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Abstract. Functional encryption lies at the frontiers of current research in cryp-
tography; some variants have been shown sufficiently powerful to yield indistin-
guishability obfuscation (IO) while other variants have been constructed from
standard assumptions such as LWE. Indeed, most variants have been classified as
belonging to either the former or the latter category. However, one mystery that
has remained is the case of secret-key functional encryption with an unbounded
number of keys and ciphertexts. On the one hand, this primitive is not known
to imply anything outside of minicrypt, the land of secret-key crypto, but on the
other hand, we do no know how to construct it without the heavy hammers in
obfustopia.
In this work, we show that (subexponentially secure) secret-key functional en-
cryption is powerful enough to construct indistinguishability obfuscation if we
additionally assume the existence of (subexponentially secure) plain public-key
encryption. In other words, secret-key functional encryption provides a bridge
from cryptomania to obfustopia.
On the technical side, our result relies on twomain components. As our first contri-
bution, we show how to use secret key functional encryption to get “exponentially-
efficient indistinguishability obfuscation” (XIO), a notion recently introduced by
Lin et al. (PKC ’16) as a relaxation of IO. Lin et al. show how to use XIO and
the LWE assumption to build IO. As our second contribution, we improve on this
result by replacing its reliance on the LWE assumption with any plain public-key
encryption scheme.
Lastly, we ask whether secret-key functional encryption can be used to construct
public-key encryption itself and therefore take us all the way from minicrypt to
obfustopia. A result of Asharov and Segev (FOCS ’15) shows that this is not the
case under black-box constructions, even for exponentially secure functional en-
cryption. We show, through a non-black box construction, that subexponentially
secure-key functional encryption indeed leads to public-key encryption. The re-
sulting public-key encryption scheme, however, is at most quasi-polynomially
secure, which is insufficient to take us to obfustopia.
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1 Introduction

The concept of functional encryption [17, 45] extends that of traditional en-
cryption by allowing the distribution of functional decryption keys that reveal
specified functions of encrypted messages, but nothing beyond. This concept
is one of the main frontiers in cryptography today. It offers tremendous flex-
ibility in controlling and computing on encrypted data, is strongly connected
to the holy grail of program obfuscation [3, 14, 44], and for many problems,
may give superior solutions to obfuscation-based ones [28, 29]. Accordingly, re-
cent years have seen outstanding progress in the study of functional encryption,
both in constructing functional encryption schemes and in exploring differ-
ent notions, their power, and the relationship amongst them (see for instance,
[47, 34, 11, 33, 1, 24, 25, 15, 32, 21, 36, 40, 16, 35, 2, 49, 7, 20, 4, 5, 26, 42]
and many more).

One striking question that has yet to be solved is the gap between public-key
and secret-key functional encryption schemes. In particular, does any secret-key
scheme imply a public-key one?

The answer to this question is nuanced and seems to depend on certain
features of functional encryption schemes, such as the number of functional
decryption keys and number of ciphertexts that can be released. For functional
encryption schemes that only allow the release of an a-priori bounded number
of functional keys (often referred to as bounded collusion), we know that the
above gap is essentially the same as the gap between plain (rather than func-
tional) secret-key encryption and public-key encryption, and should thus be as
hard to bridge. Specifically, in the secret-key setting, such schemes supporting an
unbounded number of ciphertexts can be constructed assuming low-depth pseu-
dorandom generators (or just one-way functions in the single-key case) [47, 34].
These secret-key constructions are then converted to public-key ones, relying
on (plain) public-key encryption (and this is done quite directly by replacing
invocations of a secret-key encryption scheme with invocations of a public-key
one.) The same state of affairs holds when reversing the roles and considering
a bounded number of ciphertexts and an unbounded number of keys [47, 34].
In other words, in the terminology of Impagliazzo’s complexity worlds [38],
if the number of keys or ciphertexts is a-priori bounded, then symmetric-key
functional encryption lies in minicrypt, the world of one-way functions, and
public-key functional encryption lies in cryptomania, the world of public-key
encryption.

For functional encryption schemes supporting an unbounded (polynomial)
number of keys and unbounded number of ciphertexts, which will be the default
notion throughout the rest of the paper, the question is far less understood. In the
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public-key setting, such functional encryption schemes with subexponential se-
curity are known to imply indistinguishability obfuscation [3, 14, 4]. In contrast,
Bitansky and Vaikuntanathan [14] show that their construction of indistinguisha-
bility obfuscation using functional encryption may be insecure when instantiated
with a secret-key functional encryption scheme. In fact, secret-key functional en-
cryption schemes (even exponentially secure ones) are not known to imply any
cryptographic primitive beyond those that follow from one-way functions. As far
as we know the two notions of functional encryption may correspond to opposite
extremes of the complexity spectrum: on one side, public-key schemes corre-
spond to obfustopia, the world where indistinguishability obfuscation exists, and
on the other side secret-key schemes may lie in minicrypt where there is even no
(plain) public-key encryption.

One piece of evidence that may support such a view of the world is given by
Asharov and Segev [6] who show that there do not exist fully black-box construc-
tions of plain public-key encryption from secret-key functional encryption, even
if the latter is exponentially secure. Still, while we may hope that such secret-
key schemes could be constructed from significantly weaker assumptions than
needed for public-key schemes, so far no such construction has been exhibited
— all known constructions live in obfustopia.

1.1 Our Contributions

In this work, we shed new light on the question of secret-key vs public-key
functional encryption (in themulti-key,multi-ciphertext setting). Ourmain result
bridges the two notions based on (plain) public-key encryption.

Theorem 1 (Informal). Assuming secret-key functional encryption and plain
public-key encryption that are both subexponentially secure, there exists indis-
tinguishability obfuscation, and in particular, also public-key functional encryp-
tion.

In the terminology of Impagliazzo’s complexity worlds: secret-key functional
encryption would turn cryptomania, the land of public-key encryption, into
obfustopia. This puts in new perspective the question of constructing such secret-
key schemes from standard assumptions — any such construction would lead to
indistinguishability obfuscation from standard assumptions.

The above result still does not settle the question of whether secret-key
functional encryption on its own implies (plain) public-key encryption. Here we
show that assuming subexponentially-secure secret-key functional encryption
and (almost) exponentially-secure one-way functions, there exists (polynomially-
secure) public-key encryption.
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Theorem 2 (Informal). Assuming subexponentially-secure secret-key functio-
nal encryption and 2n/ log logn-secure one-way functions, there exists (poly-
nomially-secure) public-key encryption.

The resulting public-key encryption is not strong enough to take us to obfustopia.
Concretely, the constructed scheme is not subexponentially secure as required
by our first theorem — it can be quasi-polynomially broken. Nevertheless, the
result does show that the black-box barrier shown by Asharov and Segev [6],
which applies even if the underlying secret-key functional encryption scheme
and one-way functions are exponentially secure, can be circumvented. Indeed,
our construction uses the functional encryption scheme in a non-black-box way
(see further details in the technical overview section below).

1.2 A Technical Overview

We now provide an overview of the main steps and ideas leading to our results.
Key observation: from SKFE to (strong) exponentially-efficient IO. Our
first observation is that secret-key functional encryption (or SKFE in short)
implies a weak form of indistinguishability obfuscators termed by Lin, Pass,
Seth, and Telang [43] exponentially-efficient indistinguishability obfuscation
(XIO). Like IO, this notion preserves the functionality of obfuscated circuits and
guarantees that obfuscations of circuits of the same size and functionality are
indistinguishable. However, in terms of efficiency the XIO notion only requires
that an obfuscation C̃ of a circuit C : {0, 1}n → {0, 1}m is just mildly smaller
than its truth table, namely |C̃| ≤ 2γn · poly(|C|), for some compression factor
γ < 1, and a fixed polynomial poly, rather than the usual requirement that
the time to obfuscate, and in particular the size of C̃, are polynomial in |C|.
We show that SKFE implies a slightly stronger notion than XIO where the
time to obfuscate C is bounded by 2γn · poly(|C|). We call this notion strong
exponentially-efficient indistinguishability obfuscation (SXIO). (We note that,
for either XIO or SXIO, we shall typically be interested in circuits over some
polynomial size domain, which could be much larger than the circuit itself, e.g.,
{0, 1}n where n = 100 log |C|.)

Proposition 1 (Informal).

1. For any constant γ < 1, there exists a transformation from SKFE to SXIO
with compression factor γ.

2. For some subconstant γ = o(1), there exists a transformation from sub-
exponentially-secure SKFE to polynomially-secure SXIO with compression
factor γ.
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We addmore technical details regarding the proof of the above SXIO proposition
later on. Both of our theorems stated above rely on the constructed SXIO as a
main tool. We next explain, still at a high-level, how the first theorem is obtained.
We then dive into further technical details about the proof of this theorem as
well as the proof of the second theorem.
From SXIO to IO through public-key encryption. Subexponentially-secure
SXIO (or even XIO) schemes with a constant compression factor (as in Proposi-
tion 1) are already shown to be quite strong in [43] — assuming subexponential
hardness of Learning with Errors (LWE) [46], they imply IO.

Corollary 1 (ofProposition 1 and [43]).Assuming SKFEandLWE, both subex-
ponentially secure, there exists IO.

We go beyond the above corollary, showing that LWE can be replaced with
a generic assumption — the existence of (plain) public-key encryption schemes.
The transformation of [43] from LWE and XIO to IO, essentially relies on LWE
to obtain a specific type of public-key functional encryption (PKFE) with certain
succinctness properties. We show how to construct such PKFE from public-key
encryption and SXIO. More details follow.

Concretely, the notion considered is of PKFE schemes that support a single
decryption key. Furthermore, the time complexity of encryption is bounded by
roughly sβ · dO(1), where s and d are the size and depth of the circuit computing
the function, and β < 1 is some compression factor. We call such schemes
weakly succinct PKFE schemes. A weakly succinct PKFE for boolean functions
(i.e., functions with a single output bit) is constructed by Goldwasser et al. [33]
from (subexponentially-hard) LWE; in fact, the Goldwasser et al. construction
has no dependence at all on the circuit size s (namely, β = 0).

Lin et al. [43] then show a transformation, relying on XIO, that extends the
class of functions also to functions with a long output, rather than just boolean
ones. (Their transformation is stated for the case that β = 0 assuming any
constant XIO compression factor γ < 1, but can be extended to also work
for any sufficiently small constant compression factor β for the PKFE.) Such
weakly-succinct PKFE schemes can then be plugged in to the transformations
of [3, 14, 44] to obtain full-fledged IO. 5

We follow a similar blueprint. We first construct weakly-succinct PKFE
for functions with a single output bit based on SXIO and PKE, rather than

5 The above is a slightly oversimplified account of [43]. They also rely on LWE to deduce the
existence of puncturable PRFs in NC1 and show their transformation starting from weakly-
succinct PKFE for functions in NC1. We avoid the reliance on puncturable PRFs in NC1 by
constructing weakly-succinct PKFE for functions with no depth restriction, at the expense of
allowing the complexity of encryption to scale polynomially in the depth. This is still sufficient
for [14, Section 3.2].
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LWE (much of the technical effort in this work lies in this construction). We
then bootstrap the construction to deal with multibit functions using (a slightly
augmented version of) the transformation from [43].

Proposition 2 (Informal). For any β = Ω(1), assuming PKE and SXIO with
a small enough constant compression factor γ, there exists a single-key weakly-
succinct PKFE scheme with compression factor β (for functions with long out-
put).

A Closer Look into the Techniques

We now provide further details regarding the proofs of the above Propositions 1
and 2 as well as the proof of Theorem 2.
SKFE to SXIO: the basic idea. To convey the basic idea behind the transfor-
mation, we first describe a construction of SXIO with compression γ = 1/2. We
then explain how to extend it to obtain the more general form of Proposition 1.

Recall that in an SKFE scheme, first a master secret key MSK is generated,
and can then be used to:

– encrypt (any number of) plaintext messages,
– derive (any number of) functional keys.

The constructed obfuscator sxiO is given a circuit C defined on domain {0, 1}n,
where we shall assume for simplicity that the input length is even (this is not
essential), and works as follows:

– For every x ∈ {0, 1}n/2, computes a ciphertext CTx encrypting the circuit
Cx(·) that given input y ∈ {0, 1}n/2, returns C(x, y).

– For every y ∈ {0, 1}n/2, derives a functional decryption key SKy for the
function Uy(·) that given as input a circuit D of size at most maxx |Cx|,
returns D(y).

– Outputs C̃ =
(
{CTx}x∈{0,1}n/2 , {SKy}y∈{0,1}n/2

)
as the obfuscation.

To evaluate C̃ on input (x, y) ∈ {0, 1}n, simply decrypt

Dec(SKy,CTx) = Uy(Cx) = Cx(y) = C(x, y) .

Indeed, the required compression factor γ = 1/2 is achieved. Generating each
ciphertext is proportional to the size of the message |Cx| = Õ(|C|) and some
fixed polynomial in the security parameter λ. Similarly the time to generate each
functional key is proportional to the size of the circuit |Uy| = Õ(|C|) and some
fixed polynomial in the security parameter λ. Thus overall, the time to generate
C̃ is bounded by 2n/2 · poly(|C|, λ).
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The indistinguishability guarantee follows easily from that of the underlying
SKFE. Indeed, SKFE guarantees that for any two sequences m = {mi} and
m′ = {m′i} of messages to be encrypted and any sequence of functions {fi} for
which keys are derived, encryptions of them are indistinguishable from encryp-
tions of them′, provided that the messages are not “separated by the functions”,
i.e. fj(mi) = fj(m

′
i) for every (i, j). In particular, any two circuits C and C ′

that have equal size and functionality will correspond to such two sequences of
messages {Cx}x∈{0,1}n/2 and {C ′x}x∈{0,1}n/2 , whereas {Uy}y∈{0,1}n are indeed
functions such that Uy(Cx) = C(x, y) = C ′(x, y) = Uy(C

′
x) for all (x, y).

(The above argument works even given a very weak selective security definition
where all messages and functions are chosen by the attacker ahead of time.)

As said, the above transformation achieves compression factor γ = 1/2. While
such compression is sufficient for example to obtain IO based on LWE, it will
not suffice for our two Theorems 1, 2 (for the first we will need γ to be a smaller
constant, and for the second we will need it to even be slightly subconstant). To
prove Proposition 1 in its more general form, we rely on a result by Brakerski,
Komargodski, and Segev [20] that shows how to convert any SKFE into a t-input
SKFE. A t-input scheme allows to encrypt a tuple of messages (m1, . . . ,mt)
each independently, and derive keys for t-input functions f(m1, . . . ,mt). In their
transformation, starting from a multi-key SKFE results in a multi-key t-input
SKFE.

The general transformation then follows naturally. Rather than arranging the
input space in a 2-dimensional cube {0, 1}n/2 × {0, 1}n/2 as we did before
with a 1-input scheme, given a t-input scheme we can arrange it in a (t + 1)-
dimensional cube {0, 1}n/(t+1) × · · · × {0, 1}n/(t+1), and we will accordingly
get compression γ = 1/(t+ 1). The only caveat is that the BKS transformation
incurs a security loss and blowup in the size of the scheme that can grow doubly
exponentially in t. As long as t is constant the security loss and blowup are fixed
polynomials. The transformation can also be invoked for slightly super-constant t
(double logarithmic) assuming subexponential security of the underlying 1-input
SKFE (giving rise to the second part of Proposition 1).

We remark that previously Goldwasser et al. [32] showed that t-input SKFE
for polynomial t directly gives full-fledged IO. We demonstrate that even when t
is small (even constant), t-input SKFE implies a meaningful obfuscation notion
such as SXIO.

FromSXIOandPKE toweakly succinct PKFE:main ideas.Wenow describe
the main ideas behind our construction of a single-key weakly succinct PKFE.
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We shall focus on the main step of obtaining such a scheme for functions with a
single output bit.6

Our starting point is the single-key PKFE scheme of Sahai and Seyalioglu
[47] based on Yao’s garbled circuit method [50]. Their scheme basically works
as follows (we assume basic familiarity with the garbled circuit method):

– Themaster public keyMPK consists ofLpairs of public keys
{
PK0

i ,PK
1
i

}
i∈L

for a (plain) public-key encryption scheme.
– A functional decryption key SKf for a function (circuit) f of size L consists
of the secret decryption keys {SKfii }i∈L corresponding to the above public
keys, according to the bits of f ’s description.

– To encrypt a message m, the encryptor generates a garbled circuit Ûm for
the universal circuit Um that given f , returns f(m). It then encrypts the
corresponding input labels {k0i , k1i }i∈L under the corresponding public keys.

– The decryptor in possession of SKf can then decrypt to obtain the labels
{kfii }i∈L and decode the garbled circuit to obtain Um(f) = f(m).

Selective security of this scheme (where the function f and all messages are
chosen ahead of time) follows from the semantic security of PKE and the garbled
circuit guarantee which says that Ûm, {kfii }i∈L can be simulated from f(m).

The scheme is indeed not succinct in any way. The complexity of encryption
and even the size of the ciphertext growswith the complexity of f . Nevertheless, it
does seem that the encryption process has a much more succinct representation.
In particular, computing a garbled circuit is a decomposable process — each
garbled gate in Ûm depends on a single gate in the original circuit Um and
a small amount of randomness (for computing the labels corresponding to its
wires). Furthermore, the universal circuitUm itself is also decomposable— there
exists a small (say, poly(|m| , logL)-sized) circuit that given i can output the i-th
gate inUm alongwith its neighbours. The derivation of randomness itself can also
be made decomposable using a pseudorandom function. All in all, there exists a
small (poly(|m| , logL, λ)-size, for security parameter λ), decomposition circuit
Ude
m,K associated with a key K ∈ {0, 1}λ for a pseudorandom function that can

produce the ith garbled gate/input-label given input i.

6 Extending this to functions with multibit output is then done, based on SXIO, using a trans-
formation of [43]. Concretely, given an m-bit output function f(x) we consider a new single
bit function gf (x, i) that returns the ith bit of f(x). The function key is then derived for
the boolean function gf . The new encryption algorithm, for message x, produces an SXIO
obfuscation of a circuit that given i ∈ [m] uses the old encryption scheme to encrypt (m, i),
deriving randomness using a puncturable PRF. The security of the construction is proven as in
[43] based on a probabilistic IO argument [22]. (Mild) efficiency of the encryption then follows
from the mild efficiency of the SXIO and PKFE with related (constant) compression factors.
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Yet, the second part of the encryption process, where the input labels
{k0i , k1i }i∈L are encrypted under the corresponding public keys

{
PK0

i ,PK
1
i

}
i∈L,

may not be decomposable at all. Indeed, in general, it is not clear how to even
compress the representation of these 2L public-keys. In this high-level expo-
sition, let us make the simplifying assumption that we have at our disposal a
succinct identity-based-encryption (IBE) scheme. Such a scheme has a single
public-key PK that allows to encrypt a message to an identity id ∈ ID taken
from an identity space ID. Those in possession of a corresponding secret key
SKid can decrypt and others learn nothing. Succinctness means that the com-
plexity of encryption may only grow mildly in the size of the identity space.
Concretely, by a factor of |ID|γ for some small constant γ < 1. In the body, we
show that such a scheme can be constructed from (plain) public-key encryption
and SXIO (the construction relies on standard “puncturing techniques” and is
pretty natural).

Equipped with such an IBE scheme, we can now augment the Sahai-
Seyalioglu scheme to make sure that the entire encryption procedure is de-
composable. Concretely, we will consider the identity space ID = [L]×{0, 1},
augment the public key to only include the IBE’s public key PK, and provide
the decryptor with the identity keys {SK(i,fi)}i∈L. Encrypting the input labels
{k0i , k1i }i∈L will now be done by simply encrypting to the corresponding identi-
ties {(i, 0), (i, 1)}i∈L. This part of the encryption can now also be described by
a small (say Lγ · poly(λ, logL)-size) decomposition circuit Ede

K,K′,PK that has
the PRF key K to derive input labels, the IBE public key PK, and another PRF
keyK ′ to derive randomness for encryption. Given an identity (i, b), it generates
the corresponding encrypted input label.

At this point, a natural direction is to have the encryptor send a compressed
version of the Sahai-Seyalioglu encryption, by first using SXIO to shield the two
decomposition circuits Ede

K,K′,PK, U
de
m,K and then sending the two obfuscations.

Indeed, decryption can be done just as before by first reconstructing the expanded
garbled circuit and input labels and then proceeding as before. Also, in terms
of encryption complexity, provided that the IBE compression factor γ is a small
enough constant, the entire encryption time will scale only sublinearly in the
function’s size |f | = L (i.e., with Lβ for some constant β < 1).

The only question is of course security. It is not too hard to see that if the
decomposition circuits Ede

K,K′,PK, U
de
m,K are given as black-boxes then security

is guaranteed just as before. The challenge is to prove security relying only
on the indistinguishability guarantee of SXIO. A somewhat similar challenge
is encountered in the work of Bitansky et al. [12] when constructing succinct
randomized encodings. In their setting, they obfuscate (using standard IO rather
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than SXIO) a decomposition circuitCde
x,K (analogous to ourUde

m,K) that computes
the garbled gates of some succinctly represented long computation.

As already demonstrated in [12], proving the security of such a construction
is rather delicate. As in the standard setting of garbled circuits, the goal is to
gradually transition through a sequence of hybrids, from a real garbled circuit
(that depends on the actual computation) to a simulated garbled circuit that de-
pends just on the result of the computation. However, unlike the standard setting,
here each of these hybrids should be generated by a hybrid obfuscated decom-
position circuit and the attacker should not be able to tell them apart. As it turns
out, “common IO gymnastics” are insufficient here, and we need to rely on the
specific hybrid strategy used to transition between the different garblingmodes is
the proof of security for standard garbled circuits. One feature of the hybrid strat-
egy which is dominant in this context is the amount of information that hybrid
decomposition circuits need to maintain about the actual computation. Indeed,
as the amount of this information grows so will the size of these decomposition
circuits as will the size of the decomposition circuits in the actual construction
(that will have to be equally padded to preserve indistinguishability).

Bitansky et al. show a hybrid strategy where the amount of information
scales with the space of the computation (or circuit width). Whereas in their
context this is meaningful (as the aim is to save comparing to the time of the
computation), in our context this is clearly insufficient. Indeed, in our case the
space of the computation given by the universal circuit Um and the function f
can be as large as f ’s description. Instead, we invoke a different hybrid strategy
by Hemenway et al. [37] that scales only with the circuit depth. Indeed, this
is the cause for the polynomial dependence on depth in our single-key PKFE
construction. Below, we further elaborate on the Hemenway et al. hybrid strategy
and how it is imported into our setting.

Decomposable Garbling and Pebbling. The work of Hemenway et al. [37]
provided a useful abstraction for proving the security of Yao’s garbled circuits via
a sequence of hybrid games. The goal is to transition from a “real” garbled circuit,
where each garbled gate is in “RealGate” mode consisting of four ciphertexts
encrypting the two labels k0c , k1c of the output wire c under the labels of the input
wires, to a “simulated” garbled circuit where each garbled gate is in SimGate
mode consisting of four ciphertexts that all encrypt the same dummy label k0c .
As an intermediate step, we can also create a garbled gate in CompDepSimGate

mode consisting of four ciphertexts encrypting the same label kv(c)c where v(c) is
the value going over wire c during the computation C(x) and therefore depends
on the actual computation.

The transition from a real garbled circuit to a simulated garbled circuit
proceeds via a sequence of hybrids where in each subsequent hybrid we can
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change one gate at a time from RealGate to CompDepSimGate (and vice versa)
if all of its predecessors are in CompDepSimGate mode or it is an input gate,
or change a gate from CompDepSimGate mode to SimGate mode (and vice
versa) if all of its successors are in CompDepSimGate or SimGate modes. The
goal of Hemenway et al. was to give a strategy using the least number of gates
in CompDepSimGate mode as possible.7 They abstracted this problem as a
pebbling game and show that for circuits of depth d there exists a sequence of
2O(d) hybrids with at most O(d) gates in CompDepSimGatemode in any single
hybrid.

In our case, we can give a decomposable circuit for each such hybrid game
consisting of gates in RealGate, SimGate,CompDepSimGate modes. In partic-
ular, the decomposable circuit takes as input a gate index and outputs the garbled
gate in the correct mode. We only need to remember which gate is in which
mode, and for all gates in CompDepSimGate mode we need to remember the
bit v(c) going over the wire c during the computation C(x). It turns out that the
configuration of which mode each gate is in can be represented succinctly, and
therefore the number of bits we need to remember is roughly proportional to the
number of gates in CompDepSimGate mode in any given hybrid. Therefore, for
circuits of depth d, the decomposable circuit is of size O(d) and the number of
hybrid steps is 2O(d).

To ensure that the obfuscations of decomposable circuits corresponding
to neighboring hybrids are indistinguishable we also need to rely on standard
puncturing techniques. In particular, the gates are garbled using a punctured PRF
and we show that in any transition between neighboring hybrids we can even
give the adversary the PRF key punctured only on the surrounding of the gate
whose mode is changed.
From SKFE to PKE: the basic idea. We end our technical exposition by
explaining the basic idea behind the construction of public-key encryption (PKE)
from SKFE. The construction is rather natural. Using subexponentially-secure
SKFE and the second part of Proposition 1, we can obtain a poly(λ)-secure
SXIO with a subconstant compression factor γ = o(1); concretely, it can be
for example O(1/ log log λ). We can now think about this obfuscator as a plain
(efficient) indistinguishability obfuscator for circuits with input length at most
log λ · log log λ.

Then, we take a construction of public-key encryption from IO and one-way
functions where the input-size of obfuscated circuits can be scaled down at the
expense of strengthening the one-way functions. For instance, following the basic
witness encryption paradigm in [27], the public key can be a pseudorandom

7 Their aim was proving adaptive security, which is completely orthogonal to our aim. However,
for entirely different reasons, the above goal is useful in both their work and ours.

11



string PK = PRG(s) for a 2n/ log logn-secure length-doubling pseudorandom
generator with seed length n = log λ · log log λ. Here the obfuscator is only
invoked for a circuit with inputs in {0, 1}n. An encryption of m is simply an
obfuscation of a circuit that hasPK hardwired, and releasesm only given a seed s
such that PK = PRG(s). Security follows essentially as in [27]. Note that in this
construction, we cannot expect more than 2n security, which is quasi-polynomial
in the security parameter λ.

How does the construction circumvent the Asharov-Segev barrier?As noted
earlier, Asharov and Segev [6] show that even exponentially secure SKFE cannot
lead to public-key encryption through a fully black-box construction (see their
paper for details about the exact model). The reason that our construction does
not fall under their criteria lies in the transformation from SKFE to SXIO with
subconstant compression, and concretely in the Brakerski-Komargodski-Segev
[20] transformation from SKFE to t-input SKFE that makes non-black-box use
in the algorithms of the underlying SKFE scheme.

Organization. In Section 2, we provide preliminaries and basic definitions used
throughout the paper. In Section 3, we introduce the definition of SXIO and
present our construction based on SKFE schemes. In Section 4, we introduce a
notion of decomposable garbling. In Section 5, we present our construction of
IO from PKE and SXIO. In Section 6, we present a polynomially-secure PKE
scheme from SKFE schemes.

2 Preliminaries

2.1 Standard Computational Concepts

We rely on the standard notions of Turing machines and Boolean circuits.

– We say that a (uniform) Turing machine is PPT if it is probabilistic and runs
in polynomial time.

– A polynomial-size (or just polysize) circuit family C is a sequence of circuits
C = {Cλ}λ∈N, such that each circuit Cλ is of polynomial size λO(1) and has
λO(1) input and output bits.

– We follow the standard habit of modeling any efficient adversary strategy as
a family of polynomial-size circuits. For an adversary A corresponding to a
family of polysize circuits {Aλ}λ∈N, we often omit the subscript λ, when it
is clear from the context.

– We say that a function f : N → R is negligible if for all constants c > 0,
there exists N ∈ N such that for all n > N , f(n) < n−c.
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– If X (b) = {X(b)
λ }λ∈N for b ∈ {0, 1} are two ensembles of random variables

indexed by λ ∈ N, we say that X (0) and X (1) are computationally indistin-
guishable if for all polysize distinguishersD, there exists a negligible function
ν such that for all λ, |Pr[D(X(0)

λ ) = 1]− Pr[D(X(1)
λ ) = 1]| ≤ ν(λ).

2.2 Functional Encryption

Definition 1 (Multi-input secret-key functional encryption). Let t(λ) be a
function, M = {Mλ = M(1)

λ × · · · × M
(t(λ))
λ }λ∈N be a product message

domain, Y = {Yλ}λ∈N a range, and F = {Fλ}λ∈N a class of t-input functions
f :Mλ → Yλ. A t-input secret-key functional encryption (t-SKFE) scheme for
M,Y,F is a tuple of algorithms SKFEt = (Setup,KeyGen,Enc,Dec) where:

– Setup(1λ) takes as input the security parameter and outputs a master secret
keyMSK.

– KeyGen(MSK, f) takes as input the master secret MSK and a function
f ∈ F . It outputs a secret key SKf for f .

– Enc(MSK,m, i) takes as input the master secret key MSK, a message m ∈
M(i)

λ , and an index i ∈ [t(λ)], and outputs a ciphertext CTi.
– Dec(SKf ,CT1, . . . ,CTt) takes as input the secret key SKf for a function
f ∈ F and ciphertexts CT1, . . . ,CTt, and outputs some y ∈ Y , or ⊥.

Correctness:For all tuplesm = (m1, . . . ,mt) ∈Mλ and any function f ∈ Fλ,
we have that

Pr

Dec(SKf ,CT1, . . . ,CTt) = f(m) :
MSK← Setup(1λ),
SKf ← KeyGen(MSK, f),
∀i CTi ← Enc(MSK,m, i)

 = 1

Definition 2 (Selectively-secure multi-key t-SKFE). We say that a tuple of
algorithms SKFEt = (Setup,KeyGen,Enc,Dec) is a selectively-secure t-input
secret-key functional encryption scheme forM,Y,F , if it satisfies the following
requirement, formalized by the experiment ExptSKFEtA (1λ, b) between an adver-
sary A and a challenger:

1. The adversary submits challenge message tuples
{
(m0

i,1,m
1
i,1, i)

}
i∈[t]

, . . . ,{
(m0

i,q,m
1
i,q, i)

}
i∈[t]

for all i ∈ [t] to the challenger where q is an arbitrary

polynomial in λ.
2. The challenger runsMSK← Setup(1λ)
3. The challenger generates ciphertexts CTi,j ← Enc(MSK,mb

i,j , i) for all
i ∈ [t] and j ∈ [q], and gives {CTi,j}i∈[t],j∈[q] to A.
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4. A is allowed to make q function queries, where it sends a function fj ∈ F
to the challenger for j ∈ [q] and q is an arbitrary polynomial in λ. The
challenger responds with SKfj ← KeyGen(MSK, fj).

5. A outputs a guess b′ for b.
6. The output of the experiment is b′ if the adversary’s queries are valid:

fj(m
0
1,j1 , . . . ,m

0
t,jt) = fj(m

1
1,j1 , . . . ,m

1
t,jt) for all j1, . . . , jt, j ∈ [q] .

Otherwise, the output of the experiment is set to be ⊥.

We say that the functional encryption scheme is selectively-secure if, for all
polysize adversaries A, there exists a negligible function µ(λ), such that

AdvSKFEtA =
∣∣∣Pr [ExptSKFEtA (1λ, 0) = 1

]
− Pr

[
ExptSKFEtA (1λ, 1) = 1

]∣∣∣ ≤ µ(λ).
We further say that SKFEt is δ-selectively-secure, for some concrete negligible
function δ(·), if the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

We recall the following theorem by Brakerski, Komargodski, and Segev,
which states that one can build selectively-secure t-SKFE from any selectively-
secure 1-SKFE. The transformation induces a significant blowup and security
loss in the number of inputs t. This loss is polynomial as long as t is constant,
but in general grows doubly-exponentially in t.

Theorem 3 ([20]).

1. For t = O(1), if there exists δ-selectively-secure single-input SKFE for
P/poly, then there exists δ-selectively-secure t-input SKFE for P/poly.

2. There exists a constant ε < 1, such that for t(λ) = ε · log log(λ), λ̃ =

2(log λ)
ε , δ(λ̃) = 2−λ̃

ε , if there exists δ-selectively-secure single-input SKFE
for P/poly, then there exists polynomially-secure selectively-secure t-input
SKFE for functions of size at most 2O((log λ)ε). (Here λ̃ is the single-input
SKFE security parameter and λ is the t-input SKFE security parameter.)

Remark 1 (Dependence on circuit size in [20]). The [20] transformation incurs
a (s · λ̃)2O(t) blowup in parameters, where s is the size of maximal circuit size
of supported functions, and λ̃ is the security parameter used in the underlying
single-input SKFE. In themain setting of parameters considered there, t = O(1),
the security parameter λ of the t-SKFE scheme can be identified with λ̃ and s
can be any polynomial in this security parameter. (Accordingly, the dependence
on s is implicit there, and the blowup they address is λ2O(t) .)

For the second part of the theorem, to avoid superpolynomial blowup in λ,
the security parameter λ̃ for the underlying SKFE and the maximal circuit size
s should be set to 2O((log λ)ε).
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Definition 3 (Public-key functional encryption). LetM = {Mλ}λ∈N be a
message domain,Y = {Yλ}λ∈N a range, andF = {Fλ}λ∈N a class of functions
f :M→ Y . A public-key functional encryption (PKFE) scheme forM,Y,F
is a tuple of algorithms PKFE = (Setup,KeyGen,Enc,Dec) where:

– Setup(1λ) takes as input the security parameter and outputs a master secret
keyMSK and master public keyMPK.

– KeyGen(MSK, f) takes as input the master secret MSK and a function
f ∈ F . It outputs a secret key SKf for f .

– Enc(MPK,m) takes as input the master public key MPK and a message
m ∈M, and outputs a ciphertext c.

– Dec(SKf , c) takes as input the secret key SKf for a function f ∈ F and a
ciphertext c, and outputs some y ∈ Y , or ⊥.

Correctness: For any messagem ∈M and function f ∈ F , we have that

Pr

Dec(SKf , c) = f(m) :
(MSK,MPK)← Setup(1λ),
SKf ← KeyGen(MSK, f),
c← Enc(MPK,m)

 = 1

Definition 4 (Selectively-secure single-key PKFE). We say that a tuple of
algorithm PKFE = (Setup,KeyGen,Enc,Dec) is a selectively-secure single-
key public-key functional encryption scheme for M,Y,F , if it satisfies the
following requirement, formalized by the experiment ExptPKFEA (1λ, b) between
an adversary A and a challenger:

1. A submits the message pairm∗0,m∗1 ∈M and a function f to the challenger.
2. The challenger runs (MSK,MPK)← Setup(1λ), generates ciphertextCT∗ ←

Enc(MPK,m∗b) and a secret key SKf ← KeyGen(MSK, f). The challenger
gives (MPK,CT∗, skf ) to A.

3. A outputs a guess b′ for b.
4. The output of the experiment is b′ if f(m∗0) = f(m∗1) and ⊥ otherwise.

We say that the public-key functional encryption scheme is selectively-secure if,
for all PPT adversaries A, there exists a negligible function µ(λ), such that

AdvPKFEA =
∣∣∣Pr [ExptPKFEA (1λ, 0) = 1

]
− Pr

[
ExptPKFEA (1λ, 1) = 1

]∣∣∣ ≤ µ(λ).
We further say that PKFE is δ-selectively secure, for some concrete negligible
function δ(·), if for all polysize distinguishers the above indistinguishability gap
µ(λ) is smaller than δ(λ)Ω(1).

We now further define a notion of succinctness for functional encryption
schemes as above.
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Definition 5 (Weakly Succinct functional encryption).For a class of functions
F = {Fλ} over message domainM = {Mλ}, we let:

– n(λ) be the input length of the functions in F ,
– s(λ) = maxf∈Fλ |f | be a bound on the circuit size of functions in Fλ,
– d(λ) = maxf∈Fλ depth(f) a bound on the depth, and

A functional encryption scheme is

– weakly succinct [14] if the size of the encryption circuit is bounded by
sγ ·poly(n, λ, d), where poly is a fixed polynomial, and γ < 1 is a constant.
We call γ the compression factor.

The following result from [14, Section 3.2] states that one can construct an
indistinguishability obfuscator from any single-key weakly succinct public-key
functional encryption scheme.

Theorem 4 ([14]). If there exists a subexponentially secure single-key weakly
succinct PKFE scheme, then there exists an indistinguishability obfuscator.

2.3 Indistinguishability Obfuscation

Definition 6 (Indistinguishability obfuscator (IO) [8, 9]). A PPT machine iO
is an indistinguishability obfuscator for a circuit class {Cλ}λ∈N if the following
conditions are satisfied:

– Functionality: for all security parameters λ ∈ N, for all C ∈ Cλ, for all
inputs x, we have that Pr[C ′(x) = C(x) : C ′ ← iO(C)] = 1.

– Indistinguishability: for any polysize distinguisher D, there exists a negli-
gible function µ(·) such that the following holds: for all security parameters
λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ of the same size and such that
C0(x) = C1(x) for all inputs x, then∣∣Pr [D(iO(C0)) = 1

]
− Pr

[
D(iO(C1)) = 1

]∣∣ ≤ µ(λ) .
We further say that iO is δ-secure, for some concrete negligible function δ(·),
if for all polysize distinguishers the above indistinguishability gap µ(λ) is
smaller than δ(λ)Ω(1).

2.4 Succinct Identity-Based Encryption

We define identity-based encryption (IBE) [48] with a succinctness properties.
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Definition 7 (Succinct IBE with γ-compression). Let M be some message
space and ID be an identity space. A succint IBE scheme with γ-compression
forM, ID is a tuple of algorithms (Setup,KeyGen,Enc,Dec) where:
– Setup(1λ) is takes as input the security parameter and outputs a master

secret keyMSK and a master public keyMPK.
– KeyGen(MSK, id) takes as input the master secret MSK and an identity
id ∈ ID. It outputs a secret key SKid for id.

– Enc(MPK, id,m) takes as input the public-parameter MPK, an identity
id ∈ ID, and a messagem ∈M, and outputs a ciphertext c.

– Dec(SKid, c) takes as input the secret key SKid for an identity id ∈ ID and
a ciphertext c, and outputs somem ∈M, or ⊥.

We require the following properties:
Correctness: For any messagem ∈M and identity id ∈ ID, we have that

Pr

Dec(SKid, c) = m :
(MSK,MPK)← Setup(1λ),
SKid ← KeyGen(MSK, id),
c← Enc(MPK, id,m)

 = 1

Succinctness: For any security parameter λ ∈ N, identity space ID, the size of
the encryption circuit Enc, for messages of size `, is at most |ID|γ · poly(λ, `).

In this work, we shall consider the following selective-security.
Definition 8 (Selectively-secure IBE). A tuple of algorithms IBE = (Setup,
KeyGen,Enc,Dec) is a selectively-secure IBE scheme forM, ID if it satisfies
the following requirement, formalized by the experiment ExptIBEA (1λ, b) between
an adversary A and a challenger:
1. A submits the challenge identity id∗ ∈ ID and the challenge messages

(m∗0,m
∗
1) to the challenger.

2. The challenger runs (MSK,MPK)← Setup(1λ), generates ciphertextCT∗ ←
Enc(MPK,m∗b) and gives (MPK,CT∗) to A.

3. A is allowed to query (polynomially many) identities id ∈ ID such that id 6=
id∗. The challenger gives SKid ← KeyGen(1λ,MSK, id) to the adversary.

4. A outputs a guess b′ for b. The experiment outputs 1 if b′ = b, 0 otherwise.

We say the IBE scheme is selectively-secure if, for all PPT adversaries A, there
exists a negligible function µ(λ), it holds

AdvIBEA =
∣∣∣Pr[ExptIBEA (1λ, 0) = 1]− Pr[ExptIBEA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ).
We further say that IBE is δ-selectively secure, for some concrete negligible
function δ(·), if for all polysize distinguishers the above indistinguishability gap
µ(λ) is smaller than δ(λ)Ω(1).
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Theorem 5. For any β < γ < 1, assuming there exists a β-compressing SXIO
scheme for P/poly (defined in Section 3), a puncturable PRF, and a plain
PKE scheme, there exists a succinct IBE scheme with γ-compression. Moreover,
assuming the underlying primitives are δ-secure so is the resulting IBE scheme.

We omit the proof of this theorem due to the limited space. See the full version
of this paper [13].

We also omit the definition of puncturable PRF and (plain) PKE due to the
limited space. Puncturable PRFs are constructed from OWFs [31, 18, 19, 39].
See the full version of this paper [13] or references therein.

3 Strong Exponentially-Efficient Indistinguishability Obfuscation

Lin, Pass, Seth, and Telang [43] propose a variant of IO that has a weak (yet
non-trivial) efficiency, which they call exponentially-efficient IO (XIO). All that
this notion requires in terms of efficiency is that the size of an obfuscated circuit
is sublinear in the size of the corresponding truth table. They also refer to
a stronger notion that requires that also the time to obfuscate a given circuit
is sublinear in the size of the truth table. This notion, which we call strong
exponentially-efficient IO (SXIO), serves as one of the main abstractions in our
work.

Definition 9 (Strong exponentially-efficient indistinguishability obfuscation
(SXIO) [43]). For a constant γ < 1, a machine sxiO is a γ-compressing strong
exponentially-efficient indistinguishability obfuscator (SXIO) for a circuit class
{Cλ}λ∈N if it satisfies the functionality and indistinguishability in Definition 6
and the following efficiency requirements:
Non-trivial time efficiency: for any security parameter λ ∈ N and circuit C ∈
{Cλ}λ∈N with input length n, the running time of sxiO on input (1λ, C) is at
most 2nγ · poly(λ, |C|).

3.1 SXIO from Single-Input SKFE

In this section, we show that we can construct SXIO from any selectively-secure
t-input SKFE scheme. We recall that such a t-SKFE scheme can be constructed
from any selectively-secure 1-SKFE scheme, as stated in Theorem 3.

Theorem 6. For any function t(λ), if there exists δ-selectively-secure t-SKFE
for P/poly, then there exists 1

t+1 -compressing δ-secure SXIO for P/poly.

The idea of the construction of SXIO fromSKFE is explained in the introduction.
We immediately obtain the following corollary from Theorem 3 and 6.
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Corollary 2.

1. If there exists δ-selectively-secure single-input SKFE for P/poly, then there
exists γ-compressing δ-secure SXIO for P/poly where γ < 1 is an arbitrary
constant.

2. Let ε < 1 be a constant and λ̃ = 2(log λ)
ε . If there exists 2−λ̃Ω(1)-selectively-

secure single-input SKFE for P/poly, then there exists polynomially-secure
SXIO with compression factor γ(λ) = O(1/ log log λ) for circuits of size at
most 2O((log λ)ε). (Here λ̃ is the single-input SKFE security parameter and λ
is the SXIO security parameter.)

3.2 The Construction of SXIO

In what follows, given a circuit C, we identify its input space with [N ] =
{1, . . . , N} (so in particular, N = 2n if C takes n-bit strings as input). Let
SKFEt = (Setup,KeyGen,Enc,Dec) be a selectively-secure t-input secret-key
functional encryption scheme.
Construction.We construct an SXIO scheme sxiO as follows.

sxiO(1λ, C): For every j ∈ [N1/(t+1)]:
– letUj be the t-input universal circuit that given j1, . . . , jt−1 ∈ [N1/(t+1)]

and a t-input circuit D, returns D(j1, . . . , jt−1, j).
– let Cj be the t-input circuit that given j1, . . . , jt ∈ [N1/(t+1)] returns
C(j1, . . . , jt, j).

1. Generate MSK← Setup(1λ).
2. Generate CTt,j ← Enc(MSK, Cj , t) for j ∈ [N1/(t+1)].
3. Generate CTi,j ← Enc(MSK, j, i) for i ∈ [t− 1] and j ∈ [N1/(t+1)].
4. Generate SKUj ← KeyGen(MSK, Uj) for j ∈ [N1/(t+1)]

5. sxiO(C) = ({CTi,j}i∈[t],j∈[N1/(t+1)], {SKUj}j∈[N1/(t+1)])

Eval(sxiO, x): To evaluate the obfuscated circuit, convertx ∈ [N ] into (j1, . . . , jt,
jt+1) ∈ [N1/(t+1)](t+1) and output Dec(SKUjt+1

,CT1,j1 , . . . ,CTt,jt) .

We omit the proof due to the limited space. See the full version [13].

Remark 2 (SXIO from succinct single-key SKFE). To get t-input SKFE as re-
quired above from 1-input SKFE, via the [20] transformation, the original SKFE
indeed has to support an unbounded polynomial number of functional keys. We
note that a similar SXIO construction is possible from a 1-input SKFE that sup-
ports a functional key for a single function f , but is succinct in the sense that
encryption only grows mildly with the complexity of f , namely with |f |β for
some constant β < 1.
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In more detail, assume a (1-input) single-key SKFE with succinctness as
above, where the time to derive a key for a function f is bounded by |f |c ·poly(λ)
for some constant c ≥ 1. The SXIO will consist of a single key for the function
f that given as input Cj , as defined above, returns Cj(1), . . . , Cj(N

1
c+1−β ),

and encryptions of C1, . . . , CNc−β/c+1−β . Accordingly we still get SXIO with
compression factor γ = 1 − 1−β

c+1−β . This does not lead to arbitrary constant
compression (in contrast with the theorem above), since 1

2 ≤ γ < 1. Yet, it
already suffices to obtain IO, when combined with LWE (as in Corollary 1).

4 Yao’s Garbled Circuits are Decomposable

In this section, we define the notion of decomposable garbled circuits. We can
prove that the classical Yao’s garbled circuit construction satisfies our definition
of decomposability (in some parameter regime) though we omit the details about
the proof due to the limited space. We use a decomposable garbling scheme as
a building block to construct a PKFE scheme in Section 5.1.

4.1 Decomposable Garbling

Circuit garbling schemes [50, 10] typically consist of algorithms (Gar.CirEn,
Gar.InpEn,Gar.De). Gar.CirEn(C,K) is a circuit garbling algorithm that given
a circuit C and secret key K, produces a garbled circuit Ĉ. Gar.InpEn(x,K) is
an input garbling algorithm that takes an input x and the same secret keyK, and
produces a garbled input x̂. Gar.De(Ĉ, x̂) is a decoder that given the garbled
circuit and input decodes the result y.

In this work, we shall particularly be interested in garbling decomposable
circuits. A decomposable circuit C can be represented by a smaller circuit Cde

that can generate each of the gates in the circuit C (along with pointers to
their neighbours). When garbling such circuits, we shall require that the garbling
process will also be decomposable and will admit certain decomposable security
properties. We next formally define the notion of decomposable circuits and
decomposable garbling schemes.

Definition 10 (Decomposable Circuit). LetC : {0, 1}n → {0, 1} be a boolean
circuit with L binary gates and W wires. Each gate g ∈ [L] has an associated
tuple (f, wa, wb, wc) where f : {0, 1}2 → {0, 1} is the binary function
computed by the gate, wa, wb ∈ [W ] are the incoming wires, and wc ∈ [W ]
is the outgoing wire. A wire wc can be the outgoing wire of at most a single gate,
but can be used as an incoming wire to several different gates and therefore this
models a circuit with fan-in 2 and unbounded fan-out. We define the predecessor
gates of g to be the gates whose outgoing wires are wa, wb (at most 2 of them).
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We define the successor gates of g to be the gates that have wc as an incoming
wire. The gates are topologically ordered and labeled by 1, . . . , L so that if j is
a successor of i then i < j. A wire w is an input wire if it is not the outgoing
wire of any gate. We assume that the wires 1, . . . , n are the input wires. There is
a unique output wire w which is not an incoming wire to any gate.

We say that C is decomposable if there exists a smaller circuit Cde, called
the decomposition circuit, that given a gate label g ∈ [L] as input, outputs the
associated tuple Cde(g) = (f, wa, wb, wc).

Definition 11 (Decomposable Garbling). A decomposable garbling scheme
consists of a tuple of three deterministic polynomial-time algorithms (Gar.CirEn,
Gar.InpEn,Gar.De) that work as follows:

– b̂i ← Gar.InpEn(i, b;K): takes as an input label i ∈ [n], a bit b ∈ {0, 1},
and secret keyK ∈ {0, 1}λ, and outputs a garbled input bit b̂i.

– Ĝg ← Gar.CirEn(Cde, g;K): takes as input a decomposition circuit Cde :
{0, 1}L → {0, 1}∗, a gate label g ∈ [L], and secret key K ∈ {0, 1}λ, and
outputs a garbled gate Ĝg.

– y ← Gar.De(Ĉ, b̂): takes as input garbled gates Ĉ =
{
Ĝg

}
g∈[L]

, and

garbled input bits b̂ =
{
b̂i

}
i∈[n]

, and outputs y ∈ {0, 1}m.

The scheme should satisfy the following requirements:

1. Correctness: for every decomposable circuit C with decomposition circuit
Cde and any input b1, . . . , bn ∈ {0, 1}n, the decoding procedure Gar.De
produces the correct output y = C(b1, . . . , bn).

2. (σ, τ, δ)-Decomposable Indistinguishability:There are functionsσ(Φ, s, λ),
τ(Φ) ∈ N, δ(λ) ≤ 1 such that for any security parameter λ, any input
x ∈ {0, 1}n, and any two circuits (C,C ′) that:
– have the same topology Φ, and in particular the same size L and input-
output lengths (n,m),

– have decomposition circuits (Cde, C
′
de) of the same size s

– and agree on x: C(x) = C ′(x),
there exist hybrid circuits

{
Gar.HInpEn(t),Gar.HCirEn(t)

∣∣∣ t ∈ [τ ]
}
, each

being of size at most σ, as well as (possibly inefficient) hybrid functions{
Gar.HPunc(t)

∣∣∣ t ∈ [τ ]
}
with the following syntax:

– (K
(t)
pun, g

(t)
pun, i

(t)
pun) ← Gar.HPunc(t)(K), given a key K ∈ {0, 1}λ and

an index t ∈ [τ ], outputs a punctured keyK(t)
pun, a gate label g

(t)
pun ∈ [L],

and an input label i(t)pun ∈ [n].
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– Ĝg ← Gar.HCirEn(t)(g;K), given a gate label g ∈ [L], and a (possibly
punctured) keyK, outputs a fake garbled gate Ĝg.

– b̂i ← Gar.HInpEn(t)(i, b;K), given an input label i ∈ [n], and a (possi-
bly punctured) keyK, outputs a fake garbled input bit b̂i.

We require that the following properties hold:
(a) The hybrids transition from C to C ′: For any K ∈ {0, 1}λ, g ∈ [L],

i ∈ [n], b ∈ {0, 1}, we have:
Gar.CirEn(Cde, g;K) = Gar.HCirEn(1)(g;K) ,
Gar.InpEn(i, b;K) = Gar.HInpEn(1)(i, b;K) ,
Gar.CirEn(C ′de, g;K) = Gar.HCirEn(τ)(g;K) ,

Gar.InpEn(i, b;K) = Gar.HInpEn(τ)(i, b;K) .
(b) Punctured keys preserve functionality: For any K ∈ {0, 1}λ, and t ∈

[τ −1], and letting (K(t)
pun, g

(t)
pun, i

(t)
pun) = Gar.HPunc(t)(K), it holds that,

for any g 6= g
(t)
pun, we have Gar.HCirEn(t)(g;K) = Gar.HCirEn(t)(g;

K
(t)
pun) = Gar.HCirEn(t+1)(g,K) ,

and for any i 6= i
(t)
pun and b ∈ {0, 1}, we have Gar.HInpEn(t)(i, b;K) =

Gar.HInpEn(t)(i, b;K
(t)
pun) = Gar.HInpEn(t+1)(i, b;K).

(c) Indistinguishability on punctured inputs:For any polysize distinguisher
D, security parameter λ ∈ N, and circuits (C,C ′) as above,∣∣∣Pr [D (ĝ(t)pun, î

(t)
pun,Gar.HPunc

(t)(K)
)
= 1
]
−

Pr
[
D
(
ĝ
(t+1)
pun , î

(t+1)
pun ,Gar.HPunc(t)(K)

)
= 1
] ∣∣∣ ≤ δ(λ) ,

where, for t ≥ 0 we denote by ĝ(t)pun the value Gar.HCirEn(t)(g
(t)
pun;K)

and by î(t)pun the value Gar.HInpEn(t)(i
(t)
pun, xi(t)pun

;K), with x being the
input on which the two circuits C and C ′ agree on. The probability is
overK ← {0, 1}λ, and (K

(t)
pun, g

(t)
pun, i

(t)
pun) = Gar.HPunc(t)(K).

We show that Yao’s garbled circuit scheme, in fact, gives rise to a decomposable
garbling scheme where the security loss and size of the hybrid circuits scales
with the depth of the garbled circuits.

Theorem 7. Let C = {Cλ}λ∈N be a class of boolean circuits where eachC ∈ Cλ
has circuit size at mostL(λ), input size at most n(λ), depth at most d(λ), fan-out
at most ϕ(λ), and decomposition circuit of size at most ∆(λ). Then assuming
the existence of δ-secure one-way functions, C has a decomposable garbling
scheme with (σ, τ, δ)-decomposable indistinguishability where the bound on the
size of hybrid circuits is σ = poly(λ, d, logL,ϕ,∆), the number of hybrids is
τ = L · 2O(d), and the indistinguishability gap is δΩ(1).
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The proof is omitted due to the limited space. See the full version [13]. We
rely heavily on the ideas of Hemenway et al. [37] which considered an orthogonal
question of adaptively secure garbling schemes but (for entirely different reasons)
developed ideas that are useful for decomposable garbling.

5 Single-Key Succinct PKFE from SXIO and PKE

This section consists of three subsections. Themain part is constructing a weakly
succinct PKFE scheme for boolean functions in Section 5.1. In Section 5.2,
we present a transformation from weakly succinct PKFE schemes for boolean
functions into ones for non-boolean functions. Lastly, we explain how the pieces
come together to give IO from SKFE in Section 5.3.

5.1 Weakly Succinct PKFE for Boolean Functions

We now construct a single-key weakly succinct PKFE scheme for the class of
boolean functions. The construction is based on succinct IBE, decomposable
garbling, and SXIO.

Theorem 8. Let C = {Cλ}λ∈N be a family of circuits with a single output
bit and let n(λ), s(λ), d(λ) be bounds on their input length, size, and depth
(respectively). For any constants β, γ such that 3β < γ < 1, assuming a δ-
secure, β-compressing SXIO for P/poly, there exists a constant α, such that
given any δ-secure, α-compressing IBE, and δ-secure one-way functions, there
exists a 2dsδ-secure succinct PKFE for C with compression factor γ.

Depth preserving universal circuits. To prove the above theorem, we recall the
existence of depth preserving universal circuits [23]. Concretely, any family of
circuits C as considered in Theorem 8 has a uniform family of universal circuits
{Uλ}λ∈N with fan-out λ,8 depth O(d), and size s3 · polylog(s), for some fixed
polynomial poly. Each such circuit takes as input a description (f1, . . . , fs)
of a function in C and an input (x1, . . . , xn) and outputs f(x). Furthermore,
uniformity here means that each circuit has a decomposition circuit of size
polylog(s).
Ingredients and notation used in the construction.

– We denote byU (x) : {0, 1}s → {0, 1} the universal circuit, with x ∈ {0, 1}n
being a hardwired bitstring, such that on input (f1, . . . , fs), the circuit U (x)

8 The restriction regarding fan-out is not stated explicitly in [23], but can always be achieved by
blowing up the size and depth by a factor of at most O(1).
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outputs f(x). This circuit has a decomposition circuit of sizepoly(n, log(s)),
which we denote by U (x)

de . We also denote by L the number of gates in the
circuit U (x).

– Let sxiO be a δ-secure, β-compressing SXIO scheme.
– Let IBE = (IBE.Setup, IBE.KeyGen, IBE.Enc, IBE.Dec) be δ-secure, suc-
cinct, IBE scheme with α-compression for the identity space being ID =
[s]× {0, 1}.

– Let (Gar.CirEn,Gar.InpEn,Gar.De) be a decomposable garbling scheme
with (σ, τ, δ)-decomposable indistinguishability where τ = s2O(d) and
σ = poly(λ, n, d, log(s)). Such schemes are implied by δ-secure one-way
functions (Theorem 7).

– Let PPRF = (PRF.Gen,PRF.Ev,PRF.Punc) be a δ-secure puncturable
PRF. These are implied by δ-secure one-way functions [31, 18, 19, 39].

Construction. The scheme consists of the following algorithms.

PKFE.Setup(1λ):
– Run (MSKibe,MPKibe)← IBE.Setup(1λ).
– SetMSK = MSKibe,MPK = MPKibe.

PKFE.Key(MSK, f):
– Compute SKi,fi ← IBE.KeyGen(MSKibe, (i, fi)) for i ∈ [s], where
f = (f1, . . . , fs).

– Return SKf = {SKi,fi}i∈[s].
PKFE.Enc(MPK, x):

– Compute U (x)
de and pick a garbling key K ← {0, 1}λ and a punctured

key S ← PRF.Gen(1λ);
– Generate an obfuscation ĨGC = sxiO(1λ, IGC[K,S,MPK]) of the input
garbling circuit defined in Figure 1;

– Generate an obfuscation G̃GC = sxiO(1λ,GGC[K,U (x)
de ]) of the gate

garbling circuit defined in Figure 2;
– Return CTx = (ĨGC, G̃GC).

PKFE.Dec(SKf ,CTx):
– For i ∈ [s], run ĨGC(i, fi) to obtain an IBE ciphertext, and decrypt the
output using SKi,fi to obtain f̂i.

– For all g ∈ [L], run G̃GC(g), in order to obtain the garbled gate Ĝg.
– Return y ← Gar.De(Ĉ, f̂), with Ĉ =

{
Ĝg

}
g∈[L]

and f̂ =
{
f̂i

}
i∈[s]

.

We omit the proof of correctness, succinctness, and security due to the
limited space. See the full version for the complete proof of Theorem 8 [13].
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Input Garbling Circuit IGC[K,S,MPK]

Hardwired: a garbling keyK, a puncturable PRF key S, and MPK = MPKibe.
Input: identity (i, b), consisting of an input label i ∈ [s] and a bit b ∈ {0, 1}.
Padding: the circuit is padded to size padIGC(s, d, n, λ), determined in the analysis.

1. Compute a corresponding garbled input bit b̂i = Gar.InpEn(i, b;K).
2. Output an IBE encryption IBE.Enc(MPKibe, (i, b), b̂i;PRF.EvS(i, b)).

Fig. 1: Circuit IGC[K,S,MPK]

Gate Garbling Circuit GGC[K,U (x)
de ]

Hardwired: a garbling keyK and the decomposition circuit U (x)
de of U (x).

Input: a gate label g ∈ [L].
Padding: the circuit is padded to size padGGC(s, d, n, λ), determined in the analysis.

Output Ĝg = Gar.CirEn(U
(x)
de , g;K).

Fig. 2: Circuit GGC[K,U (x)
de ]

5.2 Weakly Succinct PKFE for Non-Boolean Functions

In this section, we give a transformation from weakly succinct PKFE schemes
for boolean functions into ones for non-boolean functions.

Theorem 9. Let C = {Cλ}λ∈N be a family of circuits (with multiple output
bits) and let n(λ), s(λ), d(λ) be bounds on their input length, size, and depth
(respectively). For any constants β < γ < 1, assuming a β-compressing SXIO
for P/poly, there exists a constant α, such that given any α-compressing weakly
succinct PKFE for boolean functions of size s · polylog(s) and depth O(d), and
one-way functions, there exists a succinct PKFE for C with compression factor
γ. If all primitives are δ-secure so is the resulting scheme.

The transformation is essentially the same transformation presented in [43,
Section 4], with the following differences:

– They use XIO rather than SXIO, which results in a PKFE scheme where
only the size of ciphertexts is compressed, whereas the time to encrypt may
be large. They then make an extra step, based on LWE, to make encryption
efficient. Using SXIO directly as we do, allows avoiding this step.
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– They start from weakly succinct PKFE for boolean functions where the size
of ciphertexts is completely independent of the size s of the function class
considered. Due to this, they can start fromXIOwith any compression factor
β < 1. In our notion of weakly succinct, there is dependence on sα, for some
α < 1, and we need to make sure that β and α are appropriately chosen to
account for this.

– As stated, their notion of weak succinctness for PKFE does not explicitly
scale with the depth of the function class considered. Eventually, they apply
their transformation to function classes in NC1, assuming puncturable PRFs
inNC1 (which exist under LWE). Our succinctness notion allows polynomial
dependence on the depth, which should be roughly preserved through the
transformation.

The transformation and proof of security are almost identical to the ones in
[43] and are omitted due to the limited space. See the full version [13].

5.3 Putting It All Together: From SKFE and PKE to IO

We obtain the following statements from the results proved in this section.

Theorem 10. Let C = {Cλ}λ∈N be a family of circuits (with multiple output
bits) and let n(λ), s(λ), d(λ) be bounds on their input length, size, and depth
(respectively). Then, for any constant γ < 1, there exists a constant β, such that
given any δ-secure, β-compressing SXIO for P/poly, and δ-secure PKE, there
exists 2dsδ-secure, γ-compressing, weakly succinct PKFE for C.

Combining the above theorem with the result from Section 3, we obtain the
following corollary.

Corollary 3. If there exist (1-input) SKFE for P/poly and PKE, both subexpon-
entially-secure, then there exists IO for P/poly.

Remark 3 (The security loss). In order, the known reductions [3, 14] of IO to
weakly-succinct PKFE incur a sub-exponential loss. Accordingly, reducing IO
to SKFE based on our results incurs a similar loss. However, when restricting
attention, to the transformation from SKFE to (weakly-succinct) PKFE, then the
loss is poly(2d, λ), for circuits of depth d. In particular, for NC1, our transfor-
mation incurs only polynomial security loss. Such a PKFE for NC1, can then be
bootstrapped to all polynomial-size circuits using the transformation of [2], and
assuming also weak PRFs in NC1.

In concurrent work [30, 41], it is shown that weakly-succinct single-key
PKFE can then be polynomially reduced to PKFE. In summary, SKFE and PRFs
in NC1 can be polynomially reduced to PKFE for all polynomial-size circuits.
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6 Polynomially-Secure PKE from Secret-Key FE

In this section, we construct PKE from SKFE. Our starting point is Corollary 2
that directly follows from Theorems 3,6.

We now show how to construct a PKE scheme from such SXIO.
The construction. Let

{
PRG : {0, 1}n → {0, 1}2n

}
n∈N be a length-doubling

pseudorandom generator that is 2−n/ log logn-secure. Let sxiO be a SXIO with
compression factor γ(λ) = O(1/ log log λ) (and poly(λ) security) for circuits
of size at most 2O((log λ)ε).

The scheme PKE = (KeyGen,Enc,Dec) is defined as follows:

KeyGen(1λ):
– Sample a PRG seed s← {0, 1}log λ/γ(λ).
– Output PK = PRG(s) and SK = s.

Enc(PK, x):
– Construct the circuit WE[x,PK] that takes s′ ∈ {0, 1}log λ/γ(λ) as input

and outputs x if PK = PRG(s′) holds and ⊥ otherwise.
– Output CT = sxiO(WE[x,PK])

Dec(SK,CT):
– Compute x′ = CT(SK).

Proposition 3. PKE is a (polynomially-secure) public-key encryption scheme.

We omit the proof due the limited space. See the full version [13]
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