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Abstract Garbled circuits (GC) are one of the main tools for secure
two-party computation. One of the most promising techniques for effi-
ciently achieving active-security in the context of GCs is the so called
cut-and-choose approach, and the main measure of efficiency in cut-and-
choose based protocols is the number of garbled circuits which need to
be constructed, exchanged and evaluated.
In this paper we investigate the following, natural question: how many
garbled circuits are needed to achieve active security?, and we show that
in the amortized setting (for large enough circuits and number of execu-
tions), it is possible to achieve active security while using only a constant
number of garbled circuits.

1 Introduction

Garbled circuits are one of the most widely used and promising tools for secure
two-party computation. Garbled circuits were introduced by Yao [Yao82] and
they were first implemented in Fairplay by Malkhi et al. [MNPS04].

The basic version of Yao’s protocol only guarantees security in the presence
of passive corruptions (i.e., when the adversary follows the protocol but might
try to learn more information from their view). From a very high level point
of view, since garbling schemes hide (to some extent) the circuit which is being
garbled, a malicious party can garble a different function from the one they are
supposed to without the honest party noticing it, therefore breaking the security
of the protocol. During the years many approaches have been proposed to con-
struct GC-based protocols with strong security guarantees against adversaries
who deviate arbitrarily from the protocol (i.e., malicious or active corruptions).
The main technique for achieving active security in the GC context is the so
called cut-and-choose approach: in a nutshell, cut-and-choose involves several
copies of the same circuit being garbled; afterwards, a random subset of the
garbled circuits are checked for correctness, while the rest are evaluated.

There are many different instantiations of the cut-and-choose approach: in
2007, Lindell and Pinkas [LP07] proposed a method which achieves security
2−κ by garbling approximately 3κ copies of the circuit. This was improved in
2013 in several works [Lin13, HKE13, Bra13] using the so called forge-and-lose
technique. In its most efficient instantiation [Lin13] this technique allows to



achieve security 2−κ using only κ garbled circuits (by adding a “small” actively
secure computation).

A different approach was taken by Nielsen and Orlandi in 2009 [NO09]. Using
“LEGO style” cut-and-choose the overhead decreases logarithmically with the
size of the circuit f i.e., it is possible to get security 2−κ using a replication
factor of O(κ/ log |f |). While the original LEGO approach required to perform
exponentiations for each gate in the circuit, subsequent work [FJN+13,FJNT15]
got rid of this limitation and only uses generic assumptions. A variant of the
LEGO approach has proven itself particularly useful in the amortized setting
i.e., when the two parties are evaluating the same circuit f multiple times (say
`) on different inputs. In this case the amortized overhead to get security 2−κ

is O(κ/ log `) [LR14, HKK+14], and experimental validation achieves “blazing
fast” results [LR15].

To summarize, while advanced styles of cut-and-choose techniques have shown
that one can achieve practically-efficient actively-secure two-party computation
in the amortized setting, in all of the above approaches the number of garbled
circuits grows linearly with the security parameter. It is natural to ask whether
this is an inherent limitation or whether it is possible to achieve actively-secure
two-party computation based on garbled circuits with constant overhead.

1.1 Our Contribution

Before stating our contributions, it is important to clarify the question we are
asking as much as possible: it is of course possible to achieve active security using
a single garbled circuit and using the GMW compiler [GMW87] (i.e., proving in
zero-knowledge that the circuit is well-formed). This is not a satisfactory solution
since it is not black-box in the underlying garbling scheme and, therefore, does not
preserve the efficiency of Yao’s protocol. Jarecki and Shmatikov [JS07] proposed
an instantiation of this paradigm using a specific number theoretic assumption
(Pailler’s cryptosystem [Pai99]): thanks to the algebraic nature of the underlying
cryptosystem, the extra zero-knowledge proofs only add a constant overhead. We
do not consider this solution satisfying either, since one of the strengths of Yao’s
protocol (both in terms of security and efficiency) is that it only requires to
perform symmetric key operations per gate in the circuit. Therefore, we are only
interested in solutions that can be instantiated using any projective garbling
scheme in a black-box way. We are now ready to ask our question:

Can we achieve actively-secure two-party computation protocols in the
amortized setting with only a constant overhead over Yao’s protocol?

We answer the question positively: let p(κ) be an upper bound on the cost
of generating, evaluating or checking a garbled gate1, and let A(κ) be a fixed
function (this term describes the cost of performing some “small” fixed actively

1 In all known instantiations of garbled circuits generating a gate is the most expensive
operation, requiring at most 4 calls to a PRF. Evaluating typically requires fewer
calls while checking is equivalent to garbling.



secure computation and is independent of the circuit size and the number of
executions). Then the amortized complexity of our protocol (for large enough
circuits and number of executions) is bounded by:

O(1) · |f | · p(κ) +A(κ) (1)

i.e., only a constant overhead over Yao’s passive protocol and an additive factor
independent of |f |.

1.2 Technical Overview

We give here a high level description of our techniques. We have two parties,
Alice and Bob, respectively with inputs {xAi , xBi }i∈[`]. At the end both parties
should learn yi = f(xAi , x

B
i ) for all i ∈ [`]. (We will assume that both |f | and `

are large, and that ` ≥ |f |).
Our protocol proceeds in five stages: in the first stage we let the parties

commit to a key and exchange their inputs in an encrypted format (using a
symmetric encryption scheme). In this way the inputs to all computations are
well-defined already from this stage. We then let both parties garble (1 + ε)`
copies of the circuit (for some constant ε ≤ 1) and, using cut-and-choose, verify
that ε` of them are correct: this guarantees that even if one of the two parties
has been actively corrupted, there are at most O(κ) incorrect circuits among
the unopened ones except with (negligible) probability 2−κ. We then proceed
to evaluate these circuits in both directions (as in the dual-execution protocol
of Franklin and Mohassel [MF06]). Remember that Yao’s protocol is “almost”
actively secure against corrupt evaluators, which means that at this stage the
corrupt party learns the correct output of the function (together with unforge-
able output labels) in all positions, while the honest party learns outputs (with
corresponding output labels) in at least `− O(κ) positions.2 For the remaining
O(κ) positions the honest party might receive an incorrect output or no output
at all. Therefore in the next stage, which we call the filling-in stage, we allow each
party to ask for at most O(κ) re-computations using an actively secure protocol
(without disclosing in which positions), and we enforce that the computation is
performed on the same inputs (remember that the inputs are provided in en-
crypted format). This computation also outputs MACs on the new results. Note
that the malicious party cannot gain anything in this stage, since the corrupt
party has already learned the correct output, and learning it once more does not
leak any extra information. After this stage we are ensured that both parties
have ` candidate outputs together with unforgeable certificates of their authen-
ticity (either the output labels from the garbled circuits or the MACs from the
do-overs). But still it might be that some of the outputs received by the honest
party are incorrect and, therefore, different from the one received by the cor-
rupt party. In the final stage of the protocol we run a kind of forge-and-lose

2 As we cannot guarantee fairness nor termination in the two-party setting, the ad-
versary can of course abort the protocol at this stage and prevent the honest party
from learning any output at all.



sub-protocol, where both parties input all the received outputs to an actively
secure computation. The computation finds the first position in which the out-
puts differ and recomputes the function for that index. Since the parties cannot
lie about their outputs at this point (due to the unforgeable certificates), there
is at most one party with the incorrect output, and that party is the honest one.
Therefore, the other party must have cheated by garbling an incorrect circuit.
To “punish” this party, we release the secret key of the malicious party to the
honest party. (Crucially, the malicious party does not learn whether they have
been caught or not, since this would open the door for selective-failure attacks).
This allows the honest party to decrypt all the encrypted inputs and compute
all the correct results “in the clear”.

To recap, here are the 5 stages of the protocol:

1. (encrypted input) Both parties exchange inputs. This is done by using a
committed OT using some symmetric keys (σA, σB) ∈ {0, 1}O(κ) as choice
bits and then exchanging encrypted inputs

XA
i = E(σA, x

A
i ) and XB

i = E(σB , x
B
i )

2. (cut-and-choose) both parties garble (1 + ε)` circuits which compute

(σA, XA, σB , XB) 7→ f(D(σA, XA), D(σB , XB))

and do cut-and-choose by checking ε` circuits each.
3. (dual execution) The parties evaluate each of the ` remaining circuits. Thanks

to cut-and-choose, at most O(κ) circuits are incorrect, which in particular
means there are at most O(κ) positions in which the honest party did not
receive an output.

4. (filling-in) The parties run an actively secure protocol which recomputes the
function in at most O(κ) positions. Using Merkle-trees based commitments
we can make sure that a) the functions are recomputed on the same inputs
as before and that b) the input to this protocol (and its complexity) does not
grow linearly with `. This protocol also outputs MACs for the recomputed
values;

5. (forge-and-lose) At this point both parties have ` outputs, but if one party
is dishonest some of the outputs might still be different. So now the parties
run an actively secure protocol which a) finds the first position where the
outputs are different and b) recomputes the function in that position, finds
out which party cheated, and reveals the secret key of the corrupt party to
the honest party, which can therefore decrypt all inputs and recompute the
function in the clear. Since MACs are used, a corrupt party cannot input a
wrong output (which would make the honest party to look corrupt).

Stage 1 can be seen as a kind of committed oblivious transfer combined with
an oblivious transfer extension, where we start with a “small” committed OT
functionality for O(κ) pair of messages which are then used to provide very long
inputs to a garbled circuit based computation: if a(κ) is the cost of evaluating a



gate with an actively secure protocol and q1(κ) is some function describing the
complexity of the circuit computing O(κ) committed OTs on messages of length
O(κ), then the complexity of this stage is q1(κ)a(κ). If we set e.g., ε := 1/4 then
the total complexity of Stage 2 and 3 is bounded by 5`(|f | + q2(κ))p(κ), where
q2 represents the complexity of the decryption circuit D. Then, the complexity
of Stage 4 is bounded by ψκ(|f | + q3(κ, log `))a(κ) where q3 is the complexity
of verifying the Merkle-tree commitment and computing a MAC, and ψ :=
log1+ε(2) is a constant picked to guarantee that the probability that there are
more than ψκ bad circuits among the unchecked ones is less than 2−κ. Finally
the complexity of Stage 5 is (`q4(κ) + |f |)a(κ) where the q4 factor represents the
complexity of verifying the certificates. Since a(κ) > p(κ) the total cost of the
protocol is bounded by:

5`|f |p(κ) + (|f |+ `)A(κ)

where A(κ) collects all the terms which are independent of the circuit size or the
number of computations. Now, when amortizing over ` executions, and assuming
that ` is at least as large as |f |, we achieve the desired amortized complexity
stated earlier in (1).

We can actually quantify the constant overhead over Yao’s protocol even
more precisely, by looking at the actual cost (in PRF calls) for garbling (or
checking) vs. evaluating a gate in some of the most common garbling schemes
(i.e., instead of upper bounding it with p). Let g be the number of calls to a PRF
(encryptions) performed during garbling/checking a gate and e be the number
of calls to a PRF (decryptions) performed during the evaluation of a gate. Then
(g+ e) is the exact computational cost (per gate) in the passive version of Yao’s
protocol. In our protocol the exact cost is (2 + 4ε)g + 2e. In Yao’s original
garbling (g, e) = (4, 4), in point-and-permute [BMR90] (g, e) = (4, 1) and finally
in the half-gate construction [ZRE15] (g, e) = (4, 2) which means that when
using ε = 1/4 then the concrete overhead over Yao’s passive protocol is between
2.5 and 2.8.3

We conclude by stressing that this work is of theoretical nature and therefore
we have made no attempts in optimizing the concrete efficiency of any of the
steps. On the contrary, since our protocol is already quite complex and involves
several stages we have chosen at each turn simplicity of presentation over (con-
crete) efficiency. We leave it as an interesting open direction for future work to
investigate whether the approach proposed in this paper might lead to practical
efficiency.

2 Preliminaries and Notation

We review here the standard tools which are used in our protocol and their
syntax.

3 Decreasing ε reduces this overhead but increases the number of potentially unchecked
bad circuits, therefore increasing the number of necessary do-overs in Stage 3.



Commitments. We use a computationally binding and computationally hiding
commitment scheme Com with commitment key ck ← CGen(1κ), and we use
an informative but slightly abusive notation: we write 〈x〉 ← Comck(x, open(x))
where 〈x〉 is a commitment to the value x using randomness open(x). In the
proof we need the commitment to be extractable i.e., we need the simulator to
be able to compute x ← Ext(td, 〈x〉) using some trapdoor td associated to the
commitment key ck.

Merkle-tree Commitments. We use Merkle-tree based commitments with the
following interface: Given a string of elements from some alphabet x ∈ Σn it
is possible to compute a short commitment by running root ← MT.C(1κ,x).
It is possible to construct a proof for a give position j ∈ [`] by computing
π ← MT.P(x, j) and the proof can be verified running b ← MT.V(root, j, x′, π)
with b ∈ {>,⊥}. We want that b = > when the prover is honest and x′ = xj (i.e.,
correctness), that the proof is short i.e., |π| = O(κ log `) (compactness) and that
no PPT adversary can produce a tuple (root, j, x, x′, π, π′) such that x 6= x′ and
MT.V(root, j, x, π) = MT.V(root, j, x′, π′) = > (computational binding). (We do
not need these commitments to be hiding, since they are only used to reduce the
input size of the ideal functionality in the filling-in stage of the protocol).

Symmetric Encryption. We use an IND-CPA symmetric encryption scheme
(SE.E,SE.D) with key σ ∈ {0, 1}8κ. We use lower-case letters for plaintexts and
upper-case letters for ciphertexts, so X ← SE.E(σ, x) and x ← SE.D(σ,X). We
need the encryption scheme to be secure even if κ bits of the secret key leak
to the adversary (to counteract standard selective-failure attacks during the OT
phase). This is done in the following way: we start by generating a uniformly
random κ bit key σ′, which is then encoded into a 8κ bit long key σ using
the (randomized) encoding scheme (enc, dec) of Lindell and Pinkas [LP07] i.e.,
we compute σ ← enc(σ′, r) with some randomness r. Now given any encryp-
tion scheme E′, D′ which is IND-CPA secure using a κ-bit long key, we define
SE.E,SE.D to be SE.E(σ,m) = E′(dec(σ),m) and SE.D(σ, c) = D′(dec(σ),m).

MAC Scheme. We use an unforgeable message authentication code (MAC)
(MAC.Tag,MAC.Ver) with key τ ∈ {0, 1}κ and the following interface: one can
compute a tag on a message x by computing t← MAC.Tag(τ, x) and the tag can
be verified running MAC.Ver(t, τ, x) ∈ {⊥,>}.

Oblivious Transfer. We use the following notation for transforming a random
OT on short, random messages (of length κ) into an OT on chosen messages
of any lengths (using the same choice bits): we start with the sender knowing
sen = {r0, r1} (a pair of random strings in {0, 1}κ) and the receiver knowing
rec = {σ, rσ} (with σ ∈ {0, 1}). Then we write

traj ← OTTransfer(sen, j, {m0,m1})
for the process of encrypting the pair of messages {m0,m1} using keys r0, r1
respectively (using an IND-CPA symmetric encryption scheme) and

mσ ← OTRetrieve(rec, j, traj)



for the process of recovering mσ,j from traj . To ease the notation, we also allow
a “vector” version of these OT commands i.e., if e = {mi,0,mi,1}i∈[n] is a vector
of n pairs of messages and σ ∈ {0, 1}n is a vector of n bits then we write rec =
{σi, ri,σi}i∈[n], sen = {ri,0, ri,1}i∈[n] for the information known to the receiver
and sender respectively, traj ← OTTransfer(sen, j, e) for the process of encrypt-
ing each pair of messages and finally M ← OTRetrieve(rec, j, traj) with M =
{mi,σi

}i∈[n]. (In the proof of security we also use e← OTRetrieve(sen, j, traj) to
denote the process of recovering all pairs of messages using the keys known to
the sender).

Garbled Circuits. We use the generalization of the notation introduced by Bellare
et al. [BHR12] already used in [JKO13,FNO15]: a garbling scheme is a tuple of
algorithms

(GC.Gb,GC.Ev,GC.En,GC.De,GC.Ve)

where:

– (f̂ , e, d) ← GC.Gb(f ; r) generates a garbled version f̂ of the circuit f :
{0, 1}n → {0, 1}n which has n input bits and n output bits. We make ex-
plicit the randomness r used to garble since it will be used in the verification
process. The GC.Gb function outputs the garbled version of the function f̂ ,
the encoding tables e and the decoding tables for the output wires d;

– x̂← GC.En(e, x) outputs an encoding of x.

– ẑ ← GC.Ev(f̂ , x̂) outputs an encoded version of the output;
– z′ ← GC.De(d, ẑ) outputs the plaintext version of an encoded value ẑ (or ⊥

for an invalid encoding);

– b← GC.Ve(f, r, f̂ , e, d) allows to verify if a given garbled circuit was garbled
correctly and outputs b ∈ {>,⊥};

As usual we need the garbling scheme to be projective – i.e., both (e, d) are
vectors of pairs of strings – to be compatible with Yao’s protocol. We need the
garbling scheme to satisfy privacy and authenticity as defined in [BHR12]. We
need the garbling scheme to be verifiable in the standard sense i.e., that an
adversary cannot “open” a garbling f̂ to any function different than f .

Definition 1 (Correctness). We say that a garbling scheme enjoys correct-
ness if for all n = poly(κ), f : {0, 1}n → {0, 1}n and all inputs x ∈ {0, 1}n:

Pr
(
f(x) 6= GC.De(d,GC.Ev(f̂ ,GC.En(e, x))) : (f̂ , e, d)← GC.Gb(1κ, f)

)
= 0

(the probability is taken over the random coins of all algorithms).

Definition 2 (Privacy). We say that a garbling scheme enjoys privacy if there
exists a PPT simulator S such that the two following distributions are computa-
tionally indistinguishable:

{(f̂ ,GC.En(e, x), d) : (f̂ , e, d)← GC.Gb(1κ, f)}x ≈ {S(1κ, f, f(x))}x

for all f, x.



Definition 3 (Authenticity). We say that a garbling scheme enjoys authen-
ticity if for all PPT A, for all f, x ∈ {0, 1}n

Pr

GC.De(d, z∗) 6= ⊥ ∧ z∗ 6= GC.Ev(f̂ , x̂) :
(f̂ , e, d)← GC.Gb(1κ, f),

x̂← GC.En(e, x),

z∗ ← A(f̂ , x̂)


is negligible in κ.

Definition 4 (Circuit Verifiability). We say a garbling scheme enjoys circuit
verifiability if for all PPT A:

Pr (GC.Gb(f0; r0) = GC.Gb(f1; r1) : (f0, r0, f1, r1)← A(1κ), f0 6= f1)

is negligible in κ.

Input Verification. We also enhance the garbling scheme with two algorithms
(GC.TkG,GC.TkV). The algorithm GC.TkG allows to generate some “tokens” tk
from the input labels e. These tokens can be used with the GC.TkV algorithm
to check whether an encoding of an input x̂ is correct without leaking any in-
formation about the input x itself. In a nutshell, we construct this from any
projective garbling scheme in the following way: let e = (K0,K1) be the en-
coding information of the original garbling scheme (for simplicity we assume a
single input bit). Then we flip a random bit r and let tk = (〈Kr〉, 〈K1−r〉) and
e′ = ((K0, open(K0)), (K1, open(K1))) that is, we extend the input labels with
some randomness and we compute two commitments, and permute them in a
random order. Now given an encoding of an input x̂ ← GC.En(e′, x) (using the
extended labels i.e., x̂ = (Kx, open(Kx))) it is possible to verify whether this is
a correct encoding by running GC.TkV(tk, x̂) ∈ {>,⊥}. The algorithm simply
parses x̂ = (K∗, open(K∗)), computes 〈K∗〉 = Comck(K∗, open(K∗)) and checks
if 〈K∗〉 ∈ tk. These tokens satisfy the following properties: 1) adding the tokens
does not break the privacy property of the garbling scheme, and 2) if a (possibly
malicious) encoding of an input passes the verification against the tokens, then
evaluating a (honestly generated) garbled circuit on this input encoding will give
an output different than ⊥.

Token Generation: Given any projective garbling scheme i.e., one where e =
{(Ki

0,K
i
1)}i∈[n], we construct a new garbling scheme with verifiable input in

the following way: First we define the new encoding information e′ to be

e′ = {(Ki
0, open(Ki

0)), (Ki
1, open(Ki

1))}i∈[n]

and then we compute tokens tk ← GC.TkG(e′) by sampling random bits
r1, . . . , rn and outputting

tk = {〈Ki
ri〉, 〈K

i
1−ri〉}i∈[n]

With 〈Ki
b〉 = Comck(Ki

b, open(Ki
b)) for all b ∈ {0, 1}, i ∈ [n].



Input Verification: b← GC.TkV(tk, x̂) is a deterministic algorithm that parses

x̂ = {Ki, open(Ki)}i∈[n]

computes 〈Ki〉 = Comck(Ki, open(Ki)), and outputs ⊥ if there exists an i
such that 〈Ki〉 6∈ tk.

We define the following properties:

Definition 5 (Token Privacy). We say that a garbling scheme enjoys token
privacy if there exists a PPT simulator S such that the two following distributions
are computationally indistinguishable:{

(f̂ ,GC.En(e, x), d, tk) :
(f̂ , e, d)← GC.Gb(1κ, f),

tk← GC.TkG(e)

}
x

≈ {S(1κ, f, f(x))}x

Definition 6 (Input Verifiability). We say that a garbling scheme enjoys
input verifiability if for all PPT A the following probability

Pr

GC.De(d,GC.Ev(f̂ , x̂∗)) = ⊥ ∧ GC.TkV(tk, x̂∗) = > :
(f̂ , e, d)← GC.Gb(1κ, f),

tk← GC.TkG(e),

x̂∗ ← A(1κ, f̂ , e),


is negligible in κ.

The proof that our construction satisfies the above requirements is straight-
forward.

Lemma 1. Any projective garbling scheme can be enhanced to achieve token
privacy and input verifiability using computationally hiding and computationally
binding commitments as described above.

Proof. For token privacy, we simply run the simulator guaranteed by the privacy
property of the underlying garbling scheme. In addition, our simulator needs to
output tk, a vector of pair of commitments. The simulator does so by parsing the
encoded input x̂ (provided by the privacy simulator) into x̂ = {Ki}i∈[n], chooses
random values open(Ki), computes commitments 〈Ki〉 = Comck(Ki, open(Ki)).
The simulator also constructs n commitments 〈0〉 (using independent random-
ness), and constructs tk as n pairs of commitments, where each pair is (〈Ki〉, 〈0〉)
if ri = 0 or (〈0〉, 〈Ki〉) otherwise. Any adversary that can distinguish between
the two distributions in the token privacy property can be trivially reduced to
an adversary for either the computationally hiding property of the commitment
scheme or the privacy property of the underlying garbling scheme.

For the input verifiability property, let x̂∗ = {Ki, open(Ki)}i∈[n] be the out-
put of the adversary and let e = {(Ki

0, open(Ki
0)), (Ki

1, open(Ki
1)))}i∈[n]. Now if

GC.TkV(tk, x̂∗) = >, it must be the case that Ki = Ki
b for some b or the ad-

versary can be used to break the binding property of the commitment scheme.
But then, the property follows from the correctness of the underlying garbling
scheme.



Sub-functionalities. In some stages of our protocol we let the parties run any
actively-secure two-party computation protocol to implement a desired function-
ality. In the protocol description we only describe what the functionality should
do and not how the functionality is implemented (in the proof we will make
use of the UC composition theorem [Can01] to replace these subprotocols with
hybrid functionalities under the control of the simulator). In particular we de-
scribe the private input of both parties, the private output of each party and the
computation performed by the functionality. We also describe the public input
of some functionalities. These are values which are defined previously in the pro-
tocol which can be imagined as values which are given as input by both parties
(and the functionality aborts if they are different).

3 Our Protocol

We are now ready to present our protocol, which we like to call cross-and-clean4.
As our protocol is quite complex, we split its presentation in five stages, which
are described in Figures 1, 2, 3, 4 and 5 respectively.

We have already (in the introduction) argued that the efficiency of the pro-
tocol is as desired. So it is now only left to prove that the protocol is secure:

Theorem 1. The protocol described in Figures 1, 2, 3, 4 and 5 securely evalu-
ates ` copies of f in the presence of active adversaries.

Proof. Thanks to the UC composition theorem [Can01] it is sufficient to prove
security of the protocol where we replace all actively secure subprotocols in the
protocol (the committed OT, coin-flip, filling-in and forge-and-lose subprotocols
respectively in Stage 1, 2, 4, 5) with ideal functionalities controlled by the simu-
lator (in order to prove our theorem is enough to know that protocols for these
functionalities exist [CLOS02] and we have measured their complexity in terms
of the size of the functionalities that they implement). Since the protocol is com-
pletely symmetric for A and B, we will assume in the proof that A is corrupt
and B is honest. Note that, since we prove the security of the protocol in the
standard simulation-based indistinguishability between the real world and the
ideal world, we must prove correctness and privacy at the same time – not as
separate properties. Note also that, for the sake of presentation, our proof ne-
glects many of the technicalities of the UC-framework [Can01] (such as delayed
delivery of messages) but that our simulation strategy is straight-line.

As usual we make a proof by hybrids. We describe the simulator strategy
along the way, by making progressive changes from the real protocol towards
the simulator strategy, arguing for indistinguishability after every change. We
describe the final simulator strategy in Figure 6.

4 Cross since the parties send garbled circuits to each other in the dual-execution
phase, and clean since the subsequent stages “clean-up” the potential discrepancies
between the outputs of the two parties.



Stage 1: Providing Inputs:
1. A, B run an actively UC-secure protocol which implements the following func-

tionality:

Input: none.
Computation: The functionality runs the following code:

1. Generate commitment keys ckA ← CGen(1κ), ckB ← CGen(1κ);
2. Sample random σA, σB ∈ {0, 1}8κ;
3. Compute 〈σA〉 ← ComckA(σA, open(σA));
4. Compute 〈σB〉 ← ComckB (σB , open(σB));
5. Sample random senA = {rA0,i, rA0,i}i∈[8k] with each rAb,i ∈ {0, 1}κ;
6. Sample random senB = {rB0,i, rB0,i}i∈[8k] with each rBb,i ∈ {0, 1}κ;
7. Define recB = {σA[i], rAσA[i],i}i∈[8k];
8. Define recA = {σB [i], rBσB [i],i}i∈[8k];

A’s output: The functionality sends as private output to A:
1. σA, open(σA), 〈σB〉;
2. senA, recA;

B’s output: The functionality sends as private output to B:
1. σB , open(σB), 〈σA〉;
2. senB , recB ;

2. For all i ∈ [`]: A sends XA
i = SE.E(σA, xAi ) to B;

3. For all i ∈ [`]: B sends XB
i = SE.E(σB , xBi ) to A;

Figure 1. Stage 1: Providing Inputs

Hybrid 0. We start in dream version of the simulation, where we assume the
simulator is given the real inputs xBi of the honest party B. Here the simulator
simulates simply by running the real protocol with the adversary controlling A
and the simulator running B and the hybrid ideal functionalities. If B aborts in
the protocol before receiving encrypted inputs from A, instruct the ideal func-
tionality to abort on behalf of the corrupted A. Otherwise the simulator extracts
{xAi ← SE.D(σA, XA

i )}i∈[`] and input these values to the ideal functionality. This
allows the simulator to learn all the real outputs {yi}i∈[`]. If B aborts in the pro-
tocol after receiving encrypted inputs, instruct the ideal functionality to abort
on behalf of the corrupted A. Otherwise, let {y′i}i∈[`] be the outputs of the proto-
col. If {yi}i∈[`] 6= {y′i}i∈[`], the simulator aborts the simulation. Clearly this first
hybrid is perfectly indistinguishable from the real protocol execution as long as
{yi}i∈[`] = {y′i}i∈[`]. Therefore hybrid 0 is computational indistinguishable from
the real protocol execution if the protocol has correctness except with negligible
probability. We argue correctness of this at the end of the proof.

Hybrid 1. Here we change the inner working of the committed OT functionality
(Stage 1): from now on the simulator sends A a commitment to 0 instead of σB .



Stage 2: Cut-n-Choose:
1. A garbles (1 + ε)` times (with independent randomness)a:

(f̂Ai , e
A
i , d

A
i )← GC.Gb(fAi ; rAi )

where fAi is the circuit that computes

(σA, XA
i , σ

B , XB
i ) 7→ f(SE.D(σA, XA

i ), SE.D(σB , XB
i ))

2. A computes tkAi ← GC.TkG(eAi ) and 〈dAi 〉 ← ComckA(dAi , open(dAi ));
3. A sends (f̂Ai , tk

A
i , 〈dAi 〉) to B;

4. A,B perform an actively UC-secure coin flip to determine a random subset

CC ⊂ {1, . . . , (1 + ε)`}

of size ε` of circuits to be checked;
5. A sends (rAi , e

A
i , d

A
i , open(dAi )) to B;

6. B aborts if

∃i ∈ CC :
GC.Ve(fAi , e

A
i , d

A
i , r

A
i , f̂

A
i ) = ⊥ or

tkAi 6= GC.TkG(eAi ) or
〈dAi 〉 6= ComckA(dAi , open(dAi ))

7. A and B re-index the unopened circuits 1, . . . , `.b

8. A,B repeat with reversed roles;

a For the sake of notation, we implicitly assume that ε` is an integer.
b This is simply done to simplify the notation of the upcoming stages.

Figure 2. Stage 2: Cut-n-Choose

Any adversary that can distinguish after this change can be used to break the
computationally hiding property of the commitment scheme.

Hybrid 2. Here we replace the commitment sent to A in Stage 4 (filling in phase)
to be a commitment to 0 instead of the MAC key τB . Any adversary that can
distinguish after this change can be used to break the hiding property of the
commitment.

Hybrid 3. Here we replace the abort condition (Step 1.a) in the functionalities
for filling-in in Stage 4. Let σA be the values received by A from the committed
OT functionality in Stage 1 and σ∗ be the values input by A to the filling-
in functionality in Stage 4. From now on we always abort if σ∗ 6= σA (even
if what A inputs is a valid opening of the commitment 〈σA〉). Any adversary
that can distinguish after this change can be used to break the computationally
binding property of the commitment scheme. (Note that from now on we have
the guarantee that the output of filling-in to the honest party B can only be the
real output yi.)



Stage 3: Run Computation i:
1. A computes encoded versions of the inputs X̂A

i , X̂
B
i , σ̂

A
i i.e.,

(a) X̂A
i ← GC.En(eAi , X

A
i ),

(b) X̂B
i ← GC.En(eAi , X

B
i ),

(c) σ̂Ai ← GC.En(eAi , σ
A),

and sends them to B;
2. A runs traAi ← OTTransfer(senA, i, eAi ) and sends traAi to B;
3. B runs σ̂Bi ← OTRetrieve(recB , i, traAi );
4. B aborts if GC.TkV(tkAi , (σ̂

A
i , X̂

A
i , σ̂

B
i , X̂

B
i )) = ⊥;

5. B evaluates ŷBi = GC.Ev(f̂Ai , X̂
A
i , X̂

B
i , σ̂

A
i , σ̂

B
i );

6. B computes 〈ŷBi 〉 ← ComckB (ŷBi , open(ŷBi ))
7. B sends 〈ŷBi 〉 to A;
8. A sends dAi , open(dAi ) to B; B aborts if Comck(dAi , open(dAi )) 6= 〈dAi 〉
9. Bob computes yBi ← GC.De(dAi , ŷ

B
i );

10. If yBi = ⊥ add i to IB ;
11. If |IB | > ψκ, then abort the protocol.
12. A,B repeat with reversed roles;

Figure 3. Stage 3: Run Computation i

Hybrid 4. Here we replace the abort condition (Step 1.a and 1.c in Compu-
tation) of the functionality for forge-and-lose in Stage 5 in a similar way as
in the previous hybrid, namely: let σ∗, τ∗ be the keys input by A, then in this
hybrid we abort if σA 6= σ∗ or τA 6= τ∗ (even if A inputs proper commitment
openings). An adversary distinguishing after this change can again be used to
break the computationally binding property of the commitment scheme.

Hybrid 5. Here we replace the last abort condition (Step 1.c) in the functionality
for filling-in in Stage 4. For each i ∈ IA let V ∗i be the value input by A to
this computation. From now on we always abort if V ∗i 6= Vi (even if the MT.V
algorithm accepts the proof πi). An adversary distinguishing after this change
can be used to break the computationally binding property of the Merkle-tree
commitment. (Note that at this point, by definition, the output of filling-in to
A cannot be different from yi).

Hybrid 6. Here we change the distribution of traBi (the value sent from B to
A in Step 2 of Stage 3): instead of computing traBi = OTTransfer(senB , i, eBi ),
we compute traBi = OTTransfer(senB , i, e∗i ) where e∗i = {Ki

0,K
i
1} is defined as

follows: let σ̂Ai ← GC.En(eBi , σ
A) and parse σ̂Ai = {Ki}, then we set

Ki
σA[i] = Ki and Ki

1−σA[i] = 0 .

That is, we set all labels not corresponding to the bits of σA to 0. Since A only
has access to the keys recA corresponding to the bits of σA, we can use an ad-
versary that distinguishes after this change to break the IND-CPA of underlying
symmetric encryption scheme.



Stage 4: Actively Secure Filling-in:
1. Define Vi = (XA

i , X
B
i ). Both A and B compute root = MT.C(V1, . . . , V`);

2. Run an actively UC-secure protocol which implements the following function-
ality:

Public Input: The functionality takes public inputs root, 〈σA〉, 〈σB〉.
A’s input The functionality takes as private input from A:

1. σA, open(σA),
2. the set IA with |IA| ≤ ψκ and
3. (Vi, πi ← MT.P((V1, . . . , V`), i) for all i ∈ IA.

B’s input The functionality takes as private input from B:
1. σB , open(σB),
2. the set IB with |IB | ≤ ψκ and
3. (Vi, πi ← MT.P((V1, . . . , V`), i) for all i ∈ IB .

Computation: The functionality runs the following code:
1. Abort if any of the following is true:

(a) 〈σA〉 6= ComckA(σA, open(σA)),
(b) 〈σB〉 6= ComckB (σB , open(σB)),
(c) ∃i : IA ∪ IB : MT.V(root, i, Vi, πi) = ⊥;

2. If all checks pass
(a) Sample random τA, τB ∈ {0, 1}κ;
(b) Compute 〈τA〉 ← ComckA(τA, open(τA));
(c) Compute 〈τB〉 ← ComckB (τB , open(τB));

3. For all i ∈ IA ∪ IB :
(a) Parse Vi = (XA

i , X
B
i ) and compute

(b) xAi ← Dec(σA, XA
i );

(c) xBi ← Dec(σB , XB
i );

(d) yi = f(xAi , x
B
i );

(e) tAi = MAC.Tag(τB , yi) if i ∈ IA or tBi = MAC.Tag(τA, yi) otherwise;
A’s output: The functionality sends as private output to A:

1. τA, open(τA), 〈τB〉;
2. For all i ∈ IA : (yAi , t

A
i )

B’s output: The functionality sends as private output to B:
1. τB , open(τB), 〈τA〉;
2. For all i ∈ IB : (yBi , t

B
i );

Figure 4. Stage 4: Actively Secure Filling-in

Hybrid 7. Here we change the distribution of the garbled circuits and garbled
inputs sent to A during Stage 2 and 3 for all i 6∈ CC (since the simulator is
controlling the coin flip functionality, this set is known to the simulator from the
beginning), by running the simulator (which is guaranteed to exist thanks to the
token privacy property of the garbling scheme on input the function f and the
output yi. (Token privacy is defined in Definition 5.) The simulator provides us

with garbled versions of all inputs including σ̂Ai , as well as tkBi , dBi and f̂Bi which
can now replace the values sent to A in Step 3 of Stage 2 and Steps 1, 2 and 8 of



Stage 5: Forge-and-Lose:
1. A defines tAi = ⊥ for all i 6∈ IA;
2. B defines tBi = ⊥ for all i 6∈ IB ;
3. A and B run an actively UC-secure protocol which implements the following

functionality:

Public Input:
1. 〈σA〉, 〈σB〉, 〈τA〉, 〈τB〉
2. for all i ∈ [`] : (dAi , d

B
i , X

A
i , X

B
i , 〈ŷAi 〉, 〈ŷBi 〉);

A’s input The functionality takes as private input from A:
1. σA, open(σA),
2. τA, open(τA);
3. For all i ∈ [`] : (yAi , ŷ

A
i , open(ŷAi ), tAi );

B’s input The functionality takes as private input from B:
1. σB , open(σB),
2. τB , open(τB);
3. For all i ∈ [`] : (yBi , ŷ

B
i , open(ŷBi ), tBi );

Computation: The functionality:
1. Abort if any of the following is true:

(a) 〈σA〉 6= ComckA(σA, open(σA)),
(b) 〈σB〉 6= ComckB (σB , open(σB)),
(c) 〈τA〉 6= ComckA(τA, open(τA)),
(d) 〈τB〉 6= ComckB (τB , open(τB)),
(e) ∃i : 〈ŷAi 〉 6= ComckA(ŷAi , open(ŷAi )),
(f) ∃i : 〈ŷBi 〉 6= ComckB (ŷBi , open(ŷBi )),
(g) ∃i : yBi 6= GC.De(dAi , ŷ

B
i ) ∧MAC.Ver(tBi , τ

A, yBi ) = ⊥;
(h) ∃i : yAi 6= GC.De(dBi , ŷ

A
i ) ∧MAC.Ver(tAi , τ

B , yAi ) = ⊥;
2. If all checks pass

(a) Find i : yAi 6= yBi ;
(b) If no such i exists conclude that “no-one cheated”;
(c) Else compute yi = f(xAi , x

B
i );

(d) Conclude that “Alice cheated” if: yBi 6= yi;
(e) Conclude that “Bob cheated” if: yAi 6= yi;

Output: If
1. “Alice cheated” : A receives ⊥, B receives σA;
2. “Bob cheated” : A receives σB , B receives ⊥;
3. else (“No-one cheated”): A receives ⊥, B receives ⊥;

4. If A (resp. B) receives an output σB 6= ⊥, A computes xBi ← SE.D(σB , XB
i )

for all i ∈ [`] and outputs yAi = f(xAi , x
B
i );

Figure 5. Stage 5: Forge-and-Lose

Stage 3. Any adversary distinguishing after this step can be used to break the
token privacy of the underlying garbling scheme. (Note that the simulator can



Simulator Strategy:
Stage 1: 1. Simulate the committed OT functionality by sending A a random key

(σA, open(σA)); sending A a commitment 〈0〉 (instead of 〈σB〉); sending A
random strings senA, recA; learning the trapdoor tdA corresponding to ckA;

2. Receive {XA
i }i∈[`], decrypt xAi ← SE.D(σA, XA

i ) and input these values to
the ideal functionality; receive {yi}i∈[`] from the ideal functionality;

3. Send A {XB
i = SE.E(σB , 0)}i∈[`];

Stage 2.A: In Stage 2.A the simulator (when receiving garbled circuits from A):
1-7. Receive garbled circuits; Sample a random CC and simulate the coin-flip

functionality; Verify the circuits with i ∈ CC and abort as an honest B
would;

Stage 2.B In Stage 2.B the simulator (when sending garbled circuits to A):
1-7. Sample a random set CC. Construct honest garbling of the function for

all i ∈ CC; For all i 6∈ CC, run the simulator of the garbling scheme to
receive the garbled circuit f̂Bi , inputs σ̂Ai , σ̂

B
i , X̂

A
i , X̂

B
i , decoding tables dAi

and tokens tkBi . Force the coin-flip sub-protocol to output CC;
Stage 3.A: In Stage 3 the simulator (when acting as circuit evaluator):

1. Receive garbled inputs;
2-4. Fully decrypt traAi , compute the set L and abort according to the strategy

as described during Hybrid 11;
5-7. Compute and send A a commitment to 〈0〉;

8-10. Abort if 〈dAi 〉 is not opened correctly;
11. There is no abort if |IB | > ψκ as the simulator cannot compute IB .

Stage 3.B: In Stage 3 the simulator (when acting as circuit constructor):
1. Send garbled inputs (from the garbling scheme simulator);

2-4. Prepare and send traBi to A as described during Hybrid 6 (i.e., only send
labels corresponding to the bits of σA, and 0 in all other positions); Fully
decrypt trai, compute the set L and abort according to the strategy as
described during Hybrid 11;

5-7. Receive from A a commitment 〈ŷBi 〉 and extract ŷ∗∗i ← Ext(tdA, 〈ŷAi 〉) and
abort if ŷ∗∗i breaks authenticity ;

8-10. Open 〈dBi 〉;
Stage 4: In Stage 4 the simulator

1. Computes root as an honest B would;
2. Simulate the filling-in functionality by aborting if (on top of the original

conditions) σ∗ 6= σA or V ∗i 6= Vi where σ∗, {V ∗i }i∈IA are the value sent
by the adversary to the functionality; If the simulator does not abort, it
sends A a random MAC key and commitment opening (τA, open(τA)) and
a commitment 〈0〉 (instead of τB);

Stage 5: In Stage 5 the simulator
1-3. Simulates the forge-and-lose functionality by aborting if (on top of the orig-

inal conditions) σ∗ 6= σA, τ∗ 6= τA, ŷ∗∗i 6= ŷ∗i , y∗i 6= yi where y∗i , σ
∗, τ∗, ŷ∗i

are the value sent by the adversary to the functionality;

Figure 6. Simulator Strategy



also, running GC.Ev on the garbled circuit and the garbled inputs, compute the
garbled output ŷAi which is needed in the next steps.)

Hybrid 8. Here we replace the abort condition (Step 1.e) in the functionality
forge-and-lose in Stage 5. For all i the simulator computes ŷ∗i ← Ext(tdA, 〈ŷ∗i 〉)
using the trapdoor tdA (which the simulator learns as it controls the committed-
OT sub-protocol) and the commitments 〈ŷ∗i 〉 received during Step 6 of Stage
3. Let ŷ∗∗i be the value input by A to the forge-and-lose functionality. The
simulator now aborts if ŷ∗i 6= ŷ∗∗i even if A provides a valid commitment opening.
Any adversary distinguishing after this step can be used to break the binding
property of the commitment scheme.

Hybrid 9. Here we change the last aborting condition (Step 1.h) in the func-
tionality forge-and-lose in Stage 5. Let (y∗i , ŷ

∗
i , t
∗
i ) be the value input by the

adversary and let (yi, ŷ
A
i , t

A
i ) be the values computed by the simulator in the

previous hybrids. From now on, instead of aborting if

∃i : y∗i 6= GC.De(dBi , ŷ
∗
i ) ∧MAC.Ver(t∗i , τ

B , y∗i ) = ⊥

the simulator aborts if

∃i : (y∗i 6= GC.De(dBi , ŷ
∗
i ) ∧MAC.Ver(t∗i , τ

B , y∗i ) = ⊥) ∨ (y∗i 6= yi) .

Any adversary that can distinguish after this change can be used to break
unforgeability of the MAC scheme (note that the simulator at this point does
not need to know τB since it has been replaced by 0 in the commitment that
A receives at the end of the filling-in stage, and we can therefore successfully
run the reduction) or to break the authenticity property of the garbling scheme
(note that we have already made sure that value ŷ∗i input by A here is the same
as the one he commits to in Step 7 of Stage 3 and – since the simulator can
extract the value in the commitment using the trapdoor – the reduction can
already break the authenticity property before having to send dBi or the opening
of the commitment to A in Step 8 of Stage 3). Note that after this change we
are ensured (by definition) that A will never receive σB as a result of running
the forge-and-lose sub-protocol.

Hybrid 10. Here we change the distribution of the commitment that the simula-
tor sends to A in Step 6 of Stage 3, from being a commitment to ŷBi to being a
commitment to 0. An adversary that distinguishes after this change can be used
to break the hiding property of the commitment scheme.

Hybrid 11. Here we let the simulator fully decrypt the transfer message trai from
A in Step 3 of Stage 3. That is, instead of running σ̂Bi ← OTRetrieve(recB , i, traAi )
the simulator extracts

e∗i ← OTRetrieve(senA, i, traAi )



and constructs the set
Li ⊂ [8κ]× {0, 1}

as follows. Parse
tkAi = {〈Aj〉, 〈Bj〉}j∈[8κ]

and
e∗i = {(Kj,0, open(Kj,0)), (Kj,1, open(Kj,1))}j∈[8κ] .

We add (j, b) to Li if

Comck(Kj,b, open(Kj,b)) 6∈ {〈Aj〉, 〈Bj〉} .

We then compute
L = ∪i∈[`]Li .

The set L represents all the positions in all the OT transfers in which A
“cheated” i.e., where A sent some value which is not consistent with the tokens
tkAi . Since an honest B uses the same input bits σB in all transfers, we only
count each combination of position j and bit b once. In other words, for each
index j A has three strategies:

1. Input the right values (i.e., values that make GC.TkV accept) for both b ∈
{0, 1} (for all i ∈ [`]): in this case neither (j, b) 6∈ L for both b ∈ {0, 1};

2. Input the right value for a single b ∈ {0, 1} (for all i ∈ [`])) and at least a
wrong value for 1− b for some i∗ ∈ [`]: in this case (j, 1− b) ∈ L;

3. Input the wrong value for both b ∈ {0, 1} (potentially for different i∗ ∈ [`]):
in this case both (j, 0) ∈ L and (j, 1) ∈ L;

Now we replace the abort condition in Step 4 of Stage 3 to the following: the
simulator aborts with probability 1 if ∃ j such that both (j, 0) ∈ L and (j, 1) ∈ L
(this is consistent with what B would do in the real protocol, since in this case
B will detect the wrong labels regardless of the value of σB [j]). Otherwise, the
simulator aborts with probability 1− 2|L| (this is consistent with what B would
do in the real protocol, since in this case B detects the wrong labels only if
σB [j] = b for (j, b) ∈ L – note on the other hand that if (j, b) ∈ L and B does
not abort then the corrupt A learns that the value of σB [j] 6= b, and we will take
care of this in a moment). At the same time we change the distribution of the
encryptions XB

i sent by B to A in Step 3 of Stage 1 to be all encryptions of 0.
Any adversary that can distinguish after this change can be used to break the
IND-CPA security of (SE.E,SE.D). Remember that we required (SE.E,SE.D) to
be secure even against adversaries who learn up to κ bits of the secret key. We
here use this property to let the reduction ask the IND-CPA challenger for the
bits of σB [j] for all j : (j, b) ∈ L.

Hybrid 12. After encrypting 0s instead of the real input of B, it can easily be
seen that there is only one place left where we use the input of B, namely to
compute the set IB for which we need the input of B to evaluate the garbled
circuits, as a bad circuit might give an output on some of B’s inputs and ⊥ on



some other inputs. We get rid of this last use of the inputs of B by removing
the restriction that |IB | ≤ ψκ in the functionalities for filling-in and dropping
the abort condition in Step 11 in Stage 3. This change is indistinguishable, as
|IB | ≤ ψκ except with negligible probability. To see why this is the case, let good
be the set of honestly generated circuits among those received by B. Thanks to
the input verifiability property of our garbling scheme we know that for all
i ∈ good the values received by B as output from the Stage 3 satisfy yBi 6= ⊥.
Since we open ε` of the circuits in the cut-and-choose the probability that ψκ
bad circuits will all survive without any being detected is less than (1 + ε)

−ψκ
,

and we have set ψ such that (1 + ε)
−ψκ

= 2−κ.

This concludes the description of our simulation strategy. It can be seen that
(by construction) at this point the simulator does not use the input of the honest
party B and we have argued for indistinguishability after each individual change.
The complete description of the simulator after all the hybrids can be found in
Figure 6. The simulator is simply a compilation of all the individual changes
done in the above hybrids. Therefore the distribution of Hybrid 12 is identical
to the distribution of the simulation.

What remains is therefore only to argue that Hybrid 0 is indistinguishable
from the real protocol. In Hybrid i define an event Ei as follows. Let Y = ⊥
if the ideal functionality aborts and let Y = {yi}i∈[`] be the outputs of the
ideal functionality otherwise. Let Y ′ = ⊥ if the protocol aborts and let Y ′ =
{y′i}i∈[`] otherwise. Let Ei be the event that Y 6= Y ′. To argue that Hybrid 0 is
indistinguishable from the real protocol it is clearly enough to argue that Pr[E0]
is negligible. We have that Pr[E12] = 0 by construction: it has already been
argued that since Hybrid 5 the outputs of the filling-in for the honest party are
correct; and it has been argued that since Hybrid 8 the corrupt party can only
input the correct outputs to the forge-and-lose functionality, which implies that
either the outputs that B received before this sub-protocol are the correct ones
or B will receive σA as a result of forge-and-lose and compute the right outputs
in the clear.

It then follows from Hybrid 0 and Hybrid 12 being indistinguishable that
Pr[E0] is indistinguishable from 0, i.e., negligible.

4 Dealing With Long Inputs and Outputs

The protocol described and analysed in the previous section allows to compute
f : {0, 1}nI → {0, 1}nO where nI is the input size and nO is the output size.
In the previous sections we have, for simplicity, assumed that nI = nO = O(κ).
However in general nI and nO can be of size linear in |f |. This presents an
issue in the forge-and-lose step, since the size of the circuit implementing the
functionality is of size:

(`nO + `nI + |f |)κ = O(`|f |κ)

instead of O((` + |f |)κ) as desired. We describe here two optimizations which
allow to deal with this:



Dealing with Long Outputs: It is quite easy to deal with long outputs in
the following way: modify the circuit to be garbled so that, in addition to
outputting yi, it also outputs h(yi) with h a collision resistant hash function.
Now it is clear that |h(yi)| = κ < nO and therefore we can modify the
protocol in the following way: instead of letting A,B input the values yi to
the forge and lose functionality, they input the hashes instead. The forge
and lose finds the first index where the hashes differ, recompute the function
(and the hash) on that index and determines who cheated.

Dealing with Long Inputs: To deal with long inputs, the key is to notice that
only a single pair of inputs (in encrypted format) is ever used during the forge
and lose functionality, and the only reasons for the parties to input all of
the ciphertexts is to guarantee that the adversary cannot learn in which
positions (if any) the function is being recomputed. In some sense we are
using a very näıve private information retrieval (PIR), which can of course
be replaced with a more clever one. We can therefore modify the forge and
lose stage in the following way: instead of having A,B input all ciphertexts
at the beginning, they only input the outputs (or their hashes as described
above). The functionality finds the first i such that yAi 6= yBi (if any), and
then runs a 2-server PIR protocol with A,B. This allows the functionality
to learn the ciphertext pair XA

i , X
B
i necessary to determine the right value

of yi by receiving only
√
`nI bits from A,B. Since nI < |f | it is enough to

assume that ` > |f |2 to bound this term with `.

After these changes, the number of bits which A,B send to the forge and lose
functionality (regardless of the input and output size of the function) is bounded
by

(`κ+
√
`f + |f |)κ = O((`+ |f |)) poly(κ)

as desired.
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A List of symbols:

– σA, σB global encryptions keys, also used as selection bits used in OTChoose;
– τA, τB global MAC key, generated during filling in;
– xAi , x

B
i the inputs used in execution i;

– yAi , y
B
i the output received by A/B in execution i;

– yi, the real output of execution i (i.e., f(xAi , x
B
i ));

– We use x̂ to indicate “garbled values/functions” (in the GC context);
– We use capitals for encryptions of the inputs under σ (Xi

A, X
i
B);

– tAi , t
B
i are MACs computed during filling in;

– f : {0, 1}n × {0, 1}n → {0, 1}n the original function that we are trying to
evaluate, with input/output size n;

– κ the security parameter;
– ` the number of copies of f we are evaluating i.e., i = 1, . . . , `;
– ε, the fraction of circuits being checked i.e., the number of garbled circuits

which each party generates is (1+ε)`, and then ε` of those are checked during
the cut-and-choose. For simplicity we assume ε` to be an integer;

– ψ = log1+ε(2);
– Given a value x, 〈x〉 is a commitment to x using randomness open(x).


