we achieve a contradiction
(to the number of steps) setting γ = ε/poly(|Z). Indeed, suppose that tε 6
A|Z|B(γ−1 + tγ) for some positive constants A,B. Since the step size γ can

be chosen arbitrarily, we can set γ = ε
2A|Z|B which yields tε

2 6 2A2|Z|B
ε or

t 6 4A2|Z|Bε−2, which means that the algorithm terminates after at most
T = poly(|Z|)ε−2 steps. Our proof goes exactly this way, except some extra
optimization do obtain better exponent A.

We stress that it outputs only a signed measure, not a probability distribu-
tion yet. However, because of property (a) the negative mass is only of order
poly(|Z|)ε and the function we end with can be simply rescaled (we replace neg-
ative masses by 0 and normalize the function dividing by a factor 1−m where
m is the total negative mass). With this transformation, we keep the expected
advantage O(ε) and lose an extra factor O(|Z|) in the complexity. We can then.
Finally, we need to remember that we construct only a probability distribution
function, not a sampler. Transforming it into a sampler yields an overhead of
O(Z). This discussion shows that it is possible to build a sampler of complexity
poly(|Z|)ε−2 with respect to D. A more careful inspection of the proof shows
that we can actually achieve the claimed bound |Z|5ε−2 (see Remark 4 at the
end of the proof).

Technical Discussion We note that condition (b) somehow means that mass
cuts should go in the right direction, as it is much simpler to prove that Algo-
rithm 1 terminates when there are no correction terms θt; thus we don’t want to
go in a wrong direction and ruin the energy gain. Concrete bounds on properties
(a) and (b) are given in Claims 3 and 4.

In Algorithm 1 in every round we shift only one negative point mass (see
Line 13). However, since this point mass is chosen to be as big as possible and

since ht+1 and ht differ only by a small term γ ·Dt+1
except the mass shift θt+1,

one can expect that we have the negative mass under control. Indeed, this is
stated precisely in Claim 3 below.

Claim 3 (The total negative mass is small). Let

NegativeMass(ht(x, ·)) = −
∑
z

min(ht(x, z), 0)

be the total negative mass in ht(x, z) as the function of z. Then we have

NegativeMass(ht(x, ·) < |Z|3γ. (9)

12 It’s not possible to extend the result from [TTV09] directly, the issue is that the
constraint on the marginal distribution are not preserved. That’s why [JP14] and
this paper require much more extra work.

for every x and every t. In fact, for all x, z and t we have the following stronger
bound

max
z

∣∣min(ht(x, z), 0)
∣∣ < |Z|γ.

The proof is based on a recurrence relation that links NegativeMass(ht+1(x, ·)
with NegativeMass(ht(x, ·), and appears in Appendix C.

Claim 4 (The angle formed by the correction and the difference vector is acute).
For every x, t we have Angle

(
θt+1
x , gx − ht+1

x

)
∈
[
−π2 ,

π
2

]
.

The proof appears in Appendix D.
Having established Claims 3 and 4 we are now in position to prove a concrete

bound in Equation (8). To this end, we give upper bounds on E1 and E2, defined
in Equation (7), separately.

Claim 5 (Algorithm 1 terminates after a small number of steps.). The energy
function in Claim 2 can be bounded as follows

E1 6 γ−1
(
1 + 2|Z|2γ + |Z|tγ2 + |Z|3tγ2

)
, E2 6 2|Z|2tγ.

In particular, we conclude that with γ = ε
8|Z|4 the algorithm terminates after at

most t = O(|Z|3)ε−2 steps.

First, note that by Claim 4 we have −
∑t−1
i=0 θ

i+1
x ·

(
gx − hi+1

x

)
6 0. Second, by

definition of the sequence (hi)i we have−
∑t−1
i=0 θ

i+1
x ·

(
hi+1
x − hix

)
= −

∑t−1
i=0 θ

i+1
x ·

θi+1
x −

∑t−1
i=0 γθ

i+1
x ·Di+1

x which is at most 2|Z|3tγ2, because of Equation (9) (the
sum of absolute correction terms

∑
z |θi+1(x, z)| is, by definition, twice the total

negative mass, and |Di+1
(x, z)| 6 1). This proves that

E2 6
1

γ
· 2|Z|3tγ2 = 2|Z|3tγ.

To bound E1, note that we have to bounds two non-negative terms, namely
1
2

∑
i

(
hi+1
x − hix

)2
and

(
htx − h0x

)
· gx. As for the first one, we have

(
hi+1
x − hix

)2
=
(
γD

i+1

x + θi+1
x

)2
6 2(γD

i+1

x)2 + 2
(
θi+1
x

)2
,

where the inequality follows by the Cauchy-Schwarz inequality13. We trivially

have
(
D
i+1

x

)2
6 |Z| (because of |D(x, z)| 6 1). By the definition of correction

terms in Equation (4) we have
(
θi+1
x

)2
=
∑
z(θ

i+1(x, z))2 < 2(θi+1(x, z0))2,
where θi+1(x, z0) is the smallest negative mass , which is at most (2|Z|3γ)2

by Equation (9) . Thus, we have
(
hi+1
x − hix

)2
6 2|Z|γ2 + 8|Z|6γ2. To bund(

htx − h0x
)
· gx note that −h0x · gx 6 0 and that htx · gx 6 maxz |ht(x, z)| (because

13 Or cam be concluded from the parallelogram identity (x+ y)2 + (x− y)2 = x2 + y2

g(x, z) > 0 and
∑
x g(x, z) = 1) which means htx · gx 6 1 + 2NegativeMass(htx)

(as
∑
z max(ht(x, z), 0) = 1 −

∑
z min(ht(x, z), 0) = 1 + NegativeMass(htx) and

−
∑
z min(ht(x, z), 0) = NegativeMass(htx) by

∑
z max(ht(x, z) = 1 and the defi-

nition of the total negative mass). This allows us to estimate E1 as follows

E1 6 γ−1
(
1 + 2|Z|3γ + |Z|tγ2 + 4|Z|6tγ2

)
After t steps, the energy is at least tε. On the other hand, it at most E1 + E2.
Since |Z|, |Z|3 6 |Z|6, we obtain

tε < γ−1 + 2|Z|3 + 7|Z|6tγ

Since this is true for any positive γ, we choose γ = ε
14|Z|6 , which gives us (slightly

weaker than claimed)

t < 32|Z|6ε−2.

Remark 4 (Optimized bounds). By the second part of Claim 3 we have |θi(x, z)| <
|Z|γ for every x, z and i. An inspection of the discussion above shows that this
allows us to improve the bounds on E1, E2

E1 6 γ−1
(
1 + 2|Z|2γ + |Z|tγ2 + |Z|2tγ2

)
, E2 6 2|Z|2tγ

Setting γ = ε
8|Z|2 we get E1 + E2 6 20|Z|2ε−1 and t 6 20|Z|2ε−2.

This finishes the proof of the claim.
From Claim 5 we conclude that after t = O

(
|Z|2ε−2

)
steps we end up with

a function h = ht that is (s, ε)-indistinguishable from g, because the algorithm
terminated (and, clearly, has the complexity at most O

(
|Z|3ε−2

)
relative to

circuits of size s (including an overhead of O(|Z|) to compute D from D). To
finish the proof, we need to solve two issues

Claim 6 (From the signed measure to the probability measure). Let ht be the
output of the algorithm. Define the probability distribution

h(x, z) =
max(ht(x, z), 0)∑
z′ max(ht(x, z′), 0)

for every x, z. Then ht(x, ·) and h(x, ·) are O(ε)-statistically close for every x.

To prove the claim, we note that
∑
z′ max(ht(x, z′), 0) equals 1 + β where β =

NegativeMass(ht(x, ·). Thus we have |h(x, z) − ht(x, z)| 6 |ht(x, z)| · β
1+β . Since∑

z′ |ht(x, z′)| =
∑
z′ max(ht(x, z′), 0) −

∑
z′ min(ht(x, z′), 0) = 1 + 2β, we get∑

|h(x, z)−ht(x, z)| = O(β) which is O(ε) by Claim 3 for γ defined as in Claim 5.
Recall that we have constructed an approximating probability measure h for

the probability mass function g, which is not a sampler yet. However, we can fix
it by rejection sampling, as shown below.

Claim 7 (From the pmf to the sampler). There exists a (probabilistic) function
hsim : X → Z which calls h(x, z) (defined as above) at most O(|Z| log(1/ε))
times and for every x the distribution of its output is ε-close to h(x, ·) for every
x.

The proof goes by a simple rejection sampling argument: we sample a point
z ← Z at random and reject with probability h(x, z). The rejection probability
in one turn is 1

|Z| . If we repeat the experiment |Z| log(1/ε)| then the probability

of rejection in every round is only ε. On the other hand, conditioned on the
opposite event, we get the distribution identical to h(x, ·). So the distance is at
most ε as claimed. note that

The last two claims prove that the distribution of hsim(x) is (s,O(ε))-close
to htx = ht(x, ·), for every x. Since ht, as a function of x, z is (s, ε)-close to g,
and g is the conditional distribution of Z|X, we obtain

X,hsim(X) ≈s,O(ε) X,Z

and the complexity of the final sampler hsim(X) is O(|Z|5ε−2)

4 Time-success ratio under algebraic transformations

In Lemma 1 below we provide a quantitative analysis of how the time-success
ratio changes under concrete formulas in security reductions.

Lemma 1 (Time-success ratio for algebraic transformations). Let a, b, c
and A,B,C be positive constants. Suppose that P ′ is secure against adversaries
(s′, ε′), whenever P is secure against adversaries (s, ε), where

s′ = s · cεC − bε−B
ε′ = aεA.

(10)

In addition, suppose that the following condition is satisfied

A 6 C + 1. (11)

Then the following is true: if P is 2k-secure, then P ′ is 2k
′
-secure (in the sense

of Definition 4) where

k′ =

{ A
B+C+1k + A

B+C+1 (log c− log b)− log a, b > 1
A
C+1k + A

C+1 log c− log a, b = 0
(12)

The proof is elementary though not immediate. It can be found in [Skó15].

Remark 5 (On the technical condition (11)). This condition is satisfied in almost
all applications, at in the reduction proof typically ε′ cannot be better (meaning
higher exponent) than ε. Thus, quite often we have A 6 1.

References

BL13. Ahto Buldas and Risto Laanoja, Security proofs for hash tree time-stamping
using hash functions with small output size, Information Security and Pri-
vacy (Colin Boyd and Leonie Simpson, eds.), Lecture Notes in Computer
Science, vol. 7959, Springer Berlin Heidelberg, 2013, pp. 235–250 (English).

CLP15. Kai-Min Chung, Edward Lui, and Rafael Pass, Theory of cryptography: 12th
theory of cryptography conference, tcc 2015, warsaw, poland, march 23-25,
2015, proceedings, part i, ch. From Weak to Strong Zero-Knowledge and Ap-
plications, pp. 66–92, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

DP08. Stefan Dziembowski and Krzysztof Pietrzak, Leakage-resilient cryptography,
Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of
Computer Science (Washington, DC, USA), FOCS ’08, IEEE Computer
Society, 2008, pp. 293–302.

DP10. Yevgeniy Dodis and Krzysztof Pietrzak, Leakage-resilient pseudorandom
functions and side-channel attacks on feistel networks, Advances in Cryptol-
ogy ? CRYPTO 2010 (Tal Rabin, ed.), Lecture Notes in Computer Science,
vol. 6223, Springer Berlin Heidelberg, 2010, pp. 21–40 (English).

DTT09. Anindya De, Luca Trevisan, and Madhur Tulsiani, Non-uniform attacks
against one-way functions and prgs, Electronic Colloquium on Computa-
tional Complexity (ECCC) 16 (2009), 113.

FK99. Alan M. Frieze and Ravi Kannan, Quick approximation to matrices and
applications., Combinatorica 19 (1999), no. 2, 175–220.

FPS12. Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper, Practical
leakage-resilient symmetric cryptography, CHES 2012, 2012.

FR12. Benjamin Fuller and Leonid Reyzin, Computational entropy and informa-
tion leakage, Cryptology ePrint Archive, Report 2012/466, 2012, http:

//eprint.iacr.org/.
GW11. Craig Gentry and Daniel Wichs, Separating succinct non-interactive argu-

ments from all falsifiable assumptions., STOC (Lance Fortnow and Salil P.
Vadhan, eds.), ACM, 2011, pp. 99–108.

Imp95. Russell Impagliazzo, Hard-core distributions for somewhat hard problems, In
36th Annual Symposium on Foundations of Computer Science, IEEE, 1995,
pp. 538–545.

JP14. Dimitar Jetchev and Krzysztof Pietrzak, How to fake auxiliary input, TCC
2014, San Diego, CA, USA, February 24-26, 2014. Proceedings (Yehuda
Lindell, ed.), Lecture Notes in Computer Science, vol. 8349, Springer, 2014,
pp. 566–590.

LM94. Michael George Luby and Luby Michael, Pseudorandomness and crypto-
graphic applications, Princeton University Press, Princeton, NJ, USA, 1994.

Pie09. Krzysztof Pietrzak, A leakage-resilient mode of operation, Advances in Cryp-
tology - EUROCRYPT 2009 (Antoine Joux, ed.), Lecture Notes in Computer
Science, vol. 5479, Springer Berlin Heidelberg, 2009, pp. 462–482 (English).

Pie15. , private communication, may, 2015.
RTTV08. Omer Reingold, Luca Trevisan, Madhur Tulsiani, and Salil Vadhan, Dense

subsets of pseudorandom sets, Proceedings of the 2008 49th Annual IEEE
Symposium on Foundations of Computer Science (Washington, DC, USA),
FOCS ’08, IEEE Computer Society, 2008, pp. 76–85.

Skó15. Maciej Skórski, Time-advantage ratios under simple transformations: Ap-
plications in cryptography, Cryptography and Information Security in the

http://eprint.iacr.org/
http://eprint.iacr.org/

Balkans - Second International Conference, BalkanCryptSec 2015, Koper,
Slovenia, September 3-4, 2015, Revised Selected Papers, 2015, pp. 79–91.

TTV09. Luca Trevisan, Madhur Tulsiani, and Salil Vadhan, Regularity, boosting,
and efficiently simulating every high-entropy distribution, Proceedings of the
2009 24th Annual IEEE Conference on Computational Complexity (Wash-
ington, DC, USA), CCC ’09, IEEE Computer Society, 2009, pp. 126–136.

VZ13. Salil Vadhan and ColinJia Zheng, A uniform min-max theorem with ap-
plications in cryptography, Advances in Cryptology CRYPTO 2013 (Ran
Canetti and JuanA. Garay, eds.), Lecture Notes in Computer Science, vol.
8042, Springer Berlin Heidelberg, 2013, pp. 93–110 (English).

YS13. Yu Yu and François-Xavier Standaert, Practical leakage-resilient pseudo-
random objects with minimum public randomness, Proceedings of the 13th
International Conference on Topics in Cryptology (Berlin, Heidelberg), CT-
RSA’13, Springer-Verlag, 2013, pp. 223–238.

A More on the flaw in [JP14]

In the original setting we have Z = {0, 1}λ. In the proof of the claimed better
bound O

(
s · 23λε−2

)
there is a mistake on page 18 (eprint version), when the

authors enforce a signed measure to be a probability measure by a mass shifting
argument. The number M defined there is in fact a function of x and is hard
to compute, whereas the original proof amuses that this is a constant indepen-
dent of x. During iterations of the boosting loop, this number is used to modify
distinguishers class step by step, which drastically blows up the complexity (ex-
ponentially in the number of steps, which is already polynomial in ε). In the
min-max based proof giving the bound O

(
s · 23λε−4

)
a fixable flaw is a missing

factor of 2λ in the complexity (page 16 in the eprint version), which is because
what is constructed in the proof is only a probability mass function, not yet a
sampler [Pie15].

B Proof of Claim 2

We can rewrite Equation (6) as

∆t =
1

γ
E

x∼X

[
t−1∑
i=0

((
hi+1
x − hix

)
− θi+1

x

)
·
(
gx − hix

)]

=
1

γ
E

x∼X

[
t−1∑
i=0

(
hi+1
x − hix

)
·
(
gx − hix

)
−

t−1∑
i=0

θi+1
x ·

(
gx − hix

)]
(13)

First, note that

t−1∑
i=0

(
hi+1
x − hix

)
·
(
gx − hix

)
=

=
(
htx − h0x

)
· gx −

t−1∑
i=0

hix ·
(
hi+1
x − hix

)
=
(
htx − h0x

)
· gx +

1

2

t−1∑
i=0

(
hi+1
x − hix

)
·
(
hi+1
x − hix

)
+

− 1

2

t−1∑
i=0

(
hi+1
x + hix

)
·
(
hi+1
x − hix

)
=
(
htx − h0x

)
· gx +

1

2

t−1∑
i=0

(
hi+1
x − hix

)2 − 1

2

((
htx
)2 − (h0x)2)

(14)

As to the second term in Equation (13), we observe that

−
t−1∑
i=0

θi+1
x ·

(
gx − hix

)
= −

t−1∑
i=0

θi+1
x ·

(
gx − hi+1

x

)
−

t−1∑
i=0

θi+1
x ·

(
hi+1
x − hix

)
(15)

C Proof of Claim 3

Proof (Proof of Claim 3). We start by comparing the total negative mass in

the functions ht+1 = ht + D
t+1

+ θt+1 and ht. Suppose first that h̃t(x, z0) < 0
where z0 = ztmin(x). Since

∑
z 6=z0 h̃

t+1 = 1 − h̃t+1(x, z0), there exists z1 such

that h̃t+1(x, z1) > 1−h̃t+1(x,z0)
|Z|−1 > 0. Combining this with Equation (4) we obtain

ht+1(x, z1) = h̃t+1(x, z1) +
h̃t+1(x, z0)

|Z| − 1
>

1

|Z| − 1
(16)

These observations together with Equation (3) give us∑
z∈Z

min
(
ht+1(x, z), 0

)
=
∑
z∈Z

min
(
h̃t+1(x, z) + θt+1(x, z), 0

)
=

∑
z∈Z\{z0,z1}

min

(
h̃t+1(x, z) +

h̃t+1(x, z0)

|Z| − 1
, 0

)

>
∑

z∈Z\{z0,z1}

min
(
h̃t+1(x, z), 0

)
+ (|Z| − 2) · h̃

t+1(x, z0)

|Z| − 1

=
∑
z∈Z

min
(
h̃t+1(x, z), 0

)
+ (|Z| − 2) · h̃

t+1(x, z0)

|Z| − 1
− h̃t+1(x, z1)

=
∑
z∈Z

min
(
h̃t+1(x, z), 0

)
+ min

(
h̃t+1(x, z0)

|Z| − 1
, 0

)
(17)

where the inequality line follows from h̃t+1(x, z0) < 0 and Equation (16). But
by the definition of z0 = ztmin(x) we have h̃t+1(x, z0) = minz h̃

t+1(x, z). Since
this value is negative, we get

h̃t+1(x, z0) 6
1

|Z| − 1
·
∑
z∈Z

min
(
h̃t+1(x, z), 0

)
(18)

Combining Equation (17) and Equation (18) we obtain

−
∑
z∈Z

min
(
ht+1(x, z), 0

)
6 −

(
1− 1

(|Z| − 1)2

)∑
z∈Z

min
(
h̃t+1(x, z), 0

)
. (19)

Since |ht+1(x, z)− h̃t(x, z)| 6 γ by Equation (3), we get the following recursion

−
∑
z∈Z

min
(
ht+1(x, z), 0

)
6 −

(
1− 1

(|Z| − 1)2

)∑
z∈Z

min
(
ht(x, z), 0

)
+ |Z|γ

(20)

which can be rewritten as

NegativeMass
(
ht+1(x, ·)

)
<

(
1− 1

|Z|2

)
NegativeMass

(
ht(x, ·)

)
+ |Z|γ. (21)

which is in addition trivially true if h̃t+1(x, z) > 0 for all z. Since we have
NegativeMass

(
h0(x, ·)

)
= 0, expanding this recursion till t = 0 gives an up-

per bound |Z|γ ·
∑
j6t+1

(
1− |Z|−2

)j
which is smaller than by |Z|3γ by the

convergence of the geometric series. This finishes the proof of the first part.

To prove the second part, recall that by the definition of z0 we have h̃t+1(x, z0) =
minz h̃

t+1(x, z). Suppose that h̃t+1(x, z0) < 0 (that is, there is a negative mass

in h̃t+1(x, ·)). Now, by the definition of ht+1, we get

max
z

∣∣min(ht+1(x, z), 0)
∣∣ = max

z 6=z0

∣∣min(ht+1(x, z), 0)
∣∣

= max
z 6=z0

∣∣∣∣∣min

(
h̃t+1(x, z) +

|h̃t+1(x, z0)|
|Z| − 1

, 0

)∣∣∣∣∣ .
Suppose that h̃t+1(x, z) + |h̃t+1(x,z0)|

|Z|−1 6 0 for some z. Then, by the definition of

z0, we also have

0 > h̃t+1(x, z) +
|h̃t+1(x, z0)|
|Z| − 1

> h̃t+1(x, z0) +
|h̃t+1(x, z0)|
|Z| − 1

= −
(

1− 1

|Z| − 1

) ∣∣∣h̃t+1(x, z0)
∣∣∣ .

From this we conclude that for any z we have

min

(
h̃t+1(x, z) +

|h̃t+1(x, z0)|
|Z| − 1

, 0

)
> −

(
1− 1

|Z| − 1

) ∣∣∣h̃t+1(x, z0)
∣∣∣ .

and thus

max
z 6=z0

∣∣∣∣∣min

(
h̃t+1(x, z) +

|h̃t+1(x, z0)|
|Z| − 1

, 0

)∣∣∣∣∣ 6
(

1− 1

|Z| − 1

) ∣∣∣h̃t+1(x, z0)
∣∣∣

which means that (still assuming that h̃t+1(x, z0) < 0)

max
z

∣∣min(ht+1(x, z), 0)
∣∣ 6 (1− 1

|Z| − 1

)
max
z

∣∣∣min
(
h̃t+1(x, z), 0

)∣∣∣ .
Note that 0 > min

(
h̃t+1(x, z), 0

)
> min (ht(x, z), 0) − γ by the definition of

ht+1 and h̃t+1. Then

max
z

∣∣min(ht+1(x, z), 0)
∣∣ 6 (1− 1

|Z| − 1

)
max
z

∣∣min(ht(x, z), 0)
∣∣+ γ.

Note that this inequality is true even if h̃t+1(x, z0) = 0, that is h̃t+1(x, z) > 0 for
all z as then ht+1(x, z) > 0 for all z. By expanding this recursion, and noticing
that min(h0(x, z), 0) = 0 for all x, z by definition, we get

max
z

∣∣min(ht+1(x, z), 0)
∣∣ 6 γ

t∑
j=0

(
1− 1

|Z| − 1

)j
< |Z|γ.

D Proof of Claim 4

Proof. If θt+1(x, z) = 0 then there is nothing to prove. Suppose that θt+1(x, z) <
0. Let z0 = ztmin(x). According to Equation (4) we have θt+1(x, z0) = −h̃t+1(x, z0)

and θt+1(x, z) = h̃t+1(x,z0)
#Z−1 for z 6= z0. Therefore

θt+1
x ·

(
gx − h̃t+1

x

)
= −h̃t+1(x, z0)

(
g(x, z0)− h̃t+1(x, z0)

)
+

+
∑
z 6=z0

h̃t+1(x, z0)

|Z| − 1
·
(
g(x, z)− h̃t+1(x, z)

)
= −h̃t+1(x, z0)

(
g(x, z0)− h̃t+1(x, z0)

)
− h̃t+1(x, z0)

|Z| − 1

(
g(x, z0)− h̃t+1(x, z0)

)
(22)

and

−θt+1
x · θt+1

x = −h̃t+1(x, z0) · h̃t+1(x, z0)

(
1 +

1

|Z − 1|

)
. (23)

Putting Equations (22) and (23) together we obtain

θt+1
x ·

(
gx − ht+1

x

)
= θt+1

x ·
(
gx − h̃t+1

x

)
− θt+1

x · θt+1
x

= −
(

1 +
1

|Z| − 1

)
h̃t+1(x, z0) · g(x, z0)

which is positive because h̃t,r(x, z0) < 0 and g(x, z0) > 0. This proves Claim 4.

	Simulating Auxiliary Inputs, Revisited

