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Abstract. In (key-policy) attribute-based encryption (ABE), messages
are encrypted respective to attributes x, and keys are generated respec-
tive to policy functions f . The ciphertext is decryptable by a key only if
f(x) = 0. Adding homomorphic capabilities to ABE is a long standing
open problem, with current techniques only allowing compact homomor-
phic evaluation on ciphertext respective to the same x. Recent advances
in the study of multi-key FHE also allow cross-attribute homomorphism
with ciphertext size growing (quadratically) with the number of input
ciphertexts.
We present an ABE scheme where homomorphic operations can be per-
formed compactly across attributes. Of course, decrypting the result-
ing ciphertext needs to be done with a key respective to a policy f
with f(xi) = 0 for all attributes involved in the computation. In our
scheme, the target policy f needs to be known to the evaluator, we call
this targeted homomorphism. Our scheme is secure under the polynomial
hardness of learning with errors (LWE) with sub-exponential modulus-
to-noise ratio.
We present a second scheme where there needs not be a single target pol-
icy. Instead, the decryptor only needs a set of keys representing policies
fj s.t. for any attribute xi there exists fj with fj(xi) = 0. In this scheme,
the ciphertext size grows (quadratically) with the size of the set of policies
(and is still independent of the number of inputs or attributes). Again,
the target set of policies needs to be known at evaluation time. This
latter scheme is secure in the random oracle model under the polynomial
hardness of LWE with sub-exponential noise ratio.

1 Introduction

Consider a situation where a large number of data items µ1, µ2, . . . is stored on
a remote cloud server. For privacy purposes, the data items are encrypted. The
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user, who holds the decryption key, can retrieve the encrypted data and decrypt
it locally. Using fully homomorphic encryption (FHE) [20,34], it can also ask the
server to evaluate a function g on the encrypted data, and produce an encryption
of g(µ1, µ2, . . .) which can be sent back for decryption, all without compromising
privacy. The state of the art homomorphic encryption schemes can be based
on the hardness of the learning with errors (LWE) problem, and of particular
importance to us is the scheme of Gentry, Sahai and Waters [22]. However,
one could consider a case where the data belongs to a big organization, where
different position holders have different access permissions to the data. That is,
every user can only access some fraction of the encrypted items. A trivial solution
would be to duplicate each data item, and encrypt each copy using the public
keys of all permitted users. However, this might be unsatisfactory in many cases.

Attribute-based encryption (ABE) [26,35] is a special type of public-key en-
cryption scheme that allows to implement access control.4 A (master) public
key mpk is used for encryption, and users are associated to secret keys skf cor-
responding to policy functions f : {0, 1}` → {0, 1}. The encryption of a message
µ is labeled with a public attribute x ∈ {0, 1}`, and can be decrypted using skf
if and only if f(x) = 0.5 The security guarantee of ABE is collusion resistance:
a coalition of users learns nothing about the plaintext message µ if none of their
individual keys are authorized to decrypt the ciphertext. Goyal,Pandey, Sahai
and Waters [26] used bilinear maps to construct ABE for log-depth circuits.
Gorbunov, Vaikuntanathan and Wee [23] showed the first ABE scheme where
the policies can be arbitrary (a-priori bounded) polynomial circuits, based on
LWE. A scheme with improved parameters was presented by Boneh et al. [5].

Using ABE for encrypting our remote data, a user with access permission to a
certain data item can retrieve and decrypt it, but what about private processing
on the server side? This would require homomorphic attribute-based encryption
(HABE). Intuitively, we would like a way for a user to specify a set of data items
for which it has permission, as well as a function g to be applied, such that the
server can evaluate g on those data items. We would like this procedure to be
private, i.e. the server learns nothing about the contents, and compact, i.e. the
size of the evaluated response is independent of the number of inputs and the
complexity of g.

Gentry, Sahai and Waters [22] showed how to achieve this goal in the case
where all items of interest have the same attribute x, but cannot allow any
homomorphism across attributes, even if the decryptor is allowed to access all of
them. It is possible to compose a standard ABE scheme together with multi-key
FHE [16,27, 31] to achieve HABE, at the cost of blowing up the ciphertext size
with the number of inputs to the homomorphic function. We provide a proof for
this fact in Appendix A.

4 Throughout this work we will consider the flavor known as “key-policy” ABE.
5 In the original formulation, the convention was opposite: that f(x) = 1 allows to

decrypt. However in this work we use f(x) = 0 throughout.
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1.1 Our Results

We show that under a proper relaxed formulation of the problem, there is a solu-
tion that allows cross-attribute evaluation, with the resulting ciphertext size not
depending on the number of attributes at all. In the motivating example above,
if the remote server holds various encrypted items under various attributes, then
the client must specify which of these ciphertexts are allowed to participate in
the computation. In our formulation, this is done by providing the server with
the policy f associated with the user’s decryption key (note that this is public
information that does not compromise data privacy). The policy is a compact
representation that indicates which attributes are accessible by the user and
which are not, so the server can tell which ciphertexts are to be included. We
call our notion targeted HABE (T-HABE) since the evaluator needs to know
the target policy which will be used to decrypt the homomorphically evaluated
ciphertext. We believe that our formulation can be useful in some situations, as
illustrated by the motivating example above.

So far we discussed the case where the decryptor only has one secret key
corresponding to a single policy, we call this single target (or single policy)
HABE (ST-HABE). We extend this notion and consider multi target (or multi
policy) HABE (MT-HABE), where the decryptor is defined not just by a single
policy f , but rather by a collection of policies F . This means that the decryptor
holds all {skf : f ∈ F} and is thus allowed to decrypt ciphertexts with attribute
x s.t. there exists f ∈ F with f(x) = 0. This can be thought of as a single user
with multiple keys, or as a collection of users who wish to perform homomorphic
computation on the union of their permitted data items. In this setting, target
homomorphism requires F to be known to the homomorphic evaluator. This
notion trivially degenerates to the single-policy variant if F is a singleton set. A
formal definition of T-HABE appears in Section 2.

We construct new ST-HABE and MT-HABE schemes as follows. In the single
target setting, our scheme relies on the same hardness assumptions as previous
(standard) ABE candidates [5, 23], namely the polynomial hardness of learning
with errors (LWE) with sub-exponential modulus-to-noise ratio. Our scheme is
leveled both for policies and for homomorphic evaluation, which means that
at setup time one can specify arbitrary depth bounds, and once they are set,
all policies f and homomorphicly evaluated functions g must adhere by these
bounds. We note that in terms of assumptions and functionality, our scheme
performs as well as any known ABE for circuits and as well as any known FHE
scheme (without bootstrapping). In fact, using the composition theorem in [17],
we can get non-leveled full homomorphism. However, this requires a non-leveled
MK-FHE as a building block, which is only known to exist under a circular
security assumption (see e.g. [10]). We note that whereas the [17] result is stated
for non-targeted HABE, it applies readily in this setting as well. See an outline
of our construction in Section 1.2 below, and the full scheme in Section 4.

Our MT-HABE scheme relies on the same assumption but in the random
oracle model, and furthermore the ciphertext size grows quadratically with the
cardinality of the set F (i.e. if more policies are involved, more communication is
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needed),6 however the ciphertext size is independent of the number of attributes
and the complexity of g. Interestingly, we use the random oracle in order to
generate a part of the secret key, and we show that security is still maintained.
See an outline of our construction in Section 1.2 below, and the full scheme in
Section 5.

1.2 Our Techniques

Previous works [11, 16,22] observed that known LWE-based ABE schemes have
the following structure. Given the public parameters pp and an attribute x, it is
possible to derive a “designated public key” pkx, which has the same structure as
a public-key for Regev’s famous encryption scheme [33] (more precisely “dual-
Regev”, introduced by Gentry, Peikert and Vaikuntanathan [21]), and indeed
the encryption process is also identical to the dual-Regev scheme. Therefore,
since the FHE scheme of Gentry, Sahai and Waters [22] (henceforth GSW) has
the same key distribution as dual-Regev, one can just substitute the encryption
procedure from dual-Regev to GSW, and single attribute homomorphism follows.
To show that the evaluated ciphertext can be decrypted, GSW notice that the
decryption procedure of the [23] ABE scheme can be seen as a two step process:
first skf is preprocessed together with x to obtained skf,x which is a valid dual-
Regev secret key for pkx, and this key is used for standard dual-Regev decryption.
This means that this key can also be used to decrypt GSW evaluated ciphertexts.
This observation also carries over to the later ABE scheme of Boneh et al. [5]. A
similar approach was used by Clear and McGoldrick [16] in conjunction with
their multi-key homomorphism to achieve a homomorphic IBE (ABE where
the policies are only point functions) where the ciphertext size grows with the
number of attributes.

Our starting point is to consider a “dual” two-step decryption process for
the [5] ABE, where given a ciphertext cx relative to an attribute x, it is first pre-
processed together with f to obtain cx,f which can then be decrypted by skf as a
standard dual-Regev ciphertext. This is not a new perspective, in fact this is the
original way [5,23] described their decryption process. We would hope, therefore,
to apply targeted homomorphism by first preprocessing all input ciphertexts to
make them correspond to the same skf , and then apply homomorphic evalu-
ation. However, applied naively, preprocessing a GSW ciphertext destroys its
homomorphic features. This is the reason GSW needed to reinterpret the de-
cryption process in order for their approach to work even in the single input
setting. We show how to modify the encryption procedure so as to allow pre-
processing of a ciphertext for any policy function f without compromising its
homomorphic features, which will allow to achieve targeted homomorphism for
single policy (ST-HABE).

Our multi-target solution relies on the multi-key FHE scheme of [16], and in
particular we use the simplified variant of Mukherjee and Wichs [31]. Recall that

6 As in previous works, part of the ciphertext is redundant for decryption and can be
truncated post-evaluation, which will lead to only linear dependence on |F |.
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we have a set F of policies, where each attribute x in the computation has at least
one policy f ∈ F that can decrypt it. The basic idea is to group the ciphertexts
according to the f ’s, preprocess them so all ciphertexts that correspond to a given
f are now respective to the same (unknown) secret key skf . After preprocessing,
the situation is equivalent to multi-key FHE with |F | many users, each with
their own key, so it would appear that we are in the clear. However, known LWE-
based multi-key FHE schemes require common public parameters. In particular,
all public keys are matrices which are identical except the last row, all secret keys
are vectors with the last element being equal to 1. However, our preprocessing
does not produce ciphertexts that conform with this requirement. In particular,
our ciphertexts correspond to public keys that all share a prefix, but they differ in
much more than a single row. We show that the [16,31] scheme can be generalized
to the aforementioned case, however a fraction of the secret key needs to be
known at homomorphic evaluation time. Whereas revealing this fraction of the
key does not compromise security, it is generated independently for each policy
f using the master secret key, and there appears to be no compact way to
provide the key fractions for all policies in the public parameters. We resolve
this using the random oracle heuristic, namely we show that we can generate a
fraction of the secret key using the random oracle, which allows the homomorphic
evaluator to learn the allowable part of all relevant keys and perform the multi-
key homomorphism.

1.3 A More Formal Overview

Syntax. As mentioned earlier, in an ABE, ciphertexts are associated with an
attribute x and a message µ, and decryption is possible using skf iff f(x) = 0. In a
single-attribute homomorphic ABE, an evaluator given encryptions of µ1, µ2, . . . ,
under the same attribute x and any circuit g, can compute an encryption of
g(µ1, µ2, . . .) under the same attribute x. In a ST-HABE, an evaluator given
encryptions of µ1, µ2, . . . under different attributes x1, x2, . . ., any circuit g and
a “target” f for which f(x1) = f(x2) = · · · = 0, outputs a ciphertext that
decrypts to g(µ1, µ2, . . .) under skf .

Prior ABE. We recall that in the [5] ABE, the public parameters contain a ma-
trix A, a vector v and a set of matrices B1, . . . ,B`, where ` is the supported at-
tribute length. For all x ∈ {0, 1}`, we can define Bx = [B1−x1G‖ · · · ‖B`−x`G],
where G is the special “gadget” matrix, and use dual-Regev to encrypt messages
w.r.t [A‖Bx],v. Namely the ciphertexts are of the form c ≈ [A‖Bx‖v]T s +
yµ, where yµ is some vector that encodes the message. Furthermore, given f ,
B1, . . . ,B` can be preprocessed to obtain a matrix Bf , and for all f, x s.t.
f(x) = 0, there exists a publicly computable low-norm matrix H = Hf,x,Bx s.t.
Bf = BxH. The secret key is a row vector skf = rf s.t. rf [A‖Bf ]T = −vT . De-

cryption proceeds by using Ĥ = diag(I,H, 1) (i.e. a diagonal block matrix whose

blocks are I,H, 1) to compute cf = ĤT c so that cf ≈ [A‖Bf‖v]T s + Ĥyµ, and
then using rf to decrypt.
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Warm-up. Recall that in GSW style FHE, an encryption of µ under a secret key
r is a matrix D+µG where rD ≈ 0T , where G is a gadget matrix of appropriate
dimensions. As a warm-up, suppose we encrypt µ as

C ≈ [A‖Bx‖v]TS + µG.

That is, each column in the new ciphertext is essentially a ciphertext of the
aforementioned ABE scheme (with different y in each column). Observe that
[rf‖1][A‖Bx‖v]TS ≈ 0T , so C is indeed a GSW style encryption of µ under the
secret key [rf‖1].

In order to achieve cross-attribute homomorphism, we would like to replace
the matrix [A‖Bx‖v]TS in C with one that depends only on f and not x.
Towards this goal, observe that

ĤTC ≈ [A‖Bf‖v]TS + µĤTG.

Unfortunately, this is not a GSW style FHE ciphertext as described above be-
cause we have ĤTG instead of G. In fact, GSW style homomorphic evaluation
can be still made to work if we can ensure that ĤTG behaves like a gadget ma-
trix (e.g. if the matrix ĤT has a low-norm inverse, which is not true for a general
Hf,x,Bx); instead, we provide a simpler fix that also yields shorter ciphertexts.

Our ST-HABE scheme. Our ST-HABE ciphertext has two components. The
first one is independent of x: C ≈ [A‖B0‖v]TS + µG, where B0 is another
matrix, like the other Bi’s, which is added to the public parameters. The second
one is similar to an ABE encryption of 0, with the same S: Cx ≈ BT

xS. Now,
observe that

Cf := C + [0‖HTCx‖0] ≈ [A‖B0 + Bf‖v]TS + µG,

since HTBT
x = BT

f . Note that Cf is now indeed a GSW FHE ciphertext under
the key [rf‖1], where rf is the modified ABE secret key satisfying

rf [A‖B0 + Bf ]T = vT .

The proof of security for the modified ABE scheme is very similar to that of [5]
(in the simulation, we program B0 as AR0). See Section 4 for more details.

Our MT-HABE scheme. For the multi-policy setting, assume for simplicity that
we only have two attributes x, x′ and two policies f, f ′ s.t. f(x) = 0, f ′(x′) = 0
(generalization is straightforward). After applying the transformation as above,
we have Cf ≈ [A‖B0 + Bf‖v]TS + µG and likewise for f ′. In the background
there are the secret keys rf , rf ′ . Let us partition rf = [r1, r2], s.t. r1A

T +
r2(B0 + Bf )T = −vT . Likewise rf ′ = [r′1, r

′
2]. We show that the methods of

[16,31] for achieving multi-key homomorphism generalize fairly straightforwardly
whenever the value of the cross multiplication rf [A‖B0 + Bf ′‖v]T is publicly
computable (note that the secret key for f is multiplied by the public key for
f ′, and vice versa). One can verify that if the r2 components of the two keys
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are known, then this is indeed the case. Our approach is therefore to achieve
multi-policy homomorphism by releasing the r2 components of the keys. This
approach might seem risky, since information about the secret key is revealed.
To see why this is not a problem, we recall that the key rf is generated using a
trapdoor for A such that rf is distributed like a discrete Gaussian, conditioned
on r1A

T + r2(B0 + Bf )T = −vT . One can verify that the marginal distribution
of r2 is Gaussian and completely independent of f (this fact had been utilized
in [1, 14]). Therefore there seems to be hope that releasing it might not hurt
security. Another serious problem is that r2 is generated using secret information,
and is not known to the evaluator. Unfortunately, we are only able to resolve
this difficulty in the random oracle model, by generating r2 using the random
oracle. Specifically, we apply the random oracle to (A, f) to obtain r2 for f .
In a nutshell, producing r2 using a random oracle is secure since the security
reduction can always program the response of the random oracle: if the call is on
a function f s.t. f(x∗) = 1 (where x∗ is the challenge attribute) then returning
r2 is similar to answering a key generation query, and if f(x∗) = 0 then a random
value can be returned, since a key generation query to f will never be issued and
therefore no consistency issues arise. However, as described so far, this solution
requires a special random oracle: one that samples from a discrete Gaussian
distribution. We would like to rely on the standard binary random oracle. To
this end, we will set rf = [r1, r2] such that r1 is Gaussian and r2 is binary,
conditioned on r1A

T +r2(B0+Bf )T = −vT . This will allow us to use a standard
binary random oracle for the generation of r2.7 In the proof of security, we use
the discrete Gaussian sampler of Lyubashevsky and Wichs [28] instead of the
Gaussian sampler of [2,30]. This sampler, which is based on rejection sampling,
allows to sample from “partially Gaussian” distributions which is exactly what
we need in order for the proof of security to go through. See Section 5 for more
details. We note that for the sake of consistency, we also use this distribution of
rf in our single target scheme.

1.4 Other Related Work

Other works on homomorphic ABE include the works of Clear and McGoldrick
[15, 17]. In the former, program obfuscation is used to enhance the homomor-
phic ABE of [22] to support evaluating circuits of arbitrary depth. Still, cross-
attribute homomorphism is not addressed. In the latter, it is shown how to use
bootstrapping to leverage cross-attribute homomorphism into evaluating circuits
without a depth bound. This result can be used in conjunction with our con-
struction from Appendix A to achieve a non-compact solution, or in conjunction
with our targeted scheme as explained above.

Brakerski and Vaikuntanathan [13] show how to extend the [5] ABE scheme
to support attributes of unbounded polynomial length, and to provide semi-

7 Alternatively we could have shown that the Gaussian random oracle model is im-
plied by the standard random oracle model. However this requires a fairly involved
argument that we chose to avoid.
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adaptive security guarantee. This was generalized by Goyal, Koppula and Wa-
ters [25] to a generic transformation that does not rely on the specific properties
of the ABE scheme. Whereas the semi-adaptive transformation appears to be ap-
plicable here, it is not clear whether we can support unbounded attribute length
using their methods and still maintain homomorphism. We leave this avenue of
research for future work.

2 Targeted Homomorphic ABE

In this work, we define a notion of homomorphic ABE where the homomorphic
evaluation process depends on the policy (or policies) that are used to decrypt
the resulting ciphertext, we refer to such schemes as Targeted Homomorphic
ABE (T-HABE). We start by defining the syntax of a T-HABE scheme, and
proceed with definitions of correctness and security.

Definition 1 (Targeted Homomorphic ABE). A Targeted Homomorphic
Attribute Based Encryption (T-HABE) scheme is a tuple of ppt algorithms
THABE = (Setup,Enc,Keygen,TEval,Dec) with the following syntax:

– THABE.Setup(1λ) takes as input the security parameter (and possibly in ad-
dition some specification of the class of policies and class of homomorphic
operations supported). It outputs a master secret key msk and a set of public
parameters pp.

– THABE.Encpp(µ, x) uses the public parameters pp and takes as input a mes-
sage µ ∈ {0, 1} and an attribute x ∈ {0, 1}∗. It outputs a ciphertext ct.

– THABE.Keygenmsk(f) uses the master secret key msk and takes as input a
policy f ∈ F . It outputs a secret key skf .

– THABE.TEvalpp(F, ct
(1), . . . , ct(k), g) uses the public parameters pp and takes

as input a set F of target policies, k ciphertexts ct(1), . . . , ct(k) and a function
g ∈ G. It outputs a ciphertext ctg.

– THABE.Dec(skF , ct
g) takes as input a set of secret keys skF for a set of

policies F , with skF = {skf : f ∈ F}, and a ciphertext ctg. It outputs a
message µ ∈ {0, 1}.

We will also consider a restriction of the above definition to the single-target
setting, where the set F is only allowed to contain a single function. We call this
Single Target HABE (ST-HABE). Explicit reference to the multi target setting
is denoted MT-HABE.

Our correctness guarantee is that given the set of keys for the policy set F , an
evaluated ciphertext decrypts correctly to the intended value.

Definition 2 (Correctness of T-HABE). Let {Fλ}λ∈N be a class of policy
functions and {Gλ}λ∈N be a class of evaluation functions. We say that THABE =
(Setup,Enc,Keygen,TEval,Dec) is correct w.r.t F ,G if the following holds.

Let (msk, pp) = THABE.Setup(1λ). Consider a set of functions F ⊆ Fλ of
poly(λ) cardinality, and its matching set of secret keys skF = {skf = THABE.Keygenmsk(f) :



Targeted Homomorphic Attribute-Based Encryption 9

f ∈ F}, a sequence of k ≥ 1 messages and attributes {(µ(i) ∈ {0, 1}, x(i) ∈
{0, 1}∗)}i∈[k] such that ∀x(i). ∃f ∈ F. f(x(i)) = 0, and the sequence of their

encryptions {ct(i) = THABE.Encpp(µ
(i), x(i))}i∈[k]. Then letting g ∈ G for some

g ∈ {0, 1}k → {0, 1}, and computing ctg = THABE.TEval(F, ct(1), . . . , ct(k), g),
it holds that

Pr[THABE.Dec(skF , ct
g) 6= g(µ(1), . . . , µ(k))] = negl(λ) ,

where the probability is taken over all of the randomness in the experiment.

We note that similarly to the definition of correctness of homomorphic encryp-
tion, we do not require correctness for ciphertexts that did not undergo ho-
momorphic evaluation. However, this can be assumed w.l.o.g since the class G
will always contain the identity function which will allow decryption by first
evaluating identity and then decrypting.

Security is defined using the exact same experiment as standard ABE.

Definition 3 (Security for ABE/T-HABE). Let THABE be an T-HABE
scheme as above, and consider the following game between the challenger and
adversary.

1. The adversary sends an attribute x∗ to the challenger.
2. The challenger generates (msk, pp) = THABE.Setup(1λ) and sends pp to the

adversary.
3. The adversary makes arbitrarily many key queries by sending functions fi

(represented as circuits) to the challenger. Upon receiving such function, the
challenger creates a key ski = THABE.Keygenmsk(fi) and sends ski to the
adversary.

4. The adversary sends a pair of messages µ0, µ1 to the challenger. The chal-
lenger samples b ∈ {0, 1} and computes ct∗ = THABE.Encpp(µb, x

∗). It sends
ct∗ to the adversary.

5. The adversary makes arbitrarily many key queries as in Step 3 above.
6. The adversary outputs b̃ ∈ {0, 1}.
7. Let legal denote the event where all key queries of the adversary are such that

fi(x
∗) = 1. If legal, the output of the game is b′ = b̃, otherwise the output b′

is a uniformly random bit.

The advantage of an adversary A is |Pr[b′ = b]− 1/2|, where b, b′ are gener-
ated in the game played between the challenger and the adversary A(1λ).

The game above is called the selective security game, because the adversary
sends x∗ before Step 2. The scheme THABE is selectively secure if any ppt
adversary A only has negligible advantage in the selective security game.

Stronger notions of security include semi-adaptive security where step 1 only
happens after step 2, and adaptive (or full) security where step 1 only happens
after step 3.

We note that the adversary has no benefit in making key queries for policies
for which f(x∗) = 0 and therefore we can assume w.l.o.g that such queries are
not made (this is obvious for selective and semi-adaptive security and slightly
less obvious for adaptive security).
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Negated Policies. We note again that as in previous lattice based ABE construc-
tions, we allow decryption when f(x) = 0 and require that in the security game
all queries are such that f(x∗) = 1.

3 Preliminaries

We denote vectors by lower-case bold letters (e.g. v) and matrices by upper-
case bold letters (e.g. A). The i’th component of a vector v is denoted by vi.
The component in the ith row and the jth column of a matrix A is denoted by
A[i, j]. We denote the security parameter by λ and let negl(λ) denote a negligible
function. Sets and distributions are usually denoted in plain uppercase. If S is
a set, then we also use S to denote the uniform distribution over this set. The
distinction will be clear from the context.

Elements of Zq are represented by the integers in (−q/2, q/2]. In particular
the absolute value of x ∈ Zq is defined as |x| = min{|y| : y ∈ Z, y = x (mod q)}.
As in many previous works relying on the LWE assumption, we rely on distri-
butions that are supported over a bounded domain. A distribution χ over Z is
said to be B-bounded if it is supported only over [−B,B]. The infinity norm of
a matrix A is defined as ‖A‖∞ = maxi,j |A[i, j]|, and we write

A ≈ B (err: B)

to denote that ‖A−B‖∞ ≤ B.

3.1 Learning with Errors (LWE)

The Learning with Errors (LWE) problem was introduced by Regev [33]. Our
scheme relies on the hardness of its decisional version.

Definition 4 (Decisional LWE (DLWE) [33]). Let λ be the security param-
eter, n = n(λ) and q = q(λ) be integers and let χ = χ(λ) be a probability
distribution over Z. The DLWEn,q,χ problem states that for all m = poly(n),
letting A← Zn×mq , s← Znq , e← χm, and u← Zmq , it holds that

(
A, sTA + eT

)
and

(
A,uT

)
are computationally indistinguishable.

In this work we only consider the case where q ≤ 2n. Recall that GapSVPγ
is the (promise) problem of distinguishing, given a basis for a lattice and a
parameter d, between the case where the lattice has a vector shorter than d, and
the case where the lattice doesn’t have any vector shorter than γ · d. SIVP is the
search problem of finding a set of “short” vectors. The best known algorithms for

GapSVPγ ( [36]) require at least 2Ω̃(n/ log γ) time. We refer the reader to [32,33]
for more information.

There are known reductions between DLWEn,q,χ and those problems, which
allows us to appropriately choose the LWE parameters for our scheme. We sum-
marize in the following corollary (which addresses the regime of sub-exponential
modulus-to-noise ratio).
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Corollary 1 ( [29, 30, 32, 33]). For all ε > 0 there exist functions q = q(n) ≤
2n, χ = χ(n) and B = B(n) such that χ is B-bounded, q/B ≥ 2n

ε

and such
that DLWEn,q,χ is at least as hard as the classical hardness of GapSVPγ and the

quantum hardness of SIVPγ for γ = 2Ω(nε).

3.2 The Gadget Matrix

Let g = (1, 2, 4, . . . , 2dlog qe−1) ∈ Zdlog qeq and let N = n · dlog qe. The gadget
matrix Gn is defined as the diagonal concatenation of g n times. Formally,
Gn = g ⊗ In ∈ Zn×Nq . We omit the n when the dimension is clear from the
context.

We define the inverse function G−1n : Zn×mq → {0, 1}N×m which expands
each entry a ∈ Zq of the input matrix into a column of size dlog qe consisting
of the bits of the binary representation of a. We have the property that for any
matrix A ∈ Zn×mq , it holds that G ·G−1(A) = A.

3.3 Trapdoors and Discrete Gaussians

Let n,m, q ∈ N and consider a matrix A ∈ Zn×mq . For all V ∈ Zn×m′q and for

any distribution P over Zm, we let A−1P (V) denote the random variable whose
distribution is P conditioned on A · A−1P (V) = V. A P -trapdoor for A is a
procedure that can sample from a distribution within 2−n statistical distance of
A−1P (V) in time poly(n,m,m′, log q), for any V. We slightly overload notation
and denote a P -trapdoor for A by A−1P .

The (centered) discrete Gaussian distribution over Zm with parameter τ ,

denoted DZm,τ , is the distribution over Zm where for all x, Pr[x] ∝ e−π‖x‖
2/τ2

.
When P is the Discrete Gaussian DZm,τ , we denote A−1P = A−1τ .

It had been established in a long sequence of works that it is possible to
generate an almost uniform A together with a trapdoor as formalized below (the
parameters are taken from [30] together with the Gaussian sampler of [9, 21]).

Corollary 2 (Trapdoor Generation). There exists an efficient procedure TrapGen(1n, q,m)
that outputs (A,A−1τ0 ), where A ∈ Zn×mq for all m ≥ m0 for m0 = O(n log q),

A is 2−n-uniform and τ0 = O(
√
n log q log n). Furthermore, given A−1τ0 , one can

obtain A−1τ for any τ ≥ τ0.

We will also use the “mixed” Gaussian-Binary sampler of Lyubashevsky and
Wichs [28]. The following corollary is a consequence of example 2 in [28, Section
3.2], by adjusting the analysis for general R instead of random {−1, 0, 1} entries.

Corollary 3 (Gaussian-Binary Sampler). Let n,m, q be such that m ≥
ndlog qe. With all but O(2−n) probability over the choice of A

$← Zn×mq , for

all R ∈ Zm×N with N = ndlog qe, one can obtain [A‖AR + Gn]−1P for P =
DZm,τ × {0, 1}N with τ = O(N

√
mn · ‖R‖∞). Furthermore, for all v, it holds

that the marginal distribution of the last N coordinates of [A‖AR + Gn]−1P (v)
are O(2−n)-uniform in {0, 1}N .
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3.4 Homomorphic Evaluation

We define the basic procedure that will be used for homomorphic evaluation of
FHE ciphertexts and also in the ABE scheme [5,22,24].

Definition 5. Let n, q ∈ N. Consider B1, . . . ,B` ∈ Zn×Nq where N = ndlog qe,
and denote ~B = [B1‖ · · · ‖B`]. Let f be a boolean circuit of depth d computing
a function {0, 1}` → {0, 1}, and assume that f contains only NAND gates. We

define Bf = Eval(f, ~B) recursively: associate B1, . . . ,B` with the input wires of
the circuit. For every wire w in f , let u, v be its predecessors and define

Bw = G−BuG
−1(Bv) . (1)

Finally Bf is the matrix associated with the output wire.

The properties of Eval are summarized in the following facts.

Fact 1. Consider B1, . . . ,B` ∈ Zn×Nq and x ∈ {0, 1}`. Denoting ~B = [B1‖ · · · ‖B`]

and x~G = [x1G‖ · · · ‖x`G], it holds that there exists an polynomial time algo-

rithm EvRelation s.t. if H = Hf,x,~B = EvRelation(f, x, ~B) then ‖H‖∞ ≤ (N+1)d

and furthermore

(Bf − f(x)G)T = HT · [~B− x~G]T

where Bf = Eval(f, ~B).

In particular, if Bi = ARi+xiG, i.e. ~B = A~R+x~G for ~R = [R1‖ · · · ‖R`],

then Bf = ARf + f(x)G for Rf = ~R ·Hf,x,~B.

To see why the fact holds, note that for the NAND evaluation in Eq. (1), one
can verify that

EvRelation( nand , [xu, xv], [Bu‖Bv]) =

[
−G−1(Bv)
−xuI

]
.

Recursive application implies the general statement.

Fact 2. Let r ∈ Znq , C(1), . . . ,C(k) ∈ Zn×Nq and µ(1), . . . , µ(k) ∈ {0, 1}, be such
that

rTC(i) ≈ µ(i)rTG (err: B) .

Let g be a boolean circuit of depth d computing a function {0, 1}k → {0, 1}, and

assume that g contains only NAND gates. Let Cg = Eval(g, ~C), then

rTC(i) ≈ g(µ(1), . . . , µ(k))rTG (err: B · (N + 1)d) .
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3.5 Pseudorandom Functions

A pseudorandom function family is a pair of ppt algorithms PRF = (PRF.Gen,
PRF.Eval), such that the key generation algorithm PRF.Gen(1λ) takes as input
the security parameter and outputs a seed σ ∈ {0, 1}λ. The evaluation algorithm
PRF.Eval(σ, x) takes a seed σ ∈ {0, 1}λ and an input x ∈ {0, 1}∗, and returns a
bit y ∈ {0, 1}.

Definition 6. A family PRF as above is secure if for every polynomial time
adversary A it holds that∣∣∣Pr[APRF.Eval(σ,·)(1λ) = 1]− Pr[AO(·)(1λ) = 1]

∣∣∣ = negl(λ) ,

where σ = PRF.Gen(1λ) and O is a random oracle. The probabilities are taken
over all of the randomness of the experiment.

4 A Single Target Homomorphic ABE Scheme

In this section we present our construction of LWE-based Single Target HABE.
As in previous works, a constant ε ∈ (0, 1) determines the tradeoff between the
hardness of the DLWE problem on which security is based, and the efficiency of
the scheme.

The scheme supports any class of policies F`,dF ⊆ {0, 1}` → {0, 1}, and any
class of operations GdG ⊆ {0, 1}∗ → {0, 1}, where dF , dG is the bound on the
depth of the circuit representation of each function in the set F ,G, respectively.
Out scheme works for any `, dF , dG = poly(λ).

– STHABE.Setup(1λ, 1`, 1dF , 1dG ). Choose n, q,B, χ,m as described in Sec-
tion 4.1 below. Let m = max{m0, (n + 1)dlog qe + 2λ} (where m0 is as
in Corollary 2), N = ndlog qe and M = (m+N + 1)dlog qe.
Generate a matrix-trapdoor pair (A,A−1τ0 ) = TrapGen(1n, q,m) (see Corol-

lary 2), where A ∈ Zn×mq . Generate matrices B0,B1, . . . ,B`
$← Zn×Nq and

denote ~B = [B1‖ . . . ‖B`]. Generate a vector v
$← Znq .

Set msk = A−1τ0 and pp = (A,B0, ~B,v).

– STHABE.Encpp(µ, x), where pp = (A,B0, ~B,v), µ ∈ {0, 1} (however, this
procedure is well defined for any µ ∈ Zq which will be useful for our next
scheme) and x ∈ {0, 1}`.
Sample a random matrix S

$← Zn×Mq , an error matrix EA
$← χm×M and an

error row vector ev
$← χM .

Generate ` + 1 more error matrices as follows: For all i ∈ [`] and j ∈ [M ],

sample Ri,j
$← {0, 1}m×N . Let E0, . . . ,E` be matrices of dimension N ×M

defined by Ei[j] = RT
i,jEA[j], where Ei[j], EA[j] denotes the jth column of

Ei,EA respectively. LetCA

C0

cv

 =

AT

BT
0

vT

 · S +

EA

E0

ev

+ µGm+N+1 .
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The rest of the ciphertext contains auxiliary information that will allow to
decrypt given a proper functional secret key. For all i ∈ [`] let

Ci = [Bi − xiGn]T · S + Ei .

Denote Cx =

C1

...
C`

 and Ex =

E1

...
E`

.

The final ciphertext is ct = (x,CA,C0, cv,Cx).
– STHABE.Keygenmsk(f). Given a circuit f computing a function {0, 1}` →
{0, 1}, the key is generated as follows. Set Bf = Eval(f, ~B) (where Eval is as
defined in Section 3.4).

Generate a random vector r′f
$← {0, 1}N . Let rTf = A−1τ

(
−(B0 + Bf )r′f

T − vT
)

,

where τ = O(m · N` · (N + 1)dF ) ≥ τ0 (the enlargement of τ is needed for
the security proof to work). Note that

[rf‖r′f‖1] · [A‖B0 + Bf‖v]T = 0T .

Output skf = [rf‖r′f ].
– STHABE.ApplyFpp(ct, f). This is an auxiliary function that is used for ho-

momorphic evaluation below. It uses the public parameters pp and takes as
input a ciphertext ct = (x,CA,C0, cv,Cx) and a policy f ∈ F , such that
f(x) = 0. It computes and outputs a “functioned”ciphertext ctf as follows.

Compute the matrix H = Hf,x,~B ∈ Z`N×Nq as H = EvRelation(f, x, ~B) (see

Fact 1), define Cf = HTCx and finally set

Ĉf =

 CA

C0 + Cf

cv

 .

The “functioned”ciphertext is ctf = Ĉf .
– STHABE.TEvalpp(f, ct

(1), . . . , ct(k), g). Given a policy f ∈ F , k ciphertexts
ct(1), . . . , ct(k) and a function g ∈ G. g ∈ {0, 1}k → {0, 1}, for each i ∈ [k]
compute the matrix

Ĉ
(i)
f = STHABE.ApplyFpp(ct

(i), f) .

Set ctg = Cg
f = Eval(g, Ĉ

(1)
f , . . . , Ĉ

(k)
f ) (see Definition 5 in Section 3.4).

– STHABE.Dec(skf , ct
g). Given skf = [rf‖r′f ] and ctg = Cg

f , compute the

vector c = [rf‖r′f‖1] ·Cg
f . Let uT = (0, . . . , 0, bq/2e) ∈ Z(m+N+1)

q . Compute

µ̃ = cG−1(u). Output µ′ = 0 if |µ̃| ≤ q/4 and µ′ = 1 otherwise.

4.1 Choice of Parameters

The DLWE parameters n, q,B, χ are chosen according to constraints from the
correctness and security analyses that follow. We require that n ≥ λ, q ≤ 2n and
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recall that ` = poly(λ) ≤ 2λ. We recall that m ≥ m0 where m0 = O(n log q),
N = ndlog qe and M = (m+N + 1)dlog qe, and we require that

2n
ε

≥ 8 · (N + 1)2dF · (M + 1)dG · `2 · P (m,N,M, dlog qe)

for P (m,N,M, dlog qe) = poly(m,N,M, dlog qe) = nO(1) defined in the correct-
ness analysis below. These constraints can be met by setting n = Õ(λ + dF +
dG)1/ε.

We then choose q, χ,B accordingly based on Corollary 1, and note that it
guarantees that indeed q ≤ 2n. Furthermore, this choice guarantees that

q/B ≥ 2n
ε

≥ 8 · (N + 1)2dF · (M + 1)dG · `2 · P (m,N,M, dlog qe) .

4.2 Correctness

Lemma 1. The scheme STHABE with parameters `, dF , dG is correct with re-
spect to policy class F`,dF and homomorphism class GdG .

Proof. Let (msk, pp) = STHABE.Setup(1λ, 1`, 1dF , 1dG ). Consider a function f ∈
F and a matching secret key skf = STHABE.Keygenmsk(f), a sequence of k ≥ 1
messages and attributes {(µ(i) ∈ {0, 1}, x(i) ∈ {0, 1}`)}i∈[k] such that {f(x(i)) =

0}i∈[k], and the sequence of their encryptions respectively {ct(i) = STHABE.Encpp(µ
(i), x(i))}i∈[k].

For each ciphertext it holds that

Cx ≈ [~B− x~G] (err: mB)

Consider a function g ∈ G such that g ∈ {0, 1}k → {0, 1}, and let ctg =
STHABE.TEval(f, ct(1), . . . , ct(k), g). Recall that for each ciphertext, during the

execution of STHABE.ApplyF(ct, f) we compute the matrix C
(i)
f = H(i)C

(i)
x .

By the properties stated at Fact 1, and since for all i ∈ [k]
∥∥H(i)

∥∥
∞ ≤

(N + 1)dF and f(x(i)) = 0, for each ciphertext it holds that

Cf = HTCx ≈ [Bf − f(x)G]T · S = BT
f · S

(
err: (N + 1)dF · `N ·mB

)
and hence

Ĉf ≈ [A‖B0 + Bf‖v]T · S + µG
(
err: mB · (1 + (N + 1)dF · `N)

)
(2)

(Note that Eq. (2) also holds when µ ∈ Zq instead of µ ∈ {0, 1}).
It therefore follows that

[rf‖r′f‖1] · Ĉf ≈ µ · [rf‖r′f‖1] ·G
(err:

∥∥[rf‖r′f‖1]
∥∥
∞ ·mB · (1 + (N + 1)dF · `N) · (m+N + 1))

Now consider a function g ∈ G such that g ∈ {0, 1}k → {0, 1}, and consider
the execution of STHABE.Decpp(skf , ct

g) where ctg = STHABE.TEval(f, ct(1), . . . , ct(k), g).
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By Fact 2, denoting µg = g(µ(1), . . . , µ(k)), we get

c = [rf‖r′f‖1] ·Cg
f ≈ µ

g · [rf‖r′f‖1] ·G(
err:

∥∥[rf‖r′f‖1]
∥∥
∞ ·mB · (1 + (N + 1)dF · `N) · (m+N + 1) · (M + 1)dG

)
and therefore

µ̃ = cG−1(u) ≈ µgbq/2e (3)(
err:

∥∥[rf‖r′f‖1]
∥∥
∞ ·mB · (1 + (N + 1)dF `N) · (m+N + 1) · (M + 1)dG · dlog qe

)
We conclude that we get correct decryption as long as the error in Eq. (3) is

bounded away from q/4. We recall that by the properties of discrete Gaussians

and since r′f ∈ {0, 1}N , it holds that
∥∥∥[rf‖r′f ]

∥∥∥
∞
≤ max{‖rf‖∞ , 1} ≤ τ

√
m

with all but 2−(m) = negl(λ) probability, where τ = O(
√
mn ·N2` · (N + 1)dF ).

Therefore, with all but negligible probability, the error is at most∥∥[rf‖r′f‖1]
∥∥
∞ ·mB · (1 + (N + 1)dF `N) · (m+N + 1) · (M + 1)dG · dlog qe

≤ O(
√
mn ·N2` · (N + 1)dF )

√
m ·mB · (1 + (N + 1)dF `N) · (m+N + 1) · (M + 1)dG · dlog qe

= B · (N + 1)2dF · (M + 1)dG · `2 · P (m,N,M, dlog qe) .

Since we set B ≤ q/
(
8 · (N + 1)2dF · (M + 1)dG · `2 · P (m,N,M, dlog qe)

)
, it

holds that the error is less than q/4. Hence,

Pr[STHABE.Decpp(skf , ĉtf ) 6= g(µ(1), . . . , µ(k))] = negl(λ) .

4.3 Security

Lemma 2. Under the DLWEn,q,χ assumption, the scheme STHABE is selec-
tively secure for the function classes F ,G. Moreover, under this assumptions
the scheme has pseudorandom ciphertexts: no polynomial time adversary can
distinguish between the CA,C0, cv,Cx components of ct∗ and a set of uniform
matrices of the same dimension. Furthermore, this is true even if the encryption
algorithm is applied to an arbitrary µ ∈ Zq, and not necessarily µ ∈ {0, 1}.

The security proof is a straightforward extension of the proof of [5]. In fact,
our setup and key generation procedure are identical to the [5] scheme, the only
difference is the setting of the LWE parameters and the sampling of r′f from the
binary distribution rather than Gaussian. The latter issue only requires a minor
change in the proof, namely replacing the [2, 30] Gaussian sampler for matrices
of the form [A‖AR + Gn] with the [28] sampler which allows to sample from a
part Gaussian part binary distribution for matrices of this form.

As for our ciphertexts, they are of the form ÃTS+Ẽ+Yµ, where Ã is derived

from the public parameters, Ẽ is noise, and Yµ is a matrix that is determined

by the message µ. In [5], the ciphertext is of the form ÃT s + ẽ + y′µ. That is, we
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can almost think about our ciphertext as a matrix whose every column is a [5]
ciphertext. The difference is that the encoding of the message y′µ is different from
our Yµ. However, [5] prove that their ciphertexts are pseudorandom and this
means that they can mask Yµ regardless of its specific definition. The security
of our scheme thus follows. The full proof follows.

Proof. Consider the selective security game as per Definition 3. Recall that in
our scheme, an encryption of a message can be expressed as ct = (x,C), where

C = ÃT
xS + Ẽ + Ỹµ =


AT

BT
0

vT

(~B− x~G)T

S +


EA

E0

ev
Ex

+

[
µG
0

]
.

We note that all columns of S are identically and independently distributed
and the same holds for all columns of Ẽ. We intend to prove security using a
hybrid on the columns of C. That is, we will consider a modified game which
is identical to the selective security game, except for the challenge phase, where
the adversary gets either c = ÃT

x∗s + ẽ or a completely uniform vector, and
needs to distinguish the two cases. Specifically, s is a uniform vector, and ẽ =
[eTA‖eT0 ‖ev‖eT1 ‖ · · · ‖eT` ]T , where the entries of eA and ev are sampled from χ
and ei = RT

i eA for R0, . . . ,R` which are uniform in {0, 1}m×N (recall that we
choose the matrices Ri independently for each column of the ciphertext). We will
refer to this game as the column game and denote the advantage of an adversary
A′ in this game as |Pr[b′ = 1|c]− Pr[b′ = 1|uniform]|.

We start by showing that under the DLWE assumption, no polynomial time
adversary can have noticeable advantage against the column game. Afterwards
we will show that this implies the security of the scheme.

Consider an adversary A′ for the column game discussed above, and let
Adv[A′] denote its advantage in the column game. The proof will proceed by a
sequence of hybrids, denote by AdvH[A′] the advantage of A′ in the experiment
described in hybrid H.

Hybrid H0. This is the column game. By definition Adv[A′] = AdvH0
[A′].

Hybrid H1. We now change the way the matrices B0 and ~B are generated.
Recall that ẽ = [eTA‖eT0 ‖ev‖eT1 ‖ · · · ‖eT` ]T , where there exist R0, . . . ,R` which are
uniform in {0, 1}m×N s.t. ei = RT

i eA. In this hybrid, we set Bi = ARi + xiGn

instead of generating the Bi matrices uniformly.
Indistinguishability will follow from the extended leftover hash lemma as

in [1, Lemma 13] (also used in [5]), since m ≥ (n+ 1)dlog qe+ 2λ.8 We point out
that the lemma can be used even though A is not uniform but only statistically
close to uniform, since the argument here is information theoretic.

|AdvH1
[A′]−AdvH0

[A′]| = negl(λ) .

8 We note that they stated their lemma only for prime q, but in fact any q works for us
since Ri have {0, 1} entries and since ±1 are units over any ring Zq. Therefore matrix
multiplication is a universal hash function for any distribution of binary vectors.
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We notice that in this hybrid, we now have that ~B = A~R + x~G, where
~R = [R1‖ · · · ‖R`].

Hybrid H2. In this hybrid we switch from generating skf using A−1τ0 to generating

them using R0 and ~R. We recall that we are only required to generate keys for
f s.t. f(x∗) = 1, otherwise the adversary loses in the selective security game.

We recall that by definition, skf = [rf‖r′f ] where r′f
$← {0, 1}N and rf =

A−1τ (−v− (B0 +Bf )r′Tf ). Corollary 3 asserts that this is equivalent to sampling

[rf‖r′f ]
$← [A‖B0 + Bf ]−1P (−v) for P = DZm,τ × {0, 1}N , since the marginal

distribution of r′f is uniform binary, and the conditional distribution of rf given
r′f is therefore the discrete Gaussian over the appropriate coset of the integer
lattice. Denoting H = Hf,x∗,~B, it holds that

Bf − f(x∗)Gn =
(
~B− x∗ ~G

)
H .

Since f(x∗) = 1, we get that

Bf = A~RH + Gn .

It also holds that
AR0 + A~RH = A(R0 + ~RH)

Therefore, [A‖B0 + Bf ] = [A‖AR0 + A~RH + Gn] = [A‖A(R0 + ~RH) + Gn].

By Corollary 3, given R0, ~R and the computable matrix H, we can sample from
[A‖B0 + Bf ]−1P , with P = DZm,τ × {0, 1}N for all values of τ ≥ τ ′ for τ ′ =

O
(√

mnN ·
∥∥∥(R0 + ~RH)

∥∥∥
∞

)
. This is true for all but O(2−n) probability for

random A and therefore, since TrapGen produces a distribution on A that is 2−n

uniform, it also holds for such matrices with all but O(2−n) probability. Plugging

in the bounds ‖H‖∞ ≤ (N + 1)dF , ‖Ri‖∞ = 1, we get that
∥∥∥R0 + ~RH

∥∥∥
∞
≤

N` · (N + 1)dF and therefore

τ ′ = O(
√
mn ·N2` · (N + 1)dF ) .

Recall that we need to sample with τ = O(
√
mn ·N2` · (N +1)dF ) and therefore,

by appropriately setting τ , we can sample from [A‖B0 + Bf ]−1P up to O(2−n)
statistical distance.

It follows that after changing our method of sampling skf , the view of the
adversary remains unchanged up to statistical distance of poly(λ)·2−n = negl(λ),
since with all but O(2−n) probability, our alternative sampler outputs a proper
sample from a distribution that is within O(2−n) statistical distance of [A‖B0 +
Bf ]−1P (−v). Since the number of key queries is at most poly(λ), the result follows.
We conclude that

|AdvH2 [A′]−AdvH1 [A′]| = negl(λ) .

We notice that in this hybrid, the challenger does not require A−1τ0 at all.
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Hybrid H3. In this hybrid, we change the distribution of A and sample it uni-
formly from Zn×mq rather than via TrapGen. Since TrapGen samples A which is
statistically indistinguishable from uniform, we conclude that the distribution
produced in the two hybrids are statistically indistinguishable as well.

|AdvH3 [A′]−AdvH2 [A′]| = negl(λ) .

Hybrid H4. We change the contents of the challenge ciphertext as follows. We
generate s, eA, ev as before, and set d = AT s + eA, dv = vT s + ev. The com-
ponents of the vector c can now be expressed in terms of d, dv since cT =
[dT ‖dTR0‖dv‖dTR1‖ · · · ‖dTR`]. This hybrid is in fact identical to the previ-
ous one, only notation had been changed.

AdvH4
[A′] = AdvH3

[A′] .

We note that in this hybrid, given d, dv, the challenger does not need to know
the values of s, eA, ev since they are not used directly.

Hybrid H5. We change the distribution of d, dv to be uniform in Zmq ,Zq. Indis-
tinguishability follows by definition from the DLWEn,q,χ assumption. We have

|AdvH5
[A′]−AdvH4

[A′]| = negl(λ) .

Hybrid H6. Finally, we change the distribution of c to uniform. By the leftover
hash lemma, for all i it holds that (A,dT ,ARi,d

TRi) are statistically close to
uniform. Therefore this hybrid is statistically indistinguishable from the previ-
ous. We have that

|AdvH6
[A]−AdvH5

[A]| = negl(λ) .

Clearly, in this hybrid the adversary has no advantage in the column game
since c itself is uniform, so there is no difference between the two cases. It follows
therefore that

AdvH6
[A′] = 0 ,

and therefore

Adv[A′] = negl(λ) .

Having established the hardness of the column game, a straightforward hybrid
argument over the columns of the ciphertext shows that no polynomial time
adversary can have non-negligible advantage in a game that is identical to the
selective security game, except ÃT

x∗S + Ẽ in the generation of ct∗ is replaced
with a uniform matrix. Pseudorandomness of the ciphertext, and thus selective
security, follows.
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5 A Multi Target Homomorphic ABE Scheme

Using the multi-key FHE technique presented in [16, 31], we generalize the
single-target HABE scheme of the previous section to support homomorphic
evaluations targeted to a set of policies instead of just one. In this variant, ho-
momorphic evaluation is performed with respect to a set of policy functions
F = {f1, . . . , fd} that “covers” all of the participating attributes. That is, any
participating ciphertext’s attribute zeros at least one function in F . The result-
ing ciphertext can be decrypted only with the set of keys corresponding to the
set F .

We start in Section 5.1 by presenting a generalization to the [16, 31] scheme
that will be useful for our construction. Section 5.2 contains a description of the
scheme, and the choice of parameters is in Section 5.3. Correctness and security
analyses appear in Sections 5.4 and 5.5.

5.1 A Generalized Multi-Key FHE

We start with a describing a generalized version of the [16,31] MK-FHE scheme.
Consider matrices A ∈ Zn×mq ,B1, . . . ,Bd ∈ Zn×Nq and a vector v ∈ Znq . For all
j ∈ [d] let rj , r

′
j be vectors of dimensions m,N respectively, such that [rj‖r′j‖1] ·

[A‖Bj‖v]T = 0 and
∥∥[rj‖r′j‖1]

∥∥
∞ ≤ B

′.

Let C(1), . . . ,C(k) ∈ Z(m+N+1)×M
q be GSW-style encryptions of µ(1), · · · , µ(k) ∈

{0, 1}. That is, for all i ∈ [k] there exists and index j ∈ [d] and a matrix
S(i) ∈ Zn×Mq for which

C(i) ≈ [A‖Bj‖v]TS(i) + µ(i)G (err: B) (4)

(recall that M = (m+N + 1)dlog qe).
For all i ∈ [k] let X (i) = {X1,1, . . . ,Xn,M} be a set of GSW-style encryptions

of the entries of S(i) under the same public key [A‖Bj‖v]T . So for all Xa,b ∈ X (i)

we have
Xa,b ≈ [A‖Bj‖v]T S̃

(i)
a,b + S(i)[a, b]G (err: B)

for some matrix S̃
(i)
a,b ∈ Zn×Mq . Therefore,

[rj‖r′j‖1] ·Xa,b ≈ S(i)[a, b] · [rj‖r′j‖1] ·G (err: B′ ·B · (m+N + 1))

Let LComb (X , u) be an algorithm that takes as input X = (X1,1, . . . ,Xn,M )

as defined above and a vector u ∈ Znq , and outputs a matrix X ∈ Z(m+N+1)×M
q

computed as follows:

For each a ∈ [n], b ∈ [M ] define a matrix Za,b ∈ Z(m+N+1)×M
q consisting of

zeros, where the only non-zero entry is Za,b[m+N + 1, b] = u[a]. Compute and
output

X =

n,M∑
a,b

Xa,bG
−1(Za,b) .
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Lemma 3. Consider the properties states above and let X(i) = LComb
(
X (i),, u

)
for some vector u ∈ Znq . Then for all i ∈ [k], it holds that

[rj‖r′j‖1] ·X(i) ≈ uS(i) (err: B′ ·B · (m+N + 1) · nM · dlog qe)

Proof. For all i ∈ [k] It holds that

[rj‖r′j‖1] ·X(i) = [rj‖r′j‖1] ·
n,N∑
a,b

Xa,bG
−1(Za,b)

≈
n,M∑
a,b

S[a, b] · [rj‖r′j‖1] ·GG−1(Za,b)

=

n,M∑
a,b

S[a, b] · (0, . . . , 0,u[a], 0, . . . , 0) (Where u[a] is in the bth position).

= uS(i) (err: B′ ·B · (m+N + 1) · nM · dlog qe)

Denoting params = (A,B1, . . . ,Bd,v), consider the following algorithm:
Expandparams(C,X , (r′1, . . . , r′d), j) uses the parameters params and gets as input
a ciphertext C together with its auxiliary data X (as defined above), a sequence
of vectors r′1, . . . , r

′
d of dimension N and an index j ∈ [d]. It computes and

outputs an “expanded”ciphertext Ĉ as follows:
For all t ∈ [d]\{j} compute Xt = LComb

(
X , r′t(Bt −Bj)

T
)
. Construct

and output the expanded matrix Ĉ as a d × d block matrix, where each block

Ĉa,b ∈ Z(m+N+1)×M
q for a, b ∈ [d] is defined as:

Ĉa,b =

C a = b
Xb a = j, b 6= j
0 o.w.

Fact 3. Consider the properties stated above. For all i ∈ [k] let j ∈ [d] such

that Eq. (4) holds and let Ĉ(i) = Expandparams(C
(i),X (i), (r′1, . . . , r

′
d), j). Let g ∈

{0, 1}k → {0, 1} be a circuit consisting of nand gates of depth at most dG, and

let Ĉg = Eval(g, Ĉ(1), . . . , Ĉ(k)). Then denoting r = [r1‖r′1‖1‖ · · · ‖rd‖r′d‖1] and
µg = g(µ(1), . . . , µ(k)), it holds that

r · Ĉg ≈ µg · r ·Gd(m+N+1)

(err: B′ ·B · (m+N + 1)2 · (1 + nM · dlog qe) · kdM · (dM + 1)dG )

Proof. For all i ∈ [k] it holds that

Ĉ(i) ≈ Id ⊗
(

[A‖Bj‖v]TS(i)
)

+

 0 · · · 0
X1 · · · Xj−1 0 Xj+1 · · · Xd

0 · · · 0

(i)

+

µ(i)Gd(m+N+1) (err: B)
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where for all t ∈ [d]\{j}, by Lemma 3 we have

[rj‖r′j‖1] ·X(i)
t ≈ r′t(Bt−Bj)

T ·S(i) (err: B′ ·B · (m+N + 1) ·nM · dlog qe)

and therefore

[rt‖r′t‖1] ·C(i) + [rj‖r′j‖1] ·X(i)
t ≈ µ(i) · [rt‖r′t‖1] ·G

(err: B′ ·B · (m+N + 1) · (1 + nM · dlog qe))

from which it follows that

r · Ĉ(i) ≈
[
µ(i) · [r1‖r′1‖1] ·G‖ . . . ‖µ(i) · [rd‖r′d‖1] ·G

]
= µ(i) · r ·Gd(m+N+1)

(err: B′ ·B · (m+N + 1) · (1 + nM · dlog qe))

Now let g ∈ {0, 1}k → {0, 1}, where g is of depth dG , and let Ĉg = Eval(g,
~̂
C).

By Fact 2 we get

r · Ĉg ≈ µg · r ·G
(err: B′ ·B · (m+N + 1)2 · (1 + nM · dlog qe) · kdM · (dM + 1)dG )

which completes the proof.

5.2 Our Scheme

Our Random Oracle. We consider a uniform random oracle O. Namely, for
every input x ∈ {0, 1}∗, the value O(x) is a random variable that is uniformly
distributed over {0, 1}N . The dimension of the vector N will be specified in the
description of the scheme.

The Scheme. As in the STHABE construction, the scheme is parameterized with
a security vs. efficiency trade-off constant ε ∈ (0, 1), and supports a policies class
F`,dF ⊆ {0, 1}` → {0, 1} and homomorphism class GdG ⊆ {0, 1}∗ → {0, 1}. The
scheme works for any `, dF , dG = poly(λ). We consider a family of pseudorandom
functions PRF with seed length λ.

– THABE.Setup(1λ, 1`, 1dF , 1dG ). Choose n, q,B, χ as described in Section 5.3

below, and generate A−1τ0 and A,B0, ~B,v as in STHABE.Setup. Generate a
PRF seed σ = PRF.Gen(1λ).

Set msk = (A−1τ0 , σ) and pp = (A,B0, ~B,v).
– THABE.Encpp(µ, x). Let (CA,C0, cv,Cx) ← STHABE.Encpp(µ, x) and de-

note S ∈ Zn×Mq the randomness matrix that was generated in the encryption
process.
We now add an ABE-encryption of each entry of the matrix S, respective to
the attribute x. For all a ∈ [n], b ∈ [M ], let

Xa,b ← STHABE.Encpp(S[a, b], x)
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As pointed out above, STHABE.Encpp is well defined and has some provable
features even for µ /∈ {0, 1}, and indeed here we use it with S[a, b] ∈ Zq.
The final ciphertext is ct = (CA,C0, cv,Cx,X = (X1,1, . . . ,Xn,M )).

– THABE.Keygenmsk(f). Set Bf = Eval(f, ~B) and query the random oracle
r′f = O(A, f) ∈ {0, 1}N .

Let rTf = A−1τ

(
−(B0 + Bf )r′f

T − vT
)

, where τ = O(
√
mn · N2` · (N +

1)dF ) ≥ τ0 (the enlargement of τ is needed for the security proof to work),
such that the trapdoor function uses PRF.Gen(σ, f) as its randomness. Note
that

[rf‖r′f‖1] · [A‖B0 + Bf‖v]T = 0T .

Output skf = rf .
– THABE.Eval(F, ct(1), . . . , ct(k), g). Denoting F = {f1, . . . , fd}, for every i ∈

[k] let j ∈ [d] be an index for which fj(x
(i)) = 0. Compute

Ĉ
(i)
f = STHABE.ApplyFpp(ct

(i), fj) ,

X (i)
f = {STHABE.ApplyFpp(X, fj) : X ∈ X (i)}

and for all t ∈ [d] let Bft = Eval(ft, ~B) and r′t = O(A, ft). Now compute

C
(i)
F = Expandparams(Ĉ

(i)
f ,X (i)

f , (r′1, . . . , r
′
d), j)

where
params = (A, (B0 + Bf1), . . . , (B0 + Bfd),v) .

Finally, set ctg = Cg
F = Eval(g, ~CF ).

– THABE.Dec(skf1 , . . . , skfd , ct
g). For all j ∈ [d] sample r′fj = O(A, fj). Con-

struct the concatenated key rF = [rf1‖r′f1‖1‖ · · · ‖rfd‖r
′
fd
‖1] and compute

the vector c = rF ·Cg
f .

Let uT = (0, . . . , 0, bq/2e) ∈ Zd(m+N+1)
q . Compute µ̃ = cG−1(u). Output

µ′ = 0 if |µ̃| ≤ q/4 and µ′ = 1 otherwise.

5.3 Choice of Parameters

The DLWE parameters n, q,B, χ are chosen according to constraints from the
correctness and security analyses that follow. We require that n ≥ λ, q ≤ 2n and
recall that `, d = poly(λ) ≤ 2λ. We recall that m = O(n log q), N = ndlog qe and
M = (m+N + 1)dlog qe, and we require that

2n
ε

≥ 8 · (N + 1)2dF · (dM + 1)dG · d1.5 · `2 · P (n,m,N,M, dlog qe)

for P (n,m,N,M, dlog qe) = poly(n,m,N,M, dlog qe) = nO(1) defined in the
correctness analysis below. These constraints can be met by setting n = Õ(dF +
λdG)1/ε. We then choose q, χ,B accordingly based on Corollary 1. This choice
guarantees that

q/B ≥ 2n
ε

≥ 8 · (N + 1)2dF · (dM + 1)dG · d1.5 · `2 · P (n,m,N,M, dlog qe) .
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5.4 Correctness

Lemma 4. The scheme THABE with parameters `, dF , dG is correct with respect
to policy class F`,dF and homomorphism class GdG .

Proof. Let (msk, pp) = THABE.Setup(1λ, 1`, 1dF , 1dG ). Consider a set of d ≥ 1
functions F = {f1, . . . , fd ∈} ⊆ F along with matching secret keys {skf =
THABE.Keygenmsk(f)}f∈F . Consider a sequence of k ≥ 1 messages and attributes
{(µ(i) ∈ {0, 1}, x(i) ∈ {0, 1}`)}i∈[k], such that

∀i ∈ [k] ∃j ∈ [d] : fj(x
(i)) = 0 ,

and the sequence of their encryptions {ct(i) = THABE.Encpp(µ
(i), x(i))}i∈[k]. Let

g ∈ G and consider the execution of THABE.Eval(F, ct(1), . . . , ct(k), g). By Eq.
(2), for all i ∈ [k] the following holds:

– Ĉ
(i)
f ≈ [A‖B0 + Bfj‖v]TS(i) + µ(i)G (err: mB · (1 + (N + 1)dF · `N)).

– ∀ Xa,b ∈ X (i)
f ,

Xa,b ≈ [A‖B0 +Bfj‖v]T S̃
(i)
a,b+S(i)[a, b]G (err: mB · (1+(N +1)dF · `N))

for some S̃
(i)
a,b.

– [rfj‖r′fj‖1] · [A‖B0 + Bfj‖v]T = 0

Therefore, considering THABE.Dec(skf1 , . . . , skfd , ct
g), by Fact 3 it holds that

c = rF ·Cg
F ≈ µ

g · rF ·G
(err: ‖rF ‖∞ ·mB(1 + (N + 1)dF · `N) · (m+N + 1)2 · (1 + nM · dlog qe)·

(dM + 1)dG )

and therefore

µ̃ = cG−1(u) ≈ µgbq/2e (5)

(err: ‖rF ‖∞ ·mB(1 + (N + 1)dF · `N) · (m+N + 1)2 · (1 + nM · dlog qe)·
(dM + 1)dGdlog qe)

We conclude that we get correct decryption as long as the error in Eq. (5) is
bounded away from q/4. We recall that by the properties of discrete Gaussians,
it holds that ‖rF ‖∞ ≤ τ

√
dm with all but 2−dm = negl(λ) probability, where

τ = O(
√
mn ·N2` · (N +1)dF ). Therefore, with all but negligible probability, the

error is at most

‖rF ‖∞ ·mB(1 + (N + 1)dF · `N) · (m+N + 1)2 · (1 + nM · dlog qe)·
(dM + 1)dG · dlog qe

≤ O(
√
mn ·N2` · (N + 1)dF )

√
dm ·mB(1 + (N + 1)dF · `N) · (m+N + 1)2·

(1 + nM · dlog qe) · (dM + 1)dG · dlog qe
= B · (N + 1)2dF · (dM + 1)dG · d1.5 · `2 · P (n,m,N,M, dlog qe) .
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Since we set (see Section 5.3)

B ≤ q/
(
8 · (N + 1)2dF · (dM + 1)dG · d1.5 · `2 · P (n,m,N,M, dlog qe)

)
,

it holds that the error is less than q/4. Hence,

Pr[THABE.Decpp(skF , ct
g) 6= g(µ(1), . . . , µ(k))] = negl(λ) .

5.5 Security

Lemma 5. In the random oracle model, under the DLWEn,q,χ assumption the
scheme THABE is selectively secure for the function classes F ,G.

Proof. Consider the selective security game as per Definition 1 and let A be an
adversary with advantage Adv[A] in the selective security game. We start with
a claim on random oracle queries that will be useful down the line. We classify
oracle queries as follows. A query is blind if it is made before x∗ is sent to the
challenger. A query is valid if it is of the form (D, f) with D = A and f(x∗) = 1
(for the matrix A in the public parameters). Let η be the probability that a
blind and valid oracle query is made throughout the experiment. Clearly, since
blind queries are made by the adversary before any information on A is given to
him, the probability of any blind query has D = A is at most q−nm = negl(λ).
Since the total number of queries is poly(λ) it holds that η = negl(λ).

The proof proceeds by a sequence of hybrids. Recall that in the random oracle
model, the challenger needs to also be able to answer oracle queries at all steps
of the security game.

Hybrid H0. In this hybrid, the challenger executes the selective security game
as prescribed. Oracle queries are answered “on the fly”: if the query is made for
the first time, a fresh r is sampled uniformly from {0, 1}N , and if the query had
been made before then a consistent response is returned. By definition Adv[A] =
AdvH0 [A].

Hybrid H1. In this hybrid, the challenger, upon receiving x∗, checks whether any
of the previous oracle calls had been blind and valid. If any such query had been
made, the challenger aborts. Since this happens with negligible probability as
analyzed above, the view of the adversary is statistically indistinguishable from
the previous hybrid.

|AdvH1 [A]−AdvH0 [A]| = negl(λ) .

Hybrid H2. In this hybrid, we no longer use the PRF to generate randomness for
the Gaussian sampler in Keygen queries. Instead, the challenger will keep track
of all Keygen queries made so far. Given a Keygen query on a function f that
was made before, it will answer consistently. When a new query is made, a new



26 Zvika Brakerski, David Cash, Rotem Tsabary, and Hoeteck Wee

random string is generated and used for the Gaussian sampling. The pseudoran-
domness property of the PRF guarantees that this hybrid is indistinguishable
from the previous one.

|AdvH2 [A]−AdvH1 [A]| = negl(λ) .

From this point and on, we assume that a Keygen query is not made with the
same f more than once.

Hybrid H3. We now change the way non-blind and valid oracle queries, as well
as Keygen queries, are answered. First, we assume w.l.o.g that any non-blind and
valid oracle query is preceded by a Keygen query to the same function f (this
is allowed since f(x∗) = 1 by definition of a valid query). The Keygen query
itself is answered by using A−1τ0 to sample [rf‖r′f ] = [A‖B0 + Bf ]−1P (−v) where

P = DZm,τ × {0, 1}N . It then stores r′f as the answer to the oracle query (A, f)
(which at this point had necessarily not yet been made), and returns rf as the
response to the Keygen(f) query.

Since Corollary 3 implies that the marginal distribution of the r′ compo-
nent of [A‖B0 + Bf ]−1τ (−v) is statistically indistinguishable from uniform over
{0, 1}N , it follows that the view of the adversary in this experiment is statisti-
cally close to the previous hybrid.

|AdvH3
[A]−AdvH2

[A]| = negl(λ) .

Hybrid H4. At this point, we notice that the challenger in H3 can be simulated
via black box access to the challenger of our single key scheme described in
Section 4. This is because valid and non blind oracle queries are translated into
key generation queries, and all other queries are answered randomly. Since in
the proof of Lemma 2 we show that the encryption is secure even for non binary
messages, we can replace the encryptions of S in the challenge ciphertext with
encryptions of all 0, and asserts that this is indistinguishable to the adversary.

|AdvH4
[A]−AdvH3

[A]| = negl(λ) .

Hybrid H5. Now that S is only used for generating the encryption of the message
bit µ, we can again use Lemma 2 to replace this part of the challenge ciphertext
with an encryption of 0.

|AdvH5
[A]−AdvH4

[A]| = negl(λ) .

Clearly in this hybrid the adversary has no advantage since its view is inde-
pendent of µb. Therefore AdvH5 [A] = 1/2 and it follows that

|Adv[A]− 1/2| = negl(λ) ,

which completes the proof of security.



Targeted Homomorphic Attribute-Based Encryption 27

Acknowledgments. We thank Vadim Lyubashevsky for numerous insightful
discussions.

References

1. S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard
model. In H. Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, 29th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of
Lecture Notes in Computer Science, pages 553–572. Springer, 2010.

2. S. Agrawal, D. Boneh, and X. Boyen. Lattice basis delegation in fixed dimension
and shorter-ciphertext hierarchical IBE. In T. Rabin, editor, Advances in Cryp-
tology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 15-19, 2010. Proceedings, volume 6223 of Lecture Notes in Computer
Science, pages 98–115. Springer, 2010.

3. M. Ajtai. Generating hard instances of lattice problems (extended abstract). In
G. L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996,
pages 99–108. ACM, 1996.

4. J. Alperin-Sheriff and C. Peikert. Faster bootstrapping with polynomial error. In
J. A. Garay and R. Gennaro, editors, Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part I, volume 8616 of Lecture Notes in Computer Science,
pages 297–314. Springer, 2014.

5. D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikun-
tanathan, and D. Vinayagamurthy. Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014.
Proceedings, pages 533–556, 2014.

6. D. Boneh, T. Roughgarden, and J. Feigenbaum, editors. Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. ACM,
2013.

7. Z. Brakerski. Fully homomorphic encryption without modulus switching from
classical GapSVP. In CRYPTO, pages 868–886, 2012.

8. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In ITCS, 2012.

9. Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness
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A A Generic (Non-Compact) Homomorphic ABE
Construction

We show how to construct a non-targeted homomorphic ABE (HABE) given
any ABE scheme and Multi-Key FHE scheme as building blocks. The main dis-
advantage of this construction is that the ciphertext’s size grows at least linearly
with the number of participants in the homomorphic evaluation. Interestingly,
our method is very similar to the one presented in [17], despite the difference in
the scheme’s goal. Their construction relies on a leveled homomorphic ABE and
uses it to create a non-leveled HABE scheme.

Below are definitions of ABE, MFHE and HABE, followed by our HABE con-
struction and a brief proof of its correctness and security.

Definition 7 (ABE). An Attribute Based Encryption (ABE) scheme is a tuple
of ppt algorithms ABE = (Setup,Enc,Keygen,Dec) with the following syntax:

– ABE.Setup(1λ) takes as input the security parameter and outputs a master
secret key msk and a set of public parameters pp.
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– ABE.Encpp(µ, x) uses the public parameters pp and takes as input a message
µ ∈ {0, 1} and an attribute x ∈ {0, 1}`. It outputs a ciphertext ct.

– ABE.Keygenmsk(f) uses the master secret key msk and takes as input a func-
tion f ∈ F . It outputs a secret key skf .

– ABE.Dec(skf , ct) takes as input a secret key skf for a policy f , and a cipher-
text ct. It outputs a message µ ∈ {0, 1}.

Definition 8 (MK-FHE). A Multi-Key Fully Homomorphic Encryption (MK-
FHE) scheme is a tuple of ppt algorithms MFHE = (Setup,Enc,Keygen,Eval,Dec)
with the following syntax:

– MFHE.Setup(1λ) takes as input the security parameter and generates public
parameters pp.

– MFHE.Keygenpp(1
λ) uses the public parameters pp and outputs a pair of

public key and secret key (pk, sk).
– MFHE.Encpp(pk, µ) uses the public parameters pp and takes as input a mes-

sage µ ∈ {0, 1} and a public key pk. It outputs a ciphertext ct.

– MFHE.Evalpp((ct
(1), . . . , ct(k)), (pk(1), . . . , pk(k)), g) uses the public parame-

ters pp and takes as input k ciphertexts along with their respective public
keys (pk(1), . . . , pk(k)) and a function g. It outputs a ciphertext ctg.

– MFHE.Decpp(sk
(1), . . . , sk(k), ctg) uses the public parameters and takes as in-

put a sequence of k secret keys sk(1), . . . , sk(k) and a ciphertext ctg. It outputs
a message µ ∈ {0, 1}.

Definition 9 (HABE). An Homomorphic ABE (HABE) scheme is a tuple of
ppt algorithms HABE = (Setup,Enc,Keygen,Eval,Dec) with the following syn-
tax:

– HABE.Setup(1λ) takes as input the security parameter and outputs a master
secret key msk and a set of public parameters pp.

– HABE.Encpp(µ, x) uses the public parameters pp and takes as input a message
µ ∈ {0, 1} and an attribute x ∈ {0, 1}`. It outputs a ciphertext ct.

– HABE.Keygenmsk(f) uses the master secret key msk and takes as input a
function f ∈ F . It outputs a secret key skf .

– HABE.Eval(ct(1), . . . , ct(k), g) takes as input k ciphertexts ct(1), . . . , ct(k) and
a function g ∈ G. It outputs a ciphertext ctg.

– HABE.Dec(skF , ct
g) takes as input a set of secret keys skF for a set of policies

F , with skF = {skf : f ∈ F}, and a ciphertext ctg. It outputs a message
µ ∈ {0, 1}.

Correctness. The correctness guarantee is that given a set of keys for a policy set
F and a ciphertext that was evaluated from ciphertexts respective to attributes
covered by F , the ciphertext decrypts correctly to the intended value.

Security. Security is defined using the same experiment as standard ABE (see
Definition 3).
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Construction of HABE. Consider an ABE black box and a MFHE black box.
The construction works as follows:

– HABE.Setup(1λ)
Let (ppABE,mskABE) ← ABE.Setup(1λ) and ppMFHE ← MFHE.Setup(1λ).
Output pp = (ppABE, ppMFHE),msk = mskABE.

– HABE.Encpp(µ, x). Let (pk, sk)← MFHE.Keygenpp, where sk ∈ {0, 1}t. Com-
pute ctµ ← MFHE.Encpp(pk, µ) and ctsk = {ctski = ABE.Encpp(ski, x)}i∈[t].
Output ct = (ctµ, ctsk, pk, x).

– HABE.Keygenmsk(f). Output ABEkf ← ABE.Keygenmsk(f).
– HABE.Eval(ct(1), . . . , ct(k), g)

Let ctg ← MFHE.Evalpp((ct
(1)
µ , . . . , ct

(k)
µ ), (pk(1), . . . , pk(k)), g). Output ctg =

(ctg, ct
(1)
sk , . . . , ct

(k)
sk ).

– HABE.Dec(ABEkF , ct
g).

For all i ∈ [k], j ∈ [t] compute sk
(i)
j = ABE.Decpp(ct

(i)
skj
,ABEkf ), where f ∈ F

such that f(x(i)) = 0. Compute and Output MFHE.Decpp(sk
(1), . . . , sk(k), ctg).

Correctness Proof Sketch. Consider the execution of HABE.Dec(ABEkF , ct
g).

By the correctness of the ABE scheme we get correct decryptions of {sk(i)}i∈[k],
and by the correctness of the MFHE scheme we get a correct decryption of
g(µ(1), . . . , µ(k)).

Security Proof Sketch. Consider the ABE selective security game, and assume
that in HABE.Encpp the challenger generates ABE encryptions of 0s instead of
ABE encryptions of the bits of sk. By the security of the ABE scheme this change
is indistinguishable to the adversarys, therefore in this case the ciphertext gives
no information other than the MFHE encryption of the message µ. Hence by the
security of the MFHE scheme the security of our construction follows.
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