
Efficient Secure Multiparty Computation with
Identifiable Abort ∗

Carsten Baum1†, Emmanuela Orsini2 ‡, and Peter Scholl2 §

1 Department of Computer Science, Aarhus University
cbaum@cs.au.dk

2 Department of Computer Science, University of Bristol
{Emmanuela.Orsini, Peter.Scholl}@bristol.ac.uk

Abstract. We study secure multiparty computation (MPC) in the
dishonest majority setting providing security with identifiable abort,
where if the protocol aborts, the honest parties can agree upon the
identity of a corrupt party. All known constructions that achieve
this notion require expensive zero-knowledge techniques to obtain
active security, so are not practical.

In this work, we present the first efficient MPC protocol with iden-
tifiable abort. Our protocol has an information-theoretic online
phase with message complexity O(n2) for each secure multiplication
(where n is the number of parties), similar to the BDOZ protocol
(Bendlin et al., Eurocrypt 2011), which is a factor in the security
parameter lower than the identifiable abort protocol of Ishai et al.
(Crypto 2014). A key component of our protocol is a linearly ho-
momorphic information-theoretic signature scheme, for which we
provide the first definitions and construction based on a previous
non-homomorphic scheme. We then show how to implement the
preprocessing for our protocol using somewhat homomorphic en-
cryption, similarly to the SPDZ protocol (Damg̊ard et al., Crypto
2012).

Keywords: Secure Multiparty Computation, Identifiable Abort

∗Full version available at http://eprint.iacr.org/2016/187.pdf
†Part of the work was done while visiting University of Bristol. The author ac-

knowledges support from the Danish National Research Foundation and The National
Science Foundation of China (under the grant 61061130540) for the Sino-Danish Center
for the Theory of Interactive Computation; and also from the CFEM research center
(supported by the Danish Strategic Research Council) and the COST Action IC1306.
‡Supported in part by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO.
§Supported in part by EPSRC via grant EP/I03126X, and in part by the DARPA

Brandeis program and the US Navy under contract #N66001-15-C-4070.

http://eprint.iacr.org/2016/187.pdf

1 Introduction

Multiparty Computation deals with the problem of jointly computing a func-
tion among a set of mutually distrusting parties with some security guarantees
such as correctness of the output and privacy of the inputs. MPC has been an
interesting topic in cryptography for the last 30 years, but while in the past
efficiency was the main bottleneck and MPC was exclusively the subject of aca-
demic studies, the situation has steadily improved and now even large circuits
can be evaluated with acceptable costs in terms of time and space. A key example
of this progress is the recent line of work that began with the BDOZ [BDOZ11]
and SPDZ [DPSZ12,DKL+13] protocols. These protocols are based on a secret-
sharing approach and can provide active security against a dishonest majority,
where any number of the parties may be corrupt.

The SPDZ-style protocols work in the preprocessing model (or offline/online
setting), with an offline phase that generates random correlated data indepen-
dent of the parties’ inputs and the function, and an online phase, in which this
correlated randomness is used to perform the actual computation. The key ad-
vantage of the preprocessing model in SPDZ lies in the efficiency of the online
phase, which only uses information-theoretic techniques.

It is a well-known fact that, in the dishonest majority setting, successful
termination of protocols cannot be guaranteed, so these protocols simply abort
if cheating is detected. It was also shown by Cleve in [Cle86] that, unless an
honest majority is assumed, it is impossible to obtain protocols for MPC that
provide fairness and guaranteed output delivery . Fairness is a very desirable
property and intuitively means that either every party receives the output, or
else no-one does.

In this scenario SPDZ-style protocols, and in general all known efficient MPC
protocols that allow dishonest majority, are vulnerable to Denial-of-Service at-
tacks, where one or more dishonest parties can force the protocol to abort, so
that honest parties never learn the output. They can even do this after learn-
ing the output, whilst remaining anonymous to the honest parties, which could
be a serious security issue in some applications. This motivates the notion of
MPC with identifiable abort (ID-MPC) [CL14,IOZ14]. Protocols with identifi-
able abort either terminate, in which case all parties receive the output of the
computation, or abort, such that all honest parties agree on the identity of at
least one corrupt party. It is clear that, while this property neither guarantees
fairness nor output delivery (as it does not prevent a corrupt party from abort-
ing the protocol by refusing to send messages) at the same time it discourages
this kind of behaviour because, upon abort, at least one corrupt party will be
detected and can be excluded from future computations.

Why Efficient ID-MPC is not Trivial. It is easy to see that the SPDZ
protocol is not ID-MPC: Each party holds an additive share xi of each value x
and similarly an additive share m(x)i of an information-theoretic MAC on x.
To open a shared value, all parties provide their shares of both the value and

2

its MAC, and then check validity of the MAC. A dishonest party Pi can make
the protocol abort by sending a share x∗i 6= xi or m(x)∗i 6= m(x)i. However,
since the underlying value x is authenticated, and not the individual shares,
Pi is neither committed to xi nor m(x)i, so other parties cannot identify who
caused the abort. At first glance, it seems that the [BDOZ11] protocol might
satisfy identifiable abort. In this protocol, instead of authenticating x, pairwise
MACs are set up so that each party holds a MAC on every other party’s share.
However, the following counterexample (similar to [Sey12, Sec. 3.6]), depicted in
Fig. 1, shows that this is not sufficient.

P̂1 P̂2

P3 P4

x1

m(x1)3

x2

m(x2)4

x1

m(x1)
∗
4

x2

m(x2)
∗
3

(Abort, P2) (Abort, P1)

P̂1 P̂2

P3 P4

x1

m(x1)3

x2

m(x2)4

x1

m(x1)
∗
4

x2

m(x2)
∗
3

Fig. 1. Counterexample for identifiable abort with pairwise MACs

Let the adversary control parties P1 and P2. P1 sends the correct value x1
to both remaining parties P3, P4, but only the correct MAC m(x1)3 to P3. To
P4, he sends an incorrect MAC m(x1)∗4. Conversely, P2 will send the incorrect
MAC m(x2)∗3 of his share x2 to P3 and the correct m(x2)4 to P4. Now both
honest parties P3, P4 can agree that some cheating happened, but as they do not
agree on the identity of the corrupt party they are unable to reliably convince
each other who cheated. (Note that a corrupt party could also decide to output
(Abort, P3), confusing matters even further for the honest P2, P3.) We conclude
that, with an approach based on secret-sharing, special care must be taken so
that all honest parties can agree upon the correctness of an opened value.

Our Contributions. In this work we present an efficient MPC protocol in
the preprocessing model that reactively computes arithmetic circuits over a fi-
nite field, providing security with identifiable abort against up to n − 1 out
of n malicious parties. The online phase relies only on efficient, information-
theoretic primitives and a broadcast channel, with roughly the same complex-
ity as the BDOZ protocol [BDOZ11]. The offline phase, which generates corre-
lated randomness, can be instantiated using somewhat homomorphic encryption

3

based on ring-LWE, and allows use of all the relevant optimisations presented
in [DPSZ12,DKL+13,BDTZ16].

A first building block towards achieving this goal is our definition of homo-
morphic information-theoretic signatures (HITS). Information-theoretic signa-
ture schemes [CR91] cannot have a public verification key (since otherwise an
unbounded adversary can easily forge messages), but instead each party holds
a private verification key. The main security properties of IT signatures are
unforgeability and consistency, meaning that no-one can produce a signature
that verifies by one honest party but is rejected by another. Swanson and Stin-
son [SS11] were the first to formally study and provide security proofs for IT
signatures, and demonstrated that many subtle issues can arise in definitions.
On the other hand, homomorphic signature schemes [BFKW09,CJL09] feature
an additional homomorphic evaluation algorithm, which allows certain functions
to be applied to signatures. The verification algorithm is then given a signature,
a message m and a description of a function f , and verifies that m is the output
of f , applied to some previously signed inputs. We give the first definition of
HITS, and the first construction of HITS for affine functions, which is based on
the (non-homomorphic) construction from [HSZI00] (proven secure in [SS11]),
and has essentially the same complexity.

We then show how to build ID-MPC in the preprocessing model, based on
any HITS with some extra basic properties. Our basic protocol is similar to the
online phase of SPDZ and BDOZ, based on a correlated randomness setup that
produces random shared multiplication triples, authenticated using HITS with
an unknown signing key. The downside of this approach is the need for a secure
broadcast channel in every round of the protocol. Since broadcast with up to
n − 1 corrupted parties requires Ω(n) rounds of communication 1 [GKKO07]
(assuming a PKI setup), this leads to a round complexity of Ω(n ·D), for depth
D arithmetic circuits, and a message complexity of Ω(n3) field elements per
multiplication gate. The number of broadcast rounds can be reduced to just two
— and the total number of rounds to O(n+D) — by using an insecure broadcast
for each multiplication gate, and then verifying the insecure broadcasts at the
end of the protocol in a single round of authenticated broadcast. Additionally,
by batching the signature verification at the end of the protocol, we can reduce
the message complexity per multiplication to O(n2). Overall, this gives on online
phase that is only around n times slower than the SPDZ protocol, or similar to
BDOZ.

In addition, we present a preprocessing protocol that uses somewhat homo-
morphic encryption to compute the correlated randomness needed for the online
phase of our protocol, obtaining security with identifiable abort. The method for
creating multiplication triples is essentially the same as [DPSZ12], but creating
the additional HITS data is more complex. In addition, we must ensure that the
preprocessing protocol has identifiable abort as well.

1This is not needed in SPDZ, because a simple ‘broadcast with abort’ technique
can be performed in just two rounds.

4

In the full version of this work, we moreover give two interesting modifi-
cations of the scheme: We present an extension of our ID-MPC scheme that
implies verifiable abort : In the ID-MPC setting, the honest parties agree upon
which party is corrupt, but they are not able to convince anyone outside of the
computation of this fact. We sketch how our scheme can be modified so that this
in fact is possible, using a public bulletin board. We also present an information-
theoretic MPC protocol in the preprocessing model that allows use of fields of
substantially smaller size than in our main protocol (with an approach that is
similar to the MiniMAC protocol [DZ13]).

Comparison to Existing Work. The model of identifiable abort was first ex-
plicitly defined in the context of covert security, by Aumann and Lindell [AL10].
Cohen and Lindell [CL14] considered the relationships between broadcast, fair-
ness and identifiable abort, and showed that an MPC protocol with identifi-
able abort can be used to construct secure broadcast. The classic GMW proto-
col [GMW87] (and many protocols based on this) satisfies the ID-MPC property,
but is highly impractical due to the non-black box use of cryptographic primi-
tives.

The most relevant previous work is by Ishai et al. [IOZ14], who formally
studied constructing identifiable abort, and presented a general compiler that
transforms any semi-honest MPC protocol in the preprocessing model into a
protocol with identifiable abort against malicious adversaries. Their protocol is
information-theoretic, and makes use of the ‘MPC-in-the-head’ technique of Ishai
et al. [IKOS07] for proving the correctness of each message in zero-knowledge.
Although recent work by Giacomelli et al. [GMO16] shows that this technique
can be efficient for certain applications, we show that when applied to ID-MPC as
in [IOZ14], the resulting protocol is around O(κ) times less efficient than ours,
to achieve soundness error 2−κ. Note that Ishai et al. also use IT signatures
for authenticating values, similarly to our usage, but without the homomorphic
property that allows our protocol to be efficient. For the preprocessing stage,
they describe an elegant transformation that converts any protocol for imple-
menting any correlated randomness setup in the OT-hybrid model into one with
identifiable abort, which makes black-box use of an OT protocol. Again, unfor-
tunately this method is not particularly practical, mainly because it requires the
OT protocol to be secure against an adaptive adversary, which is much harder
to achieve than statically secure OT [LZ13].

Several other works have used similar primitives to information-theoretic
signatures for various applications. In [CDD+99], a primitive called IC signatures
is used for adaptively secure multiparty computation. These are very similar to
what we use and their construction is linearly homomorphic, but the opening
stage requires every party to broadcast values, whereas in our HITS only the
sender broadcasts a message. Moreover, IC signatures are required to handle the
case of a corrupted dealer (which we do not need, due to trusted preprocessing),
and this leads to further inefficiencies. In [IOS12], a unanimously identifiable
commitment scheme is presented, which is used to construct identifiable secret

5

sharing; this has similarities to a simplified form of IC signatures, but is not
linear.

Finally, we note that when the number of parties is constant, it is possible
to achieve a relaxed notion of fairness, called partial fairness, in the dishonest
majority setting by allowing a non-negligible distinguishing probability by the
environment [BLOO11].

Organisation. In Section 2, we describe the model and some basic preliminar-
ies, and also discuss the need for and use of a broadcast channel in our protocols.
Section 3 introduces the definition of homomorphic information-theoretic signa-
tures, and Section 4 describes our construction. Our information-theoretic ID-
MPC protocol in the preprocessing model is presented in Section 5, followed by
the preprocessing using SHE in Section 6. In Section 7 we evaluate the efficiency
of our protocols, compared with the previous state of the art.

2 Preliminaries

2.1 Notation

Throughout this work, we denote by κ and λ the statistical, resp. computational,
security parameters, and we use the standard definition of negligible (denoted
by negl(κ)) and overwhelming function from [Gol01]. We use bold lower case
letters for vectors, i.e. v and refer to the ith element of a vector v as v|i. The
notation x ← S will be used for the uniform sampling of x from a set S, and
by [n] we mean the set {1, . . . , n}. The n parties in the protocol are denoted as
P = {P1, . . . , Pn}, while the adversary is denoted by A, and has control over a
subset I ⊂ [n] of the parties. We also sometimes let P denote the index set [n],
depending on the context.

2.2 Model

We prove our protocols secure in the universal composability (UC) model of
Canetti [Can01], with which we assume the reader has some familiarity. Our
protocols assume a single static, active adversary, who can corrupt up to n− 1
parties at the beginning of the execution of a protocol, forcing them to behave
in an arbitrary manner. We assume a synchronous communication model, where
messages are sent in rounds, and a rushing adversary, who in each round, may
receive the honest parties’ messages before submitting theirs.

We use the UC definition of MPC with identifiable abort, or ID-MPC, from

Ishai et al. [IOZ14]. Given any UC functionality F , define
[
F
]ID
⊥ to be the func-

tionality with the same behaviour as F , except that at any time the adversary

may send a special command (Abort, Pi), where i ∈ I, which causes
[
F
]ID
⊥ to

output (Abort, Pi) to all parties.

6

Definition 1 ([IOZ14]). Let F be a functionality and
[
F
]ID
⊥ the correspond-

ing functionality with identifiable abort. A protocol Π securely realises F with

identifiable abort if Π securely realises the functionality
[
F
]ID
⊥ .

As noted in [IOZ14], the UC composition theorem [Can01] naturally extends
to security with identifiable abort, provided that the higher-level protocol always
respects the abort behaviour of any hybrid functionalities.

2.3 Broadcast Channel

Our protocols require use of a secure broadcast channel. Since Cohen and Lindell
showed that MPC with identifiable abort can be used to construct a broadcast
channel [CL14], and it is well known that secure broadcast is possible if and only
if there are fewer than n/3 corrupted parties, it is not surprising that we assume
this (the protocols in [IOZ14] require the same).

In practice, we suggest the broadcast primitive is implemented using authen-
ticated broadcast, which exists for any number of corrupted parties, assuming a
PKI setup. For example, the classic protocol of Dolev and Strong [DS83] uses
digital signatures, and Pfitzmann and Waidner [PW92] extended this method
to the information-theoretic setting. Both of these protocols have complexity
O(`n2) when broadcasting `-bit messages. Hirt and Raykov [HR14] presented a
protocol that reduces the communication cost to O(`n) when ` is large enough.
We are not aware of any works analysing the practicality of these protocols, so
we suggest this as an important direction for future research.

3 Homomorphic Information-Theoretic Signatures

In this section, we define the notion of homomorphic information-theoretic sig-
natures (HITS). It differs slightly from standard cryptographic signatures: First
and foremost, in the information-theoretic setting, a signature2 scheme must
have a distinct, private verification key for each verifying party. This is because
we define security against computationally unbounded adversaries, hence a ver-
ifier could otherwise easily forge signatures. Secondly, allowing homomorphic
evaluation of signatures requires taking some additional care in the definitions.
To prevent an adversary from exploiting the homomorphism to produce arbi-
trary related signatures, the verification algorithm must be given a function,
and then verifies that the signed message is a valid output of the function on
some previously signed messages.

With this in mind, our definition therefore combines elements from the IT
signature definition of Swanson and Stinson [SS11], and (computational) homo-
morphic signature definitions such as [BFKW09,CJL09,GVW15].

2We want to put forward that the name signature for the primitive in question
can be somewhat misleading, as it shares properties with commitments and MACs.
Nevertheless we decided to use the term for historical reasons.

7

Definition 2 (Homomorphic Information-Theoretic Signature). A ho-
momorphic information-theoretic signature (HITS) scheme for the set of verifiers
P = {P1, . . . , Pn}, function class F and message space M, consists of a tuple of
algorithms (Gen,Sign,Ver,Eval) that satisfy the following properties:

(sk,vk)← Gen(1κ, w) takes as input the (statistical) security parameter κ and
an upper bound w ∈ N on the number of signatures that may be created, and
outputs the signing key sk and vector of the parties’ (private) verification
keys, vk = (vk1, . . . , vkn).

σ ← Sign(m, sk) is a deterministic algorithm that takes as input a message
m ∈M and signing key sk, and outputs a signature σ.

σ ← Eval(f, (σ1, . . . , σ`)) homomorphically evaluates the function f ∈ F on a
list of signatures (σ1, . . . , σ`).

0/1← Ver(m,σ, f, vkj) takes as input a message m, a signature σ, a function
f and Pj’s verification key vkj, and checks that m is the valid, signed output
of f .

Remark 1. HITS schemes can generally be defined to operate over data sets.
Multiple data sets can be handled by tagging each dataset with a unique iden-
tifier and restricting operations to apply only to signatures with the same tag.
However, for our application we only require a single dataset, which simplifies
the definition.

Remark 2. To streamline the definition even more, we consider a setting where
there is only one signer, who is honest. This leads to a definition that is concep-
tually simpler than the IT signature definition of Swanson and Stinson [SS11],
which considers a group of users who can all sign and verify each others’ mes-
sages.

We then define security as follows:

Definition 3 (w, τ-security). A HITS scheme (Gen,Sign,Ver,Eval) is (w, τ)-
secure for a class of functions F and message spaceM if it satisfies the following
properties:

Signing correctness: Let ` ≤ w and define for i ∈ [`] the projection function
πi(m1, . . . ,m`) = mi. Then we require that for every pair (sk,vk) output by
Gen, for any (m1, . . . ,m`) ∈M`, and for all i ∈ [`], j ∈ [n],

Ver(mi,Sign(mi, sk), πi, vkj) = 1.

Evaluation correctness: For every pair sk,vk output by Gen, for every
function f ∈ F , for all messages (m1, . . . ,m`) ∈M`, and for all j ∈ [n],

Ver (f (m1, . . . ,m`) ,Eval (f, (Sign(m1, sk), . . . ,Sign(m`, sk))) , f, vkj) = 1.

8

Unforgeability: Let I ([n] be an index set of corrupted verifiers, and define
the following game between a challenger C and an adversary A:

1. C computes (sk,vk)← Gen(1κ, w) and sends {vki}i∈I to the adversary.

2. A may query C adaptively up to a maximum of w times for signatures.
Let m1, . . . ,mw′ be the list of messages queried to C.

3. A outputs a function f ∈ F , a list of indices {i1, . . . , i`} ⊆ [w′] in
ascending order, a target message m∗ and a signature σ∗.

4. A wins if m∗ 6= f(mi1 , . . . ,mi`) and there exists j ∈ [n] \ I for which

Ver(m∗, σ∗, f, vkj) = 1.

A scheme is unforgeable if for any subset of corrupted verifiers I ([n] and
for any adversary A,

Pr[A wins] ≤ τ(|M|, κ).

Consistency: The security game for consistency is identical to the unforge-
ability game, except for the final step (the winning condition), which becomes:

4. A wins 3 if there exist i, j ∈ [n] \ I such that

Ver(m∗, σ∗, f, vki) = 1 and Ver(m∗, σ∗, f, vkj) = 0.

A scheme satisfies consistency if for any set I ([n] and for any A playing
the above modified game,

Pr[A wins] ≤ τ(|M|, κ).

Note that evaluation correctness implies signing correctness, but we state
two separate properties for clarity. The consistency (or transferability) property
guarantees that a corrupted party cannot create a signature σ that will be ac-
cepted by one (honest) verifier but rejected by another. In [SS11], a reduction
from consistency to unforgeability is given. However, their definition of IT sig-
natures considers a group of users who are all signers and verifiers, any of whom
may be corrupted. In our setting, there is a single, honest signer, so consistency
is no longer implied and must be defined separately.

Additionally, we require that signatures output by the Eval algorithm do not
reveal any information on the input messages m1, . . . ,m` other than that given
by f(m1, . . . ,m`). This is similar to the concept of context hiding [GVW15] in
the computational setting, and is captured by the following definition.

Definition 4 (Evaluation privacy). A HITS scheme (Gen,Sign,Eval,Ver) is
evaluation private if there exists a PPT algorithm Sim that, for every
(sk,vk)← Gen, for every function f ∈ F , for all messages m1, . . . ,m` with
m = f(m1, . . . ,m`), σi = Sign(mi, sk) and σ = Eval(f, σ1, . . . , σ`), computes

Sim(sk,m, f) = σ.

3There is no requirement that m∗ 6= f(mi1 , . . . ,mi`).

9

Intuitively, this means that any valid signature that comes from Eval can also
be computed without knowing the original inputs to f , so is independent of
these. This definition is simpler than that of [GVW15], as our signing algorithm
is restricted to be deterministic, so we require equality rather than an indist-
inguishability-based notion.

4 Construction of HITS

We now describe our construction of homomorphic information-theoretic signa-
tures. The message space M is a finite field F. We restrict the function class F
to be the set of all affine transformations f : Fw → F (where w is the maximum
number of signatures that can be produced). The general case of affine functions
with fewer than w inputs can be handled by using a default value, ⊥, for the
unused input variables. Note also that the signing algorithm is stateful, and must
keep track of how many messages have been signed previously.

Gen(1κ, w): The key generation algorithm is as follows:

1. Sample α̂1, . . . , α̂n ← F and β̂i,1, . . . , β̂i,n ← F for each i ∈ [w].
2. For each verifier Pj , sample vj = (vj,1, . . . , vj,n)← Fn and compute

αj =

n∑

r=1

α̂r · vj,r and βj,i =

n∑

r=1

β̂i,r · vj,r for i ∈ [w].

3. Output sk =
({
α̂r, {β̂i,r}i∈[w]

}n
r=1

)
,vk =

(
vj , αj , {βj,i}i∈[w]

)n
j=1

.

Sign(m, sk): To sign the i-th message, m, (for i ≤ w) the signer computes the
vector

σi =
(
α̂r ·m+ β̂i,r

)n
r=1

.

Eval(f, (σ1, . . . ,σw)): Let f : Fw → F be defined by

f(x1, ..., xw) = µ1 · x1 + · · ·+ µw · xw + c,

with µi, c ∈ F. The new signature σ is obtained by evaluating f , excluding
the constant term, over every component of the input signatures:

σ = µ1 · σ1 + · · ·+ µw · σw ∈ Fn.

Ver(m,σ, f, vkj): First use f to compute the additional verification data

βj =

w∑

i=1

µi · βj,i − c · αj .

Then check that

βj + αj ·m =

n∑

r=1

σ|r · vj,r.

If the check passes output 1, otherwise 0.

10

Theorem 1. Let F be a finite field, M := F and F be the the set of affine maps
from Fw to F, then the tuple of algorithms (Gen,Sign,Eval,Ver) is a (w, 3/|F|)-
secure HITS with evaluation privacy.

Proof. See the full version of this work.

As an immediate consequence of the previous theorem, we have:

Corollary 1. Let |F| > 2κ, w = poly(κ) then (Gen,Sign,Eval,Ver) is a
(poly(κ), negl(κ))-secure HITS with evaluation privacy.

Proposition 1. Let SG,SK and VK be the domains of the signatures, signing
and verification keys, respectively. Our HITS has the following memory sizes:

|SG| = |F|n, |SK| = |F|n(w+1), |VF| = |F|n(w+3).

In terms of signature size, our scheme is n-bits close to the lower bound for
MRA-codes, which HITS is a special case of (see the full version of this work
for more details). Note that the scheme of [SS11], which is not homomorphic,
requires the same memory size as HITS for signatures and signing keys, but has
slightly smaller verification keys (|F|n(w+2)−1). We do not know if the signature
schemes described in [SS11] and our HITS are optimal in terms of the memory
size of the keys, or if the need for larger verification keys in HITS is due to the
homomorphic property of the scheme.

5 Online Phase for Efficient MPC with Identifiable Abort

In this section we describe our information-theoretic protocol for secure mul-
tiparty computation with identifiable abort in the preprocessing model. We
assume a set of n parties P = {P1, . . . , Pn}, and any HITS scheme HITS =
(Gen,Sign,Eval,Ver) that satisfies (w, negl(κ))-security and evaluation privacy
from Section 3, and supports homomorphic evaluation of linear functions over a
message space of a finite field F.

Our protocol performs reactive computation of arithmetic circuits over F,
using correlated randomness from a preprocessing setup, similarly to the BDOZ
and SPDZ protocols [BDOZ11,DPSZ12]. Correctness, privacy and identifiable
abort are guaranteed by the security properties of HITS. The functionality that
we implement is FMPC, shown in Fig. 2. Note that FMPC already contains an
explicit command for identifiable abort in the output stage, since it models an
unfair execution where the adversary can abort after learning the output. The

modified functionality
[
FMPC

]ID
⊥ then extends this abort to be possible at any

time.

Authenticated Secret Sharing. Our protocol is based on authenticated ad-
ditive secret sharing over the finite field F, and we use the following notation to
represent a shared value a:

11

Functionality FMPC

Let I be the set of indices of corrupt parties.

Input: On input (Input, Pi, id , x) from Pi and (Input, Pi, id) from all other parties,
with id a fresh identifier and x ∈ F, store (id , x).

Add: On input (Add, id1, id2, id3) from all parties (where id1, id2 are present in
memory), retrieve (id1, x), (id2, y) and store (id3, x+ y).

Multiply: On input (Mult, id1, id2, id3) from all parties (where id1, id2 are present
in memory), retrieve (id1, x), (id2, y) and store (id3, x · y).

Output: On input (Output, id) from all parties (where id is present in memory),
retrieve (id , y) and send y to the adversary. Wait for the adversary to input
either Deliver or (Abort, Pi) for some i ∈ I. If the adversary sends Deliver then
output y to all honest parties, otherwise output (Abort, Pi).

Fig. 2. Ideal functionality for reactive MPC in the finite field F.

JaK =
(
ai, σai

)
i∈P ,

where party Pi holds ai ∈ F and σai = Sign(ai, sk), such that
∑
i∈P ai = a.

By the linearity of the secret sharing scheme and HITS we can easily define
addition of two shares, JzK = JxK + JyK, as follows:

1. Compute zi = xi + yi.

2. Compute σzi = Eval(f, (σxi
, σyi)), where f(a, b) = a+ b.

3. Output JzK =
(
zi, σzi

)
i∈P .

Note that if σxi
, σyi are already outputs of the Eval algorithm, then f should

instead be defined to include the linear function that was applied to these inputs
previously, and Eval applied to those inputs. However, this is just a technicality
and in practice, each homomorphic addition can be computed on-the-fly. We can
also define addition or multiplication of shared values by constants, using Eval
in a similar way. 4

Open(JaK):
1. Every party Pi ∈ P broadcasts (ai, σai).

2. Each party Pi runs Ver(aj , σaj , f, vki), for each j 6= i. If for some j the
check fails, Pi outputs (Abort, Pj), otherwise it outputs a =

∑
i∈P ai.

Fig. 3. Procedure for opening an authenticated, shared value.

4For addition with a constant, only one party (say P1) needs to adjust their share.
Signatures stay the same, as the verification algorithm accounts for the constant term
in the affine function.

12

In Fig. 3 we define the basic subprotocol used to open authenticated, shared
values. Each time the command Open is called, parties check the correctness of
the opened value using the Ver algorithm. For each share, the intuition is that
if the corresponding signature is verified, then the share is correct with over-
whelming probability due to the unforgeability of the scheme; on the contrary,
if there exists an index j ∈ P \ I, where I denotes the set of corrupt parties,
for which the check does not go through, then the same happens for all honest
parties, due to the consistency of HITS.

Preprocessing Requirements. The preprocessing functionality, FPrep, is shown
in Fig. 4. It generates a set of HITS keys (sk,vk) and gives each party a verifica-
tion key, whilst no-one learns the signing key. The functionality then computes
two kinds of authenticated data, using sk:

- Input tuples: Random shared values JrK, such that one party, Pi, knows r.
This is used so that Pi can provide input in the online phase.

- Multiplication triples: Random shared triples JaK, JbK, JcK, where a, b← F
and c = a · b.
Note that corrupted parties can always choose their own shares of authenti-

cated values, instead of obtaining random shares from the functionality.

Protocol. Our protocol, shown in Fig. 5, is based on the idea of securely eval-
uating the circuit gate by gate in a shared fashion, using the linearity of the J·K-
representation for computing all linear gates, preprocessed multiplication triples
for multiplication using Beaver’s technique [Bea91], and preprocessed input tu-
ples for the inputs.

5.1 Security

Theorem 2. In the FPrep-hybrid model, the protocol ΠOnline implements[
FMPC

]ID
⊥ with statistical security against any static active adversary corrupting

up to n− 1 parties.

Proof. Let A be a malicious PPT real adversary attacking the protocol ΠOnline,
we construct an ideal adversary S with access to FMPC which simulates a real
execution of ΠOnline with A such that no environment Z can distinguish the ideal
process with S and FMPC from a real execution of ΠOnline with A. S starts by
invoking a copy of A and running a simulated interaction of A with Z.

After describing the simulator we will argue indistinguishability of the real
and ideal worlds. Let I be the index set of corrupt parties, simulation proceeds
as follows:

Simulating the Initialise step. The simulator S honestly emulates FPrep towards
the adversary A. Note that S knows all the data given to the adversary and the
simulated signing key sk∗ of HITS, so can generate a valid signature for any
message.

13

Functionality FPrep

Let I be the set of indices of corrupt parties. The functionality is parametrised by
the statistical security parameter, κ.

Initialise: On input (Init, w) from all parties, do the following:
1. Compute (sk,vk)← Gen(1κ, w).

2. Send vki to party Pi and store sk.

Macro Bracket: On input (Bracket, x), create the representation JxK as follows:

1. Receive shares xi for i ∈ I from the adversary.

2. Sample random shares xi ← F, for i /∈ I, subject to the constraint that
x = x1 + · · ·+ xn.

3. For i = 1, . . . , n, compute σxi = Sign(xi, sk) and return {xi, σxi}i∈[n].

Input: On input (Input, Pi) from all parties, sample a random r ← F and run
(Bracket, r) to obtain JrK. Output (rj , σrj) to each party Pj , and also r to Pi.

Triple: On input (Triple) from all parties, do the following:
1. Sample a, b← F and let c = a · b.
2. Run the macro (Bracket) on input a, b and c to obtain JaK, JbK, JcK. Output

(ai, bi, ci, σai , σbi , σci) to each party Pi.

Fig. 4. Ideal functionality for the preprocessing phase.

Protocol ΠOnline

Let nM be the number of secure multiplications to be performed and nI the total
number of inputs.

Initialise: The parties call FPrep with (Init, n · (3nM + nI)). If FPrep outputs
(Abort, Pi), the parties output (Abort, Pi) and halt.

Input: For party Pi to input x ∈ F, the parties call FPrep with (Input, Pi) to obtain
a mask value JrK, and Pi also obtains r:
1. Pi sets m = r − x and broadcasts m.

2. All parties locally compute JxK = JrK−m.

Add: On input (JxK, JyK), parties locally compute Jx+ yK = JxK + JyK.

Multiply: On input (JxK, JyK), the parties do the following:
1. Take one multiplication triple (JaK, JbK, JcK) from FPrep, compute

JεK = JxK− JaK, JρK = JyK− JbK.
2. Call Open(JεK) and Open(JρK).
3. Locally compute JzK = JcK + ε · JbK + ρ · JaK + ε · ρ.

Output: To output a share JyK, the parties call Open(JyK). If for some i ∈ P the
check fails, output (Abort, i) and halt, otherwise accept y as a valid output.

Fig. 5. Operations for Secure Function Evaluation with Identifiable Abort.

Simulating the Input step. We distinguish two cases:

14

- For i ∈ P \ I, S emulates towards A a broadcast of a random value m ∈ F,
and proceeds according to the protocol with the next simulated random
input tuple, r. Thereafter, S computes x = r−m and stores x, the dummy,
random input for honest Pi.

- For i ∈ I, S receives from the adversary the message m, and retrieves the
next random input tuple r. It then computes x = r−m and inputs it to the[
FMPC

]ID
⊥ .

Simulating the Circuit Evaluation. For linear gates, the simulator does not
have to simulate any message on the behalf of the honest parties. S updates the

internal shares and calls the respective procedure in
[
FMPC

]ID
⊥ .

In a multiplication gate, for each call to Open, S receives all the corrupt
shares (t∗j , σt∗j) from A, and computes and sends the shares and signatures for

the dummy honest parties as in the protocol. Let (tj , σtj) be the values that S
expects from the dishonest Pj , based on previous computations and the simu-
lated preprocessing data. S checks for all the (t∗j , σt∗j) received from A and for

all i ∈ P \I that tj = t∗j and σtj = σt∗j . If the check does not pass for some j ∈ I
then S sends (Abort, Pj) to

[
FMPC

]ID
⊥ . Otherwise it proceeds. 5

Simulating the Output step. The simulator sends (Output) to the functionality
and gets the result y back. Let y′ be the output value that the simulator has
computed using dummy, random inputs on behalf of the honest parties. Then
it picks an honest party Pi0 , and modifies its share as y∗i0 = yi0 + (y − y′), then
uses the evaluation privacy algorithm to compute σy∗i0

= Sim(sk∗, y∗i0 , f), where

f is the same linear function that has been applied to obtain σyi0 , and sends the
honest shares and signatures to the adversary. It then receives (y∗j , σy∗j)j∈I from
the adversary, while expecting yj , σyj . If yj = y∗j and σyj = σy∗j for all j ∈ I
then S sends Deliver to the functionality; otherwise it sends (Abort, Pj) for the
lowest j that failed and halts.

Indistinguishability. Now we prove that the all the simulated transcripts and
the honest parties’ outputs are identically distributed to the real transcripts and
output in the view of the environment Z, except with probability negl(κ).

During initialisation, the simulator honestly runs an internal copy of FPrep,
so the simulation of this step is perfect. In the input step, the values m broadcast
by honest parties are uniformly random in both cases, as they are masked by a
one-time uniformly random value from FPrep that is unknown to Z.

In the multiplication step, the parties call the command Open. Honest shares
and signatures are simulated as in the protocol, using the simulated data from
the emulation of FPrep, and applying the Eval algorithm. The broadcast shares
are all uniformly distributed in both worlds, as the shares are always masked

5If there is more than invalid share then we always abort with the smallest index
where the check fails.

15

by fresh random values from FPrep, so are perfectly indistinguishable. To ar-
gue indistinguishability of the signatures, we need to use the evaluation privacy
property. We must prove that

σti
s
≈ σt∗i ,

where {σt∗i }i6∈I are the simulated ideal-world signatures, and {σti}i6∈I are the
real-world signatures, for some honest parties’ shares {ti}i/∈I .

Since σti and σt∗i are both valid signatures output from Eval, evaluation
privacy guarantees that there exists an algorithm Sim such that:

σti = Sim(sk, ti, g) and σt∗i = Sim(sk∗, t∗i , g),

where g is the linear function evaluated to get the values ti and t∗i , and sk and
sk∗ are respectively the real-world and ideal-world secret keys. Since (ti, sk) and
(t∗i , sk

∗) are identically distributed in both the executions, then the same holds
for σti and σt∗i . Note that it is crucial here that S computes σt∗i using Eval
and the function g, rather than creating a fresh signature using sk∗, otherwise
indistinguishability would not hold.

We also must consider the abort behaviour of the Open procedure in the
two worlds. If during any opening, A attempts to open a fake value then it will
always be caught in the simulation, whereas it succeeds if it is able to forge a
corresponding signature in the real protocol. Hence, if the ideal protocol aborts
with the identity of some corrupt party Pi, then the same happens in the real
world, except with negligible probability due to unforgeability. The consistency
property of HITS ensures that if one honest party outputs (Abort, Pi) in the
protocol, then all the honest parties will output the same, except with negligible
probability.

Now, if the real or simulated protocol proceeds to the last step, Z observes
the output value y, and the corresponding honest parties’ shares, together with
their signatures. The honest shares are consistent with y and the signatures are
correctly generated in both worlds. Again, to argue indistinguishability of the
signatures we can use the evaluation privacy property of HITS. Hence Z’s view
of the honest parties’ messages in the last step has the same distribution in the
real and hybrid execution.

Finally, we must argue indistinguishability of the outputs in both worlds. In
the ideal world, the output y is a correct evaluation on the inputs, so the only
way the environment can distinguish is to produce an incorrect output in the
real world. This can only happen if a corrupt party sending an incorrect share
that is successfully verified. However, as we have seen before, if the adversary
attempts to open a fake value, during the input, multiplication or output step,
then it will be caught with overwhelming probability, by the unforgeability and
consistency properties of HITS. ut

5.2 An Optimised Protocol

When instantiated with our HITS scheme from Section 4, the online phase pro-
tocol above requires O(n2) field elements to be broadcasted per secure multi-

16

plication. Since each authenticated broadcast requires O(n) rounds, this gives
a communication complexity of at least O(n3) field elements per multiplication
and O(D·n) rounds overall, where D is the multiplicative depth of the arithmetic
circuit. We now describe an optimised variant of our protocol, which reduces the
number of rounds to O(D + n) and the communication cost per multiplication
to O(n2).

Reducing the Number of Broadcasts. Let Πbc be the UC protocol for
authenticated broadcast used in the protocol. We make the following assumption
about its structure: in the first round of Πbc, the sender (with input x) sends x,
and nothing more, to all parties. 6 Let the remainder of the protocol be denoted
Π ′bc.

We now modify the protocol ΠOnline so that whenever a party Pi is supposed
to broadcast a value xi in the Open subprotocol, Pi instead sends xi to all parties,
and appends xi to a list Bi. Note that the Input stage still requires broadcast,
as otherwise it seems difficult for the simulator to extract a corrupted party’s
input. The Output stage is then modified so that first, each party runs Π ′bc(Bi)
to complete the broadcasts that were initialised in the previous rounds. With
this change, there are only two broadcast rounds and each multiplication gate
requires just one round of communication, reducing the overall number of rounds
to O(D + n).

Batching the Signature Verification. We can reduce the number of field
elements sent during a multiplication to n − 1 per party by checking all sig-
natures together in the Output stage of the protocol, rather than during the
circuit evaluation. This means that during the computation, the parties only
send shares without the corresponding signatures. We then check a random lin-
ear combination of each parties’ signatures just before every output stage.

The complete protocol for the optimised output stage is given in Fig. 6.
Since there are only two authenticated broadcast rounds, the number of rounds
for computing a depth D circuit with one output gate in the optimised protocol
is O(D+n). The total number of field elements sent over the network is no more
than 7

nI · bc(1) + 2n(n− 1) · nM + n · bc(n+ 2nM + 1),

where nI is the total number of private inputs, nM the number of secure multi-
plications and bc(m) the cost of broadcasting m elements using Πbc. Meanwhile,
the storage cost (for the preprocessing data) is O(n(nM + nI)) per party.

6Almost any broadcast protocol can be easily converted into this form. For example,
the Dolev-Strong broadcast [DS83] begins with the sender sending (x,Sign(x)) to all
parties; we split this up into one round for x and one round for Sign(x).

7Excluding the cost of FRand, which can be implemented using standard techniques
such as a hash-based commitment scheme in the random oracle model.

17

Protocol Output(JyK)

Let Bi be the list of shares sent by a party Pi in all input and multiplication steps
since the last Output invocation.

OutputCheck: Run the following, for each party Pi:
1. Pi sends the share yi to all other parties, and appends yi to Bi.

2. Write Bi = (a1, . . . , at).

3. Sample (r1, . . . , rt) ∈ Ft using FRand.

4. Pi computes σ = Eval(f, (σa1 , . . . , σat)), where the linear function f is
defined as f(x1, . . . , xt) = r1 · x1 + · · ·+ rt · xt.

5. Pi invokes Πbc(σ) and Π ′bc(a1, . . . , at) to broadcast σ and complete the
broadcast of the shares a1, . . . , at. If the broadcast fails, output (Abort, Pi).

6. Every party Pj (for j 6= i) computes f(a1, . . . , at) = a and checks if
Ver(a, σ, f, vkj) = 1. If the check fails, output (Abort, Pi).

Output: Each party computes y =
∑n
i=1 yi and outputs y.

Fig. 6. Output stage of the optimised online protocol.

A drawback of this optimization is that in comparison to ΠOnline a party that
sends corrupt signatures σ will now only be caught after A learns the output.
We stress that this is according to the definition of identifiable abort (which does
not specify when the abort signal must be sent), but different from ΠOnline where
such behaviour would immediately be detected.

Functionality FRand(F)

Random sample: Upon receiving (rand;u) from all parties, it samples a uniform
r ∈ F and outputs (rand, r) to all parties.

Fig. 7. Functionality FRand that provides random values to all parties.

Security of the Modified Online Phase. We now argue security of the
new online protocol, describing the key differences compared with the previous
protocol. In the simulation, the simulator S now cannot determine whether a
corrupt party has sent the correct message during the Multiply command, since
the signatures are not sent here. Instead, this must be detected in the output
stage when the broadcasts and signatures are checked.

In the OutputCheck stage, S first calls the functionality
[
FMPC

]ID
⊥ to obtain

the result y, then adjusts one honest party’s share and signature (using the evalu-
ation privacy algorithm) to fix the correct output as before, and sends the honest
shares to the adversary. For the remainder of this stage, the simulator acts as in
the protocol for the honest parties, computing the random linear combination of

18

signatures using Eval, and then runs the simulator of Πbc for each broadcast. If

any broadcast fails for a corrupt sender Pj then S sends (Abort, Pj) to
[
FMPC

]ID
⊥ .

If all broadcasts succeed, S checks the signatures and sends (Abort, Pj) if the
signature of Pj does not verify. Note that an incorrect broadcast can lead to an
honest party’s signature being incorrect, so it is important that the broadcasts
are checked first here.

Indistinguishability of all shares sent up until the Output stage follows from
uniformity of the preprocessing data, as in the previous protocol. The security of
the Πbc simulator guarantees indistinguishability of step 5, in particular that all
parties agree upon the sets of shares Bi that were sent by each party Pi during
the protocol.

If the broadcasts succeed then the honest parties’ signatures will always be
correctly generated, and the evaluation privacy property of HITS guarantees
they are identically distributed. The environment therefore can only distinguish
between the worlds by causing the output, y, to be incorrect. Suppose a corrupt
party Pi broadcasts the values B′i = (a′1, . . . , a

′
t) in the protocol, and aj 6= a′j for

at least one j, where aj is the original signed value that Pi was supposed to send.
Then if the verification in step 5 of the output stage succeeds, the correctness
and security properties of HITS guarantee that:

t∑

i=1

(ai − a′i) · ri = 0,

It is easy to see that the probability of this check passing is 1/|F|, as the values
ri are unknown to the adversary at the time of choosing a′i, so the check prevents
an incorrect output with overwhelming probability.

6 Preprocessing with Identifiable Abort

This section describes a practical protocol for securely implementing FPrep with
identifiable abort, based on somewhat homomorphic encryption. The protocol
is based on the SPDZ preprocessing [DPSZ12,DKL+13], but the cost is around
n2 times higher due to the larger amount of preprocessing data needed for the
HITS data in our online phase.

We first explain in more detail why the generic preprocessing method of
Ishai et al. [IOZ14] does not lead to an efficient protocol. They presented a
method to transform any protocol for a correlated randomness setup in the OT-
hybrid model into a protocol that is secure with identifiable abort. Although
their compiled protocol only requires black-box use of an OT protocol, it is
impractical for a number of reasons:

- The protocol to be compiled is assumed to consist only of calls to an ideal
OT functionality and a broadcast channel. This means that any pairwise
communication must be performed via the OT functionality and so is very
expensive.

19

- The transformation requires first computing an authenticated secret sharing
of the required output, and then opening this to get the output. In our case,
the output of FPrep is already secret shared and authenticated, so intuitively,
this step seems unnecessary.

- Their security proof requires the underlying OT protocol to be adaptively
secure. This is much harder to achieve in practice, and rules out the use of
efficient OT extensions [LZ13].

6.1 Modified Functionality F∗
Prep

The FPrep functionality from Section 5 is completely black-box with respect to
the HITS scheme used. In this section, we implement preprocessing specifically
for the scheme HITS from Section 4. We also make one small modification to
the initialisation of FPrep, shown in Fig. 8, which simplifies our preprocessing
protocol by not requiring the adversary’s verification data, vj , to be uniformly
random. The following proposition shows that the scheme, and therefore online
phase, remain secure with this modification.

On input (Init, nM , nI) from all parties, set w = n·(3·nM+nI) and do the following:

1. Wait for the adversary to input vj ∈ Fn, for each j ∈ I.

2. Compute (sk,vk) ← HITS.Gen(1κ, w), except using the provided values
{vj}j∈I to compute {vkj}j∈I , instead of sampling fresh values.

3. Send vki to party Pi and store sk.

Fig. 8. Initialise command of F∗Prep.

Proposition 2. The scheme HITS remains secure when Gen is modified to allow
adversarial inputs, as in F∗Prep.

Proof. This easily follows by inspection of the scheme. Notice that the sign-
ing and verification algorithms for honest parties are independent of the values
{vj}j∈I , so changing the distribution of these cannot cause an honest party to
accept an invalid signature or reject a valid signature. ut

We now show how to use somewhat homomorphic encryption to perform the
preprocessing with identifiable abort.

6.2 SHE Scheme Requirements

As in SPDZ, we use a threshold somewhat homomorphic encryption scheme
SHE = (Gen,Enc,Dec,�,�) to generate the preprocessing data. The scheme
must have a message space of F, and we represent ciphertexts known to all par-
ties with the notation 〈x〉 = Enc(x). The binary operators �,� then guarantee
that

〈x+ y〉 = 〈x〉� 〈y〉 and 〈x · y〉 = 〈x〉� 〈y〉,

20

for some suitable choice of randomness in the output ciphertexts. For our pur-
poses, these homomorphic operations only need to support evaluation of circuits
with polynomially many additions and multiplicative depth 1. As was shown
in [DPSZ12,DKL+13], a ring-LWE variant of the BGV scheme [BGV12] is prac-
tical for this purpose, and this also allows homomorphic operations to be batched
for greater efficiency.

In addition, we require the following interactive protocols that will be used
for the preprocessing.

Zero Knowledge Proof of Plaintext Knowledge. A protocol ΠZKPoK, which is a
public-coin zero-knowledge proof of knowledge of the message and randomness
that makes up a ciphertext. When used in our preprocessing protocol, all parties
will sample the public verifier’s messages with a coin-tossing functionality FRand

(see Fig. 7), so that the proofs are verified by all parties.

Distributed Key Generation and Decryption. The distributed key generation
protocol outputs a public key to all parties, and an additively shared secret key.
The distributed decryption protocol then allows the parties to decrypt a public
ciphertext so that all parties obtain the output. These requirements are modelled
in the functionality FKeyGenDec (Fig. 9). To achieve security with identifiable
abort in our preprocessing protocol, note that the distributed decryption method
modelled in FKeyGenDec always outputs a correct decryption, unlike the method
in SPDZ [DPSZ12], which allows a corrupted party to introduce additive errors
into the output. The SPDZ method can easily be modified to achieve this, by
including a zero-knowledge proof, similar to the ΠZKPoK proof used for ciphertext
generation. Efficient zero-knowledge proofs for actively secure LWE-based key
generation and distributed decryption were also given in [AJL+12], which can
be adapted to the ring-LWE setting.

Functionality FKeyGenDec

KeyGen(1λ): Let (sk, pk)← SHE.Gen(1λ). Store sk and output pk to all parties.

DistDec(〈m〉): On input a ciphertext 〈m〉 from all parties, output

m = Dec(〈m〉, sk)

to all Pi, where m may be a valid message or an invalid ciphertext symbol ⊥.

Fig. 9. SHE distributed key generation and decryption functionality.

6.3 Basic Subprotocols

In Fig. 10 we describe some basic subprotocols for generating and decrypting
ciphertexts. The RandShCtxt subprotocol creates n public ciphertexts encrypting

21

uniformly random shares, where each party holds one share. The ShareDec sub-
protocol takes a public ciphertext 〈m〉, encrypting m, and performs distributed
decryption in such a way that each party learns only a random, additive share
of m. If the flag new ctxt is set to 1 then ShareDec additionally outputs a fresh
encryption of the message m to all parties. This is used to ensure that SHE only
needs to evaluate circuits of multiplicative depth 1. The PrivateDec subproto-
col is another variant of distributed decryption that decrypts the ciphertext 〈x〉
only to Pi. Note that the private decryption protocol used in [DPSZ12] is not
suitable here, as it involves parties all sending a single message to Pj ; in the
identifiable abort setting, this would allow Pj to claim that an honest party Pi
sent an invalid message, as the messages are not verifiable by all parties. To get
around this, our PrivateDec protocol only uses broadcasted messages that are
verifiable by all parties using the public-coin zero-knowledge proofs.

6.4 Creating the Preprocessing Data

The complete preprocessing protocol is shown in Fig. 11 and Fig. 12. To create a
multiplication triple, each party must obtain random, additive shares (ai, bi, ci)
such that c = a·b, along with signatures on these shares. Creating shares of triples
is essentially identical to the method in [DPSZ12], except we use the correct dis-
tributed decryption command of FKeyGenDec, instead of a possibly faulty method.
This means that there is no way the adversary can introduce errors into triples,
so we avoid the need for the pairwise sacrificing procedure from [DPSZ12], where
half of the triples are wasted to check correctness. The main other difference in
our protocol, compared to [DPSZ12], is that we need to setup verification keys
for the signature scheme and create signatures on every share, which is more
complex than setting up simple MACs.

The setup phase begins by using RandShCtxt to create random, additive
shares of the signing key values α̂r, β̂r,i, and each party Pj ’s private verification
values vj,r, along with ciphertexts encrypting the signing key shares and verifica-
tion data, in steps 2–3. Next, in steps 4–5, the homomorphism of SHE is used to
compute ciphertexts encrypting the signing key, and then ciphertexts encrypting
the verification key values αj , βj,i for party Pj , for i ∈ [w]. These verification
keys are then privately decrypted to each party.

Given encryptions of the signing key, an encrypted share can be authenti-
cated by homomorphic evaluation of the signing algorithm, followed by private
decryption of the signature to the relevant party, as seen in the subprotocol Auth
(Fig. 11). Recall that in our scheme, a signature on xj is given by

σ =
(
α̂r · xj + β̂r

)n
r=1

,

where α̂r, β̂r are uniformly random elements of the secret key. (Note we have

dropped the subscript i on β̂ here.) For party Pj to obtain a signature on the
share xj , where all parties already know the ciphertext 〈xj〉, all parties homo-
mophically compute

〈σ|r〉 = (〈αr〉� 〈xj〉) � 〈βr〉,

22

Subprotocol RandShCtxt():
1. Each party samples a random share xj ∈ F and computes
〈xj〉 = SHE.Encpk(xj).

2. Each party broadcasts 〈xj〉 and runs the protocol ΠZKPoK to prove that
〈xj〉 is correctly generated.

3. Each party Pj outputs xj , 〈x1〉, . . . , 〈xn〉.

Subprotocol ShareDec(〈m〉, new ctxt):
1. Run RandShCtxt so that each Pj obtains a share rj and ciphertexts
〈r1〉, . . . , 〈rn〉 that encrypt the shares.

2. Homomorphically compute

〈m+ r〉 = 〈m〉� 〈r1〉� · · ·� 〈rn〉.

3. Call FKeyGenDec.DistDec to decrypt 〈m+ r〉 so all parties learn m+ r, where
r = r1 + · · ·+ rn.

4. P1 outputs m1 = (m+ r)− r1 and for all j 6= 1, Pj outputs mj = −rj .
5. If new ctxt = 1, each party Pi also outputs 〈m∗〉 = SHE.Encpk(m+r)−〈r〉,

where a default, public value is used for the randomness in Enc.

Subprotocol PrivateDec(〈x〉, Pj):
1. Pj samples a random mask K ← F, broadcasts 〈K〉 ← SHE.Encpk(K) and

runs ΠZKPoK to prove its correctness.

2. All parties homomorphically compute

〈x+K〉 = 〈x〉� 〈K〉.

3. Run FKeyGenDec.DistDec(〈x + K〉) so that all parties obtain the plaintext
x+K.

4. Pj recovers and outputs x.

Fig. 10. Subprotocols for the preprocessing protocol using SHE

for r ∈ [n], and use private distributed decryption to output σ to Pj .

Theorem 3. The protocol ΠPrep (Fig. 11 and Fig. 12) securely realises F∗Prep
(Fig. 8 and Fig. 4) with identifiable abort in the FKeyGenDec-hybrid model, with
computational security.

Proof. See the full version of this work.

7 Efficiency Evaluation

We now evaluate the concrete efficiency of our protocol, and compare it with the
BDOZ [BDOZ11] and SPDZ [DPSZ12] protocols — which only offer security
with abort — and the IOZ protocol [IOZ14], which achieves identifiable abort.
First we discuss the complexity of broadcast in the two settings, then we compare
the online phases of each protocol, and finally discuss the preprocessing.

23

Protocol ΠPrep

To create nM triples and nI input values for n parties, set the parameter w :=
n · (3nM + nI).

Setup: Creates the verification keys and ciphertexts encrypting the signing key.
1. Run FKeyGenDec.KeyGen to obtain an SHE public key pk.

2. Run RandShCtxt() 2n times, so each party Pj obtains random elements
α̂jr, vj,r, for r = 1, . . . , n, and everyone obtains ciphertexts 〈α̂jr〉, 〈vj,r〉 en-
crypting these.

3. Run RandShCtxt() w(n) times, so party Pj obtains β̂jr,i, for r ∈ [n] and
i ∈ [w], and everyone gets the corresponding ciphertexts.

4. Homomorphically compute, for r ∈ [n]:

〈α̂r〉 = 〈α̂1
r〉� · · ·� 〈α̂nr 〉

〈β̂r,i〉 = 〈β̂1
r,i〉� · · ·� 〈β̂nr,i〉 for i ∈ [w].

5. Now compute the encrypted verification keys, for j ∈ [n]:

〈αj〉 =

n

�
r=1

(〈α̂r〉� 〈vj,r〉) and s〈βj,i〉 =

n

�
r=1

(
〈β̂j,r〉� 〈vj,r〉

)
6. Run the subprotocol PrivateDec(〈αj〉, Pj) and PrivateDec(〈βj,i〉, Pj) for i ∈

[w] and j ∈ [n], so that each party Pj gets their verification key vkj .

7. All parties store the ciphertexts 〈α̂r〉, 〈β̂r,i〉, for r ∈ [n] and i ∈ [w], and
their private verification keys, vkj = (vj , αj , {βj,i}i∈[w]).

Fig. 11. Preprocessing protocol with identifiable abort (Setup).

Cost of Broadcast. For MPC with identifiable abort, we denote the cost
of broadcasting m field elements by bc(m). To be able to identify a cheater,
this must be done using authenticated broadcast, which requires a PKI setup.
The classic Dolev-Strong broadcast [DS83] has message complexity O(mn2),
or a more recent protocol by Hirt and Raykov costs O(mn) for large enough
messages [HR14]. Note that any authenticated broadcast protocol requires Ω(n)
rounds of communication if up to n−1 parties may be corrupt [GKKO07], which
is considerably more expensive than the standard abort setting.

When security with (non-unanimous) abort is allowed (here, for SPDZ and
BDOZ), a simple “broadcast with abort” protocol suffices [GL05]. Here, the
broadcaster sends x to everyone, then all other parties resend x and check they
received the same value. This can be further optimised by performing trivial,
insecure broadcasts, and then at the end of the protocol, doing a single broadcast
of the hash of all sent values to verify correctness [DKL+12]. This means each
broadcast costs O(n) messages, with a one-time O(n2) cost to verify these at
the end.

When opening shared values (such as during multiplication) a more efficient
method was described in [DPSZ12], where each party first sends their share to

24

Protocol ΠPrep (continued)

Subprotocol Auth(xj , 〈xj〉, Pj): Authenticates the share xj held by party Pj ,
where 〈xj〉 is a (public) SHE encryption of xj . Start by initialising a counter
cnt := 1.
1. All parties homomorphically compute, for r ∈ [n],

〈σ|r〉 = 〈α̂r〉� 〈xj〉� 〈β̂r,cnt〉.

2. Run PrivateDec(〈σr〉, Pj) for r ∈ [n] so that Pj obtains the signature on
xj ,

σ = (α̂1 · xj + β̂1,cnt, . . . , α̂n · xj + β̂n,cnt).

3. Set cnt := cnt + 1

Triple: Creates a single, authenticated multiplication triple.
1. The parties run RandShCtxt twice to obtain additive shares aj , bj and public

ciphertexts 〈aj〉, 〈bj〉 that encrypt the shares.

2. The parties homomorphically compute the ciphertext

〈c〉 = (〈a1〉� · · ·� 〈an〉) � (〈b1〉� · · ·� 〈bn〉) .

3. The parties run ShareDec(〈c〉, 1) to obtain decrypted, random shares of c
and a fresh ciphertext 〈c〉.

4. For each j ∈ [n] and for each symbol x ∈ {a, b, c}, run Auth(xj , 〈xj〉, Pj) so
Pj obtains σxj = Sign(xj , sk).

5. Output the authenticated triple (JaK, JbK, JcK).

Input(Pi): Creates a random, authenticated value JrK, where r is known to Pi.
1. Run RandShCtxt to obtain additive shares rj , and public ciphertexts 〈rj〉

that encrypt these shares, for j ∈ [n].

2. Run Auth(rj , 〈rj〉, Pj) for every j ∈ [n] to obtain JrK.
3. Compute 〈r〉 = 〈r1〉 � · · · � 〈rn〉 and run PrivateDec(〈r〉, Pi) so that Pi

learns r.

Fig. 12. Preprocessing protocol with identifiable abort (authentication and triple gen-
eration).

P1, who then computes the sum and sends the result to all parties. This gives
a cost of 2(n − 1) messages per opening, instead of n(n − 1) for the previous
method (again, the actual broadcast is verified at the end of the protocol).

SPDZ. In the SPDZ protocol (as in [DKL+13]), an authenticated secret share
consists of n additive shares on the secret and n MAC shares, so each party
stores two field elements. The preprocessing consists of one authenticated share
per input, and three per multiplication triple. In the online phase, each input
requires one party to broadcast a single value, for a communication cost of n−1
field elements. A multiplication consists of two openings, each of which requires
all parties to broadcast a share at a cost of 2n(n−1) messages using the protocol
described above.

25

In the output phase of SPDZ, first the shares are opened, then a random
linear combination of the MACs is checked, and finally all broadcasts must be
checked. The MAC and broadcast checking methods both have a communication
cost in O(n2).

BDOZ. In the BDOZ protocol, each party first obtains a fixed, global MAC key
αi. This is fixed for all shared values, so we ignore this cost. For each shared rep-
resentation [a], party Pi also stores the share ai, n local MAC keys βia1 , . . . , β

i
an

and n MAC values m1(ai), . . . ,mn(ai). Each of these are a single field element,
so we get a total storage cost of 2n+ 1 field elements per party for each authen-
ticated shared value.

If we assume an optimised version of the original protocol, so that all parties
open their shares ai using the SPDZ broadcast and then delay MAC checking
until the Output stage, then the online communication costs are essentially the
same as SPDZ.

IOZ. The IOZ online phase takes any semi-honest MPC protocol (with prepro-
cessing), and compiles it to a malicious protocol with identifiable abort, similarly
to the GMW paradigm [GMW87]. The compiled protocol has a preprocessing
phase that outputs the original semi-honest preprocessing data, authenticated
using IT signatures, as well as additional data for zero-knowledge proofs using
MPC-in-the-head, which are required for each round of the semi-honest protocol.
Using a semi-honest GMW protocol with multiplication triples as a base, the
preprocessing data already contains the same number of IT signatures as our
protocol, before taking into account the zero-knowledge proofs.

Each zero-knowledge proof requires storing m IT signatures as preprocessing,
where m is the number of parties in the MPC-in-the-head method. In [IOZ14],
they choose m = O(κ) for statistical security level κ, whereas [GMO16] use
m = 3, but require repeating the proof κ times to get negligible soundness error.
Since repeating the proof requires extra preprocessing for each repetition, we
obtain a very rough lower bound of storing κ signatures (or κ · n field elements)
per proof with either approach.

For the communication costs, we only take into account the cost for every
party to broadcast one proof, plus the (at least) two signatures that are broadcast
in the ΠSCP protocol of [IOZ14]. According to [GMO16, Sec. 4.2], the proof size
is at least 2 ·κ · log2(|F|), for a proof with soundness 2−κ, generously ignoring the
size of the circuit representing the NP-relation being proven and other constant
factors. If the IOZ version of MPC-in-the-head is used instead, each proof still
requires broadcasting t = O(κ) field elements in the Π1SCP protocol, so would
not have significantly better complexity.

Comparison of the Online Phases. The complexities in Table 1 for our
protocol can be derived from the analysis in Section 5.2. We have ignored stor-
age costs for the vj , αj parts of the verification keys, as these are independent

26

of the number of signatures. Our protocol is roughly a factor of n times worse
than SPDZ in terms of storage and communication cost, and has similar costs
to BDOZ, bar the requirement for two rounds of authenticated broadcast. Com-
pared with the IOZ protocol, we improve by at least a multiplicative factor in
the security parameter, as well as a greatly reduced number of broadcast rounds.

Protocol Prep. storage Online Comms. Rounds

Input Mult. Input Mult. Output

SPDZ 2 6 n− 1 4(n− 1) O(n2) O(D)
BDOZ 2n+ 1 6n+ 3 n− 1 4(n− 1) O(n2) O(D)
IOZ (at
least)

κn κn κ · bc(1) κn · bc(1) +
2n · bc(n)

κn · bc(1) +
2n · bc(n)

O(D · n)

Ours 2n+ 1 6n+ 3 bc(1) 2n(n− 1) n · bc(n+
2nM + 1)

O(D + n)

Table 1. Comparison of the storage and communication costs of the protocols, mea-
sured in number of field elements. N = nI + 2nM (where nI is number of inputs, nM
is number of multiplications), D is the multiplicative depth of the circuit, and κ is a
statistical security parameter.

7.1 Preprocessing Cost

For preprocessing, the main factor affecting computation and communication
costs in [DPSZ12,DKL+13] is the number of zero-knowledge proofs of correct
ciphertext generation that are required, so this is what we measure in our pro-
tocol.

The main cost of our preprocessing protocol, compared with [DPSZ12], is
to produce the signatures and verification keys for each shared value, instead
of MACs as in SPDZ. The Setup phase of our protocol (Fig. 11) generates
verification keys, whose size depends on the number of signatures. Ignoring any
costs independent of the number of signatures, this requires n calls to RandShCtxt
for each signature. Each RandShCtxt call requires n zero-knowledge proofs, and
since there are n signatures per shared value (one per share) this gives a total
of O(n3) zero-knowledge proofs per multiplication triple or input tuple. This
dominates the cost of creating the n signatures for each shared value, which is
in O(n2).

In contrast, SPDZ shared MAC values only require O(n) proofs each, so our
protocol requires O(n2) more proofs than SPDZ in the preprocessing phase. It
as an interesting problem to see if this can be reduced, although it seems that
with IT signatures a factor of at least O(n) is inherent, due to the signature size.

For comparison, note that the IOZ preprocessing transformation, which is
based on any protocol in the OT-hybrid model, uses a verifiable OT protocol

27

which broadcasts a message for every message of the OT protocol, adding an
O(n) overhead on top of the OT-hybrid protocol. When accounting for producing
the larger amount of preprocessing data needed for the online phase, this gives
an overall overhead of O(n2), the same as ours. However, it seems unlikely that
an OT-based protocol for FPrep could be much more efficient than using SHE,
mainly because the need for adaptive security in IOZ prevents the use of efficient
OT extensions [LZ13].

References

AJL+12. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low com-
munication, computation and interaction via threshold FHE. In Advances
in Cryptology – EUROCRYPT 2012, pages 483–501, 2012.

AL10. Yonatan Aumann and Yehuda Lindell. Security against covert adversaries:
Efficient protocols for realistic adversaries. J. Cryptology, 23(2):281–343,
2010.

BDOZ11. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Advances in
Cryptology - EUROCRYPT 2011, pages 169–188, 2011.

BDTZ16. Carsten Baum, Ivan Damg̊ard, Tomas Toft, and Rasmus Zakarias. Better
preprocessing for secure multiparty computation. In ACNS 2016. Springer,
2016.

Bea91. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Advances in Cryptology–CRYPTO 1991, pages 420–432. Springer, 1991.

BFKW09. Dan Boneh, David Mandell Freeman, Jonathan Katz, and Brent Waters.
Signing a linear subspace: Signature schemes for network coding. In Public
Key Cryptography - PKC 2009, pages 68–87, 2009.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In ITCS 2012, pages 309–
325, 2012.

BLOO11. Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov. 1/p-secure mul-
tiparty computation without honest majority and the best of both worlds.
In Advances in Cryptology - CRYPTO 2011, pages 277–296, 2011.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In FOCS 2001, pages 136–145, 2001.

CDD+99. Ronald Cramer, Ivan Damg̊ard, Stefan Dziembowski, Martin Hirt, and Tal
Rabin. Efficient multiparty computations secure against an adaptive ad-
versary. In Advances in Cryptology—EUROCRYPT’99, pages 311–326.
Springer, 1999.

CJL09. Denis Xavier Charles, Kamal Jain, and Kristin E. Lauter. Signatures for
network coding. IJICoT, 1(1):3–14, 2009.

CL14. Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery
in secure multiparty computation. In Advances in Cryptology–ASIACRYPT
2014, pages 466–485, 2014.

Cle86. Richard Cleve. Limits on the security of coin flips when half the processors
are faulty (extended abstract). In STOC 1986, pages 364–369, 1986.

28

CR91. David Chaum and Sandra Roijakkers. Unconditionally-secure digital sig-
natures. In Advances in Cryptology-CRYPT0’90, pages 206–214. Springer,
1991.

DKL+12. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Christian Miles, and
Nigel P. Smart. Implementing AES via an actively/covertly secure
dishonest-majority MPC protocol. In SCN, pages 241–263, 2012.

DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,
and Nigel P. Smart. Practical covertly secure MPC for dishonest majority
— or: Breaking the SPDZ limits. In ESORICS, pages 1–18, 2013.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Advances
in Cryptology – CRYPTO 2012, pages 643–662. Springer, 2012.

DS83. Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzan-
tine agreement. SIAM J. Comput., 12(4):656–666, 1983.

DZ13. Ivan Damg̊ard and Sarah Zakarias. Constant-overhead secure computation
of boolean circuits using preprocessing. In Theory of Cryptography – TCC
2013, pages 621–641. Springer, 2013.

GKKO07. Juan A. Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky.
Round complexity of authenticated broadcast with a dishonest majority.
In FOCS 2007, pages 658–668, 2007.

GL05. Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation
without agreement. J. Cryptology, 18(3):247–287, 2005.

GMO16. Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster
zero-knowledge for boolean circuits. In 25th USENIX Security Symposium
(USENIX Security 16), pages 1069–1083, 2016.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
STOC 1987, pages 218–229, 1987.

Gol01. Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Tech-
niques. Cambridge University Press, 2001.

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully
homomorphic signatures from standard lattices. In STOC 2015, pages 469–
477, 2015.

HR14. Martin Hirt and Pavel Raykov. Multi-valued byzantine broadcast: The t
< n case. In Advances in Cryptology–ASIACRYPT 2014, pages 448–465,
2014.

HSZI00. Goichiro Hanaoka, Junji Shikata, Yuliang Zheng, and Hideki Imai. Uncon-
ditionally secure digital signature schemes admitting transferability. In Ad-
vances in Cryptology—ASIACRYPT 2000, pages 130–142. Springer, 2000.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In STOC 2007, pages 21–
30, 2007.

IOS12. Yuval Ishai, Rafail Ostrovsky, and Hakan Seyalioglu. Identifying cheaters
without an honest majority. In Theory of Cryptography - TCC 2012, pages
21–38, 2012.

IOZ14. Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party compu-
tation with identifiable abort. In Advances in Cryptology–CRYPTO 2014,
pages 369–386. Springer, 2014.

LZ13. Yehuda Lindell and Hila Zarosim. On the feasibility of extending oblivious
transfer. In TCC 2013, pages 519–538, 2013.

29

PW92. Birgit Pfitzmann and Michael Waidner. Unconditional byzantine agreement
for any number of faulty processors. In STACS 92, pages 339–350, 1992.

Sey12. Hakan Ali-John Seyalioglu. Reducing Trust When Trust is Essential. PhD
thesis, University of California, Los Angeles, 2012. https://escholarship.
org/uc/item/7301296m.

SS11. Colleen M Swanson and Douglas R Stinson. Unconditionally secure signa-
ture schemes revisited. In Information Theoretic Security, pages 100–116.
Springer, 2011.

30

https://escholarship.org/uc/item/7301296m
https://escholarship.org/uc/item/7301296m

	Efficient Secure Multiparty Computation with Identifiable Abort

