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Abstract. All previous constructions of general multiparty computation proto-
cols that are secure against adaptive corruptions in the concurrent setting either
require some form of setup or non-standard assumptions. In this paper we provide
the first general construction of secure multi-party computation protocol without
any setup that guarantees composable security in the presence of an adaptive ad-
versary based on standard polynomial-time assumptions. We prove security un-
der the notion of “UC with super-polynomial helpers” introduced by Canetti et al.
(FOCS 2010), which is closed under universal composition and implies “super-
polynomial-time simulation”. Moreover, our construction relies on the underlying
cryptographic primitives in a black-box manner.
Next, we revisit the zero-one law for two-party secure functions evaluation initi-
ated by the work of Maji, Prabhakaran and Rosulek (CRYPTO 2010). According
to this law, every two-party functionality is either trivial (meaning, such function-
alities can be reduced to any other functionality) or complete (meaning, any other
functionality can be reduced to these functionalities) in the Universal Compos-
ability (UC) framework. As our second contribution, assuming the existence of
a simulatable public-key encryption scheme, we establish a zero-one law in the
adaptive setting. Our result implies that every two-party non-reactive functional-
ity is either trivial or complete in the UC framework in the presence of adaptive,
malicious adversaries.
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1 Introduction

Secure computation enables a set parties to mutually run a protocol that computes some
function f on their private inputs, while preserving a number of security properties.
Two of the most important properties are privacy and correctness. The former implies
data confidentiality, namely, nothing leaks by the protocol execution but the computed
? Email: carmit.hazay@cs.biu.ac.il. Research supported by the Israel Ministry of

Science and Technology (grant No. 3-10883) and by the BIU Center for Research in Applied
Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau in the
Prime Minister’s Office.

?? Email: muthuv@cs.rochester.edu. Research supported by Google Faculty Research
Grant and NSF Award CNS-1526377.



output. The later requirement implies that no corrupted party or parties can cause the
output to deviate from the specified function. It is by now well known how to securely
compute any efficient functionality [Yao86,GMW87,MR91,Bea91,Can01] in various
models and under the stringent simulation-based definitions (following the ideal/real
paradigm). Security is typically proven with respect to two adversarial models: the
semi-honest model (where the adversary follows the instructions of the protocol but
tries to learn more than it should from the protocol transcript), and the malicious model
(where the adversary follows an arbitrary polynomial-time strategy), and feasibility re-
sults are known in the presence of both types of attacks. The initial model considered
for secure computation was of a static adversary where the adversary controls a subset
of the parties (who are called corrupted) before the protocol begins, and this subset can-
not change. In a stronger corruption model the adversary is allowed to choose which
parties to corrupt throughout the protocol execution, and as a function of its view; such
an adversary is called adaptive.

These feasibility results rely in most cases on stand-alone security, where a sin-
gle set of parties run a single execution of the protocol. Moreover, the security of most
cryptographic protocols proven in the stand-alone setting does not remain intact if many
instances of the protocol are executed concurrently [Lin03]. The strongest (but also the
most realistic) setting for concurrent security is known by Universally Composable
(UC) security [Can01]. This setting considers the execution of an unbounded number
of concurrent protocols in an arbitrary and adversarially controlled network environ-
ment. Unfortunately, stand-alone secure protocols typically fail to remain secure in the
UC setting. In fact, without assuming some trusted help, UC security is impossible to
achieve for most tasks [CF01,CKL06,Lin03]. Consequently, UC secure protocols have
been constructed under various trusted setup assumptions in a long series of works;
see [BCNP04,CDPW06,KLP07,CPS07,LPV09,DMRV13] for few examples.

Concurrent security without any setup. In many situations, having a trusted set-
up might be hard or expensive. Designing protocols in the plain model that provide
meaningful security in a concurrent setting is thus an important challenge. In this re-
gard, a relaxation of UC security allows the adversary in an ideal execution to run
in super-polynomial time; this notion is referred to as super-polynomial security (or
SPS) [Pas03]. On a high-level, this security notion guarantees that any attack carried
out by an adversary running in polynomial time can be mounted in the ideal execu-
tion with super-polynomial resources. In many scenarios, such a guarantee is mean-
ingful and indeed several past works have designed protocols guaranteeing this relaxed
UC security against static adversaries [Pas03,BS05,LPV09] and adaptive adversaries
[BS05,DMRV13,Ven14]. While initial works relied on sub-exponential hardness as-
sumptions, more recent works in the static setting have been constructed based on stan-
dard polynomial-time hardness assumptions.

The work of [CLP10], put forth some basic desiderata regarding security notions in
a concurrent setting. One of them requires supporting modular analysis: Namely, there
should be a way to deduce security properties of the overall protocol from the security
properties of its components. Quite surprisingly, it was shown in [CDPW06] that most
protocols in the UC framework that consider both trusted setups and relaxed models of
security, in fact, do not support this.



Towards remedying the drawbacks of SPS security, Prabhakaran and Sahai [PS04]
put forth the notion of Angel-based UC security that provides guarantees analogous to
SPS security while at the same time supporting modular analysis. In this model, both
the adversary and the simulator have access to an oracle, referred to as an “angel” that
provides judicious use of super-polynomial resources. In the same work and subsequent
effort [MMY06] the authors provided constructions under this security notion relying
on non-standard hardness assumptions. Recently, Canetti, Lin and Pass [CLP10] pro-
vided the first constructions in this model relying on standard polynomial time assump-
tions. Moreover, to emphasize the modular analysis requirement, they recast the notion
of Angel-based security in the extended UC (EUC) framework of [CDPW06] calling
it UC with super-polynomial helpers. While prior approaches relied on non-interactive
helpers that were stateless, this work designed a helper that was highly interactive and
stateful. Since this work, several follow up works [LP12a,GLP+15,Kiy14] have im-
proved both the round complexity and the computational assumptions. The most recent
work due to Kiyoshima [Kiy14] provides a Õ(log2 n)-round protocol to securely realize
any functionality in this framework based on semi-honest oblivious transfer protocols
where the underlying primitives are used in a black-box manner. In this line of research,
the work of Canetti, Lin and Pass [CLP13] distinguishes itself by designing protocols
that guarantee a stronger notion of security. More precisely, they extend the angel-based
security so that protocols developed in this extended framework additionally preserve
security of other protocols running the system (i.e. cause minimal “side-effect”). They
refer to such protocols “environment friendly” protocols. However, as observed in the
same work, this strong notion inherently requires non-black-box simulation techniques.
Moreover, the constructions presented in [CLP13] are non-black-box as well.

While considerable progress has been made in constructing protocols secure against
static adversaries, very little is known regarding adaptive adversaries. Specifically, the
work of Barak and Sahai [BS05] and subsequent works [DMRV13,Ven14] show how
to achieve SPS security under non-standard assumptions. Besides these works, every
other protocol that guarantees any meaningful security against adaptive adversaries in
a concurrent setting has required setup. The main question left open by previous work
regarding adaptive security is:

Can we realize general functionalities with SPS security in the plain model
under standard polynomial time assumptions? and,
Can we show adaptively secure angel-based (or EUC-security) under standard
hardness assumptions where the underlying primitives are used in a black-box
manner?

We stress that even the works that provide SPS security require non-standard or sub-
exponential hardness assumptions and are non-black-box, that is, the constructions rely
on the underlying assumptions in non-black-box way. A more ambitious goal would be
to construct “environment-friendly” protocols [CLP13] and we leave it as future work.

1.1 Our Results

In this work we resolve both these questions completely and provide the first realiza-
tions of general functionalities under EUC security against malicious, adaptive adver-



saries (See [CDPW06,CLP10] for a formal definition). More formally, we prove the
following theorem:

Theorem 1.1 Assume the existence of a simulatable public-key encryption scheme.
Then there exists a sub-exponential time computable (interactive) helper machine H
such that for any “well formed” polynomial-time functionality F , there exists a proto-
col that realizes F with H-EUC security, in the plain model secure against malicious,
adaptive adversaries. Furthermore, the protocol makes only black-box use of the un-
derlying encryption scheme.

We recall here that simulatable public-key encryption (PKE), introduced by Damgard
and Nielsen [DN00], allows to obliviously sample the public key/ciphertext without the
knowledge of the corresponding secret key/plaintext.

As far as we know, this is the first construction based on polynomial-time hardness
assumptions of a secure multi-party computation that achieves any non-trivial notion
of concurrent security against adaptive adversaries without any trusted-set up (in the
plain model) and without assuming an honest majority. Furthermore, the construction
supports modular analysisand relies on the underlying scheme in a black-box way. In
essence, our protocol provides the strongest possible security guarantees in the plain
model.

A zero-one law for adaptive security In [PR08], Prabhakaran and Rosulek initiated
the study of the “cryptographic complexity” of two-party secure computation tasks in
the UC framework. Loosely speaking, in their framework a functionalityF UC-reduces
to another functionality G if there is a UC secure protocol for F in the G-hybrid, i.e.,
using ideal access to G. Under this notion of a reduction in the presence of static adver-
saries, Maji et al in [MPR10] established a zero-one law for two-party (non-reactive)
functionalities which states that every functionality is either trivial or complete. In this
work, we extend their result to the adaptive setting to obtain the following theorem.

Theorem 1.2 (Informal) All non-reactive functionalities are either trivial or complete
under UC-reductions in the presence of adaptive adversaries.

1.2 Previous Techniques

All previous approaches for Angel-based UC secure protocols relied on a particular
“adaptive hardness” assumption which amounts to guaranteeing security in the pres-
ence of an adversary that has adaptive access to a helper function. Indeed, as pursued in
the orginal approaches by [PS04,MMY06], complexity leveraging allows for designing
such primitives. A major breakthrough was made by Canetti, Lin and Pass [CLP10]
that showed that a helper function could be based on standard assumptions. The main
technical tool introduced in this work is a new notion of a commitment scheme that is
secure against an adaptive chosen commitment attack (CCA security). On a high-level,
a tag-based commitment scheme, which are schemes that have additionally a tag as a
common input, is said to be CCA-secure if a commitment made with tag id is hiding
even if the receiver has access to a (possibly, super-polynomial time) oracle that is capa-
ble of “breaking” commitments made using any tag id′ 6= id. In the original work, they



constructed a O(nε)-round CCA-secure commitment scheme based on one-way func-
tions (OWFs) [CLP10]. Since then, several followup works have improved this result,
culminating in the work of Kiyoshima [Kiy14] who gave a Õ(log2 n)-round construc-
tion of a CCA-secure commitment scheme based on OWFs while relying on the under-
lying OWF in a black-box way.3 We remark here that Angel-based security based on
standard polynomial-time assumptions have been constructed only in the static setting.
Moreover, all constructions in this line of work, first construct a CCA-secure commit-
ment scheme and then realize a complete UC functionality, such as the commitment or
oblivious-transfer functionality using a “decommitment” oracle as the helper function-
ality.

When we consider the adaptive setting, we begin with the observation that any cryp-
tographic primitive in use must be secure in the presence of adaptive corruptions. Say-
ing differently, we require a simulation that can produce random coins consistent with
any honest party during the execution as soon as it is adaptively corrupted. A first at-
tempt would be to enhance a CCA-secure commitment scheme to the adaptive setting.
This means there must be a mechanism to equivocate the commitment scheme. It is
in fact crucial in all works using CCA-secure commitments that the helper function-
ality be able to break the commitment and obtain the unique value (if any) that the
commitment can be decommitted to. However, equivocal commitments by definition
can have commitmentts that do not have unique decommitments. In essence, standard
CCA-secure commitment schemes are necessarily statistically binding (and all previous
constructions indeed are statistically binding). Hence, it would be impossible to use any
of those schemes in the adaptive setting.

Note that previous works [DMRV13,Ven14] get around this issue by relying on
some sort of setup, namely, a mechanism by which the commitments will be statisti-
cally binding in the real world for adversaries, yet can be equivocated in the ideal world
by the simulator. The notion of an adaptive instance-dependent scheme [LZ11] provides
exactly such a primitive. Loosely speaking, such commitment schemes take addition-
ally as input an NP-statement and provides the following guarantee: If the statement is
true, the commitment can be equivocated using the witness, whereas if the statement is
false then the commitment is statistically binding. Moreover, it admits adaptive corrup-
tions where a simulator can produce random coins for an honest committer revealing a
simulated commitment to any value. The work of [BS05] relies on complexity leverag-
ing in order to generate statements that a simulator, in super-polynomial time can break
but an adversary, in polynomial time, cannot break. On the other hand, the works of
[DMRV13,Ven14] rely on—the so called UC puzzle—that provides similar advantage
for the simulation while relying on milder assumptions.

A second issue arises in the adaptive setting where any commitment scheme that tol-
erates concurrent executions (even with fixed roles) and is equivocal, implies some sort
of selective opening security. Indeed, the result of Ostrovsky et al. [ORSV13] proves
that it is impossible, in general, to construct concurrent commitments secure w.r.t. se-
lective opening attacks. Getting around this lower bound is harder. Previous results
[DMRV13,Ven14] get around this lower bound by first constructing a “weaker” com-

3 We further note that Goyal et al. [GLP+15] gave a Õ(logn)-round CCA-secure commitment
scheme but makes use of the OWF in a non-black-box way.



mitment scheme in a limited concurrent environment. Namely, they construct an equiv-
ocal non-malleable commitment scheme that can simulate any man-in-the-middle ad-
versary receiving “left” commitments made to independent and identically distributed
values (via some a priori fixed distribution), and is acting as a committer in many
“right” interactions. This allows to get around the [ORSV13] lower bound, as Ostro-
vsky et al. lower bound holds only if the simulator does not know the distribution of the
commitments received by the adversary. In any case, all previous works fail to achieve
the stronger Angel-based UC security, where the helper function is provided to the ad-
versary and the simulator in the real and ideal world respectively are the same.

Given these bottlenecks, it seems unlikely to use a commitment scheme with such
a property. In this work, we introduce a new primitive that will allow to both provide
the adaptive hardness property as well as admit adaptive corruptions. This primitive is
coin-tossing and will additionaly require to satisfy an adaptive hardness guarantee that
we define in the next section. We chose coin-tossing as a primitive as it does not require
any inputs from the parties and the output is independent of any “global” inputs of
the parties participating in the coin-tossing. Roughly speaking, if a party is adaptively
corrupted it is possible to sample a random string as the output and equivocate the
interaction to output this string. On the other hand, a commitment scheme will not
allow such a mechanism as corrupting a sender requires equivocating the interaction to
a particular value (that could potentially depend on a global input).

2 Our Main Tool: CCA-Secure Coin-Tossing

The main technical tool used in our construction is a new notion of a coin-tossing pro-
tocol that is secure against adaptive chosen coins attack (CCA security). Cryptographic
primitives with an adaptive hardness property has been studied extensively in the case
of the encryption schemes (chosen ciphertext attack security), and more recently in the
case of commitments [CLP10,KMO14,Kiy14,GLP+15]. We define here an analogous
notion for coin-tossing protocols for the stronger case of adaptive corruptions.

A natural approach is to say that a coin-tossing protocol is CCA-secure if the coin-
tossing scheme retains its simulatability even if a “Receiver” has access to a “biasing”
oracleO that has the power to bias the protocol outcome of the coin-tossing to any cho-
sen value. Unfortunately, we do not know how to realize such a notion and will instead,
consider a weaker “indistinguishability”-based notion (as opposed to simulation based
notion) that will be sufficient for our application.
A motivating example. We motivate our definition by discussing what security prop-
erties are desirable for coin-tossing protocols (in general). Consider a public-key cryp-
tosystem that additionally has a property that a public-key can be obliviously sampled
using random coins without knowledge of the secret-key (eg, dense cryptosystems, sim-
ulatable public-key encryption schemes). Furthermore, semantic security holds for a
key sampled using the oblivious strategy. Consider a protocol where the parties after en-
gaging in a coin-toss protocol sample a public-key using the outcome of the coin-toss.
In such a scenario we would like the coin-tossing scheme to ensure that the semantic-
security continues to hold if parties encrypt messages using the public-key.

The natural “simulatable” definition requires the coin-toss to be “simulatable”. If
we instantiate a simulatable coin-toss protocol in our motivating application, semantic



security of ciphertexts constructed using the public-key sampled from the coin-toss
outcome indeed holds via a simple security reduction. Suppose there exists an adversary
that distinguishes an encryption of 0 from 1 when encrypted under a public-key sampled
using the coin-toss. We can use the simulator to construct an adversary that violates the
security of the underlying encryption scheme. Consider a simulator that receives as a
challenge a uniformly sampled string and a ciphertext generated with the associated
public-key. The simulator can internally simulate the coin-tossing to be this sampled
string and thereby use the adversary to break the security of the encryption scheme.

A weaker alternative to simulatability is an information-theoretic based definition
where the requirement would be that the entropy of the outcome is sufficiently high.
However, such a definition will not suffice in our motivating example.4 This is because
we will not be able to “efficiently” reduce a cheating adversary to the violating the
security game of the underlying cryptosystem.

Instead, we take a more direct approach where the security for the coin-toss is de-
fined so that it will be useful in our motivating example. First, we generalize the security
game of the underlying encryption scheme in our motivating example to any indistin-
guishability based primitive. We model such a primitive via a (possibly) interactive
challenger C that receives as input a random string o and a private bit b. We say that an
adversary interacting with C succeeds if when interacting on a randomly chosen o and
bit b, the adversary can guess b with probability better than a 1

2 . Let π be a (two-party)
coin-toss protocol. Our motivating example can be formulated using the following ex-
periment EXPb with an adversary A:

– A interacts with an honest party using π to generate o.
– Next, it interacts with a challenger C on input o and bit b.

We compare this experiment with a stand-alone experiment STAb where an adversary
B simply interacts with C on input b and o where o is uniformly sampled. Our security
definition of the coin-tossing protocol must preserve the following security property
against a challenger C: if the stand-alone game is hard to distinguish, i.e. STA0 from
STA1, then the experiments EXP0 from EXP1 must also be hard to distinguish. More
formally, our definition will (explicitly) give a reduction from any adversary that A
distinguishes EXPb to a stand-alone adversary B that can distinguish STAb. Finally,
in a CCA-setting, we generalize this definition by requiring that if there exists any
oracle adversary AO with access to a biasing oracle O that can distinguish EXP0 from
EXP1, then there exists a stand-alone adversary B (without access to any oracle) that
can distinguish STAb from STA1.

Towards formalizing this notion and incorporating adaptive corruptions, we first
consider a tag-based coin-tossing protocol between two parties, an Initiator I and a
Receiver Rwith l(n)-bit identities andm(n)-bit outcomes. A biasing oracleO interacts
with an adversary A as follows: O participates with A in many sessions using the
protocol where the oracle controls the initiator, using identities of length l(n) that are
chosen adaptively byA. At the beginning of each session, the adversary produces a coin

4 Unless the cryptosystems have additional properties. For instance, consider dual-mode encryp-
tion schemes where there are keys sampled via a high-entropy string and could potentially be
statistically hiding.



outcome c ∈ {0, 1}m(n) to the oracle where at the end of this session, if the initiator that
is initially controlled by the oracle is not (adaptively) corrupted by the adversary, then
the outcome of the interaction must result in the chosen coin c. If at any point during the
interaction the initiator is corrupted, then the oracle simply provides the random-tape
of I that is consistent with the partial transcript of the interaction.

We compare an experiment EXPb with oracle PPT adversaryAO and a stand-alone
experiment STAb with adversary B. In the man-in-the-middle experiment, an adversary
with oracle access to O interacts with a honest receiver R on identity id to generate an
output o ∈ {0, 1}n where n is the security parameter. Then it interacts with a challenger
C on common input (n, o, id) and private input b for C. The adversary is allowed to
corrupt the receiver R, challenger C and any of the interactions withO. If the adversary
A corrupts either C or I then the output of the experiment is set to⊥. If for some identity
id′ on whichA queriesO, it holds that id′ = id, then the output of the experiment is set
to ⊥. Otherwise, the output of the experiment is set to be the output of the adversary.

In the stand-alone experiment STAb, we consider a PPT adversary B that interacts
with C on common input (n, o) and private input b for C where o is uniformly sampled
from {0, 1}n. The output of the experiment is set to be the output of B. Observe that in
the stand-alone experiment B does not get to corrupt C.

Informally, a tag-based coin-tossing scheme 〈I,R〉 is said to be CCA-secure against
a challenger C, if there exists a biasing oracle O for 〈I,R〉 such that for every oracle
PPT adversary A and distinguisher D such that D distinguishes EXP0 and EXP1 with
A, then there exist a (stand-alone) PPT B and distinguisher D′ such that D′ distin-
guishes STA0 and STA1 with B.

In addition to this security requirement we will additionally consider the following
definition of CCA-security which simply requires that any adversary with oracle access
to a biasing oracle O can be simulated by a stand-alone PPT machine. In this case, we
simply say 〈I,R〉 is CCA-secure w.r.t O.

Quite surprisingly, we show how to realize such a primitive by relying on a CCA-
secure commitment that is secure only against static adversaries. The idea here is that
while CCA-secure commitments cannot admit adaptive corruptions, the basic security
game ensures that an unopened commitment remains hiding in the presence of an adver-
sary having access to a decommitment oracle. We combine such a commitment scheme
with the technique of Hazay and Venkitasubramaniam from [HV15] who showed how
to construct an adaptive UC commitment scheme, starting from a public-key encryp-
tion scheme (with an oblivious ciphertext generation property) in the CRS model. On
a high-level, the protocol can be abstracted as providing a transformation from a ex-
tractable (only) commitment scheme (that has a oblivious generation property) to a full
adaptively secure UC-commitment. At first, it would be tempting to simply replace the
invocations of extractable commitments with a CCA-secure commitment scheme as we
only require extraction from these commitments and not equivocation in the simulation.
However, this intuition fails in an adaptive setting when considering the fact that we ad-
ditionally require that the commitment scheme has a oblivious generation property and
it is unclear how to construct such a extractable scheme (based on rewinding) to have
this property. Nevertheless, we show how to carefully use CCA-secure commitments
in the same protocol to obtain a CCA-secure coin-tossing scheme. Next, we show that



given a CCA-secure coin-tossing protocol with a biasing oracle O it is possible to re-
alize the ideal commitment functionality using a helper functionality. Again, we use
another variant of the same protocol from [HV15] to accomplish this transformation.
Our constructions and proofs of security are highly modular and quite simple. More-
over, all our transformations rely on the underlying primitives in a black-box manner.

Finally, we show that the black-box construction of an O(nε)-round CCA-secure
commitment scheme from Lin and Pass [LP12a] will satisfy the required property to be
instantiated in our protocol for the CCA-secure coin-tossing scheme.

We remark here that while the focus of the present work is to achieve plain angel-
based security, we could achieve the stronger “environment-friendly” property if we
instead rely on a strongly unprovable CCA-secure commitment scheme [CLP13] to
construct our CCA-secure coin-tossing scheme. We leave this as future work.

2.1 A Formal Definition of CCA-Secure Coin-Tossing

We begin with the simpler security requirement of CCA-security w.r.t biasing oracles.

Definition 1 (CCA-secure coin-tossing) Let 〈I,R〉 be a tag-based coin-tossing scheme
with l(n)-bit identities, m(n)-bit outcomes and O a biasing oracle for it. We say that
〈I,R〉 is robust CCA-secure w.r.t. O, if for every PPT adversary A there exists a simu-
lator S such that the following distributions are indistinguishable.

(i){AO(n, z)}n∈N,z∈{0,1}∗ (ii){S(n, z)}n∈N,z∈{0,1}∗

2.2 CCA-Security w.r.t Challengers

Let the random variable EXPb(〈I,R〉,O,A, C, n, z) denote the output of the following
experiment:

1. On common input 1n and auxiliary input z,AO chooses an identity id ∈ {0, 1}l(n)
and first interacts with a honest receiver R using 〈I,R〉. Let o be the outcome of
the execution.

2. Next, it interacts with C with common input (n, o) and private input b for C.

Finally, the experiment outputs the view of the adversary A in the experiment and the
output is set to ⊥ unless A corrupts either C or I or any of the identities chosen for the
interactions ofAwithO is equal to id. Let the random variable STAb(B, C, n, z) denote
the output of B in an interaction between B and C with common input (n, o) where o is
uniformly sampled from {0, 1}n, private input b for C and auxiliary input c with B.

Definition 2 (CCA-secure coin-tossing) Let 〈I,R〉 be a tag-based coin-tossing scheme
with l(n)-bit identities, m(n)-bit outcomes and O a biasing oracle for it. We say that
〈I,R〉 is CCA-secure w.r.t. O against a pair of challengers (C0, C1), if for every PPT
adversary A and distinguisher D, if D distinguishes the following ensembles with non-
negligible probability:

{EXP0(〈I,R〉,O,A, C0, n, z)}n∈N,z∈{0,1}∗ , {EXP1(〈I,R〉,O,A, C1, n, z)}n∈N,z∈{0,1}∗



then there exists a stand-alone adversary (that does not have access to O) B and dis-
tinguisher D′ such that D′ distinguishes the following ensembles with non-negligible
probability:

(i){STA0(B, C, n, z)}n∈N,z∈{0,1}∗ , (ii){STA1(B, C, n, z)}n∈N,z∈{0,1}∗

We highlight that in a real experiment, o is the result of the outcome of a coin-
tossing between the adversary acting as the receiver and an honest initiator. However,
the game between B and Cb is instantiated with a randomly chosen o. In essence, the
definition says that if a challenge presented by C0 and C1 is hard to distinguish for a
randomly sampled o, then it will be hard to distinguish even if o was sampled according
to 〈I,R〉 with an adversarial receiver R who has access to oracle O.

3 Preliminaries

We assume familiarity with basic notions of Turing machines, probabilistic-polynomial
time computation and standard security notions of computational indistinguishability,
public-key encryption and commitment schemes.

3.1 Simulatable PKE

Definition 3 (Simulatable public-key encryption scheme) A `-bit simulatable encryp-
tion scheme consists of an encryption scheme (Gen,Enc,Dec) augmented with (oGen,
oRndEnc, rGen, rRndEnc). Here, oGen and oRndEnc are the oblivious sampling algo-
rithms for public keys and ciphertexts, and rGen and rRndEnc are the respective in-
verting algorithms, rGen (resp. rRndEnc) takes rG (resp. (PK, rE,m)) as the trapdoor
information. We require that, for all messages m ∈ {0, 1}`, the following distributions
are computationally indistinguishable:

{rGen(PK), rRndEnc(PK, c), PK, c | (PK, SK) = Gen(1n; rG), c = EncPK(m; rE)}
and {r̂G, r̂E, P̂K, ĉ | (P̂K,⊥) = oGen(1n; r̂G), ĉ = oRndEncP̂K(1

n; r̂E)}

It follows from above that a simulatable encryption scheme is also semantically secure.

3.2 CCA-Secure Commitment Schemes

The following is taken verbatim from [CLP10]. Roughly speaking, a commitment scheme
is CCA (chosen-commitment-attack) secure if the commitment scheme retains its hid-
ing property even if the receiver has access to a “decommitment oracle”. Let 〈C,R〉
be a tag-based commitment scheme with l(n)-bit identities. A decommitment oracle O
of 〈C,R〉 acts as follows in interaction with an adversary A: it participates with A in
many sessions of the commit phase of 〈C,R〉 as an honest receiver, using identities of
length n, chosen adaptively by A. At the end of each session, if the session is accept-
ing and valid, it reveals a decommitment of that session to A. Otherwise, it sends ⊥.
Note that when a session has multiple decommitments, the decommitment oracle only



returns one of them. Hence, there might exist many valid decommitment oracles. We
remark that we will rely on a slightly weaker oracle, referred to as “committed-value”
oracle in [LP12a] that simply extracts the committed value instead of providing the de-
commitment information. This relaxation is required for the black-box construction in
[LP12a] and we will rely on the same definition.

Loosely speaking, a tag-based commitment scheme 〈C,R〉 is said to be CCA-
secure, if there exists a committed-value oracle O for 〈C,R〉, such that the hiding
property of the commitment holds even with respect to adversaries with access to
O. More precisely, let AO denote the adversary A with access to the oracle O. Let
INDb(〈C,R〉,O,A, n, z), where b ∈ {0, 1}, denote the output of the following proba-
bilistic experiment: on common input 1n and auxiliary input z,AO (adaptively) chooses
a pair of challenge values (v0, v1) ∈ {0, 1}, the values to be committed to, and an iden-
tity id ∈ {0, 1}l(n), and receives a commitment to vb using identity id. Finally, the
experiment outputs the output y of AO, the output y is replaced by ⊥ if during the ex-
ecution A sends O any commitment using identity id (that is, any execution where the
adversary queries the committed-value oracle on a commitment using the same identity
as the commitment it receives, is considered invalid).

Definition 4 (CCA-secure commitments) Let 〈C,R〉 be a tag-based commitment sch-
eme with l(n)-bit identities, andO a committed-value oracle for it. We say that 〈C,R〉 is
CCA-secure w.r.t. O, if for every PPT A, the following ensembles are computationally
indistinguishable:

(i){IND0(〈C,R〉,O,A, n, z)}n∈N, (ii){IND1(〈C,R〉,O,A, n, z)}n∈N
We say that 〈C,R〉 is CCA-secure if there exists a committed-value oracle O′, such

that, 〈C,R〉 is CCA-secure w.r.t. O′.

We extend this definition to include adversaries that can adaptively corrupt the
committer C in the left interaction and any of the receivers in the interactions with
the committed-value oracle. We present this definition in Appendix A. We stress here
that the security definition only requires the standard static guarantee of hiding even
in the presence of adaptive corruptions. Finally, we will also require a strengthening
of the CCA-security commitment scheme called k-robustness [CLP10] that preserves
the security of arbitrary k-round protocols w.r.t any adversary that has access to the
committed-value oracle and its adaptive analogue (For a more precise definition, we
refer the reader to the full version).

4 Black-Box Adaptive UC Secure Protocols with Super-Polynomial
Helpers

We consider the model of UC with super-polynomial helpers introduced in [PS04,CLP10].
Informally speaking, in this UC model, both the adversary and the environment in the
real and ideal worlds have access to a super-polynomial time functionality that assists
the parties. For more details, we refer the reader to [CLP10]. In the original work of
[CLP10] as well as subsequent works, only static adversaries were considered. In this
work, we consider the stronger adaptive adversary and obtain the following theorem in
this model.



Theorem 4.1 Assume the existence of a simulatable public-key encryption scheme.
Then, for every ε > 0 there exists a super-polynomial time helper functionality H,
such that for every well-formed functionality F , there exists a Õ(dFn

ε)-round proto-
col Π that H-EUC emulates F where dF is the depth of the circuit implementing the
functionality F . Furthermore, the protocol uses the underlying encryption scheme in a
black-box way.

We will rely in our proof the following two lemmas.

Lemma 4.1 Assume the existence of a simulatable public-key encryption scheme and a
TCOIN-round CCA-secure coin-tossing protocol. Then, there exists a super-polynomial
time helper functionality H, such that there exists a O(TCOIN)-round protocol Π that
H-EUC emulates FCOM against malicious adaptive adversaries. Furthermore, the pro-
tocol uses the underlying encryption scheme in a black-box way.

Lemma 4.2 Assume the existence of one-way functions, the for every ε > 0 there ex-
ists a O(nε)-round CCA-secure coin-tossing scheme against malicious adaptive adver-
saries. Furthermore, the protocol uses the underlying primitives in a black-box way.

First, we prove the theorem assuming the lemmas hold and then prove the lemmas in
the following sections. Towards this, we first describe our helper functionality H. The
biasing oracle for the CCA-secure coin-tossing scheme provided in Lemma 4.2 will
serve as H. This in turn relies on Lin and Pass construction from [LP12a] of a Õ(nε)-
round black-box construction of a CCA-secure commitment scheme based on one-way
functions. Since one-way functions can be constructed from a simulatable public-key
encryption scheme in a black-box way, combining [LP12a] with Lemmas 4.1 and 4.2
we have a O(nε)-round protocol that H-EUC that emulates FCOM. We conclude the
proof of the theorem by combining the following three results:

1. The work of Choi et al. [CDMW09] provides a O(TOT)-round construction that
realizes FOT in the FCOM-hybrid assuming the existence of a TOT-round stand-
alone adaptively-secure semi-honest oblivious-transfer protocol where the under-
lying protocol is used in a black-box way.

2. The work of Damgard and Nielsen [DN00] provides a black-box construction of a
O(1)-round stand-alone adaptively-secure semi-honest oblivious-transfer protocol
assuming the existence of simulatable public-key encryption schemes.

3. The work of Ishai et al. [IPS08] provides a O(dF )-round protocol that realizes any
well-formed functionality F in the FOT-hybrid, where dF is the depth of the circuit
implementing functionality F .

We rely on the O(nε) construction of CCA-secure commitment of Lin and Pass
[LP12a] instead of the more round efficient construction of Kiyoshima [Kiy14] because
we additionally need to prove that the commitment is secure in the presence of adaptive
adversaries and we are able to achieve this only for the [LP12a] construction. We leave
it as future work to improve it with respect to the [Kiy14] construction.



5 CCA-Secure Coin-Tossing from CCA-Secure Commitments

In this section, we provide our construction of CCA-secure coin-tossing protocol. The
two primitives we will require are CCA-secure commitments and one-way functions.
Recall that, standard CCA-secure commitments require that a value committed to, using
a tag id, remains hidden even to an adversary who has access to a “decommitment
oracle”. We will additionally require that if we consider an adversary that can adaptively
corrupt receivers in its interactions with the decommitment oracle, the value committed
to the adversary is hidden as long as the committer in this interaction is not corrupted.
It is easy to show that standard CCA-secure commitments in the static setting satisfy
this property. We discuss this at the end of this section.

Let 〈C,R〉 be a CCA-secure commitment scheme and Com be a statistically-binding
commitment scheme with pseudorandom commitments. The 2-round commitment scheme
of Naor [Nao91] based on one-way function satisfies this notion. Next, we prove the
scheme from Figure 1 is CCA-secure and CCA-secure against challengers.

Theorem 5.1 Suppose, 〈C,R〉 is a 0-robust CCA secure commitment scheme in the
presence of adaptive adversaries. Then there exists an oracle helperO such that 〈I,R〉
is a CCA-secure coin tossing protocol w.r.t O.

Proof. To demonstrate our scheme is CCA-secure, we construct a biasing oracleO and
show that given any PPT adversary A, there exists a PPT simulator S such that:

{AO(n, z)}n∈N,z∈{0,1}∗ ≈ {S(n, z)}n∈N,z∈{0,1}∗
We provide the description of our biasing oracle O in Figure 2. On a high-level,

this oracle follows the equivocation strategy analogous to the simulation in [HV15]. In
slight more detail, this protocol that is a variant of the protocol in [HV15] allows for
the initiator to equivocate m in Stage 3 if for a chosen set S at the beginning of the
execution, the outcome of the coin-toss in Stage 2 can be biased to yield S. Our oracle
O will be able to accomplish this by breaking the commitment made by the receiver R
in Stage 2 using 〈C,R〉 in exponential time.

Next, given an adversary A, we construct a simulator S. We do this in two steps:

Step 1: SupposeO′ is the oracle w.r.t which 〈C,R〉 is 0-robust. From the description of
our oracleO, it follows that every query toO can be simulated by a PPT algorithm
with access to O′. Recall that the only super-polynomial computation made by
O is breaking a commitment made using 〈C,R〉, which can be done using O′.5
Therefore, given any adversary A, there exists another oracle adversary Â such
that the following distributions are identically distributed:
{AO(n, z)}n∈N,z∈{0,1}∗ ≈ {ÂO

′
(n, z)}n∈N,z∈{0,1}∗

Step 2: Relying on the 0-robustness CCA-security of the 〈C,R〉 commitment scheme,
it follows that given Â, there exists a simulator S such that the following distribu-
tions are indistinguishable. {ÂO′(n, z)}n∈N,z∈{0,1}∗ ≈ {S(n, z)}n∈N,z∈{0,1}∗

5 We remark here that typical CCA-secure commitment schemes are statistically binding and
such schemes can be easily broken in exponential time. However, the CCA-secure commit-
ment of [LP12a] is not statistically binding. Yet, as shown in [LP12a] it is “strongly” compu-
tationally binding which will suffice.



Protocol πCOIN = 〈I, R〉.

Let 1n be the common input to the initiator I and receiver R and the identity of the interaction
id ∈ {0, 1}l(n).

Stage 1: Commit Phase: The receiver sends the first message σ of the Naor’s commitment
scheme. The initiator first picks a random bit m and chooses a random n-degree polyno-
mial p(·) over a field F[x] such that p(0) = m. Namely, it randomly chooses ai ← F for all
i ∈ [n] and sets a0 = m, and defines the polynomial p(x) = a0 + a1x+ · · ·+ anx

n. The
initiator then creates a commitment to m as follows. For every i = [3n + 1], it first picks
bi ← {0, 1} at random and then computes:

cbii = Comσ(p(i); ti) and c1−bii = ri

where ri, ti ← {0, 1}n. The initiator sends (c00, c10), . . . , (c03n+1, c
1
3n+1) to the receiver.

Stage 2: Cut-and-Choose Phase: The initiator and receiver interact in a coin-tossing protocol
to obtain the cut-and-choose set that is carried out as follows.

1. The receiver chooses a random σ0 and commits to the initiator using 〈C,R〉 using
identity id.

2. The initiator picks σ1 ← {0, 1}N at random and sends it in the clear to the receiver.
3. The receiver decommits rσ0 .

Both the initiator and the receiver compute σ = σ0 ⊕ σ1 and use σ as the random string to
sample a random subset Γ ⊂ [3n + 1] of size n.The initiator provides the decommitments
for {cbii }i∈Γ by sending the sequence {bi, p(i), ti}i∈Γ . The receiver verifies that all the
decommitments are correct and aborts otherwise.

Stage 3: Coin-Toss Phase: In the first two stages, the initiator essentially commits to the string
m. Next they continue with the coin-tossing protocol.

1. The receiver commits to m′ using 〈C,R〉.
2. This is followed by the initiator revealing its input m as follows: Let Γ ′ = [3n +

1] − Γ . The initiator decommits {cbii }i∈Γ ′ to their respective messages. The receiver
checks if the decommitments are correct and aborts otherwise. Using the n polynomial
evaluations revealed relative to i ∈ Γ and any additional polynomial evaluation that was
revealed relative to Γ ′, the receiver reconstructs the polynomial p(·) (via polynomial
interpolation of n + 1 points). Next, the receiver verifies whether p(0) = m, and that
for every i ∈ [3n+ 1] the point p(i) is the decrypted value within cmi

i .
3. The receiver decommits m′

Finally, the outcome of the coin-tossing is m ⊕m′. More formally, out(τ) where τ is the
transcript of this protocol is set to m⊕m′.

Fig. 1. Our CCA-secure coin-tossing protocol 〈I,R〉.

The statement of the theorem now follows using a standard hybrid argument.

Next, we proceed to show the stronger security-preserving property of our scheme.



Description of biasing oracle O: For the protocol described in Figure 1, our biasing oracle O
on input c proceeds as follows:

– In Stage 1, picks a random subset Γ̃ ⊂ [3n + 1] of size n and two random n-degree poly-
nomials p0(·) and p1(·) such that p0 and p1 agree on all points i ∈ Γ̃ and p0(0) = 0 and
p1(0) = 1.

• For every i ∈ Γ̃ the simulator proceeds as the honest sender would with polynomial
p0(·). Namely, it first picks bi ← {0, 1} at random and then sets

cbii = Com(p0(i); ti) and c1−bii = ri

where ti ← {0, 1}n (we recall that p0(i) = p1(i) for all i ∈ Γ̃ ).
• For every i ∈ Γ̃ ′ = [3n+ 1]− Γ̃ , the simulator picks bi ← {0, 1} at random and then

sets
cbii = Com(p0(i); t

0
i ) and c1−bii = Com(p1(i); t

1
i )

where t0i , t
1
i ← {0, 1}n are chosen uniformly at random.

Finally, it sends (c00, c10), . . . , (c03n+1, c
1
3n+1) as the Stage 1 message of the initiator.

– In Stage 2, it breaks the commitment made using 〈C,R〉 and obtains the decommitted value
σ0. Next, it sets σ1 so that σ = σ1 ⊕ σ0 yields the set Γ̃ as the outcome in Stage 2.

– In Stage 3, it breaks the commitment made using 〈C,R〉 and obtains m′. Then it decom-
mits to m = c ⊕ m′ using the following strategy. Recall first as the initiator it needs
to reveal points on a polynomial p(·) and pairs {(bi, ti)}i∈[3n+1] such that p(0) = m

and cbii = Com(p(i); ti). Let b̂i = bi ⊕ m for all i ∈ Γ̃ ′, then S reveals pm(·),
{b̂i, tb̂ii , ri = c1−mi }

i∈Γ̃ ′ .

Fig. 2. Biasing oracle O.

Theorem 5.2 Suppose, 〈C,R〉 is a k-robust CCA-secure commitment scheme in the
presence of adaptive adversaries. Then for every pair of k-message PPT (C0, C1),
〈I,R〉 is a CCA-secure coin-tossing scheme w.r.t. the biasing oracle O against a pair
of challengers (C0, C1).

Proof. Assume for contradiction there exist an adversary A, sequence {zn}n∈N and
distinguisher D such that D distinguishes the following ensembles

{EXP0(〈I,R〉,O,A, C, n, zn)}n∈N, {EXP1(〈I,R〉,O,A, C, n, zn)}n∈N
with non-negligible probability. Namely, it distinguishes with probability p(n) for some
polynomial p(·) and infinitely many n’s. We need to construct a machine B and distin-
guisherD′ that will distinguish STA0 from STA1. LetO′ be the committed-value oracle
guaranteed by the 0-robust CCA-security of 〈C,R〉 in the presence of an adaptive ad-
versary. We will accomplish our goal of constructing B in two steps.

Step 1: First we construct a simulator S̃ such that the following distributions are dis-
tinguishable with non-negligible probability.



(1){STA0(S̃O
′
, C, n, z)}n∈N,z∈{0,1}∗ , (2){STA1(S̃O

′
, C, n, z)}n∈N,z∈{0,1}∗

Step 2: Since C interacts in at most k-messages, we obtain the required B directly by
relying on the k-robustness of the CCA-security of 〈C,R〉 in the presence of an
adaptive adversary.

Step 1: Constructing S̃O′ . Fix an n for which D distinguishes the two ensembles with
probability p = p(n). Recall that in the EXP experiment, A first interacts with an
external R and then interacts with Cb.

In a random instance of the EXPb experiment, let T be the random variable repre-
senting the partial transcript up until the end of Stage 1 in A’s interaction with external

R. Now, we consider a slightly modified experiment ẼXP
T

b which proceeds identically
to the EXPb experiment starting from the prefix T .

Now, using an averaging argument, we can conclude that with probability at least
p/2 over partial transcript τn ← T it holds that D distinguishes the following two
ensembles with probability at least p/2.

{ẼXP
τn

0 (〈I,R〉,O,A, C0, n, zn)}n∈N, {ẼXP
τn

0 (〈I,R〉,O,A, C1, n, zn)}n∈N

Now, we are ready to construct S̃. The high-level approach is as follows:

– First, we show that, except with non-negligible probability over random executions
starting from τn, there is a fixed valuemn that the adversary will decommit to in the
Stage 3 of its interaction with R. We will rely on an information theoretic lemma
from [HV15] for this. We state this step in the Claim 5.1 below.

Claim 5.1 There exists a string mn such that, starting from partial transcript τn,
the probability that A successfully decommits to a message different from mn in
Stage 3 is negligible.

On a high-level the idea is that given the transcript until end of Stage 1, there is a
unique set S that needs to be the outcome of Stage 2 in order for the an initiator to
equivocate in Stage 3. We can show that if an adversarial initiator can equivocate
with non-negligible probability to bias the coin-toss in Stage 2 to yield this unique
set S, then it violates the CCA-security of the commitment made using 〈C,R〉 in
Stage 2. We provide a formal proof of the claim at the end of this section.

– Next, for a fixed transcript τn, we will give τn,mn and partial view of A in the
execution as the non-uniform advice. Our simulator S̃ will start an execution with
A from the partial view with transcript τn and will use mn to bias the outcome
of the coin-toss to o by setting m′ = mn ⊕ o in Stage 3 of the execution. Now,
we observe that, if o is uniformly distributed, then m′ chosen by S̃ will also be
(non-negligibly) close to the uniform distribution given mn and hence the view of
S output with Cb will be statistically close to the distribution ofA when interacting
with Cb starting from τn. This means that if D distinguishes the view of A starting
from τn in both the experiments, then it will also distinguish the output of S̃O′ in
the two experiments.



We now construct our simulation S̃. On input (1n, o, (z, τn,mn, rn)), S̃O
′

inter-
nally emulates an execution of A(1n, z; r) in the real experiment starting from the par-
tial transcript τn. On the left, S̃O′ needs to provide messages for the initiator I such
that the outcome is o while simultaneously answering all oracle queries to O. This it
accomplishes by committing to m′ = o⊕mn in Stage 3. Then if the adversary reveals
anything other than the mn, it simply aborts

Answering O queries. In any interaction, the oracle O first receives a coin c. In the
internal emulation S̃O′ obtains c and needs to emulate O. It carries out the actions
exactly as O with the exception that instead of breaking the commitments made using
〈C,R〉 (as O does) S̃O′ simply forwards it to O′ which breaks them for S.

It follows from the construction and Claim 5.1 that the following distributions are
statistically close:

– {ẼXP
τn

b (〈I,R〉,O,A, C, n, zn)}n∈N and

– {STAb(S̃O
′
, C, n, (zn, τn,mn, rn))}n∈N,z∈{0,1}∗

and therefore D distinguishes the distribution STA0(S̃O
′
, C, n, (zn, τn,mn, rn)) from

STA1(S̃O
′
, C, n, (zn, τn,mn, rn)) with with probability at least p/2− ν(n) > p/4 for

all sufficiently large n’s.

Step 2: Constructing a stand-alone B. In Step 1, we constructed a machine S̃O′ that
with access to O′ can violate the game. Now to get a stand-alone B, we simply invoke
k-robustness security of 〈C,R〉 with S̃O′ and obtain B. More precisely, using the ro-
bustness we have that the following distributions are computationally indistinguishable:

– {STAb(S̃O
′
, C, n, (zn, τn,mn, rn))}n∈N,z∈{0,1}∗

– {STAb(B, C, n, (zn, τn,mn, rn))}n∈N,z∈{0,1}∗

and therefore D distinguishes the distribution STA0(B, C, n, (zn, τn,mn, rn)) from the
distribution STA1(B, C, n, (zn, τn,mn, rn)) with probability at least p/4−ν(n) > p/8
for all sufficiently large n’s and this completes the proof of the theorem.

To conclude the proof of Theorem 5.2, it only remains to prove Claim 5.1.
Proof of Claim 5.1 Assume for contradiction, the adversary A equivocates with non-
negligible probability starting from τn. We now show that AO′ violates the CCA-
security of 〈C,R〉 w.r.t O′, namely, it violates the hiding property of the commitment
made using 〈C,R〉 in Stage 2.

As stated above, we use an information theoretic lemma from [HV15]. On a high-
level, the lemma states that for the adversary to be able to equivocate in Stage 3, there
exists a unique set S that it must bias the outcome of the coin-toss in Stage 2 so that the
resulting set is S. On a high-level, we can rely on this lemma, as a malicious initiator
that equivocates must bias the outcome to a particular set S and using the set S. Then,
we can construct an adversary ÂO′ that violates the CCA-game for 〈C,R〉 by simply
detecting this set S in the outcome of Stage 2.

More formally, given τn, and a partial view of A, let us assume that A equivocates
with probability 1

q(n) for some polynomial q(·) and infinitely many n.



Before we recall the information theoretic lemma from [HV15], we first explain
how our protocol is an instance of the protocol in their work. In [HV15], they construct
an adaptively secure UC-commitment in the CRS hybrid where the protocol proceeds
as follows:

1. In Stage 1, the committer using the same strategy as the initiator in our Stage 1
commits to a string m, where instead of using Comσ , it uses an encryption scheme
with oblivious ciphertext generation property (where the public-key for this scheme
is placed in the CRS).

2. In Stage 2, the committer and receiver execute a coin-toss where the receiver makes
the first move just as in 〈I,R〉 with the exception that the receiver in the their
protocol uses again an encryption scheme (with the public-key in the CRS) instead
of a commitment scheme to commit to σ0.

3. In the decommitment phase of their protocol, the committer reveals its commitment
just as the initiator does in Step 2 of Stage 3 in our protocol.

We remark that in essence, the protocol in [HV15] is used as a subprotocol in our work
here where the initiator commits to a string m and then reveals it. The only property
they need of the encryption scheme is that it is statistically binding6 and has the obliv-
ious generation property. In our protocol, the Naor commitment scheme has both these
properties. (See our next protocol for such a variant)

Claim 5.2 Restatement of Claim 5.5 [HV15] Let τ be a fixed partial transcript up
until end of Stage 1. Then, except with negligible probability, there exists no two tran-
scripts trans1, trans2 that satisfy the following conditions:

1. trans1 and trans2 are complete and accepting transcripts of πCOM with τ being
their prefix.

2. There exists two distinct sets S1, S2 such that S1 and S2 are the respective outcomes
of the coin-tossing phase within trans1 and trans2.

3. There exist valid decommitments to two distinct strings in trans1 and trans2.

Since the commitment made by our Initiator can be viewed as an instance of their
protocol, we can conclude that there exists a unique set S that should be the outcome of
the coin-toss in Stage 2 for a malicious initiator to equivocate m. Since A equivocates
with probability 1

q(n) it holds, there is a set S such that with the probability negligible
close7 to 1

q(n) , starting from τn, the outcome of Stage 2 is S. To construct an adversary

Â that violates the CCA-security of the underling 〈C,R〉 scheme, we simply incorpo-
rate A and use as auxiliary input τn, S and the partial view of A. Next, it forwards the
〈C,R〉 interaction in Stage 2 to an external committer. All queries to the helper oracle
O by A can be simulated usingH and Â simply usesH to emulate O. Then it halts the
execution right after the adversary in the internal emulation reveals σ1. Now, Â simply

6 Any commitment can either be revealed a encryption of a unique string x or as a ciphertext
that was obliviously generated. In particular, it cannot be revealed as a an encryption of two
distinct messages x and x′.

7 The probability is not identically equal to 1
q(n)

since the commitment scheme is only statisti-
cally binding and not perfectly binding.



outputs σ0 = σ ⊕ σ1 where σ is the string that maps to the set S. This violates the
CCA game as with probability close to 1

q(n) , Â identifies the message committed using
〈C,R〉. �

6 Realizing FCOM Using CCA-Secure Coin-Tossing

In this section, we provide our black-box construction ofH-EUC secure protocolΠCOM.
Our protocol is a variant of the protocol described in [HV15] where it is shown how
to realize FCOM in the CRS model assuming only public-key encryption that admits
oblivious-ciphertext generation with adaptive UC-security. While the [HV15] protocol
assumes that every pair of parties share an independently generated CRS, in this work
we assume no setup, but will require the stronger simulatable public-key encryption
scheme. Assume that 〈I,R〉 is a CCA-secure coin-tossing scheme and that the public-
key encryption scheme (Gen,Enc,Dec) is augmented with algorithms (oGen, oRndEnc,
rGen, rRndEnc) which implies a simulatable public-key encryption scheme. Then we
start with a formal description of our protocol.

Consider a helper functionalityH that “biases” the coin-toss in an interaction using
〈I,R〉 in the same way as the biasing oracleO does, subject to the condition that player
Pi in a protocol instance sid can only query the functionality on interactions that use
identity (Pi, sid). More precisely, every party Pi can simultaneously engage with H
in multiple sessions of 〈I,R〉 as an initiator using identity Pi where the functionality
simply forwards all the messages internally to the biasing oracleO, and ensures that the
result of the coin-tossing is biased to a prescribed outcome at the end of each session.
See Figure 3 for a formal description of the functionality. We note here that sinceO can
be implemented in super-polynomial time, this functionality can also be implemented
in super-polynomial time.

FunctionalityH

Initialization: Upon receiving an input (Init, Pi, sid, k) from party Pi in the protocol
instance sid, if there is a previously recorded session (Pi, sid, k), ignore this message;
otherwise, initialize a session of 〈I, R〉 with O using identity (Pi, sid) and record ses-
sion (Pi, sid, k).
Accessing O: Upon receiving an input (Mesg, Pi, sid, k,m) from party Pi in the pro-
tocol instance sid, if there is no previously recorded session (Pi, sid, k), ignore the
message; otherwise, forward m to O in the kth session that uses identity (Pi, sid),
obtain a reply m′, and return (Mesg, Pi, sid, k,m

′) to Pi.

Fig. 3. The Helper FunctionalityH (i.e. angel).

We proceed with a proof sketch of Lemma 4.1 before we proceed to a formal proof.

Proof overview: Recalling that an adversary can adaptively corrupt both parties, for the
overview, we present the hardest cases for simulation, which is static corruption of one
party and adaptive corruption of the other party.



Protocol πCOM.

Sender’s Input: A message m ∈ {0, 1} and a security parameter 1n.

Commitment Phase:

Stage 1: Key Generations Phase: The sender and receiver engage in a protocol using 〈I, R〉
where the receiver acts as the initiator I and the sender acts as R. Let PK =
oGen(out(τS→R)) where τS→R is the transcript of the interaction.

Stage 2: Input Encoding Phase: The sender chooses a random n-degree polynomial p(·) over
a field F[x] such that p(0) = m. Namely, it randomly chooses ai ← F for all i ∈ [n] and
sets a0 = m, and defines the polynomial p(x) = a0 + a1x+ · · ·+ anx

n. The sender then
creates a commitment to m as follows. For every i = [3n + 1], it first pick bi ← {0, 1} at
random and then computes:

cbii = EncPK(p0(i); ti) and c1−bii = oRndEnc(PK, ri)

where ri, ti ← {0, 1}n. The sender sends (c00, c10), . . . , (c03n+1, c
1
3n+1) to the receiver.

Stage 3: Cut-and-choose Phase: The sender and receiver engage in a protocol using 〈I, R〉
where the sender acts as the initiator I and the receiver acts as R . Define a subset
Γ ⊂ [3n + 1] of size n using the outcome out(τR→S)) where τR→S is the transcript of
the interaction. The sender provides the plaintexts encrypted in {cbii }i∈Γ by sending the se-
quence {bi, p(i), ti}i∈Γ . The receiver verifies that all the decryptions are correct and aborts
otherwise.

Decommitment Phase: Let Γ ′ = [3n + 1] − Γ . The sender reveals its input m and all the
plaintexts encrypted in {cbii }i∈Γ ′ . The receiver checks if all the decryptions are correct and aborts
otherwise. Using the n polynomial evaluations revealed relative to i ∈ Γ and any additional
polynomial evaluation that was revealed relative to Γ ′, the receiver reconstructs the polynomial
p(·) (via polynomial interpolation of n+1 points). Next, the receiver verifies whether p(0) = m,
and that for every i ∈ [3n+ 1] the point p(i) is the decrypted value within cmi

i .

Fig. 4. Protocol ΠCOM that realizes FCOM using a CCA-secure coin-tossing protocol 〈I, R〉

Simulating static corruption of receiver and post-execution corruption of sender. To
simulate the messages for a honest sender, the simulator generates random shares for
0 and 1 that agree on a randomly chosen n subset Γ̃ (chosen in advance). It then en-
crypts these shares in Stage 2 where for each index it randomly positions the shares
for 0 and 1. Next, in Stage 3, the simulator biases τR→S using the helper H so that
the subset generated using out(τR→S) is exactly Γ̃ . As these shares are common for a
sharing of 0 and 1, revealing them in the commit phase will go undetected. Later in the
decommit phase, it can chose to reveal shares of 0 or 1 depending on the real message
m (to show that the unopened shares were obliviously generated will be done by ex-
ploiting the invertible sampling algorithm for the simulatable encryption scheme). The
core argument in proving indistinguishability of simulation will be to reduce the hiding
property of Stage 2 to the semantic-security of the underlying encryption scheme on a
public-key generated using Gen, i.e., the CPA-security of the encryption scheme, where
we will rely on the CCA-security game w.r.t challengers for our coin-tossing protocol



to achieve this. We discuss this reduction on a high-level below. Before that we remark
that the adversary will not be able to use the helper oracle H to bias the outcome of
the coin-toss in Stage 1 because the helper oracle will not provide access to the biasing
oracle on sessions where the party querying the helper is not the responder R of that
coin-tossing session.

Reduction: The challengers (C0, C1) for our CCA-game, on input a string o will set
PK = rGen(o). For a predetermined message t, C0 will output a ciphertext that is an
honest encryption of t using Enc and C1 will obliviously generate a ciphertext using
oRndEnc. It will follow from the security guarantees of the simulatable public-key en-
cryption that for a randomly chosen o, no (stand-alone) adversary can distinguish the
outputs of C0 or C1 even given o (i.e. STA0 ≈ STA1).

Now given an adversary A controlling the receiver in our coin-tossing scheme
〈I,R〉 we consider a sequence of hybrid experiments where we replace the encryp-
tions in Stage 2 from the honest sender’s strategy to the simulated strategy. Namely,
obliviously generated ciphertexts c1−bjj will be generated using the encryption algo-
rithm. More precisely, we consider a sequence of hybridsH0 = REAL, H1 . . . , H3n+1

where in the Hi we generate c1−bjj for j = 1, . . . , i in Stage 2 according to the simu-
lator’s strategy (i.e. encryption of valid messages as opposed to being obliviously gen-
erated). Next we show that Hi−1 and Hi are indistinguishable. The only difference
between the two hybrids is in how c1−bii is generated. More precisely, in Hi−1, c1−bii

is generated using oRndEnc and in Hi it is generated using Enc. We now reduce the
indistinguishability of the hybrids to the semantic-security of the encryption scheme
via the CCA-game of 〈I,R〉. Towards this, we consider the pair of challengers (C0, C1)
described above for which the stand-alone game is hard.

Next, consider an oracle adversary Ã that internally incorporatesA and the environ-
ment and proceeds as follows: Ã forwards every oracle query made by A to its oracle
and forwards the interaction using 〈I,R〉 in Stage 1 externally to an honest receiver. Ã
then stalls the internal emulation upon having the interaction within 〈I,R〉 complete,
and outputs the view of A and the outcome of the coin-toss o from the internal emu-
lation, in the external interaction. Then it interacts with C that on input o produces a
ciphertext. Internally, Ã feeds the ciphertext in place of c1−bii in Stage 2. The rest of the
encryptions are honestly generated according to the strategy in Hi.

It now follows that if the message t is chosen according to the strategy in Hi,
then we have that hybi−1 = EXP1(〈I,R〉,O,A, C, n, z)}n∈N,z∈{0,1}∗ and hybi =

EXP0(〈I,R〉,O,A, C, n, z)}n∈N,z∈{0,1}∗ where hybi−1 and hybi are the views of the
adversary A in the hybrids Hi−1 and Hi. Therefore, if hybi−1 and hybi are distin-
guishable by the CCA-security of 〈I,R〉 we have that there exists a stand-alone PPT
algorithm B that distinguishes the interaction with C0 and C1 for a randomly sampled
coin-toss outcome o. Recalling that STA0 ≈ STA1 by the hiding property of oblivi-
ously generated ciphertexts in the underlying encryption scheme and thus we arrive at
a contradiction. Therefore, hybi−1 and hybi must be indistinguishable.

To complete this case, we need to handle post-execution corruption of the sender.
This can be achieved exactly as in the decommitment phase which reveals all the ran-
domness used in the commitment phase.



Simulating malicious senders. For a honest receiver, the simulator first biases the out-
come of the coin-toss in Stage 1, so that PK is a public-key for which it knows the cor-
responding secret-key. This will allow the simulator to decrypt the ciphertexts provided
by the adversary in Stage 2. However, this does not ensure extraction as an adversarial
sender can equivocate just as the simulator for honest senders. Showing that there is
a unique value that can be extracted requires showing that a corrupted sender cannot
successfully predict exactly the n indexes Γ from {1, . . . , 3n + 1} that will be chosen
in the coin-tossing protocol. Using an information-theoretic argument from [HV15], we
know that after an encoding phase, for any adversary to break binding (i.e. equivocate)
it must ensure that the coin-tossing phase results in a particular set Γ . We can reduce the
binding property of our scheme to the CCA-security of underlying coin-tossing scheme.
Roughly speaking it suffices for our CCA-security to guarantee that the coin-toss out-
come has high-entropy which can be shown by using a suitable challenger. Finally, to
obtain extraction, we rely on a strategy from [HV15], that can determine the message
using the decryptions from Stage 1 and the coin-toss outcome in Stage 3. Finally, to
address post-execution corruption of the receiver we observe that it suffices to generate
the messages for the receiver honestly and upon corruption simply provide the random
coins of this honest receiver.

Formal proof of Correctness of UC-Commitment Protocol: Let A be a PPT ad-
versary that attacks Protocol ΠCOM described in Figure 6 and recall that simulator S
interacts with the ideal functionality FCOM and with the environment Z . Then S starts
by invoking a copy of A and running a simulated (internal) interaction of A with the
environment Z and parties running the protocol. We fix the following notation. First,
the session and sub-session identifiers are respectively denoted by sid and ssid. Next,
the committing party is denoted Pi and the receiving party Pj . S proceeds as follows:

Simulating the communication with Z: Every message that S receives from Z it
internally feeds to A and every output written by A is relayed back to Z .

Simulating the commitment phase when the receiver is statically corrupted: In
this case S uses the honest sender’s algorithm in Stage 1 and in Stage 2 proceeds as
follows. Upon receiving message (sid,Sen,Rec) from FCOM, the simulator picks a
random subset γ̃ ⊂ [3n+ 1] of size n and two random n-degree polynomials p0(·) and
p1(·) such that p0 and p1 agree on all points i ∈ Γ̃ and p0(0) = 0 and p1(0) = 1.

– For every i ∈ Γ̃ the simulator proceeds as the honest sender would with polynomial
p0(·). Namely, it first picks bi ← {0, 1} at random and then sets the following pairs,
cbii = EncPK(p0(i); ti) and c1−bii = oRndEnc(PK, ri) where ri, ti ← {0, 1}n (we
recall that p0(i) = p1(i) for all i ∈ Γ̃ ).

– For every i ∈ Γ̃ ′ = [3n + 1] − Γ̃ the simulator picks bi ← {0, 1} at random and
then uses the points on both polynomials p0(·) and p1(·) to calculate the following
pairs, namely cbii = EncPK(p0(i); t

0
i ) and c1−bii = EncPK(p1(i), t

1
i ) where t0i , t

1
i ←

{0, 1}n are chosen uniformly at random.

Finally, the simulator sends the pairs (c00, c
1
0), . . . , (c

0
3n+1, c

1
3n+1) to the receiver.

Next, in Stage 3, the simulator biases the coin-tossing result so that the set Γ that is
chosen in this phase is identical to Γ̃ . More precisely, produces coins c that will yield Γ̃



in Stage 3 and sends c toH. Next, it forwards the messages the simulator receives from
A controlling R in this interaction using 〈I,R〉 to H. Recall that the helper function
will bias the outcome of this interaction to c (as the identity of this interaction is not
equal to any identity made by the A). Finally, the simulator reveals the plaintexts in all
the ciphertexts within {cbii }i∈Γ̃ .

Simulating the decommitment phase where the receiver is statically corrupted:
Upon receiving a message (reveal, sid,m) from FCOM, S generates a simulated de-
commitment message as follows. Recall first that the simulator needs to reveal points
on a polynomial p(·) and pairs {(bi, ti)}i∈[3n+1] such that p(0) = m and cbii =

EncPK(p(i); ti). Let b̂i = bi ⊕ m for all i ∈ Γ̃ ′, then S reveals pm(·), {b̂i, tb̂ii , ri =
rRndEnc(PK, t1−mi , p1−m(i))}

i∈Γ̃ ′ .

Simulating the commit phase when the sender is statically corrupted: Simulating
the sender involves extracting the committed value as follows. In Stage 1, S first sam-
ples (PK, SK) using the Gen algorithm with randomness rG. Then it runs rGen on rG
to obtain c which it forwards to the helper H. Then, it forwards the messages the sim-
ulator receives from A controlling R in this interaction using 〈I,R〉 to H. Recall that
the helper function will bias the outcome of this interaction to c. This means that the
public-key obtained from the coin-tossing is PK.

The simulation next uses the honest receiver’s algorithm in Stages 2 and 3. Let Γ
be the set obtained from the outcome of the coin-tossing phase. To extract the input, S
chooses an arbitrary index j ∈ [3n+1]−Γ and reconstructs two polynomials q(·) and
q̃(·) such that

q(i) = q̃(i) = βbii ∀i ∈ Γ
q(j) = β0

j and q̃(j) = β1
j and q(0), q̃(0) ∈ {0, 1}.

It then verifies whether for all i ∈ [3n+ 1], q(i) ∈ {β0
i , β

1
i } and q̃(i) ∈ {β0

i , β
1
i }. The

following cases arise:

Case 1: Both q(·) and q̃(·) satisfy the condition and q̃(0) 6= q(0). Then S halts return-
ing fail. Below we prove that the simulator outputs fail with negligible probability.

Case 2: At most one of q(·) and q̃(·) satisfy the condition or q̃(0) = q(0). S sends
(commit, sid, q(0)) to the FCOM functionality and stores the committed bit q(0).
Otherwise, S sends a default value.

Case 3: Neither q(·) or q̃(·) satisfy the condition. S sends a default value to the ideal
functionality and need not store the committed bit since it will never be decommit-
ted correctly.

Simulating adaptive corruptions: We remark that we only provide the description of
the simulator for static corruption. If any honest party is adaptively corrupted during the
simulation, since the simulation is straight-line and admits post-execution corruption, it
can directly generate coins even in the middle of the execution.

Below we analyze each of the scenarios above, and show that no environment Z
interacting with S in the ideal-world is distinguishable from that with A in the real-
world in each of the cases.



Analysis of receiver corruptions: Our proof follows a sequence of hybrids from the
real world execution to the ideal world execution.

Hybrid H0: H0 is identical to the real world execution.
Hybrid H1: The hybrid experiment H1 proceeds identically to H0 with the exception

that a set Γ̃ of size n is chosen at random and the coin-tossing interaction using
〈I,R〉 in Stage 3 is biased so that the outcome yields Γ̃ . Hybrids H0 and H1 are
identically distributed except when the oracleO fails. Since this happens only with
negligible probability, the outputs of the two experiments are statistically close.

Hybrid H2: We gradually change the ciphertexts generated in Stage 2 from the real
committer to the simulation. Indistinguishability of experiment H1 and H2 will
rely on the security of the encryption scheme. simulatable public-key encryption
scheme, we will require to bias the PK chosen in Stage 1 to a challenge public-key
obtained from the challenger for the encryption security game. We will be able to
do this by relying on the security game of our CCA-secure coin-tossing protocol.
More formally, consider a sequence of hybrids H0

1 , . . . ,H
3n+1
1 where in the Hi

1

we generate c1−bjj for j = 1, . . . , i according to the simulator’s strategy (i.e. en-
cryption of valid messages as opposed to being obliviously generated). Now we
show that Hi−1

1 and Hi
1 are indistinguishable. The only difference between the two

hybrids is in how c1−bii is generated. More precisely, in Hi−1
1 , c1−bii is generated

using oRndEnc and in Hi
1 it is generated using Enc. We now reduce the indistin-

guishability of the hybrids to the semantic-security of the encryption scheme via
the CCA-game of 〈I,R〉.
Towards this, we give a challenger C for which the stand-alone game is hard. On
a high-level this game will be the semantic-security of the underlying simulatable
public-key encryption scheme where the public-key is sampled using rGen on the
coin-toss o.

Reduction: More formally, given a message t, define C(o, b) as the strategy that
sets PK = rGen(o) and outputs a ciphertext that was honest encryption of t using
Enc when b = 0 and obliviously generated using oRndEnc when b = 1.
Next consider an oracle adversary Ã that internally incorporates A and the envi-
ronment and proceeds as follows: Ã forwards every oracle query made by A to its
oracle and forwards the interaction using 〈I,R〉 in Stage 1 externally to an hon-
est receiver. Let o be the outcome of the interaction in the internal emulation. an
encryption of a message using Enc or generates one obliviously.
Then it interacts with C that on input o produces a ciphertext. Internally, Ã feeds
the ciphertext in place of c1−bii in Stage 2.
It now follows that if the message t is chosen according to the strategy in Hi

1, then

hybi−11 = EXP1(〈I,R〉,O,A, C, n, z)}n∈N,z∈{0,1}∗
hybi1 = EXP0(〈I,R〉,O,A, C, n, z)}n∈N,z∈{0,1}∗

where hybi−11 and hybi1 are the views of the adversary A in the hybrids Hi−1
1

and Hi
1. Therefore, if hybi−11 and hybi1 are distinguishable by the CCA-security of

〈I,R〉 we have that there exists a stand-alone PPT algorithm B that distinguish
the interaction with C0 and C1 for a randomly sampled coin-toss outcome o. This



violates the semantic-security of the encryption scheme and thus we arrive at a
contradiction. Therefore, hybi−11 and hybi1 must be indistinguishable.

Hybrid H3: In this hybrid, we follow H2 except that we use the simulation strategy to
decommit to the message m received from the FCOM-functionality. Since in H2 the
commitment phase has been setup to be equivocated, this follows directly. Again
using the CCA-security of 〈I,R〉 just as we used to argue indistinguishability for
hybrids H1 and H2, we can reduce the indistinguishability of H2 and H3 to the
security of the underlying simulatable public-key encryption scheme.

Finally, we conclude by observing the H3 is identical to the ideal world experiment.

Analysis of sender corruptions: Our proof follows a sequence of hybrids from the real
world execution to the ideal world execution.

Hybrid H0: H0 is identical to the real world execution.
Hybrid H1: This experiment proceeds identical to H0 with the exception that we for-

ward the interaction using 〈I,R〉 in Stage 1 to the oracle H. More precisely, we
pick (PK, SK) using the Gen algorithm with randomness rG. Then rGen is in-
voked on rG to obtain c which it forwards to the helper H. Recall that H will bias
the coin-toss outcome to c and the resulting public-key agreed upon will be PK.
Indistinguishability of H1 and H0 can be reduced directly to the indistinguisha-
bility of real and obliviously generated public-keys of the simulatable public-key
encryption scheme using the CCA-security of 〈I,R〉.

Hybrid H2: H2 is the same as H1 with the exception that the value committed to by
the adversary is extracted using the simulator’s strategy and forwarded to FCOM.
The only difference between the hybrids H1 and H2 is that in H2 we extract a
value for the commitment from the adversarial sender. This means that to argue
indistinguishability it suffices to show that the value extracted is correct (i.e. the
scheme is binding). We argue this by relying on the information-theoretic lemma
proved in [HV15]. In more detail, this lemma shows that at the end of Stage 2, it is
possible to define a set Γ such that for any adversarial sender to equivocate it needs
to bias the outcome of the coin toss in Stage 3 to result in this set Γ . This coin-toss is
decided using our protocol 〈I,R〉where the adversarial sender controls the initiator
and by relying on CCA-security we argue next that there exists no adversary that
can bias the outcome to result in a particular set with non-negligible probability.
Suppose for contradiction there exists an adversary A that can bias the outcome to
Γ in H1 with non-negligible probability. We now construct an adversary A′ that
incorporates A and internally emulates the hybrid experiment H2 with the excep-
tion that it forwards the interaction of A in Stage 3 to an external honest receiver.
Now, consider a pair of challengers (C0, C1) for the CCA-security game where C0
outputs 1 if the outcome o results in Γ and 0 otherwise and C1 outputs 0 irrespec-
tive of the outcome. By our assumption onA, this means that EXP0 and EXP1 with
the adversary A′ are distinguishable because the adversary biases the coin-toss to
result in Γ with non-negligible probability. However, since a uniformly sampled
coin will result in Γ with at most negligible probability we have that STA0 and
STA1 are indistinguishable which is a contradiction. Therefore, we have that the
value extracted by our simulator is correct except with non-negligible probability



and this concludes the proof. Finally, we conclude by observing the H2 is identical
to the ideal world experiment.

7 Application: A Zero-One Law for Adaptive Security

We extend the result of [MPR10] and establish a zero-one law under adaptive UC-
reduction. More formally, we show that all (non-reactive)8 functionalities fall into two
categories: trivial functionalities, those which can be UC-reduced to any other function-
ality; and complete functionalities, to which any other functionality can be UC-reduced.

Theorem 7.1 Assume the existence of simulatable public-key encryption scheme. Then
every two-party non-reactive functionality is either trivial or complete in the UC frame-
work in the presence of adaptive, malicious adversaries.

Proof. An important step in proving the zero-one law in [MPR10] was to identify all
non-trivial functionalities into one of four categories (i.e. functionalities):

1. FXOR: This functionality enables simultaneous exchange of information, such as
the XOR function.

2. FCC: This functionality enables to selectively hide one party’s input from the other,
typically characterized as a cut-and-choose functionality.

3. FOT: This functionality enables OT of inputs from one party to another.
4. FCOM: This functionality allows information in internal memory to be hidden be-

tween rounds, an instance of which is the commitment functionality.

Specifically, it was shown in [MPR10] that every non-trivial functionality F can realize
one of the above four functionalities with information-theoretic security. We are able to
demonstrate the zero-one law by proving the following key lemma.

Lemma 7.1 (Informal) Assume the existence of simulatable public-key encryption scheme.
Then FCOM can be realized in the FCOIN-hybrid model in the presence of adaptive, ma-
licious adversaries, using black-box access to the encryption scheme.

As mentioned before, in order to demonstrate the zero-one law it suffices to show that
the four categories of non-trivial functionalities are complete, where it suffices to only
consider FOT, FXOR and FCC when considering non-reactive functionalities. Recalling
that the previous results [IPS08,CDMW09] establish completeness of FOT and FCOM,
where the latter result additionally requires the existence of stand-alone adaptively se-
cure semi-honest oblivious-transfer protocol, it is thus left to show that the remaining
two categories FCC and FXOR are complete. We note first that combining our lemma
with the result of [CDMW09] establishes that FXOR is complete. We remark here that
simulatable PKE schemes are sufficient to construct adaptive semi-honest OT which
is required in the transformation of [CDMW09]. In order to show that FCC is com-
plete, we recall that in [MPR10], FCC is reduced to another functionality called the
FEXTCOM-functionality for the static corruptions case. Roughly speaking this function-
ality is a mild variant of theFCOM functionality that admits straight-line extraction with-
out straight-line equivocation. For more details, we refer the reader to the full version

8 Such functionalities are computed in a single round of communication with the functionality.



or [MPR10]. We argue that the same protocol also realizes FEXTCOM in the presence
of adaptive corruptions. On a high-level, we are able to accomplish this since FEXTCOM

does not require equivocation. To complete the picture, we show how to construct a
variant of the FCOIN functionality in the FEXTCOM-hybrid and argue that this variant
suffices to establish that FEXTCOM is complete even for the adaptive case. Our construc-
tions make use of the underlying primitives only in a black-box manner.
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A Adaptive Extension to CCA-Secure Commitments

In our work, we need to consider the CCA-Security game in the presence of an adaptive
adversary A. This definition as we will see does not require full-fledged adaptive secu-
rity and in particular our definition will not imply equivocability of the commitments.

We recall the CCA-security game for the commitments as introduced in [CLP10].
Roughly speaking, a commitment scheme is CCA-secure if the commitment scheme
retains its hiding property even if the receiver has access to a “decommitment oracle”.
The experiment considers an oracle adversaryA with oracle access to a helper function
H and interacts as the receiver with an honest committer C. In our adaptive setting,
we will require two additional properties: (1) The adversary will be allowed to corrupt
the external committer C. However, security is required to hold, i.e. hiding property of
the left commitment, only if the committer is not corrupted, and (2) In the interaction
between the adversary and the helper oracle, where it interacts as the committer, the ad-
versary will be allowed to corrupt the receiver. In this case, the helper oracle is required
to provide random coins for the receiver consistent with the transcript.

The second property does not require any explicit change in the definition of the
security as it only alters the semantics of the interaction between A and H. The first
property however needs to be incorporated in the definition which we do next.

Modifying the INDb random variable in the definition. In the standard definition
INDb(〈C,R〉,O,A, n, z) represents the output of the AO in a experiment where it in-
teracts with an honest committer with input b ∈ {0, 1}n. This output is set to ⊥, if
the identity of the execution with C is the same as the identity of any interaction of A
with O. We define a new random variable INDb(〈C,R〉,O,A, n, z) which is equal to
INDb(〈C,R〉,O,A, n, z) only if AO does not corrupt the honest committer C in the
execution. Otherwise it is set to ⊥.

Definition 5 (CCA-secure commitments with adaptive adversary) Let 〈C,R〉 be a
tag-based commitment scheme with l(n)-bit identities, and O a committed-value or-
acle for it. We say that 〈C,R〉 is CCA-secure w.r.t. O in the presence of an adaptive
adversary, if for every PPT A, the following ensembles are computationally indistin-
guishable: {IND0(〈C,R〉,O,A, n, z)}n∈N ≈ {IND1(〈C,R〉,O,A, n, z)}n∈N We say
that 〈C,R〉 is CCA-secure if there exists a committed-value oracleO′, such that, 〈C,R〉
is CCA-secure w.r.t. O′.

Theorem A.1 Assume the existence of one-way functions. Then, for every ε > 0, there
exists aO(nε), there exists aO(nε)-round commitment scheme that is CCA-secure w.r.t.
the committed-value oracle in the presence of an adaptive adversary and only relies on
black-box access to one-way functions (where n is the security parameter).

Proof Sketch: Lin and Pass [LP12a] gave a black-box construction of a O(nε)-round
CCA-secure commitment scheme 〈C,R〉 . We rely on the same construction for our
stronger definition of security in the presence of an adaptive adversary. We provide a
high-level proof sketch of its correctness. We begin with a short overview of their proof.

In the proof of standard security of the scheme provided in [LP12a], the idea is
to reduce the indistinguishability of the INDb experiments to the stand-alone hiding
property of a different commitment scheme 〈C̃, R̃〉 (that is a slight variant of 〈C,R〉).



The main part of the proof is to show that given and oracle adversary for 〈C,R〉 there
exists a stand-alone malicious receiver R∗ (that does not have access to the oracle) for
〈C̃, R̃〉. On a high-level, R∗ will internally incorporate A and emulate the committed-
value oracle for A while forwarding the left interaction externally to C̃ (which it can
do as it is a variant that has a “similar” structure). To emulate the oracle, R∗ needs
to extract the value committed value which it will accomplish by rewinding the right
interactions. Two issues arise:

– Since the left interaction is forwarded to an external committer, R∗ needs to be
able to rewind the right interactions without rewinding the left. The main idea here
that is reminiscent of previous work [DDN03,LPV08] is to identify the so-called
safe-points where this can be done. In slight more detail, when rewinding from a
safe-point the only thing the adversary can do in the left interaction is to request
“complete” (3-round witness-indistinguishable) proofs and such a request will be
accommodated by the variant 〈C̃, R̃〉.

– There are unbounded-many right interactions and will result in R∗ recursively
rewinding interactions to extract the committed value in the interactions. In [LP12a],
they achieve this by provided several points to rewind from and rely on the [RK99]
to ensure that expected running time of the rewindings in each level is polynomial
and the recursive depth is at most a constant.

Next, we argue why the same protocol satisfies our stronger definition of security. We
begin with the observation that if the adversary A does not corrupt the left or right
interactions, then our definition reduces to the standard CCA-security. We will prove
security identically to [LP12a] by reducing it to the stand-alone hiding property of
〈C̃, R̃〉. We will employ the exact rewinding strategy as in [LP12a] for R∗ with the
following exception: Our definition of safe-point will have one additional requirement:
A safe-point for our scheme is any safe-point according to [LP12a] with the added re-
quirement that the adversary corrupts neither the committer in the left-interaction or
the receiver of the right interaction (associated with the safe-point) before the 3-round
witness indistinguishable (WI) proof associated with the safe-point completes.9

We remark that our definition of safe-point can modularly replace the definition in
[LP12a] and the entire proof goes through. This is because the definition affects only
the run-time analysis of the reduction. For the run-time analysis to go through the only
requirements are that there are sufficiently many safe-point’s and when rewound from
a safe-point, it continues to be a safe-point with at least the same probability (See Step
1 in Sub-Claim 2 of [LP12b]).10 The first property holds because, a right receiver needs
to be rewound only if A completes the entire right session without corrupting the right
receiver or the left committer. In this event there will be as many safe points according to
the definition of [LP12a] as there according to ours. The second property holds because
a rewinding will be cancelled only if the point is not safe. This concludes the proof.

9 In [LP12b] the definition of a safe-point is parameterized with the depth of the recursion and
our additional requirement naturally extends to the definition.

10 The second property is to ensure that the expected running time of the rewinding is polynomial
in each recursive depth. In more detail, if a point in the transcript is safe with probability p,
then if the property holds the expected number of times before which a rewinding is successful
is at most O( 1

p
).
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