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1 Introduction

Candidates for multilinear maps [GGH13a, CLT13, GGH15, CLT15, Hal15], also
called graded encoding schemes, have formed the substrate for achieving the im-
portant goal of general-purpose indistinguishability obfuscation (iO) [BGI+01,
BGI+12]. Several iO candidates have appeared in the literature starting with
the work of [GGH+13b]. However, all known proofs of security for candidate ob-
fuscation schemes have relied on assumptions that are justified only in a generic
multilinear group model, where, informally speaking, the adversary is limited to
using the multilinear map only in an honest manner. Most notably, this model
allows the adversary to submit encodings for a zero test, and in the model the
adversary only learns whether the encoding is an encoding of zero or not, and
nothing more.

Unfortunately this last aspect of the modeling of multilinear maps has proven
extremely elusive to achieve in multilinear map candidates: zero testing seems
to reveal quite a bit more than just whether an encoded element is zero or
not. Indeed, all candidate constructions of multilinear maps have been shown
to suffer from “zeroizing” attacks [GGH13a, CHL+15, BWZ14, CGH+15, HJ15,
BGH+15, Hal15, CLR15, MF15, MSZ16a] that show how to exploit the addi-
tional information leaked by zero testing to attack various schemes constructed
on top of multilinear maps. In particular, a work by Miles, Sahai, and Zhandry
[MSZ16a] gave the first polynomial-time attack on several candidate construc-
tions of iO [BR14, BGK+14, PST14, AGIS14, MSW14, BMSZ16] when those
constructions are instantiated using the original multilinear map candidate due
to Garg, Gentry, and Halevi [GGH13a]. Thus, these attacks show that our mod-
eling of multilinear map candidates is insufficient, even as a heuristic for arguing
security.

The work of Badrinarayanan et al. [BMSZ16] explicitly addressed the ques-
tion of whether a weaker model of security of multilinear maps can suffice for
proving the security of iO. In particular, such a model of weak multilinear maps
must take into account known attacks on the candidate multilinear map — that
is, all known polynomial-time attacks must be allowable in the model. While
there are several long-standing iO candidates that are not known to be broken
(see, e.g., [AJN+16, App. A]), until recently there has not been any model for
justifying their security. The work of [BMSZ16] gave the first such positive re-
sult, and showed that in one such weak multilinear map model, obfuscation for
evasive functions can be proven secure with only minor modifications to exist-
ing iO candidates. [MSZ16a] posited another, more specific, weak multilinear
map model that captured all known polynomial-time attacks in the context of
the GGH13 multilinear map candidate. However, that work did not answer the
question of whether one can construct an iO candidate for general programs that
is provably secure in this model.

Our Contribution. In this work we answer this question in the affirmative,
showing a new construction of an iO candidate,which can be seen as a small
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modification or generalization of the original iO candidate of [GGH+13b], and
we prove its security in the weak multilinear map model of [MSZ16a].

We prove the security of our candidate under a new assumption about the
hardness of computing annihilating polynomials (cf. Def. 4), and we show that
this assumption is implied by the existence of pseudorandom functions (PRF)
in NC1. Interestingly, if our assumption is true because a PRF exists and can
be computed by a matrix branching program of size t(n), then our construction
will only depend on this size bound t(n), and not on any other details of the
PRF! Indeed, our construction will just need to be padded to have size at least
roughly t(n), and no modification will be necessary at all if the program being
obfuscated is already larger than t(n).

Philosophically, this is reminiscent of the recent work on time-lock puzzles
of [BGJ+15], where their construction of a puzzle needs to be padded to have
the size of some program that computes a long non-parallellizable computation.
Technically, however, our methods appear to be completely unrelated.

We now give an overview of the GGH13 multilinear map candidate. Follow-
ing that, we describe an objective that is common to all known polynomial-time
attacks on the GGH13 multilinear map, and use this to explain the weak multi-
linear map model of [MSZ16a]. We then present some starting intuition followed
by an outline of the proof that our new candidate is secure against all known
polynomial-time attacks on GGH13 (including [MSZ16a]).

1.1 Overview of GGH13

For GGH13 [GGH13a] with k levels of multilinearity, the plaintext space is a
quotient ring Rg = R/gR where R is the ring of integers in a number field and
g ∈ R is a “small element” in that ring. The space of encodings is Rq = R/qR
where q is a “big integer”. An instance of the scheme relies on two secret elements,
the generator g itself and a uniformly random denominator z ∈ Rq. A small
plaintext element α is encoded “at level one” as u = [e/z]q where e is a “small
element” in the coset of α, that is e = α+ gr for some small r ∈ R.

Addition/subtraction of encodings at the same level is just addition in Rq,
and it results in an encoding of the sum at the same level, so long as the nu-
merators do not wrap around modulo q. Similarly multiplication of elements at
levels i, i′ is a multiplication in Rq, and as long as the numerators do not wrap
around modulo q the result is an encoding of the product at level i+ i′.

The scheme also includes a “zero-test parameter” in order to enable test-
ing for zero at level k. Noting that a level-k encoding of zero is of the form
u = [gr/zk]q, the zero-test parameter is an element of the form pzt = [hzk/g]q
for a “somewhat small element” h ∈ R. This lets us eliminate the zk in the
denominator and the g in the numerator by computing [pzt · u]q = h · r, which
is much smaller than q because both h, r are small. If u is an encoding of a
non-zero α, however, then multiplying by pzt leaves a term of [hα/g]q which
is not small. Testing for zero therefore consists of multiplying by the zero-test
parameter modulo q and checking if the result is much smaller than q.
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Note that above we describe the “symmetric” setting for multilinear maps
where there is only one z, and its powers occur in the denominators of encodings.
More generally, there is an “asymmetric” setting where there are multiple zi.

1.2 Overview of the model

To motivate our model (which is essentially that of [MSZ16a] with some clar-
ifications), we note that all known polynomial-time attacks [GGH13a, HJ15,
MSZ16a] on the GGH13 graded encoding scheme share a common property. As
mentioned above, these attacks work by using information leaked during zero
testing. More precisely, these attacks compute a set of top-level 0-encodings via
algebraic manipulations on some set of initial encodings, then apply the zero
test to each top level encoding, and then perform an algebraic computation on
the results of the zero testing to obtain an element in the ideal 〈g〉. In partic-
ular, the latter computation is agnostic to the particular value of g and to the
randomization values r chosen for each initial encoding.

After obtaining a set of elements from 〈g〉, the prior attacks then use these in
various different ways to mount attacks on different cryptographic constructions
built on top of GGH13. However, those details are not important to us. In our
model (as suggested in [MSZ16a]), if the adversary succeeds in just generating
an element in the ideal 〈g〉, we will say that the adversary has won.

Our model captures the type of attack described above as follows. Like the
standard ideal graded encoding model, our modelM is an oracle that maintains a
table mapping generic representations called “handles” to encodings of elements
ai ∈ Zp ' R/〈g〉. However, rather than just storing each value ai (along with its
level), we store the formal Zp-polynomial ai + g · ri, where g is a formal variable
common to all encodings and ri is a “fresh” formal variable chosen for each ai.
Then, an adversary may use the handles to perform any set of level-respecting
algebraic computations on the initial set of encodings. The result of any such
computation is an encoding f which is represented as a Zp-polynomial in the
variables g and {ri}.

When the adversary submits a handle to a top-level encoding f for zero-
testing, M checks whether f ’s constant term is 0 (which corresponds to a 0-
encoding in the standard ideal model). If so, M returns a handle to the formal
polynomial f/g (corresponding to the result of the GGH13 zero-testing proce-
dure), and otherwise M responds “not zero.”

Finally, the adversary may submit a post-zero-test polynomial Q of degree at
most 2o(λ), where throughout the paper λ is the security parameter. M checks
whether Q, when evaluated on the set of zero-tested encodings {f/g} the ad-
versary has created, produces a non-zero polynomial in which every monomial
is divisible by g; i.e., it checks whether Q produces a non-zero polynomial that
is zero mod g. If so, M outputs “WIN”, indicating that the adversary’s attack
was successful. Note that any such Q is an annihilating polynomial (Def. 4) for
the set {f/g mod g}.
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On the degree bound. The bound deg(Q) ≤ 2o(λ) for efficient adversaries may
seem somewhat artificial. Indeed, arithmetic circuits of size poly(λ) can have
arbitrary exponential degree.

However, using the GGH13 graded encoding scheme, such high-degree poly-
nomials appear difficult to compute in the non-idealized setting. This is because,
in all known polynomial-time attacks on GGH13, the post-zero-test computa-
tions cannot be performed modulo the GGH13 parameter q while maintaining
the correctness of the attack. Indeed, there is no modulus M known with respect
to which the computations can be performed while still maintaining correctness
of attacks, unless the modulus M is so large that working modulo M results in
computations that are identical to the computations over Z.

Let us explore the intuition behind why this seems to be the case. Let d be
the dimension of the ring R over Z. Recall that the goal of the attacker in our
model is to recover an element of the ideal 〈g〉. In order to safely work modulo
M , it needs to be the case that MZd is a sublattice of the ideal lattice 〈g〉. But
g is a secret parameter of the GGH13 scheme. Until the adversary finds out
something about g, it cannot be sure that any modulus M it chooses will be safe
(and indeed if the computation overflows with respect to M , almost certainly
any information relevant to g will be lost). But the only way we know to learn
anything about g is to find an element in 〈g〉, which was the goal of the attack
to begin with.

Therefore, multiplication of two elements potentially doubles the size of the
elements, and an element of exponential degree will likely have exponential
size. It seems difficult even to perform post-zero-test computations of super-
polynomial degree.

At a technical level, we need to restrict to degree 2o(λ) due to our use of the
Schwartz-Zippel lemma, which ceases to give useful bounds when Q has larger
degree.

1.3 Intuition: Obfuscation using an explicit NC1 PRF

To build intuition, we first describe a construction assuming an explicit PRF in
NC1. Later we will show that simply the existence of an NC1 PRF (in fact, a
more general assumption that is implied by the existence of such PRF) suffices
for our purpose.

Consider an obfuscator that, given a matrix branching program A, first turns
each matrix Ai,b into a block-diagonal matrix

Pi,b =

(
Ai,b

RKi,b

)
where the RKi,b form an “auxiliary” branching program which, on input x, com-

putes a value ρx · g where ρx is the output1 of an NC1 PRF on input x.

1 For simplicity we abuse notations of branching programs, in that it outputs a ring
element instead of a bit. It is straightforward to embed multiple branching programs
into one to achieve this effect.
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The Pi,b matrices are then randomized as in previous works using Kilian
randomization [Kil88] plus independent scalars for each matrix, and encoded as
in previous works using [GGH13a] multilinear maps and the “straddling set”
level structure from [BGK+14]. Thus, the only deviation from the “standard
recipe” for obfuscation are the auxiliary matrices Ri,b matrices described above.
Note that an honest evaluation of P on input x results in roughly the following
evaluation:

P (x) = A(x) + g · ρx.

The proof of security for this obfuscator starts with the analysis of [BGK+14,
BMSZ16], which decomposes each top-level 0-encoding produced by the adver-
sary into a linear combination of “honest evaluation” polynomials fx1

, . . . , fxm

over the obfuscated branching program, for some poly(λ)-size set of inputs
x1, . . . , xm on which the BP evaluates to 0. Thus, we can view any post-zero-
test polynomial Q (produced by the adversary) as a polynomial in {fxj/g}j∈[m].

For each xj , we can write

fxj
= f (0)xj

+ g · f (1)xj
+ g2 · f (2)xj

+ . . .

where f
(0)
xj , f

(1)
xj , . . . are polynomials over just the randomness {ri} of the GGH13

graded encoding (i.e. they do not contain the variable g). Since the “main branch-

ing program” A evaluates to 0 on each xj , we can show that f
(0)
xj is the 0 poly-

nomial, which means that fxj/g = f
(1)
xj + g · f (2)xj + · · · . Thus by algebraic inde-

pendence, if Q annihilates {fxj
/g}j∈[m] mod g, it must in particular annihilate

{f (1)xj }j∈[m].

We can further decompose the structure of each such f
(1)
xj by writing it as

f (1)xj
= f̂ (1)xj

+ ρxj

where ρxj
is the pseudorandom multiplier of g produced via the PRF compu-

tation RK(xj) (which is independent of the {ri} values). Intuitively, if Q anni-

hilates the polynomials f
(1)
xj , then by algebraic independence it must annihilate

{ρx1
, ρx2

, . . . ρxm
} as formal polynomials. However, since for a PPT attacker such

variables are pseudorandom in a large field of size p > 2λ, Q cannot exist except
with negligible probability (as otherwise it could be used to efficiently distinguish
between the PRF and a random function).

1.4 Overview of the security proof

We now give an overview of our proof of security, building on the above intuition.
Given a branching program A, our obfuscator first transforms each matrix Ai,b
again into a block-diagonal matrix(

Ai,b
Bi,b

)
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where, in contrast to the intuition presented above, each auxiliary Bi,b is simply
a uniform random matrix over Zp. (As mentioned above, this can be seen as a
generalization of [GGH+13b], where this same block-diagonal structure was used
but the Bi,b matrix was a random diagonal matrix. Note that we choose Bi,b
to be completely random instead.) Note that this obfuscator does not hard-wire
into it a branching program for a PRF, or for any other specific function aside
from the branching program A that is being obfuscated.

The proof of security follows the argument presented above, up to the point
of showing that a “successful” post-zero-test polynomial Q must in particular

annihilate the polynomials {f (1)xj }j∈[m]. Unlike in the hardwired-PRF construc-

tion however, each f
(1)
xj now does not contain an explicit PRF output. Still, each

can be viewed a polynomial in the entries of the original branching program A,
the randomization values chosen by the obfuscator (including the Bi,b matrices),
and the randomization values ri in the GGH13 encodings.

The core of our proof shows that if Q annihilates the set {f (1)xj }j∈[m], then it
must also annihilate a corresponding set of “generic BP evaluation polynomials”

exj
:= β0 ×

∏̀
i=1

βi,(xj)inp(i) × β`+1

where {βi,b}j∈[`],b∈{0,1} (resp. β0, β`+1) are matrices (resp. vectors) of indepen-
dent variables, corresponding to the Bi,b matrices. This uses the Schwartz-Zippel
lemma, and two additional techniques. The first is that if Q annihilates a set of
polynomials {pi = p′i + u · p′′i }i where the variable u appears in no p′i, then by
algebraic independence Q must also annihilate {p′i}i. The second is that if a set
of polynomials {qi}i can be obtained from another set of polynomials {pi}i via
a change of variables, and Q annihilates {pi}i, then Q also annihilates {qi}i.

Our main assumption (Assumption 1) states that annihilating a poly-size
subset of {ex}x∈{0,1}n is not possible. We observe in Theorem 2 that, in partic-
ular, this assumption is implied by the existence of PRF in NC1. However, we
believe the above assumption to be quite plausible independent of the fact that
a PRF in NC1 would imply its validity.

1.5 Extensions

Single-input vs Dual-input branching programs. Our obfuscator, following Barak
et al. [BGK+14], uses dual-input branching programs, which allows us to prove
VBB security in the weak multilinear map model. The obfuscator of [BGK+14]
can also be modified to use single-input branching programs, though then only
iO security is proved in the plain generic model. Unfortunately, we are unable
to prove iO security for a single-input variant of our construction. The problem
is that a post-zero-test encoding can now consist of elements coming from ex-
ponentially many inputs. This means that an annihilating polynomial Q may
annihilate an exponential set of “generic BP evaluation polynonials.” This pre-
vents us from embedding Assumption 1 into the security proof.
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However, if the input domain of the obfuscated program is polynomial-sized
instead of exponential, then there are only a polynomial number of possible BP
evaluation polynomials. Thus, we are able to embed Assumption 1. Therefore, in
the case of polynomial-sized domain, the single input version of our obfuscator
achieves iO security.

Order revealing encryption. Our techniques can also be applied to the order-
revealing encryption scheme of [BLR+15]. Order-revealing encryption is a sym-
metric encryption scheme that lets one publicly compare the order of plaintexts,
but no information beyond the order of the plaintexts is revealed.

In the scheme of [BLR+15], ciphertexts are generated by encoding branching
program matrices analagous to how they are encoded in obfuscation — Kilian
randomize and multiply by a random scalar. The branching program arises from
the state transition matrices of the finite automata for comparing two integers.

We note that their scheme was shown to be insecure in the weak multilinear
map model by [MSZ16a]. To protect against these attacks, we similarly extend
the branching program matrices into a block diagonal matrix with the new block
being a random matrix, before applying Kilian randomization.

Security readily follows from our analysis, using a “base-B” version of As-
sumption 1, where B is the number of ciphertexts the adversary sees. That is,
we can consider a version of our assumption where the matrix branching pro-
grams have inputs that are represented base B, and each layer of the branching
program reads a single digit, selecting one of B matrices for that layer. Such a
base-B assumption follows from the standard binary version of Assumption 1 by
decomposing each digit into logB bits.

Model Variations. In Section 5, we consider a variant of our model that more
closely reflects the GGH13 encodings. Here, the ri used to encode are no longer
treated as formal variables, but are instead treated as actual ring elements sam-
pled from some distribution. In GGH13, the distribution on ri depends on the
ring element ai — in our model, we therefore allow the ri to have arbitrary
correlations with the ai, as long as the conditional min-entropy of ri given ai is
high. This min-entropy requirement is satisfied by GGH13 encodings. We note
that switching to ri being ring elements makes the adversary’s winning condition
easier, as there are now fewer constraints on the post-zero-test polynomial Q.

We show that, with a small modification to the proof, our obfuscator is also
secure in this variant model. If the ri were uniformly random in some fixed subset
of the ring, the Schwartz-Zippel lemma would suffice for adapting our original
security proof to this setting. However, as we allow the ri to be non-uniform
and potentially come from different distributions, we need a new variant of the
Schwartz-Zippel lemma for more general distributions. We prove this variant,
which may be of independent interest, in Lemma 2.

Organization. In Section 2 we formally define our model. In Section 3 we give
the details of our obfuscator, and in Section 4 we give the proof of security and
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discuss our assumption. In Section 5, we prove security in the alternative model
discussed above.

2 The Model

In this section, we define our model for weak graded encoding schemes. The
model is inspired by [CGH+15, App. A], and is essentially the same as the
model given in [MSZ16a] except for some details that we clarify here.

Recall that in a graded encoding scheme, there is a universe set U, and a value
a can be encoded at a level S ⊆ U, denoted by [a]S . Addition, subtraction, and
multiplication of encodings are defined provided that the levels satisfy certain
restrictions, as follows.

– For any S ⊆ U: [a1]S ± [a2]S := [a1 ± a2]S .
– For any S1, S2 ⊆ U such that S1 ∩ S2 = ∅: [a1]S1

· [a2]S2
:= [a1 · a2]S1∪S2

.

Further, an encoding [a]U at level U can be zero-tested, which checks whether
a = 0.

In the standard ideal graded encoding model, a stateful oracle maintains a
table that maps encodings to generic representations called handles. Each handle
explicitly specifies the encoding’s level, but is independent of the encoding’s
value. All parties have access to these handles, and can generate new handles by
querying the oracle with arithmetic operations that satisfy the above restrictions.
In addition, all parties may perform a zero-test query on any handle whose level
is U, which returns a bit indicating whether the corresponding value is 0.

Our model also implements these features, but adds new features to more
closely capture the power that an adversary has in the non-idealized setting.
The most important new feature is that a successful zero test returns a handle
to a ring element that can further be manipulated, as opposed to just returning
a bit.

We now formally describe the interfaces implemented by the oracle M that
defines our model. For concreteness, we define M to explicitly work over the
GGH13 ring R = Z[X]/(Xη + 1) and the field Zp ' R/〈g〉 for an appropriate
g ∈ R.

Initialize parameters. The first step in interacting with M is to initialize it
with the security parameter λ ∈ N. (Jumping ahead, this will be done by the
obfuscator.)M defines the ring R = Z[X]/(Xη+1), where η = η(λ) is chosen as
in [GGH13a]. Then,M chooses g ∈ R according to the distribution in [GGH13a],
and outputs the prime p := |R/〈g〉| > 2λ. After initializing these parameters,
M discards the value of g, and treats g as a formal variable in all subsequent
steps.

Initialize elements. After the parameters have been initialized, M is given a
universe set U and a set of initial elements {[ai]Si

}i where ai ∈ Zp and Si ⊆ U
for each i. For each initial element [ai]Si

, M defines the formal polynomial
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fi := ai + g · zi over Zp. Here g is a formal variable that is common to all fi,
while zi is a “fresh” formal variable2 chosen for each fi. Then M generates a
handle hi (whose representation explicitly specifies Si but is independent of ai),
and stores the mapping “hi → (fi, Si)” in a table that we call the pre-zero-test
table. Finally, M outputs the set of handles {hi}i.

Note that storing the formal polynomial fi strictly generalizes the standard
ideal model which just stores the value ai. This is because ai can always be
recovered as the constant term of fi, and this holds even for subsequent polyno-
mials that are generated from the initial set via the algebraic operations defined
next.

The above two initialization interfaces are each executed once, in the order
listed; any attempt to execute them out of order or more than once will fail.M
also implements the following algebraic interfaces.

Pre-zero-test arithmetic. Given two input handles h1, h2 and an operation ◦ ∈
{+,−, ·}, M first locates the corresponding polynomials f1, f2 and level sets
S1, S2 in the pre-zero-test table. If h1 and h2 do not both appear in this table,
the call to M fails. If the expression is undefined (i.e., S1 6= S2 for ◦ ∈ {+,−},
or S1 ∩ S2 6= ∅ for ◦ ∈ {·}), the call fails. Otherwise, M computes the formal
polynomial f := f1 ◦ f2 and the level set S := S1 ∪ S2, generates a new handle
h, and stores the mapping “h → (f, S)” in the pre-zero-test table. Finally, M
outputs h.

Zero-testing. Given an input handle h, M first locates the corresponding poly-
nomial f and level set S in the pre-zero-test table. If h does not appear in this
table, or if S 6= U, the call toM fails. If f ’s constant term is non-zero (recall that
this term is an element of Zp), M outputs the string “non-zero”. If instead f ’s
constant term is 0, note that f must be divisible by the formal variable g, i.e. g
appears in each of f ’s monomials.M computes the formal polynomial f ′ := f/g
over Zp, generates a new handle h′, and stores the mapping “h′ → f ′” in a table
that we call the post-zero-test table. Finally, M outputs h′.

Post-zero-test arithmetic. Given a set of input handles h′1, . . . , h
′
m and an m-

variate polynomial Q over Z (represented as an arithmetic circuit), M first
locates the corresponding polynomials f ′1, . . . , f

′
m in the post-zero-test table. If

any h′i does not appear in this table, the call to M fails. Otherwise, M checks
whether Q(f ′1, . . . , f

′
m) is non-zero as a polynomial over Zp which is zero modulo

the variable g. In other words, M checks that Q(f ′1, . . . , f
′
m) contains at least

one monomial whose coefficient is not zero modulo p, and that g appears in all
such non-zero monomials.3 If this check passes,M outputs “WIN”, otherwise it
outputs ⊥.

2 Here and for the remainder of the paper, we use zi rather than ri to denote the
randomization values in GGH13 encodings, to avoid conflicting with the random
matrices R chosen by the obfuscator. We will not need to work with the GGH13
level denominators, which were previously denoted by zi.

3 Note that this corresponds to finding a non-trivial element in the ideal 〈g〉.
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Definition 1. A (possibly randomized) adversary interacting with the modelM
is efficient if it runs in time poly(λ), and if each Q submitted in a post-zero-test
query has degree 2o(λ). Such an adversary wins if it ever submits a post-zero-test
query that causes M to output “WIN”.

3 The Obfuscator

Our obfuscator for matrix branching programs is closely related to that of Badri-
narayanan et al. [BMSZ16]. The main difference is that, before randomizing and
encoding, each matrix Ai,b is first transformed into a block-diagonal matrix(

Ai,b
Bi,b

)
where each Bi,b is uniformly random.

We now describe our obfuscator O. O is instantiated with two parameters,
t = t(n, λ) and s = s(n, λ), that correspond to those in Assumption 1.

Input. O takes as input a dual-input matrix branching program4 BP of length
m, width w, and input length n. Such a matrix branching program consists
of an input-selection function inp : [m] → [n] × [n], 4m matrices {Ai,b1,b2 ∈
{0, 1}w×w}i∈[m];b1,b2∈{0,1}, and two “bookend” vectors A0 ∈ {0, 1}1×w and

Am+1 ∈ {0, 1}w×1. BP is evaluated on input x ∈ {0, 1}n by checking whether

A0 ×
∏
i∈[m]

Ai,x(i) ×Am+1

is zero or non-zero, where we abbreviate x(i) := (xinp(i)1 , xinp(i)2). We make three
requirements on BP (cf. [BMSZ16, Sec. 3]).

1. It is forward non-shortcutting, defined below.
2. For each i ∈ [m] : inp(i)1 6= inp(i)2.
3. For each pair j 6= k ∈ [n], there exists i ∈ [m] such that inp(i) ∈ {(j, k), (k, j)}.

Definition 2 ([BMSZ16]). A branching program A0, {Ai,b}i∈[`],b∈{0,1}, A`+1

is forward (resp. reverse) non-shortcutting if, for every input x, the vector

A0 ×
∏
i∈[`]

Ai,x(i)

resp.
∏
i∈[`]

Ai,x(i) ×A`+1


is non-zero. It is non-shortcutting if it is both forward and reverse non-shortcutting.

4 These can be constructed from any NC1 formula with m = poly(n) and w = 5 by
Barrington’s theorem [Bar86]. Obfuscating NC1 formulas is sufficient to obfuscate
all polynomial-size circuits [GGH+13b, BR14, App14].
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Step 0: Initialize model. O first sends the security parameter λ to the modelM,
and receives back a prime p.

Step 1: Pad BP. O’s first modification to BP is to pad it with identity ma-
trices (if necessary) so that it contains a set of t layers i1 < . . . < it such
that (inp(i1)1, . . . , inp(it)1) cycles t/n times through [n]. This choice of inp is
specifically to allow a branching program of the form in Assumption 1 to be
transformed into one with input selection function inp(·)1. We use ` ≤ t+m to
denote the length of the padded branching program.

Step 2: Extend matrices. Next, O extends the matrices as mentioned above. To
do this, it selects 4` uniformly random matrices {Bi,b1,b2 ∈ Zs×sp }i∈[`];b1,b2∈{0,1}
and one uniformly random vector B`+1 ∈ Zs×1p , and defines the following matri-
ces and vectors.

A′0 := (A0 0s) A′i,b1,b2 :=

(
Ai,b1,b2

Bi,b1,b2

)
A′`+1 :=

(
A`+1

B`+1

)
Note that this satisfies

A′0 ×
∏
i∈[`]

A′i,x(i) ×A
′
`+1 = A0 ×

∏
i∈[`]

Ai,x(i) ×A`+1

for every input x ∈ {0, 1}n.

Step 3: Randomize. Next, O generates uniformly random non-singular matrices
{Ri}i∈[`+1] and uniformly random non-zero scalars α0, {αi,b1,b2}i∈[`];b1,b2∈{0,1}, α`+1.

Then it computes the randomized branching program, denoted B̂P , as follows.

Â0 := α0A
′
0 ×R

adj
1 Âi,b1,b2 := αi,b1,b2Ri ×A′i,b1,b2 ×R

adj
i+1

Â`+1 := α`+1R`+1 ×A′`+1

Here Radji denotes the adjugate matrix of Ri that satisfies Radji ×Ri = det(Ri)·I.

It is easy to see that B̂P computes the same function as BP , i.e.

Â0 ×
∏
i∈[`]

Âi,x(i) × Â`+1 = 0 ⇔ A0 ×
∏
i∈[`]

Ai,x(i) ×A`+1 = 0

for every input x ∈ {0, 1}n.

Step 4: Encode. Finally, O initializes M with the elements of the Â matrices.
To do this, it uses the level structure in [BGK+14] constructed from so-called
straddling sets. We defer the details to Appendix A, but we remark that this
level structure has the property that each “honest evaluation” B̂P (x) = Â0 ×∏
i Âi,x(i) × Â`+1 results in an encoding at level U. This, in combination with

the zero-test procedure, allows the obfuscated program to be evaluated.
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M’s pre-zero-test table can now be viewed as containing the variables
Y0, {Yi,b1,b2}i∈[`];b1,b2∈{0,1}, Y`+1 of the following form.

Y0 = Â0 + gZ0 Yi,b1,b2 = Âi,b1,b2 + gZi,b1,b2 Y`+1 = Â`+1 + gZ`+1

Here g is a formal variable and each Z matrix is a matrix of formal variables,
while the Â matrices contain Zp-elements.

The final branching program B̂P = O(BP ) has length ` (satisfying t ≤ ` ≤
m+ t) and width w+ s. In the proof of Theorem 3, we will use the fact that any
branching program of the form in Assumption 1 can be transformed (by padding
with identity matrices) into one with length ` whose input selection function is
the same as inp(·)1.

Definition 3. O is secure in the modelM of Section 2 if, for every BP match-
ing O’s input specification and every efficient adversary A interacting with M,
Pr[A wins] < negl(λ) when M is initialized by O(BP ). (Here the probability is
over the randomness of O and A.)

4 Security of Our Obfuscator

We first state two definitions, and then state the assumption under which we
will prove security. After that, we prove our security theorem.

Definition 4. Let f1, . . . , fm be a set of polynomials over some common set of
variables. Then an m-variate polynomial Q annihilates {fi}i∈[m] if Q(f1, . . . , fm)
is zero as a formal polynomial.

Definition 5. A matrix branching program BP is L-bounded for L ∈ N if every
intermediate value computed when evaluating BP on any input is at most L. In
particular all of BP ’s outputs and matrix entries are ≤ L.

Our assumption essentially states that no efficiently computable polynomial
can annihilate every branching program’s evaluation polynomials on some effi-
ciently computable set of inputs. (The assumption is parameterized by the length
t and width s of the branching program.) In the assumption, we implicitly use
a more general notion of how a branching program computes a function than
was used in the previous section. Namely, the function computed can have range
[2λ] (rather than {0, 1}) by taking the output to be the value resulting from
multiplying the appropriate vectors and matrices (rather than a bit indicating
whether this value is 0).

Assumption 1 The (t, s)-branching program un-annihilatability (BPUA)
assumption. Let t = poly(n, λ) and s = poly(n, λ) be parameters. Let A denote
a PPT that, on input (1n, 1λ), outputs a poly(λ)-size set X ⊆ {0, 1}n and a
poly(λ)-size, 2o(λ)-degree polynomial Q over Z.

13



For all n and for sufficiently large λ, all primes 2λ < p ≤ 2poly(λ), and
all such A, there exists a (single-input) 2λ-bounded matrix branching program
BP : {0, 1}n → [2λ] of length t and width s, whose input selection function
iterates over the n input bits t/n times, such that

Pr [Q ({BP (x)}x∈X ) = 0 (mod p)] < negl(λ)

where the probability is over A’s randomness.

We observe that Assumption 1 is in particular implied by the existence of
PRF in NC1 secure against P/poly (with t, s related to the size of such PRF).

Theorem 2. Let t and s be as in Assumption 1. If there exists a PRF Fk :
{0, 1}n → [2λ] that

– is computable by a length-t/n, width-s, 2λ-bounded matrix branching program
BPk, and

– is secure against non-uniform, polynomial-time adversaries (i.e. secure against
P/poly)

then Assumption 1 holds.

Note that we take BPk’s matrix entries to be computed as a function of the
PRF key k.

Proof. Assume that Assumption 1 is false, and fix a PPT A and a prime p such
that

Pr [Q ({BP (x)}x∈X ) = 0 (mod p)] ≥ 1/poly(λ)

for every BP of the form in Assumption 1. We give a PPT A′ with oracle access
to O that distinguishes with probability ≥ 1/poly(λ) whether O implements BPk
for a uniform k or implements a uniform function F : {0, 1}n → [2λ]. We note
that hardwiring p into A′ is the only place where non-uniformity is needed.

A′ simply runs A to get Q and X , and computes d := Q(O(x)x∈X ) (mod
p). Note that A′ runs in time poly(λ) because Q and p both have this size.
If O implements BPk, then d = 0 with probability ≥ 1/poly(λ). To see this,
note that BPk can be transformed (by padding with identity matrices) into an
equivalent branching program of the form in Assumption 1 due to the input
selection function there.

On the other hand, if O implements a random function, then since p > 2λ

and deg(Q) = 2o(λ), d = 0 with probability < negl(λ) by the Schwartz-Zippel
lemma.

For further discussion on our assumption, including the plausibility of PRF
necessary for Theorem 2, see Section 4.2.
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4.1 Our Main Theorem

Theorem 3. Let O be the obfuscator from Section 3 with parameters t and s.
If the (t, s)-BPUA assumption holds, O is secure in the model M of Section 2.

We note that this theorem also implies that O achieves VBB security in the
model from Section 2. To see this, first note that the initialization, pre-zero-test
arithmetic, and zero-test interfaces can be simulated with error negl(λ) exactly
as in the proof of [BMSZ16, Thm. 5.1]. Further, a simulator can simply respond
to every post-zero-test query with ⊥, and the additional error introduced by this
is bounded by negl(λ) due to Theorem 3.

Proof. Fix a PPT adversary A and assume for contradiction that, with proba-
bility ε ≥ 1/poly(λ), A obtains a set of valid post-zero-test handles h′1, . . . , h

′
m

and constructs a size-poly(λ), degree-2o(λ), m-variate polynomial Q over Z such
that the post-zero-test query (Q, h′1, . . . , h

′
m) causes M to output “WIN”. By

the definition of M, each handle h′j must then correspond to a polynomial f ′j
such that fj := g · f ′j is a level-U polynomial in M’s pre-zero-test table with
constant term 0.

Recall that M is initialized with the set of Zp values {ai}i from the branch-

ing program B̂P created by O(BP ), and that for each such value M stores a
polynomial ai+g ·zi with formal variables g, zi. Thus each fj is a Zp-polynomial
with variables g, {zi}i. In the following, we use fj to denote the polynomial over
the set of M’s initial elements such that fj({ai + g · zi}i) = fj .

Decomposing fj. For any input x, let fx denote the matrix product polynomial

that corresponds to evaluating B̂P (x), and note that fx({ai}i) = 0 (mod p) ⇔
B̂P (x) = 0 ⇔ BP (x) = 0. The results of [BGK+14, BMSZ16] (summarized in
Lemma 1 following this proof) show that, with probability 1− negl(λ) over the
randomness of O, for each j ∈ [m] there is a poly(λ)-size set Xj such that: (1)
fj is a linear combination of the polynomials {fx}x∈Xj , and (2) BP (x) = 0 for
every x ∈ Xj . (Note that the conditions of the lemma are satisfied, as we can
assume wlog that the post-zero-test query we are analyzing is the first to which
M has responded with “WIN”.)

The set Xj and the coefficients in the linear combination depend only on
the structure of fj , and not on O’s randomness. So, more precisely, Lemma 1
says that if fj is not a linear combination of {fx}x∈Xj

for some Xj that satisfies∧
x∈Xj

(BP (x) = 0), then fj = fj({ai + g · zi}i) has constant term 0 with proba-

bility < negl(λ) over the randomness of O. Thus, we condition on the event that
each fj is decomposable in this way, which has probability 1− negl(λ).

Structure of fx. Let X :=
⋃
j∈[m] Xj , and consider the polynomial fx := fx({ai+

g · zi}i) for any x ∈ X . This is a Zp-polynomial with variables g, {zi}i, so we can
“stratify” by g, writing

fx = f (0)x + g · f (1)x + g2 · f (2)x (1)
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where g does not appear in the polynomials f
(0)
x and f

(1)
x , i.e. they are polyno-

mials in just the variables {zi}i. From the analysis above, we know that f
(0)
x is

the identically 0 polynomial; if not, we would not have fx({ai}i) = 0 (mod p),
and thus would not have BP (x) = 0. So, we can write

fx/g = f (1)x + g · f (2)x . (2)

The fact that the post-zero-test query (Q, h′1, . . . , h
′
m) causes M to output

“WIN” implies that Q(f ′1, . . . , f
′
m) = Q(f1/g, . . . , fm/g) is not identically zero as

a polynomial in variables g and {zi}i, but is identically zero modulo the variable
g. Let Lj denote the linear polynomial such that fj = Lj({fx}x∈Xj

). Then for
each j ∈ [m], we can write

fj = fj ({ai + g · zi}i) = Lj

({
fx ({ai + g · zi})i)

}
x∈Xj

)
= Lj

(
{fx}x∈Xj

)
.

Since each Lj is linear, we then obtain an |X |-variate polynomialQ′, with deg(Q′)
= deg(Q), such that Q′({fx/g}x∈X ) = Q({fj/g}j∈[m]). Then, using (2) and
the fact that Q({fj/g}j∈[m]) is identically zero modulo the variable g, we must

have that Q′({f (1)x }x∈X ) is the identically zero polynomial. In other words, Q′

annihilates the set of polynomials {f (1)x }x∈X .

We now analyze the structure of the f
(1)
x to show that such a Q′ violates the

(t, s)-BPUA assumption, which will complete the proof.

Structure of f
(1)
x . Recalling the notation from Section 3, each fx is a polynomial

in the entries of Y0, {Yi,b1,b2}i∈[`];b1,b2∈{0,1}, Y`+1. Specifically, it is the polynomial

fx = Y0 ×
∏
i∈[`]

Yi,x(i) × Y`+1

where we abbreviate x(i) := (xinp(i)1 , xinp(i)2). Notice that fx is the polynomial

obtained from fx after making the following substitution.

Y0 = Â0+gZ0 Yi,b1,b2 = Âi,b1,b2 +gZi,b1,b2 Y`+1 = Â`+1+gZ`+1

Then, because f
(1)
x is the coefficient of g in fx (see (1)) and the Â matrices are

of the form

Â0 = α0A
′
0 ×R

adj
1 Âi,b1,b2 = αi,b1,b2Ri ×A′i,b1,b2 ×R

adj
i+1

Â`+1 = α`+1R`+1 ×A′`+1

we can expand the Â matrices to write f
(1)
x = dx + α0 · d′x, where

dx := Z0R1

(∏̀
i=1

αi,x(i)A
′
i,x(i)

)
α`+1A

′
`+1ρ0
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and d′x is another polynomial. Here we denote ρ0 :=
∏`+1
i=2 det(Ri), which arises

from the fact that Ri × Radji = det(Ri) · I. Below, we will use the fact that α0

does not appear in dx.
Now recall that the A′ matrices are constructed as

A′0 := (A0 0s) A′i,b1,b2 :=

(
Ai,b1,b2

Bi,b1,b2

)
A′`+1 :=

(
A`+1

B`+1

)
where the A matrices are the original branching program input toO. We consider
two cases: either

– Q′ annihilates
{
f
(1)
x

}
x∈X

when considered as polynomials in variables Z, R,

B, and α (i.e. when only the A matrices are taken to be Zp-values), or
– it does not, but with probability ε ≥ 1/poly(λ) over the distribution on R,

B, and α, Q′ annihilates the set
{
f
(1)
x

}
x∈X

when considered as polynomials

in variables Z.

Here and throughout the remainder of the proof, we use the phrase “variables
Z” to refer to the set of all variables arising from the Z matrices, and similarly
for R, B, and α.

We now show that the first case contradicts the (t, s)-BPUA assumption,
while the second case is ruled out by the Schwartz-Zippel lemma.

Case 1: Q′ annihilates
{
f
(1)
x

}
x∈X

as polynomials in variables Z, R, B, and α.

Because we can write f
(1)
x = dx +α0 · d′x, where dx does not contain the variable

α0, if Q′ annihilates
{
f
(1)
x

}
x∈X

as polynomials in variables Z, R, B, and α, it

must also annihilate {dx}x∈X .
Next, we perform the following change of variables: we set each R matrix to

be the identity matrix (which in particular induces ρ0 = 1), we set each α scalar
to 1, and we set Z0 = (uV B0) for a new variable u and new vectors of variables
V,B0 which have lengths w and s respectively (recall that the A and B matrices
have dimensions w and s respectively). Applying this change of variables to dx,
we obtain the polynomial ex + u · e′x, where

ex := B0 ×
∏
i∈[`]

Bi,x(i) ×B`+1

and e′x is another polynomial. Because ex + u · e′x was obtained from dx via
a change of variables, if Q′ annihilates {dx}x∈X then it must also annihilate
{ex + u · e′x}x∈X . Further, since the variable u does not appear in ex, Q′ must
also annihilate {ex}x∈X .

However, this contradicts the (t, s)-BPUA assumption: by construction of inp
and ` in Section 3, any branching program of the form in Assumption 1 can be
embedded into the B matrices, and thus there is an efficiently computable distri-
bution on degree-2o(λ) polynomials that annihilates all such branching programs
with probability ≥ 1/poly(λ).
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Case 2: PrR,B,α

[
Q′ annihilates

{
f
(1)
x

}
x∈X

as polynomials in variables Z

]
≥

1/poly(λ). If Case 1 does not hold, then Q′({f (1)x }x∈X ) must contain some non-
zero monomial. View this monomial as being over the variables g and Z, whose
coefficient is a non-zero polynomial γ of degree 2o(λ) in variables R, B, and α.
(The degree bound on γ comes from the fact that Q′ has degree 2o(λ) and each

f
(1)
x has degree poly(λ).)

If Case 2 holds, we must have PrR,B,α [γ(R,B, α) = 0] ≥ 1/poly(λ). However,
this contradicts the Schwartz-Zippel lemma, because we are working over the
field Zp with p > 2λ, and the distribution on the variables R,B, α is 2−Ω(λ)-
close to each being uniform and independent. Indeed, the distributions on the B
variables are uniform over Zp, the distributions on the α variables are uniform
over Zp \ {0}, and the distributions on the R variables are uniform over Zp
conditioned on each matrix Ri being non-singular.

We now prove the lemma that was used in the proof of Theorem 3. We will
need the following result from [BMSZ16]. Recall that fx denotes the matrix

product polynomial that corresponds to evaluating B̂P (x).

Theorem 4 ([BMSZ16]). Fix x ∈ {0, 1}n, and consider the following matrices

from Section 3: A′i := A′i,x(i), Âi := Âi,x(i), and Ri. Consider also a polynomial

f in the entries of the Â matrices in which each monomial contains at most
one variable from each Âi. Let f ′ be the polynomial derived from f after making
the substitution Âi = Radji−1 × A′i × Ri, and suppose that f ′ is identically 0 as a
polynomial over the Ri.

Then either f is identically zero as a polynomial over its formal variables
(namely the Âi), or else f is a constant multiple of the matrix product polynomial

fx = Â0 × · · · × Â`+1.

We remark that the proof of this theorem requires that the A′ matrices
form a non-shortcutting branching program (see Def. 2), and that for us this is
implied by the distribution on the B matrices and the fact that A is forward
non-shortcutting.

Lemma 1. Let BP be any forward-non-shortcutting branching program, and
let the model M from Section 2 be initialized by the obfuscator O(BP ) with
parameters t, s as described in Section 3.

Let A be an efficient adversary interacting with M, and let {hj}j∈[m] be the
set of all handles A has received that map to a level-U polynomial with constant
term 0 inM’s pre-zero-test table; denote these polynomials by {fj}j∈[m]. Assume
that A has not received “WIN” in response to any post-zero-test query.

Then with probability 1 − negl(λ) over the randomness of O, there exist
poly(λ)-size sets X1, . . . ,Xm such that: (1) for each j ∈ [m], fj is a linear com-
bination of the polynomials {fx}x∈Xj

, and (2) for each j ∈ [m] and each x ∈ Xj,
BP (x) = 0.
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Proof. The proof follows the analysis of [BMSZ16, Thm. 5.1], which builds on
[BGK+14]. We assume that the lemma’s conclusion holds for f1, . . . , fm−1, and
prove that it holds for fm with probability 1− negl(λ). This inductively implies
the lemma.

As in the proof of Theorem 3, let fm be the polynomial over the set of M’s
initial elements such that fm = fm({ai + g · zi}). Because fm is at level U, we
can use the procedure given by [BGK+14, Sec. 6] (cf. [BMSZ16, Lem. 5.3]) to
decompose it as

fm =
∑
x∈Xm

fm,x

with equality as formal polynomials, where Xm is a poly(λ)-size set given by
the decomposition, and each fm,x is a non-identically-zero polynomial at level

U that only has variables from matrices in B̂P that correspond to input x.

Notice that fm has constant term 0 iff fm({ai}i) = 0. Then following the
[BGK+14, Sec. 6] analysis, the independence of the αi,b1,b2 randomization vari-
ables along with the fact that fm({ai}i) = 0 implies Pr[∃x ∈ Xm : fm,x({ai}i) 6=
0] < negl(λ), where the probability is over O’s randomness. Assume for the re-
mainder that fm,x({ai}i) = 0 for all x ∈ Xm, which occurs with probability
1− negl(λ).

Consider the moment just before A submits the handle hm (corresponding
to fm) for zero-testing. At this point, since we assume the lemma’s conclu-
sion holds for f1, . . . , fm−1 and that A has never received “WIN” in response
to any post-zero-test query, A’s view can be completely derived from the set
{BP (x) | x ∈

⋃
j∈[m−1] Xj}. In particular, A’s view is independent of the ran-

domness generated by O.

Now fix some x ∈ Xm. The values {ai}i are generated by O from the origi-
nal branching program BP by choosing the randomization matrices R and the
other randomization values α,B, and performing the computation described in
Section 3. We can thus view fm,x as a polynomial f ′m,x over the R variables
whose coefficients are polynomials in the variables α,B. Then because fm,x only
has variables from matrices corresponding to input x and is not identically zero,
Theorem 4 implies that either fm,x is a constant multiple of fx, or else f ′m,x is
not the identically zero polynomial.

Because we assume fm,x({ai}i) = 0 for the particular sample of {ai}i gen-
erated by O, if f ′m,x is not identically zero, then one of two things must have
occurred. Either every coefficient of f ′m,x became 0 after the choice of α,B, or
some choice of α,B yields a fixed Zp-polynomial that evaluated to 0 on the choice
of the R matrices. However, both of these events have probability 1 − negl(λ)
by the Schwartz-Zippel lemma. Thus, since A’s view (and in particular f ′m,x) is
independent of O’s randomness, we conclude that with probability 1− negl(λ),
fm,x is a constant multiple of fx.

Finally, note that if fm,x is a (non-zero) constant multiple of fx and if
fm,x({ai}i) = 0, then fx({ai}i) = 0, which is equivalent to BP (x) = 0.
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4.2 Further discussion of our assumption

We first note that PRFs such as those in the statement of Theorem 2 can be
constructed from any boolean NC1 PRF, provided s ≥ 5λ and t is a sufficiently
large polynomial. The idea is to take λ copies of a width-5, length-t boolean PRF
(constructed via [Bar86]), scale the ith copy by 2i for i = 0, . . . , λ− 1, and put
them into a block-diagonal BP of width 5λ with appropriate bookend vectors to
sum the scaled copies.

We note that for complicated programs whose length is already larger than t,
the overhead for protecting against zeroizing attacks is mainly due to increasing
the width by s. The multiplicative overhead is thus (w + s)2/w2 where w is
the original width of the branching program. Thus, for many applications, it is
likely best to minimize s, potentially at the expense of a slightly larger t. Next,
we describe how to modify the above idea to obtain a branching program of
constant width.

Making the PRF computation have constant width. We now explain that the
width s can actually be taken to be a constant. There are many ways to ac-
complish this. Perhaps the simplest is the following. Ben Or and Cleve [Cle88]
show how to convert any arithmetic formula into a matrix branching program
consisting of 3× 3 matrices, where the matrix product gives1 f(x) 0

0 1 0
0 0 1


Then the output f(x) can be selected by multiplying by the appropriate bookend
vectors.

For any invertible constant c in the ring, by left- and right- multiplying the
branching program by the constant matrices c 0 0

0 1 0
0 0 1

 and

 c−1 0 0
0 1 0
0 0 1

 ,

the product of the branching program matrices becomes1 cf(x) 0
0 1 0
0 0 1


Next, by concatenating the branching programs for f1 and f2, the result of the
matrix product is 1 f1(x) + f2(x) 0

0 1 0
0 0 1
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Let f0, . . . , fλ−1 be independent formulas for computing a pseudorandom bit.
It is therefore possible to construct a matrix branching program whose matrix
product is 1

∑λ−1
i=1 2ifi(x) 0

0 1 0
0 0 1


By multiplying by the appropriate bookend vectors, the result is

∑λ−1
i=1 2ifi(x).

By the pseudorandomness of the fi, this is a pseudorandom value in [0, 2λ − 1].

Varying the assumption strength. We also note that, based on whether we wish
t, s to be polynomial, logarithmic, or constant, we can obtain assumptions of
varying strength. For example, we can have the following.

Assumption 5 (The poly/poly-BPUA assumption) There exist polynomi-
als t, s such that the (t, s)-BPUA assumption holds.

Assumption 6 (The poly/const-BPUA assumption) There exists polynomial
t and constant s such that the (t, s)-BPUA assumption holds.

Assumption 7 (The polylog/const-BPUA assumption) There exists poly-
logarithmic t and constant s such that the (t, s)-BPUA assumption holds.

We can thus get a trade-off between efficiency and assumption strength -
stronger assumptions (those with smaller s and t) very naturally correspond to
more efficient obfuscators.

Dual Input Assumptions. We could have similarly made dual-input versions of
the above assumptions. However, we observe that the single input and dual input
variants are equivalent, up to constant factors in t and s.

In particular, any single input branching program of length t and width s
can be turned into a dual input program of length t/2 and width s by pre-
multiplying branching program matrices. That is, set A′i,b0,b1 = A2i−1,b0 · A2i,b1

and inpb(i) = inp(2i− b).
Moreover, any dual input branching program of length t and width s can be

converted into a single input branching program of length 2t and width 2s via
the following transformation:

A′2i−1,b =

(
Ai,b,0 Ai,b,1
0s×s 0s×s

)
A′2i,b =

(
(1− b)Is 0s×s

bIs 0s×s

)

inp(i) =

{
inp0((i+ 1)/2) if i is odd

inp1(i/2) if i is even

Notice that A′2i−1,b0 ·A
′
2i,b1

=

(
Ai,b0,b1 0s×s

0s×s 0s×s

)
.
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5 Security in An Alternative Model

In this section, we define a second model for weak multilinear maps, and we show
that the proof of Theorem 3 can be modified to give security in this model as well.
The main difference as compared to the model in Section 2 is that this model
no longer treats the zi as formal variables, but instead considers zi sampled in
some fashion by the encoding procedure.

We now formally describe the interfaces implemented by the oracle M that
defines our model. For concreteness, we define M to explicitly work over the
GGH13 ring R = Z[X]/(Xη + 1) and the field Zp ' R/〈g〉 for an appropriate
g ∈ R.
M is parameterized by a family of distributions {Dp,{ai}i∈[n]

} for prime p and
sets of integers {ai}i∈[n] ⊆ Zp of size n. Each Dp,{ai}i∈[n]

is a product distribution
D1 × · · · ×Dn where the Di are distributions over Zp.

Initialize parameters. This is identical to the model of Section 2. The first step in
interacting withM is to initialize it with the security parameter λ ∈ N. (Jumping
ahead, this will be done by the obfuscator.)M defines the ring R = Z[X]/(Xη+
1), where η = η(λ) is chosen as in [GGH13a]. Then,M chooses g ∈ R according
to the distribution in [GGH13a], and outputs the prime p := |R/〈g〉| > 2λ. After
initializing these parameters,M discards the value of g, and treats g as a formal
variable in all subsequent steps.

Initialize elements. After the parameters have been initialized, M is given a
universe set U and a set of initial elements {[ai]Si

}i where ai ∈ Zp and Si ⊆ U
for each i. M then samples a set of ring elements {zi} from Dp,{ai}.
M defines the formal polynomial fi := ai + g · zi over Zp. Here g is a for-

mal variable that is common to all fi. Then M generates a handle hi (whose
representation explicitly specifies Si but is independent of ai), and stores the
mapping “hi → (fi, Si)” in a table that we call the pre-zero-test table. Finally,
M outputs the set of handles {hi}i.

The above two initialization interfaces are each executed once, in the order
listed; any attempt to execute them out of order or more than once will fail. The
only difference with the model in Section 2 is that the zi are no longer formal
variables, but are now actual ring elements.
M also implements the following algebraic interfaces.

Pre-zero-test arithmetic. Given two input handles h1, h2 and an operation ◦ ∈
{+,−, ·}, M first locates the corresponding polynomials f1, f2 and level sets
S1, S2 in the pre-zero-test table. If h1 and h2 do not both appear in this table,
the call to M fails. If the expression is undefined (i.e., S1 6= S2 for ◦ ∈ {+,−},
or S1 ∩ S2 6= ∅ for ◦ ∈ {·}), the call fails. Otherwise, M computes the formal
polynomial f := f1 ◦ f2 and the level set S := S1 ∪ S2, generates a new handle
h, and stores the mapping “h → (f, S)” in the pre-zero-test table. Finally, M
outputs h.
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Zero-testing. Given an input handle h, M first locates the corresponding poly-
nomial f and level set S in the pre-zero-test table. If h does not appear in this
table, or if S 6= U, the call toM fails. If f ’s constant term is non-zero (recall that
this term is an element of Zp), M outputs the string “non-zero”. If instead f ’s
constant term is 0, note that f must be divisible by the formal variable g, i.e. g
appears in each of f ’s monomials.M computes the formal polynomial f ′ := f/g
over Zp, generates a new handle h′, and stores the mapping “h′ → f ′” in a table
that we call the post-zero-test table. Finally, M outputs h′.

Post-zero-test arithmetic. Given a set of input handles h′1, . . . , h
′
m and an m-

variate polynomial Q over Z (represented as an arithmetic circuit), M first
locates the corresponding polynomials f ′1, . . . , f

′
m in the post-zero-test table. If

any h′i does not appear in this table, the call to M fails. Otherwise, M checks
whether Q(f ′1, . . . , f

′
m) is non-zero as a polynomial over Zp which is zero modulo

the variable g. In other words,M checks that the constant term of Q(f ′1, . . . , f
′
m)

is 0, but that some other coefficient is non-zero. If this check passes,M outputs
“WIN”, otherwise it outputs ⊥.

Definition 6. A (possibly randomized) adversary interacting with the modelM
is efficient if it runs in time poly(λ), and if each Q submitted in a post-zero-test
query has degree 2o(λ). Such an adversary wins if it ever submits a post-zero-test
query that causes M to output “WIN”.

Definition 7. Let O = {Op} be a (family of) distributions over initial el-
ements {[ai]Si

}i∈[n]. Consider model M parameterized by distribution family

{Dp,{ai}i∈[n]
}. M satisfies the unpredictability probability relative to O if the

following holds. For each i ∈ [n], the expected guessing probability of zi drawn
from Dp,{ai}i∈[n]

(where the expectation is over the choice of {ai}i∈[n]) is at most

2−Ω(λ).

The above definition captures the fact that in GGH13 encodings, the zi
elements are chosen with with min-entropy at least Ω(λ), yielding a guessing
probability of 2−Ω(λ). This holds even in the “low noise” variants, due to the
large dimensional space that the zi are drawn from. As required by GGH13,
our definition allows the zi to depend on ai; however we allow for an even more
general condition where the zi can depend on all of the {aj}. Moreover, we only
require the guessing probability to be small on average.

5.1 A New Variant of the Schwartz-Zippel Lemma

We now prove a generalization of the Schwartz-Zippel lemma, which will allow
us to prove security in the alternative model described above. The standard
Schwartz-Zippel lemma applies to variables chosen independently and uniformly
from some (possibly restricted) set. Here, we instead allow the variables to be
chosen from arbitrary distributions with sufficient min-entropy, and we even
allow some correlations among the variables.

23



Let F be a finite field, and let P ∈ F[x1, . . . , xn] be an arbitrary polynomial
of degree at most d. Let X1, . . . , Xn be potentially correlated random variables
over F. Let pi(x1, . . . , xi−1) be the guessing probability of Xi conditioned on
Xj = xj for each j < i. That is,

pi(x1, . . . , xi−1) = max
xi∈F

Pr[Xi = xi|Xj = xj∀j < i]

Let pi be the expectation of pi(x1, . . . , xi−1) when xj are drawn from Xj :
pi = E[pi(X1, . . . , Xi−1)]. Let pmax = maxi pi be the maximum of the pi.

Lemma 2. Let F, d, n, P,X1, . . . , Xn, pmax be as above. Then

Pr
X1,...,Xn

[P (X1, . . . , Xn) = 0] ≤ d · pmax.

Proof. The proof will be by induction on n. The case n = 1 follows from the
fact that a degree d polynomial has at most d roots. Assume the lemma holds
up to n − 1. Let dn be the maximum degree of xn in P . Consider first sam-
pling X1, . . . , Xn−1. Plugging into P , we get a polynomial PX1,...,Xn−1(xn) =
P (X1, . . . , Xn−1, xn) in xn of degree at most dn. Then consider sampling Xn

conditioned on the outcome of X1, . . . , Xn−1. P gives zero if and only if one of
two conditions are met:

– PX1,...,Xn−1
is identically zero. Let e0 be the probability of this event. Let

e 6=0 = 1− e0 be the probability that PX1,...,Xn−1
is not identically zero

– PX1,...,Xn−1 is not identically zero, and Xn is a root of PX1,...,Xn−1 .

Let q0 be the expectation of pn(X1, . . . , Xn−1) conditioned on PX1,...,Xn−1

being identically 0, and let q6=0 be the expectation conditioned on PX1,...,Xn−1

not being identically 0. Note that pn = e0q0+e 6=0q6=0. Also, not that q0, q6=0 ≥ 0.
Therefore, e 6=0q 6=0 ≤ pn.

The coefficient of xdnn in PX1,...,Xn−1
is a polynomial of total degree at most

d−dn in X1, . . . , Xn−1. If dn = d, the coefficient is actually a constant and must
be non-zero (with probability 1). In the case dn < d, we can apply the inductive
hypothesis to bound the probability that this coefficient is 0 by (d − dn)pmax.
Thus, in either case, the probability e0 that PX1,...,Xn−1

is identically 0 is at
most (d− dn)pmax.

We now bound the probability that PX1,...,Xn−1
is not identically zero, and

Xn is a root of PX1,...,Xn−1 . Since PX1,...,Xn−1 is not identically 0 and has degree
at most dn, there are at most dn roots. Thus, the probability that Xn is a root is
at most dnpn(X1, . . . , Xn−1). Taking the expectation conditioned on PX1,...,Xn−1

being not identically 0, we get a bound of dnq6=0 on the probability that P = 0
conditioned on PX1,...,Xn−1

being identically 0. The joint probability is therefore
at most e 6=0dnq 6=0 ≤ dnpn ≤ dnpmax.

Putting everything together, the probability that P = 0 is at most (d −
dn)pmax + dnpmax = dpmax.
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5.2 Security in the alternative model

Security in the alternative model is given by the following theorem. We note
that, analagously to Section 4, this theorem also implies that O achieves VBB
security in the alternative model.

Theorem 8. Let O be the obfuscator from Section 3 with parameters t and s.
Let M be the model defined above, parameterized by some distribution family
{Dp,{ai}i∈[n]

}. If the (t, s)-BPUA assumption holds, and if M satisfies the un-
predictability property relative to the elements outputted by O, then O is secure
in the model M.

The proof of Theorem 8 follows the proof of Theorem 3 almost exactly, with
the only difference being that, when analyzing Case 2, we apply Lemma 2 instead
of the standard Schwartz-Zippel lemma. We omit further details.
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A Straddling set level structure

Here we describe the level structure for the graded encoding scheme that is used
by the obfuscator O when initializing the model M with the values of B̂P (see
Section 3). This construction is due to Barak et al. [BGK+14], and was used
in several subsequent works. It relies on the following notion of a straddling set
system.5

Definition 8. A straddling set system with n entries is a universe set U and a
collection of subsets S = {Si,b ⊆ U}i∈[n],b∈{0,1} such that

1.
⋃
i∈[n] Si,0 =

⋃
i∈[n] Si,1 = U, and

2. for any distinct C,D ⊆ S such that
⋃
S∈C S =

⋃
S∈D S, there exists b ∈ {0, 1}

such that C = {Si,b}i∈[n] and D = {Si,1−b}i∈[n].

For any n, the following is a straddling set system with n entries over the
universe U = {1, . . . , 2n− 1} (for a proof see [BGK+14, App. A]).

S1,0 = {1}, S2,0 = {2, 3}, . . . , Si,0 = {2i− 2, 2i− 1}, . . . , Sn,0 = {2n− 2, 2n− 1}

S1,1 = {1, 2}, . . . , Si,1 = {2i−1, 2i}, . . . , Sn−1,1 = {2n−3, 2n−2}, Sn,1 = {2n−1}

We now describe the level structure that is used to encode B̂P . For each
input index i ∈ [n], let ri denote the number of layers in which bit i is read, and
create a straddling set system with ri entries. We denote the universe set of this

straddling set system by U(i), and its subsets by {S(i)
j,b}j∈[ri],b∈{0,1}. The overall

universe set is then U :=
⋃
i∈[n] U(i) ∪{L,R}, where we assume that the U(i) are

pairwise disjoint, and L and R are new symbols that don’t appear in any U(i).

5 For the analysis that we borrow from [BGK+14, BMSZ16], namely Lemma 1, we
will not need the strong straddling set systems due to [MSW14].
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Then, for each matrix Âj,b1,b2 in B̂P , each entry of this matrix is encoded at
level

S
(inp(j)1)
k1,b1

∪ S(inp(j)2)
k2,b2

where k1, k2 are defined such that layer j is the k1-th layer in which input bit
inp(j)1 is read and the k2-th layer in which input bit inp(j)2 is read. Finally,

each entry of Â0 is encoded at level {L}, and each entry of Â`+1 is encoded at
level {R}.
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