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Abstract. Differential privacy is a mathematical definition of privacy
for statistical data analysis. It guarantees that any (possibly adversarial)
data analyst is unable to learn too much information that is specific to
an individual. Mironov et al. (CRYPTO 2009) proposed several compu-
tational relaxations of differential privacy (CDP), which relax this guar-
antee to hold only against computationally bounded adversaries. Their
work and subsequent work showed that CDP can yield substantial ac-
curacy improvements in various multiparty privacy problems. However,
these works left open whether such improvements are possible in the
traditional client-server model of data analysis. In fact, Groce, Katz and
Yerukhimovich (TCC 2011) showed that, in this setting, it is impossible
to take advantage of CDP for many natural statistical tasks.
Our main result shows that, assuming the existence of sub-exponentially
secure one-way functions and 2-message witness indistinguishable proofs
(zaps) for NP, that there is in fact a computational task in the client-
server model that can be efficiently performed with CDP, but is infeasible
to perform with information-theoretic differential privacy.

1 Introduction

Differential privacy is a formal mathematical definition of privacy for the anal-
ysis of statistical datasets. It promises that a data analyst (treated as an adver-
sary) cannot learn too much individual-level information from the outcome of
an analysis. The traditional definition of differential privacy makes this promise
information-theoretically: Even a computationally unbounded adversary is lim-
ited in the amount of information she can learn that is specific to an individual.
On one hand, there are now numerous techniques that actually achieve this
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strong guarantee of privacy for a rich body of computational tasks. On the
other hand, the information-theoretic definition of differential privacy does not
itself permit the use of basic cryptographic primitives that naturally arise in
the practice of differential privacy (such as the use of cryptographically secure
pseudorandom generators in place of perfect randomness). More importantly,
computationally secure relaxations of differential privacy open the door to de-
signing improved mechanisms: ones that either achieve better utility (accuracy)
or computational efficiency over their information-theoretically secure counter-
parts.

Motivated by these observations, and building on ideas suggested in [BNO08],
Mironov et al. [MPRV09] proposed several definitions of computational dif-
ferential privacy (CDP). All of these definitions formalize what it means for
the output of a mechanism to “look” differentially private to a computation-
ally bounded (i.e. probabilistic polynomial-time) adversary. The sequence of
works [DKM+06, BNO08, MPRV09] introduced a paradigm that enables two
or more parties to take advantage of CDP, either to achieve better utility or
reduced round complexity, when computing a joint function of their private
inputs: The parties use a secure multi-party computation protocol to simu-
late having a trusted third party perform a differentially private computation
on the union of their inputs. Subsequent work [MMP+10] showed that such
a CDP protocol for approximating the Hamming distance between two pri-
vate bit vectors is in fact more accurate than any (information-theoretically
secure) differentially private protocol for the same task. A number of works
[CSS12, GMPS13, HOZ13, KMS14, GKM+16] have since sought to characterize
the extent to which CDP yields accuracy improvements for two-party privacy
problems.

Despite the success of CDP in the design of improved algorithms in the multi-
party setting, much less is known about what can be achieved in the traditional
client-server model, in which a trusted curator holds all of the sensitive data
and mediates access to it. Beyond just the absence of any techniques for taking
advantage of CDP in this setting, results of Groce, Katz, and Yerukhimovich
[GKY11] (discussed in more detail below) show that CDP yields no additional
power in the client-server model for many basic statistical tasks. An additional
barrier stems from the fact that all known lower bounds against computationally
efficient differentially private algorithms [DNR+09, UV11, Ull13, BZ14, BZ16]
in the client-server model are proved by exhibiting computationally efficient ad-
versaries. Thus, these lower bounds rule out the existence of CDP mechanisms
just as well as they rule out differentially private ones.

In this work, we give the first example of a computational problem in the
client-server model which can be solved in polynomial-time with CDP, but (un-
der plausible assumptions) is computationally infeasible to solve with (information-
theoretic) differential privacy. Our problem is specified by an efficiently com-
putable utility function u, which takes as input a dataset D ∈ Xn and an an-
swer r ∈ R, and outputs 1 if the answer r is “good” for the dataset D, and 0
otherwise.
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Theorem 1 (Main (Informal)). Assuming the existence of sub-exponentially
secure one-way functions and “exponentially extractable” 2-message witness in-
distinguishable proofs (zaps) for NP, there exists an efficiently computable utility
function u : Xn ×R → {0, 1} such that

1. There exists a polynomial time CDP mechanism MCDP such that for every
dataset D ∈ Xn, we have Pr[u(D,MCDP(D)) = 1] ≥ 2/3.

2. There exists a computationally unbounded differentially private mechanism
Munb such that Pr[u(D,Munb(D)) = 1] ≥ 2/3.

3. For every polynomial time differentially private M , there exists a dataset
D ∈ Xn, such that Pr[u(D,M(D)) = 1] ≤ 1/3.

Note that the theorem provides a task where achieving differential privacy
is infeasible – not impossible. This is inherent because the CDP mechanism we
exhibit (for item 1) satisfies a simulation-based form of CDP (“SIM-CDP”),
which implies the existence of a (possibly inefficient) differentially private mech-
anism, provided the utility function u is efficiently computable as we require. It
remains an intriguing open problem to exhibit a task that can be achieved with
a weaker indistinguishably-based notion of CDP (“IND-CDP”) but is impossible
to achieve (even inefficiently) with differential privacy. Such a task would also
separate IND-CDP and SIM-CDP, which is an interesting open problem in its
own right.

Circumventing the impossibility results of [GKY11]. Groce et al. showed that
in many natural circumstances, computational differential privacy cannot yield
any additional power over differential privacy in the client-server model. In par-
ticular, they showed two impossibility results:

1. If a CDP mechanism accesses a one-way function (or more generally, any
cryptographic primitive that can be instantiated with a random function)
in a black-box way, then it can be simulated just as well (in terms of both
utility and computationally efficiency) by a differentially private mechanism.

2. If the output of a CDP mechanism is in Rd (for some constant d) and its
utility is measured via an Lp-norm, then the mechanism can be simulated
by a differentially private one, again without significant loss of utility or
efficiency.

(In Section 4, we revisit the techniques [GKY11] to strengthen the second result
in some circumstances. In general, we show that when error is measured in
any metric with doubling dimension O(log k), CDP cannot improve utility by
more than a constant factor. Specifically, respect to Lp-error, CDP cannot do
much better than DP mechanisms even when d is logarithmic in the security
parameter.)

We get around both of these impossibility results by 1) making non-black-
box use of one-way functions via the machinery of zap proofs and 2) relying
on a utility function that is far from the form in which the second result of
[GKY11] applies. Indeed, our utility function is cryptographic and unnatural
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from a data analysis point view. Roughly speaking, it asks whether the answer r
is a valid zap proof of the statement “there exists a row of the dataset D that is
a valid message-signature pair” for a secure digital signature scheme. It remains
an intriguing problem for future work whether a separation can be obtained from
a more natural task (such as answering a polynomial number of counting queries
with differential privacy).

Our construction and techniques. Our construction is based on the existence
of two cryptographic primitives: an existentially unforgeable digital signature
scheme (Gen,Sign,Ver), and a 2-message witness indistinguishable proof system
(zap) (P, V ) for NP. We make use of complexity leveraging [CGGM00] and thus
require a complexity gap between the two primitives: namely, a sub-exponential
time algorithm should be able to break the security of the zap proof system,
but should not be able to forge a valid message-signature pair for the digital
signature scheme.

We now describe (eliding technical complications) the computational task
which allows us to separate computational and information-theoretic differential
privacy in the client-server model. Inspired by prior differential privacy lower
bounds [DNR+09, UV11], we consider a dataset D that consists of many valid
message-signature pairs (m1, σ1), . . . , (mn, σn) for the digital signature scheme.
We say that a mechanism M gives a useful answer on D, i.e. the utility function
u(D,M(D)) evaluates to 1, if it produces a proof π in the zap proof system that
there exists a message-signature pair (m,σ) for which Ver(m,σ) = 1.

First, let us see how the above task can be performed inefficiently with differ-
ential privacy. Consider the mechanism Munb that first confirms (in a standard
differentially private way) that its input dataset indeed contains “many” valid
message-signature pairs. ThenMunb uses its unbounded computational resources
to forge a canonical valid message-signature pair (m,σ) and uses the zap prover
on witness (m,σ) to produce a proof π. Since the choice of the forged pair does
not depend on the input dataset at all, the procedure as a whole is differentially
private.

Now let us see how a CDP mechanism can perform the same task efficiently.
Our mechanism MCDP again first checks that it possesses many valid message-
signature pairs, but this time it simply outputs a proof π using an arbitrary
valid pair (mi, σi) ∈ D as its witness. Since the proof system is witness indistin-
guishable, a computationally bounded observer cannot distinguish π from the
canonical proof output by the differentially private mechanism Munb. Thus, the
mechanism MCDP is in fact CDP in the strongest (simulation-based) sense.

Despite the existence of the inefficient differentially private mechanism Munb,
we show that the existence of an efficient mechanism M for this task would
violate the sub-exponential security of the digital signature scheme. Suppose
there were such a mechanism M . Now consider a sub-exponential time adversary
A that completely breaks the security of the zap proof system, in the sense that
given a valid proof π, it is always able to recover a corresponding witness (m,σ).
Since M is differentially private, the (m,σ) extracted by A cannot be in the
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dataset D given to M . Thus, (m,σ) constitutes a forgery of a valid message-
signature pair, and hence the composed algorithm A ◦M violates the security
of the signature scheme.

2 Preliminaries

2.1 (Computational) Differential Privacy

We first set notations that will be used throughout this paper, and recall the
notions of (ε, δ)-differential privacy and computational differential privacy. The
abbreviation “PPT” stands for “probabilistic polynomial-time Turing machine.”

Security parameter k. Let k ∈ N denote a security parameter. In this work,
datasets, privacy-preserving mechanisms, and privacy parameters ε, δ will all be
sequences parameterized in terms of k. Adversaries will also have their computa-
tional power parameterized by k; in particular, efficient adversaries have circuit
size polynomial in k. A function is said to be negligible if it vanishes faster than
any inverse polynomial in k.

Dataset D. A dataset D is an ordered tuple of n elements from some data
universe X . Two datasets D,D′ are said to be adjacent (written D ∼ D′) if they
differ in at most one row. We use {Dk}k∈N to denote a sequence of datasets,
each over a data universe Xk, with sizes growing with the parameter k. The size
in bits of a dataset Dk, and in particular the number of rows n, will always be
poly(k).

Mechanism M . A mechanism M : X ∗ → R is a randomized function taking a
dataset D ∈ X ∗ to an output in a range space R. We will be especially interested
in ensembles of efficient mechanisms {Mk}k∈N where each Mk : X ∗k → Rk, when
run on an input dataset D ∈ Xnk , runs in time poly(k, n).

Adversary A. Given an ensemble of mechanisms {Mk}k∈N with Mk : X∗k →
Rk, we model an adversary {Ak}k∈N as a sequence of polynomial-size circuits
Ak : Rk → {0, 1}. Equivalently, {Ak}k∈N can be thought of as a probabilistic
polynomial time Turing machine with non-uniform advice.

Definition 1 (Differential Privacy [DMNS06, DKM+06]). A mechanism
M is (ε, δ)-differentially private if for all adjacent datasets D ∼ D′ and every
set S ⊆ Range(M),

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ

Equivalently, for all adjacent datasets D ∼ D′ and every (computationally un-
bounded) algorithm A, we have

Pr[A(M(D)) = 1] ≤ eε Pr[A(M(D′)) = 1] + δ (1)

For consistency with the definition of SIM-CDP, we also make the following
definitions for sequences of mechanisms:
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– An ensemble of mechanisms {Mk}k∈N is εk-DP if for all k, Mk is (εk,negl(k))-
differentially private.

– An ensemble of mechanisms {Mk}k∈N is εk-PURE-DP if for all k, Mk is
(εk, 0)-differentially private.

The above definitions are completely information-theoretic. Mironov et al. [MPRV09]
proposed several computational relaxations of this definition. The first “indistinguishability-
based” definition, denoted IND-CDP, relaxes Condition (1) to hold against
computationally-bounded adversaries:

Definition 2 (IND-CDP). A sequence of mechanisms {Mk}k∈N is εk-IND-
CDP if there exists a negligible function negl(·) such that for all sequences of pairs
of poly(k)-size adjacent datasets {(Dk, D

′
k)}k∈N, and all non-uniform polynomial

time adversaries A,

Pr[A(Mk(Dk)) = 1] ≤ eεk Pr[A(Mk(D′k)) = 1] + negl(k).

Mironov et al. [MPRV09] also proposed a stronger “simulation-based” defini-
tion of computational differential privacy. A mechanism is said to be ε-SIM-CDP
if its output is computationally indistinguishable from that of an ε-differentially
private mechanism:

Definition 3 (SIM-CDP). A sequence of mechanisms {Mk}k∈N is εk-SIM-
CDP if there exists a negligible function negl(·) and a family of mechanisms
{M ′k}k∈N that is εk-differentially private such that for all poly(k)-size datasets
D, and all non-uniform polynomial time adversaries A,

|Pr[A(Mk(D)) = 1]− Pr[A(M ′k(D)) = 1]| ≤ negl(k).

If M ′k is in fact εk-pure differentially private, then we say that {Mk}k∈N is εk-
PURE-SIM-CDP.

Writing A � B to denote that a mechanism satisfying definition A also
satisfies definition B (that is, A is a stricter privacy definition than B). We
have the following relationships between the various notions of (computational)
differential privacy:

DP � SIM-CDP � IND-CDP.

We will state and prove our separation between CDP and differential privacy
for the simulation-based definition SIM-CDP. Since SIM-CDP is a stronger pri-
vacy notion than IND-CDP, this implies a separation between IND-CDP and
differential privacy as well.

2.2 Utility

We describe an abstract notion of what it means for a mechanism to “succeed”
at performing a computational task. We define a computational task implicitly
in terms of an efficiently computable utility function, which takes as input a
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dataset D ∈ X ∗ and an answer r ∈ R and outputs a score describing how well
r solves a given problem on instance D. For our purposes, it suffices to consider
binary-valued utility functions u, which output 1 iff the answer r is “good” for
the dataset D.

Definition 4 (Utility). A utility function is an efficiently computable (deter-
ministic) function u : X ∗×R → {0, 1}. A mechanism M is α-useful for a utility
function u : X ∗ ×R → {0, 1} if for all datasets D,

Pr
r←M(D)

[u(D, r) = 1] ≥ α.

Restricting our attention to efficiently computable utility functions is neces-
sary to rule out pathological separations between computational and statistical
notions of differential privacy. For instance, let {Gk}k∈N be a pseudorandom gen-
erator with Gk : {0, 1}k → {0, 1}2k, and consider the (hard-to-compute) function
u(0, r) = 1 iff r is in the image of Gk, and u(1, r) = 1 iff r is not in the image
of Gk. Then the mechanism M(b) that samples from Gk if b = 0 and samples
a random string if b = 1 is useful with overwhelming probability. Moreover, M
is computationally indistinguishable from the mechanism that always outputs a
random string, and hence SIM-CDP. On the other hand, the supports of u(0, ·)
and u(1, ·) are disjoint, so no differentially private mechanism can achieve high
utility with respect to u.

2.3 Zaps (2-Message WI Proofs)

The first cryptographic tool we need in our construction is 2-message witness
indistinguishable proofs for NP (“zaps”) [FS90, DN07] in the plain model (with
no common reference string). Consider a language L ∈ NP. A witness relation
for L is a polynomial-time decidable binary relation RL = {(x,w)} such that
|w| ≤ poly(|x|) whenever (x,w) ∈ RL, and

x ∈ L ⇐⇒ ∃w s.t. (x,w) ∈ RL.

Definition 5 (Zap). Let RL = {(x,w)} be a witness-relation corresponding to
a language L ∈ NP. A zap proof system for RL consists of a pair of algorithms
(P, V ) where:

– In the first round, the verifier sends a message ρ ← {0, 1}`(k,|x|) (“public
coins”), where `(·, ·) is a fixed polynomial.

– In the second round, the prover runs a PPT P that takes as input a pair
(x,w) and verifier’s first message ρ and outputs a proof π.

– The verifier runs an efficient, deterministic algorithm V that takes as input
an instance x, a first-round message ρ, and proof π, and outputs a bit in
{0, 1}.

The security requirements of the proof system are:
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1. Perfect completeness. An honest prover who possesses a valid witness
can always convince an honest verifier. Formally, for all x ∈ {0, 1}poly(k),
(x,w) ∈ RL, and ρ ∈ {0, 1}`(k,|x|),

Pr
π←P (1k,x,w,ρ)

[V (1k, x, ρ, π) = 1] = 1.

2. Statistical soundness. With overwhelming probability over the choice of
ρ, it is impossible to convince an honest verifier of the validity of a false
statement. Formally, there exists a negligible function negl(·) such that for
all sufficiently large k and t = poly(k), we have

Pr
ρ←{0,1}`(k,t)

[∃x /∈ L ∩ {0, 1}t, π ∈ {0, 1}∗ : V (1k, x, ρ, π) = 1] ≤ negl(k).

3. Witness indistinguishability. For every sequence {xk}k∈N with |xk| =
poly(k), every two sequences {w1

k}k∈N, {w2
k}k∈N such that (xk, w

1
k), (xk, w

2
k) ∈

RL, and every choice of the verifier’s first message ρ, we have

{P (1k, xk, w
1
k, ρ)}k∈N

c
≈ {P (1k, xk, w

2
k, ρ)}k∈N.

Namely, for every such pair of sequences, there exists a negligible function
negl(·) such that for all polynomial-time adversaries A and all sufficiently
large k, we have

|Pr[A(1k, P (1k, xk, w
1
k, ρ)) = 1]− Pr[A(1k, P (1k, xk, w

2
k, ρ)) = 1]| ≤ negl(k).

In our construction, we will need more fine-grained control over the security of
our zap proof system. In particular, we need the proof system to be extractable
by an adversary running in time 2O(k), in that such an adversary can always
reverse-engineer a valid proof π to find a witness w such that (x,w) ∈ RL.
It is important to note that we require the running time of the adversary to
be exponential in the security parameter k, but otherwise independent of the
statement size |x|.

Definition 6 (Extractable Zap). The algorithm triple (P, V,E) is an ex-
tractable zap proof system if (P, V ) is a zap proof system and there exists an
algorithm E running in time 2O(k) with the following property:

4. (Exponential Statistical) Extractability. There exists a negligible
function negl(·) such that for all x ∈ {0, 1}poly(k):

Pr
ρ←{0,1}`(k,|x|)

[∃π ∈ {0, 1}∗, w ∈ E(1k, x, ρ, π) :

(x,w) /∈ RL ∧ V (1k, x, ρ, π) = 1] ≤ negl(k).

While we do not know whether extractability is a generic property of zaps, it
is preserved under Dwork and Naor’s reduction to NIZKs in the common random
string model. Namely, if we plug an extractable NIZK into Dwork and Naor’s
construction, we obtain an extractable zap.
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Theorem 2. Every language in NP has an extractable zap proof system (P, V,E),
as defined in Definition 6, if there exists non-interactive zero-knowledge proofs
of knowledge for NP [DN07].

For completeness, we sketch Dwork and Naor’s construction in Appendix B and
argue its extractability.

2.4 Digital Signatures

The other ingredient we need in our construction is sub-exponentially strongly
unforgeable digital signature schemes. Here “strong unforgeability” [ADR02]
means that the adversary in the existential unforgeability game is allowed to
forge a signature for a message it has queried before, as long as the signature is
different than the one it received.

Definition 7 (Sub-exponentially strongly unforgeable digital signature
scheme). Let c ∈ (0, 1) be a constant. A c-strongly unforgeable digital signature
is a triple of PPT algorithms (Gen,Sign,Ver) where

– (sk, vk) ← Gen(1k): The generation algorithm takes as input a security
parameter k and generates a secret key and a verification key.

– σ ← Sign(sk,m): The signing algorithm signs a message m ∈ {0, 1}∗ to
produce a signature σ ∈ {0, 1}∗.

– b ← Ver(vk,m, σ): The (deterministic) verification algorithm outputs a bit
to indicate whether the signature σ is a valid signature of m.

The algorithms have the following properties:

1. Correctness. For every message m ∈ {0, 1}∗,

Pr
(sk,vk)←Gen(1k)
σ←Sign(sk,m)

[Ver(vk,m, σ) = 1] = 1.

2. Existential unforgeability. There exists a negligible function negl(·)
such that for all adversaries A running in time 2k

c

,

Pr
(sk,vk)←Gen(1k)

(m,σ)←ASign(sk,·)(vk)

[Ver(m,σ) = 1 and (m,σ) /∈ Q] < negl(k)

where Q is the set of messages-signature pairs obtained through A’s use of
the signing oracle.

Theorem 3. If sub-exponentially secure one-way functions exist, then there is
a constant c ∈ (0, 1) such that a c-strongly unforgeable digital signature scheme
exists.

The reduction from a one-way function to digital signature [NY89, Rom90,
KK05, Gol04] can be applied when both schemes are secure against sub-exponential
time adversaries.
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3 Separating CDP and Differential Privacy

In this section, we define a computational problem in the client-server model
that can be efficiently solved with CDP, but not with statistical differential
privacy. That is, we define a utility function u for which there exists a CDP
mechanism achieving high utility. On the other hand, any efficient differentially
private algorithm can only have negligible utility.

Theorem 4 (Main). Assume the existence of sub-exponentially secure one-
way functions and extractable zaps for NP. Then there exists a sequence of data
universes {Xk}k∈N, range spaces {Rk}k∈N and an (efficiently computable) utility
function uk : X ∗k ×Rk → {0, 1} such that

1. There exists a polynomial p such that for any εk, βk > 0 there exists a
polynomial-time εk-PURE-SIM-CDP mechanism {MCDP

k }k∈N and an (in-
efficient) εk-PURE-DP mechanism {Munb

k }k∈N such that for every n ≥
p(k, 1/εk, log(1/βk)) and dataset D ∈ Xnk , we have

Pr[uk(D,MCDP(D)) = 1] ≥ 1− βk and Pr[uk(D,Munb(D)) = 1] ≥ 1− βk

2. For every εk ≤ O(log k), αk = 1/poly(k), n = poly(k), and efficient (εk, δ =
1/n2)-differentially private mechanism {M ′k}k∈N, there exists a dataset D ∈
Xnk such that

Pr[u(D,M ′(D)) = 1] ≤ αk for sufficient large k.

Remark 1. We can only hope to separate SIM-CDP and differential privacy by
designing a task that is infeasible with differential privacy but not impossible.
By the definition of (PURE-)SIM-CDP for a mechanism {Mk}k∈N, there exists
an εk-(PURE-)DP mechanism {M ′k}k∈N that is computationally indistinguish-
able from {Mk}k∈N. But if for every differentially private {M ′k}k∈N, there were
a dataset Dk ∈ Xnk such that Pr[uk(Dk,M

′
k(Dk)) = 1] ≤ Pr[uk(Dk,Mk(Dk)) =

1]− 1/ poly(k), then the utility function uk(Dk, ·) would itself serve as a distin-
guisher between {M ′k}k∈N and {Mk}k∈N.

3.1 Construction

Let (Gen,Sign,Ver) be a c-strongly unforgeable secure digital signature scheme
with parameter c > 0 as in Definition 7. After fixing c, we define for each k ∈ N
a reduced security parameter kc = kc/2. We will use kc as the security parameter
for an extractable zap proof system (P, V,E). Since k and kc are polynomially
related, a negligible function in k is negligible in kc and vice versa.

Given a security parameter k ∈ N, define the following sets of bit strings:

Verification Key Space: Kk = {0, 1}`1 where `1 = |vk| for (sk, vk)← Gen(1k),
Message Space: Mk = {0, 1}k,
Signature Space: Sk = {0, 1}`2 where `2 = |σ| for σ ← Sign(sk,m) with

m ∈Mk,
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Public Coins Space: Pk = {0, 1}`3 where `3 = poly(`1) is the length of first-
round zap messages used to prove statements from Kk under security pa-
rameter kc,

Data Universe: Xk = Kk ×Mk × Sk × Pk.

That is, similarly to one the hardness results of [DNR+09], we consider
datasets D that contain n rows of the form x1 = (vk1,m1, σ1, ρ1), . . . , xn =
(vkn,mn, σn, ρn) each corresponding to a verification key, message, and signa-
ture from the digital signature scheme, and to a zap verifier’s public coin tosses.

Let L ∈ NP be the language

vk ∈ (L ∩ Kk) ⇐⇒ ∃(m,σ) ∈Mk × Sk s.t. Ver(vk,m, σ) = 1

which has the natural witness relation

RL =
⋃
k

{(vk, (m,σ)) ∈ Kk × (Mk × Sk) : Ver(vk,m, σ) = 1}.

Define

Proof Space: Πk = {0, 1}`4 where `4 = |π| for π ← P (1kc , vk, (m,σ), ρ) for
vk ∈ (L ∩Kk) with witness (m,σ) ∈Mk × Sk and public coins ρ ∈ Pk, and

Output Space: Rk = Kk × Pk ×Πk.

Definition of Utility Function u. We now specify our computational task of
interest via a utility function u : Xnk ×Rk → {0, 1}. For any string vk ∈ Kk and
D = ((vk1,m1, σ1, ρ1), · · · , (vkn,mn, σn, ρn)) ∈ Xnk define an auxiliary function

fvk,ρ(D) = #{i ∈ [n] : vki = vk ∧ ρi = ρ ∧Ver(vk,mi, σi) = 1}.

That is, fvk,ρ is the number of elements of the dataset D with verification key
equal to vk and public coin string equal to ρ for which (mi, σi) is a valid message-
signature pair under vk. We now define u(D, (vk, ρ, π)) = 1 iff

fvk,ρ(D) ≥ 9n/10 ∧ V (1kc , vk, ρ, π) = 1

or

fvk′,ρ′(D) < 9n/10 for all vk′ ∈ Kk and ρ′ ∈ Pk.

That is, the utility function u is satisfied if either 1) many entries of D contain
valid message-signature pairs under the same verification key vk with the same
public coin string ρ and π is a valid proof for statement vk using ρ, or 2) it is
not the case that many entries of D contain valid message-signature pairs under
the same verification key, with the same public coin string (in which case any
response (vk, ρ, π) is acceptable).

3.2 An Inefficient Differentially Private Algorithm

We begin by showing that there is an inefficient differentially private mechanism
that achieves high utility under u.

11



Proposition 1. Let k ∈ N. For every ε > 0, there exists an (ε, 0)-differentially
private algorithm Munb

k : Xnk → Rk such that, for every β > 0, every n ≥
10
ε log(2 · |Kk| · |Pk|/β)) = poly(1/ε, log(1/β), k) and D ∈ (Kk×Mk×Sk×Pk)n,

Pr
(vk,ρ,π)←Munb

k (D)
[u(D, (vk, ρ, π)) = 1] ≥ 1− β

Remark 2. While the mechanism Munb considered here is only accurate for
n ≥ Ω(log |Pk|), it is also possible to use “stability techniques” [DL09, TS13]
to design an (ε, δ)-differentially private mechanism that achieves high utility for
n ≥ O(log(1/δ)/ε) for δ > 0. We choose to provide a “pure” ε-differentially
private algorithm here to make our separation more dramatic: Both the inef-
ficient differentially private mechanism and the efficient SIM-CDP mechanism
achieve pure (ε, 0)-privacy, whereas no efficient mechanism can even achieve
(ε, δ)-differential privacy with δ > 0.

Our algorithm relies on standard differentially private techniques for identi-
fying frequently occurring elements in a dataset.

Report Noisy Max. Consider a data universe X . A predicate q : X → {0, 1} de-
fines a counting query over the set of datasets Xn as follows: ForD = (x1, . . . , xn)
∈ Xn, we abuse notation by defining q(D) =

∑n
i=1 q(xi). We further say that

a collection of counting queries Q is disjoint if, whenever q(x) = 1 for some
q ∈ Q and x ∈ X , we have q′(x) = 0 for every other q′ 6= q in Q. (Thus, disjoint
counting queries slightly generalize point functions, which are each supported on
exactly one element of the domain X .)

The “Report Noisy Max” algorithm [DR14], combined with observations of
[BV16], can efficiently and privately identify which of a set of disjoint counting
queries is (approximately) the largest on a dataset D, and release its identity
along with the corresponding noisy count. We sketch the proof of the following
proposition in Appendix A.

Proposition 2 (Report Noisy Max). Let Q be a set of efficiently computable
and sampleable disjoint counting queries over a domain X . Further suppose that
for every x ∈ X , the query q ∈ Q for which q(x) = 1 (if one exists) can be
identified efficiently. For every n ∈ N and ε > 0 there is an mechanism F :
Xn → X × R such that

1. F runs in time poly(n, log |X |, log |Q|, 1/ε).
2. F is ε-differentially private.
3. For every dataset D ∈ Xn, let qOPT = argmaxq∈Q q(D) and OPT = qOPT(D).

Let β > 0. Then with probability at least 1 − β, the algorithm F outputs a
solution (q̂, a) such that a ≥ q̂(D) − γ/2 where γ = 8

ε · (log |Q|+ log(1/β)).
Moreover, if OPT−γ > maxq 6=qOPT

q(D), then q̂ = argmaxq∈Q q(D).

We are now ready to describe our unbounded algorithm Munb
k as Algorithm

1. We prove Proposition 1 via the following two claims, capturing the privacy
and utility guarantees of Munb

k , respectively.

12



Algorithm 1 Munb
k

Input: Dataset D ∈ (Kk ×Mk × Sk × Pk)n

Output: Triple (vk, ρ, π) ∈ Kk × Pk ×Πk

1. Run the Report Noisy Max algorithm on D with privacy parameter ε using the
set of disjoint counting queries {fvk,ρ : vk ∈ Kk, ρ ∈ Pk}, obtaining an answer
((vk, ρ), a).

2. If a < 7n/10, output (⊥,⊥,⊥) and halt. Otherwise:
3. Choose the lexicographically first (m∗, σ∗) ∈Mk×Sk such that Ver(vk,m∗, σ∗) =

1 (If no such pair exists, output (⊥,⊥,⊥) and halt)
4. Let π = P (1kc , vk, (m∗, σ∗), ρ), and output (vk, ρ, π).

Lemma 1. The algorithm Munb
k is ε-differentially private.

Proof. The algorithm Munb
k accesses its input dataset D only through the ε-

differentially private Report Noisy Max algorithm (Proposition 2). Hence, by the
closure of differential privacy under post-processing, Munb

k is also ε-differentially
private.

Lemma 2. The algorithm Munb
k is (1 − β)-useful for any number of rows n ≥

20
ε log(|Kk| · |Pk|/β)).

Proof. If fvk,ρ(D) < 9n/10 for every vk and ρ, then the utility of the mechanism
is always 1. Therefore, it suffices to consider the case when there exist vk, ρ
for which fvk,ρ(D) ≥ 9n/10. When such vk and ρ exist, observe that we have
fvk′,ρ′(D) ≤ n/10 for every other pair (vk′, ρ′) 6= (vk, ρ). Thus, as long as

9n

10
− n

10
>

8

ε
· (log(|Kk| · |Pk|) + log(1/β)),

the Report Noisy Max algorithm successfully identifies the correct vk, ρ in Step
1 with probability all but β (Proposition 2). Moreover, the reported value a is at
least 7n/10. By the perfect completeness of the zap proof system, the algorithm
produces a useful triple (vk, ρ, π) in Step 4. Thus, the mechanism as a whole is
(1− β)-useful.

3.3 A SIM-CDP Algorithm

We define a PPT algorithm MCDP
k in Algorithm 2, which we argue is an efficient,

SIM-CDP algorithm achieving high utility with respect to u.
The only difference between MCDP

k and the inefficient algorithm Munb
k occurs

in Step 3, where we have replaced the inefficient process of finding a canonical
message-signature pair (m∗, σ∗) with selecting a message-signature pair (mi, σi)
in the dataset. Since all the other steps (Report Noisy Max and the zap prover’s
algorithm) are efficient, MCDP

k runs in polynomial time. However, this change
renders MCDP

k statistically non-differentially private, since a (computationally

13



Algorithm 2 MCDP
k

Input: Dataset D ∈ (Kk ×Mk × Sk × Pk)n

Output: Triple (vk, ρ, π) ∈ Kk × Pk ×Πk

1. Run the Report Noisy Max algorithm on D with privacy parameter ε using the
set of disjoint counting queries {fvk,ρ : vk ∈ Kk, ρ ∈ Pk}, obtaining an answer
((vk, ρ), a).

2. If a < 7n/10, output (⊥,⊥,⊥) and halt. Otherwise:
3. Select the first (vki = vk,mi, σi) ∈ D such that Ver(vk,mi, σi) = 1 (If there is no

such pair in the dataset, output (⊥,⊥,⊥) and halt).
4. Let π = P (1kc , vk, (mi, σi), ρ), and output (vk, ρ, π).

unbounded) adversary could reverse engineer the proof π produced in Step 4 to
recover the pair (mi, σi) contained in the dataset. On the other hand, the wit-
ness indistinguishability of the proof system implies that MCDP

k is nevertheless
computationally differentially private:

Lemma 3. The algorithm MCDP
k is ε-SIM-CDP provided that n ≥ (20/ε) · (k+

log |Kk|+ log |Pk|) = poly(k, 1/ε).

Proof. Indeed, we will show that M ′k = Munb
k is secure as the simulator for

Mk = MCDP
k . That is, we will show that for any poly(k)-size adversary A, that

Pr[A(MCDP
k (D)) = 1]− Pr[A(Munb

k (D)) = 1] ≤ negl(k).

First observe that by definition, the first two steps of the mechanisms are iden-
tical. Now define, for either mechanism Munb

k or MCDP
k , a “bad” event B where

the mechanism in Step 1 produces a pair ((vk, ρ), a) for which fvk,ρ(D) = 0, but
does not output (⊥,⊥,⊥) in Step 2. For either mechanism, the probability of the
bad event B is negl(k), as long as n ≥ (20/ε) · (k+ log(|Kk| · |Pk|)). This follows
from the utility guarantee of the Report Noisy Max algorithm (Proposition 2),
setting β = 2−k.

Thus, it suffices to show that for any fixing of the coins of both mechanisms
in Steps 1 and 2 in which B does not occur, that the mechanisms MCDP

k (D) and
Munb
k (D) are indistinguishable. There are now two cases to consider based on

the coin tosses in Steps 1 and 2:

Case 1: Both mechanisms output (⊥,⊥,⊥) in Step 2. In this case,

Pr[A(MCDP
k (D)) = 1] = Pr[A(⊥,⊥,⊥) = 1] = Pr[A(Munb

k (D)) = 1],

and the mechanisms are perfectly indistinguishable.

Case 2: Step 1 produced a pair ((vk, ρ), a) for which fvk,ρ(D) > 0. In this
case, we reduce to the indistinguishability of the zap proof system. Let (vki =
vk,mi, σi) be the first entry of D for which Ver(vk,mi, σi) = 1, and let (m∗, σ∗)

14



be the lexicographically first message-signature pair with Ver(vk,m∗, σ∗) = 1.
The proofs we are going to distinguish are πCDP ← P (1kc , vk, (mi, σi), ρ) and
πunb ← P (1kc , vk, (m∗, σ∗), ρ). Let Azap(1kc , ρ, π) = A(vk, ρ, π). Then we have

Pr[A(MCDP
k (D)) = 1] = Pr[Azap(1kc , ρ, πCDP) = 1]

and
Pr[A(Munb

k (D)) = 1] = Pr[Azap(1kc , ρ, πunb) = 1].

Thus, indistinguishability of MCDP
k (D) and Munb

k (D) follows from the witness
indistinguishability of the zap proof system.

The proof of Lemma 2 also shows that Mk is useful for u.

Lemma 4. The algorithm MCDP
k is (1− β)-useful for any number of rows n ≥

20
ε log(2 · |Kk| · |Pk|/β)).

3.4 Infeasibility of Differential Privacy

We now show that any efficient algorithm achieving high utility cannot be differ-
entially private. In fact, like many prior hardness results, we provide an attack
A that does more than violate differential privacy. Specifically we exhibit a dis-
tribution on datasets such that, given any useful answer produced by an efficient
mechanism, A can with high probability recover a row of the input dataset. Fol-
lowing [DNR+09], we work with the following notion of a re-identifiable dataset
distribution.

Definition 8 (Re-identifiable Dataset Distribution). Let u : Xn × R →
{0, 1} be a utility function. Let {Dk}k∈N be an ensemble of distributions over
(D0, z) ∈ Xn(k)+1×{0, 1}poly(k) for n(k) = poly(k). (Think of D0 as a dataset on
n+1 rows, and z as a string of auxiliary information about D0). Let (D,D′, i, z)←
D̃k denote a sample from the following experiment: Sample (D0 = (x1, . . . , xn+1),
z) ← Dk and i ∈ [n] uniformly at random. Let D ∈ Xn consist of the first n
rows of D0, and let D′ be the dataset obtained by replacing xi in D with xn+1.

We say the ensemble {Dk}k∈N is a re-identifiable dataset distribution with
respect to u if there exists a (possibly inefficient) adversary A and a negligible
function negl(·) such that for all polynomial-time mechanisms Mk,

1. Whenever Mk is useful, A recovers a row of D from Mk(D). That is, for
any PPT Mk:

Pr
(D,D′,i,z)←D̃k

r←Mk(D)

[u(D, r) = 1 ∧ A(r, z) /∈ D] ≤ negl(k).

2. A cannot recover the row xi not contained in D′ from Mk(D′). That is, for
any algorithm Mk:

Pr
(D,D′,i,z)←D̃k

r←Mk(D
′)

[A(r, z) = xi] ≤ negl(k),

where xi is the i-th row of D.
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Proposition 3 ([DNR+09]). If a distribution ensemble {Dk}k∈N on datasets
of size n(k) is re-identifiable with respect to a utility function u, then for every
γ > 0 and α(k) with min{α, (1− 8α)/8n1+γ} ≥ negl(k), there is no polynomial-
time (ε = γ log(n), δ = (1−8α)/2n1+γ)-differentially private mechanism {Mk}k∈N
that is α-useful for u.

In particular, for every ε = O(log k), α = 1/ poly(k), there is no polynomial-
time (ε, 1/n2)-differentially private and α-useful mechanism for u.

Construction of a Re-identifiable Dataset Distribution. For k ∈ N, recall that the
digital signature scheme induces a choice of verification key space Kk, message
spaceMk, and signature space Sk, each on poly(k)-bit strings. Let n = poly(k).
Define a distribution {Dk}k∈N as follows. To sample (D0, z) from Dk, first sample
a key pair (sk, vk)← Gen(1k). Sample messages m1, . . . ,mn+1 ←Mk uniformly
at random. Then let σi ← Sign(sk,mi) for each i = 1, . . . , n+ 1. Let the dataset
D0 = (x1, . . . , xn+1) where xi = (vk,mi, σi, ρ), and set the auxiliary string
z = (vk, ρ).

Proposition 4. The distribution {Dk}k∈N defined above is re-identifiable with
respect to the utility function u.

Proof. We define an adversary A : Rk × Kk → Xk. Consider an input to A
of the form (r, z) = ((vk′, ρ′, π), (vk, ρ)). If vk′ 6= vk or ρ′ 6= ρ or π = ⊥, then
output (vk,⊥,⊥, ρ). Otherwise, run the zap extraction algorithm E(1kc , vk, ρ, π)
to extract a witness (m,σ), and output the resulting (vk,m, σ, ρ). Note that the
running time of A is 2O(kc).

We break the proof of re-identifiability into two lemmas. First, we show that
A can successfully recover a row in D from any useful answer:

Lemma 5. Let Mk : Xnk → Rk be a PPT algorithm. Then

Pr
(D,D′,i,z)←D̃k

r←Mk(D)

[u(D, r) = 1 ∧ A(r, z) /∈ D] ≤ negl(k).

Proof. First, if u(D, r) = u(D, (vk′, ρ′, π)) = 1, then vk′ = vk, ρ′ = ρ, and
V (1k, vk, ρ, π) = 1. In other words, π is a valid proof that vk ∈ (L ∪ Kk).
Hence, by the extractability of the zap proof system, we have that (m,σ) =
E(1kc , vk, ρ, π) satisfies (vk, (m,σ)) ∈ RL; namely Ver(vk,m, σ) = 1 with over-
whelming probability over the choice of ρ.

Next, we use the exponential security of the digital signature scheme to show
that the extracted pair (m,σ) must indeed appear in the dataset D. Consider
the following forgery adversary for the digital signature scheme.

The dataset built by the forgery algorithm A
Sign(sk,·)
forge is identically distributed

to a sample D from the experiment (D,D′, i, z)← D̃k. Since a message-signature
pair (m,σ) appears in D if and only if the signing oracle was queried on m to
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Algorithm 3 Forgery algorithm A
Sign(sk,·)
forge

Input: Verification key vk
Output: Message-signature pair (m,σ)

1. Sample public coins ρ← Pk.
2. Invoke the signing oracle n times on random messages mi ∈ Mk to get

message-signature pairs (m1, σ1), · · · , (mn, σn), and construct the dataset D =
{(vk,mi, σi, ρ)}i∈[n].

3. Obtain the result r = (vk, ρ, π) from Mk(D).
4. Output (m,σ) where (vk,m, σ, ρ)← A(r, (vk, ρ)).

produce σ, we have

Pr
(sk,vk)←Gen(1k)

(m,σ)←ASign(sk,·)
forge (vk)

[Ver(m,σ) = 1 ∧ (m,σ) /∈ Q]

= Pr
(D,D′,i,z)←D̃k

r←Mk(D)

[u(D, r) = 1 ∧ (vk,m, σ, ρ) = A(r, z) /∈ D].

The running time of the algorithm A, and hence the algorithm A
Sign(sk,·)
forge , is

2O(kc) = 2o(k
c). Thus, by the existential unforgeability of the digital signature

scheme against 2k
c

-time adversaries, this probability is negligible in k.

We next argue that A cannot recover row xi = (vk,mi, σi, ρ) from Mk(D′),
where we recall that D′ is the dataset obtained by replacing row xi in D with
row xn+1.

Lemma 6. For every algorithm Mk:

Pr
(D,D′,i,z)←D̃k

r←Mk(D
′)

[A(r, z) = xi] ≤ negl(k),

where xi is the i-th row of D.

Proof. Since in D0 = ((vk,m1,Signvk(m1), ρ) · · · , (vk,mn+1,Signvk(mn+1), ρ)),
the messages m1, · · · ,mn+1 are drawn independently, the dataset D′ = (D0 −
{(vk,mi, σi, ρ)})∪{(vk,mn+1, σn+1, ρ)} contains no information about message
mi. Since mi is drawn uniformly at random from the space Mk = {0, 1}k,
the probability that A(r, z) = A(Mk(D′), (vk, ρ)) outputs row xi is at most
2−k = negl(k).

Re-identifiability of the distribution D̃k follows by combining Lemmas 5 and
6.
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4 Limits of CDP in the Client-Server Model

We revisit the techniques of [GKY11] to exhibit a setting in which efficient CDP
mechanisms cannot do much better than information-theoretically differentially
private mechanisms. In particular, we consider computational tasks with output
in some discrete space (or which can be reduced to some discrete space) Rk, and
with utility measured via functions of the form g : Rk ×Rk → R. We show that
if (Rk, g) forms a metric space with O(log k)-doubling dimension (and other
properties described in detail later), then CDP mechanisms can be efficiently
transformed into differentially private ones. In particular, when Rk = Rd for
d = O(log k) and utility is measured by an Lp-norm, we can transform a CDP
mechanism into a differentially private one.

The result in this section is incomparable to that of [GKY11]. We incur a
constant-factor blowup in error, rather than a negligible additive increase as in
[GKY11]. However, in the case that utility is measured by an Lp norm, our
result applies to output spaces of dimension that grow logarithmically in the
security parameter k, whereas the result of [GKY11] only applies to outputs of
constant dimension. In addition, we handle IND-CDP directly, while [GKY11]
prove their results for SIM-CDP, and then extend them to IND-CDP by applying
a reduction of [MPRV09].

4.1 Task and Utility

Consider a computational task with discrete output spaceRk. Let g : Rk×Rk →
R be a metric on Rk. We impose the following additional technical conditions
on the metric space (Rk, g):

Definition 9 (Property L). A metric space formed by a discrete set Rk and
a metric g has property L if

1. The doubling dimension of (Rk, g) is O(log k). That is, for every a ∈ Rk
and radius r > 0, the ball B(a, r) centered at a with radius r is contained in
a union of poly(k) balls of radius r/2.

2. The metric space is uniform. Namely, for any fixed radius r, the size of a
ball of radius r is independent of its center.

3. Given a center a ∈ Rk and a radius r > 0, the membership in the ball B(a, r)
can be checked in time poly(k).

4. Given a center a ∈ Rk and a radius r > 0, a uniformly random point in
B(a, r) can be sampled in time poly(k).

Given a metric g, we can define a utility function measuring the accuracy of
a mechanism with respect to g:

Definition 10 (α-accuracy). Consider a dataset space Xk. Let qk : Xnk → Rk
be any function on datasets of size n. Let Mk : Xnk → Ndk be a mechanism for
approximating qk. We say that Mk is αk-accurate for qk with respect to g if
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with overwhelming probability, the error of Mk as measured by g is at most αk.
Namely, there exists a negligible function negl(·) such that

Pr[g(qk(D),Mk(D)) ≤ αk] ≥ 1− negl(k).

We take the failure probability here to be negligible primarily for aesthetic
reasons. In general, taking the failure probability to be βk will yield in our result
below a mechanism that is (εk, βk + negl(k))-differentially private.

Moreover, for reasonable queries qk, taking the failure probability to be negli-
gible is essentially without loss of generality. We can reduce the failure probabil-
ity of a mechanism Mk from constant to negligible by repeating the mechanism
O(log2 k) times and taking a median. By composition theorems for differential
privacy, this incurs a cost of at most O(log2 k) in the privacy parameters. But
we can compensate for this loss in privacy by first increasing the sample size
n by a factor of O(log2 k), and then applying a “secrecy-of-the-sample” argu-
ment [KLN+11] – running the original mechanism on a random subsample of the
larger dataset. This step maintains accuracy as long as the query qk generalizes
from random subsamples.

4.2 Result and Proof

Theorem 5. Let (Rk, g) be a metric space with property L. Suppose Mk : Xnk →
Rk is an efficient εk-IND-CDP mechanism that is αk-accurate for some func-
tion qk with respect to g. Then there exists an efficient (ε, negl(k))-differentially
private mechanism M̂k that is O(αk)-accurate for qk with respect to g.

Proof. We denote a ball centered at a with radius r in the metric space (Rk, g)
by

B(a, r) = {x ∈ Rk : g(a, x) ≤ r}.

We also let V (r)
def
= |B(a, r)| for any a ∈ Rk, which is well-defined due to the

uniformity of the metric space. Now we define a mechanism M̂k which outputs
a uniformly random point from B(Mk(x), ck), where ck > 0 is a parameter be
determined later. Note that M̂k can be implemented efficiently due to the efficient
sampling condition of property L. Since g satisfies the triangle inequality, M̂k is
(αk + ck)-accurate. Thus it remains to prove that M̂k is (ε, negl(k))-DP.

The key observation is that, for every D ∈ Xnk and s ∈ Rk,

Pr[M̂k(D) = s] =
1

V (ck)
Pr[Mk(D) ∈ B(s, ck)]
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For all sets S ⊆ Rk, we thus have

Pr[M̂k(D) ∈ S] ≤

 ∑
s∈S∩B(qk(D),αk+ck)

Pr[M̂k(D) = s]

+ Pr[M̂k(D) /∈ B(qk(D), αk + ck)]

≤

 ∑
s∈S∩B(qk(D),αk+ck)

1

V (ck)
Pr[Mk(D) ∈ B(s, ck)]

+ negl(k)

(by the above observation and αk-accuracy of Mk)

≤

 ∑
s∈S∩B(qk(D),αk+ck)

1

V (ck)

(
eε Pr[Mk(D′) ∈ B(s, ck)] + negl′(k)

)+ negl(k)

(since Mk is IND-CDP, and testing containment in B(s, ck) is efficient)

≤
∑

s∈S∩B(qk(D),αk+ck)

[
eεk Pr[M̂k(D′) = s] +

1

V (ck)
negl′(k)

]
+ negl(k)

≤ eεk Pr[Mk(D′) ∈ S] +
V (αk + ck)

V (ck)
· negl′(k) + negl(k).

By the bounded doubling dimension of (Rk, g), we can set ck = O(αk) to
make V (αk + ck)/V (ck) = poly(k). Hence M̂k is a (εk,negl(k))-differentially
private algorithm.

Lp-norm case. Many natural tasks can be captured by outputs in Rd with
utility measured by an Lp norm (e.g. counting queries). Since we work with
efficient mechanisms, we may assume that our mechanisms always have outputs
represented by poly(k) bits of precision. The level of precision is unimportant, so
we may assume an output space represented by k bits of precision for simplicity.

By rescaling, we may assume all responses are integers and take values in Nk
def
=

N ∩ [0, 2k]. When d = O(log k), the doubling dimension of the new discrete
metric space induced by the Lp-norm on integral points is O(log k) ([GKL03]
shows that the subspace of Rd equipped with Lp norm has doubling dimension
O(d)). Now the metric space almost satisfies property L, with the exception of
the uniformity condition. This is because the sizes of balls close the the boundary
of Nk are smaller than those in the interior. However, we can apply Theorem 5 to
first construct a statistically DP mechanism with outputs in the larger uniform
metric space Nd. Then we may construct the final statistical mechanism M̂k,
by projecting answers that are not in Ndk to the closest point in Ndk. By post-

processing, the modified mechanism M̂k is still differentially private. Moreover,
its utility is only improved since M̂k can only get closer to the true query answer
in every coordinate. Therefore, we have the following corollary.

Corollary 1. Let Mk : Xnk → Rd with d = O(log k) be an efficient εk-IND-CDP
mechanism that is αk-accurate for some function qk when error is measured
by an Lp-norm. Then there exists an efficient (ε, negl(k))-differentially private

mechanism M̂k that is O(αk)-accurate for qk.
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A Missing Proofs

A.1 Proof of Proposition 2

Proposition 2 (Report Noisy Max). Let Q be a set of efficiently computable
and sampleable disjoint counting queries over a domain X . Further suppose that
for every x ∈ X , the query q ∈ Q for which q(x) = 1 (if one exists) can be
identified efficiently. For every n ∈ N and ε > 0 there is an mechanism F :
Xn → X × R such that

1. F runs in time poly(n, log |X |, log |Q|, 1/ε).
2. F is ε-differentially private.
3. For every dataset D ∈ Xn, let qOPT = argmaxq∈Q q(D) and OPT = qOPT(D).

Let β > 0. Then with probability at least 1 − β, the algorithm F outputs a
solution (q̂, a) such that a ≥ q̂(D) − γ/2 where γ = 8

ε · (log |Q|+ log(1/β)).
Moreover, if OPT−γ > maxq 6=qOPT

q(D), then q̂ = argmaxq∈Q q(D).
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The proof of Proposition 2 relies on the existence of an efficient sanitizer for
the disjoint query class Q. Such a sanitizer appears in [Vad16], and is based on
ideas of [BV16]. (There, it is stated for the specific class of point functions, but
immediately extends to disjoint counting queries).

Proposition 5 ([Vad16, Theorem 7.1]). Let Q be a set of efficiently com-
putable and sampleable disjoint counting queries over a domain X . Suppose that
for every element x ∈ X , the query q ∈ Q for which q(x) = 1 (if one exists)
can be identified in time polylog(|X|). Let β > 0. Then there exists an algorithm
San running in time poly(n, log |X|, 1/ε) for which the following holds. For any
database D ∈ Xn, with probability at least 1 − β, the algorithm San produces a
“synthetic database” D̂ ∈ Xm such that

|q(D)− n

m
q(D̂)| < 4(log |Q|+ log(1/β))

ε

for every q ∈ Q.

Proof (Proof of Proposition 2).
Consider the algorithm F which first runs the algorithm San on its input

dataset to obtain a synthetic dataset D̂, and then outputs the pair (q̂, nm q̂(D̂))

where q̂ = argmaxq∈Q q(D̂). The algorithm F inherits efficiency and differential
privacy from San. To see that it useful, suppose San indeed produces a database
D̂ ∈ Xm for which

|q(D)− n

m
q(D̂)| < 4(log |Q|+ log(1/β))

ε

for every q ∈ Q. Let qOPT = argmaxq∈Q q(D), and γ = 8(log |Q|+ log(1/β))/ε.

Then n
m q̂(D̂) ≥ n

mqOPT(D̂) ≥ qOPT(D)−γ/2. Moreover, suppose qOPT(D)−γ >
maxq 6=qOPT

q(D). Then for any q′ 6= qOPT, we have

n

m
q′(D̂) < q′(D) + γ/2 < qOPT(D)− γ/2 ≤ n

m
q̂(D̂).

Hence q′(D̂) < q̂(D̂) for every q′ 6= qOPT, and hence q̂ = qOPT.

B Extractability for Zap Proof Systems

B.1 Non-Interactive Zero Knowledge Proofs

Most known constructions of zaps, as defined in Definition 5, are based on con-
structions of non-interactive zero knowledge proofs or arguments in the common
reference string model. We review the requirements of such proof systems below.

Definition 11 (NIZK Proofs and Arguments). Let RL = {(x,w)} be a
witness-relation corresponding to a language L ∈ NP. A non-interactive zero-
knowledge proof (or argument) system for RL consists of a triple of algorithms
(Gen, P, V ) where:
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– The generator Gen is a PPT that takes as input a security parameter k and
statement length t = poly(k), and produces a common reference string crs.
An important special case is where Gen(1k, 1t) outputs a uniformly random
string, in which case we say the proof (or argument) system operates in the
common random string model.

– The prover P is a PPT that takes as input a crs and a pair (x,w) and outputs
a proof π.

– The verifier V is an efficient, deterministic algorithm that takes as input a
crs, an instance x and proof π, and outputs a bit in {0, 1}.

Various security requirements we can impose on the proof system are:

Perfect completeness. An honest prover who possesses a valid witness
can always convince an honest verifier. Formally, for all (x,w) ∈ RL,

Pr
crs←Gen(1k,1|x|)
π←P (crs,x,w)

[V (crs, x, π) = 1] = 1.

Statistical soundness. It is statistically impossible to convince an honest
verifier of the validity of a false statement. There exists a negligible function
negl(·) such that for every sequence {xk}k∈N of poly(k)-size statements xk /∈
L,

Pr
crs←Gen(1k,1|xk|)

[∃π ∈ {0, 1}∗ s.t. V (crs, xk, π) = 1] ≤ negl(k).

Computational zero-knowledge. Proofs do not reveal anything to the
verifier beyond their validity. Formally, a proof system is computational zero-
knowledge if there exists a PPT simulator (S1, S2) where S1 produces a simu-
lated common reference string crs with associated trapdoor τ . The pair (crs, τ)
allows S2 to simulate accepting proofs without knowledge of a witness w. That
is, there exists a negligible function negl such that for all (possibly cheat-
ing) PPT verifiers V ∗ and sequences {(xk, wk)}k∈N of poly(k)-size statement-
witness pairs (xk, wk) ∈ RL,∣∣∣∣∣∣∣ Pr
crs←Gen(1k,1|xk|)
π←P (crs,xk,wk)

[V ∗(crs, xk, π) = 1]− Pr
(crs,τ)←S1(1

k,1|xk|)
π←S2(crs,τ,xk)

[V ∗(crs, xk, π) = 1]

∣∣∣∣∣∣∣ ≤ negl(k).

Statistical knowledge extraction. A proof system is additionally a
proof of knowledge if a witness can be extracted from a valid proof. That
is, there exists a polynomial-time knowledge extractor E = (E1, E2) such
that E1 produces a simulated common reference string crs with associated
extraction key ξ, which we assume to have length O(k).1 The pair (crs, ξ)
allows the deterministic algorithm E2 to extract a witness from a proof. For-
mally, the first component of (crs, ξ) ← E1(1k, 1|x|) is identically distributed

1 Such a constraint which depends only on the security parameter k will be important
for meeting our definition of exponentially extractable zaps.
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to crs ← Gen(1k, 1|x|). Moreover, there exists a negligible function negl such
that for every x ∈ {0, 1}poly(k),

Pr
crs←Gen(1k,1|x|)

[∃ξ ∈ {0, 1}∗, π ∈ {0, 1}∗, w ∈ E2(crs, ξ, x, π) :

(crs, ξ) ∈ E1(1k, 1|x|) ∧ (x,w) /∈ RL ∧ V (1k, x, π) = 1
]
≤ negl(k).

For technical reasons, we also require that the relation {(crs, ξ) ∈ E1(1k, 1|x|)}
be recognizable in polynomial-time, which will always be the case for our con-
structions.

B.2 Extractability of Zaps Based on Exponentially Extractable
NIZKs

We next describe Dwork and Naor’s original construction of zaps [DN07]. Here,
we show that extractable zaps can be based on the existence of NIZK proofs of
knowledge in the common random string model, which can in turn be built from
various number theoretic assumptions [DP92, DDP00, GOS12]. (Recall that in
the common random string model for NIZK proofs, the crs generation algorithm
simply outputs a uniformly random string.) The discussion in this section can
be summarized by the following theorem.

Theorem 6. Let RL be a witness relation for a language L ∈ NP. Then RL
has an extractable zap proof system if:

There exists a non-interactive zero-knowledge proof of knowledge for RL
(in the common random string model) with perfect completeness, statisti-
cal soundness, computational zero-knowledge, and statistical extractabil-
ity.

The existence of such proofs of knowledge for NP can be based on any of the
following assumptions:

1. The existence of NIZK proofs of membership for NP and “dense secure
public-key encryption schemes” [DP92]. NIZK proofs of membership can in
turn be constructed from trapdoor permutations [FLS99] or indistinguisha-
bility obfuscation and one-way functions [BP15]. Dense secure public-key en-
cryption schemes can be constructed under the hardness of factoring Blum
integers [DDP00] or the Diffie-Hellman assumption [DP92].

2. The decisional linear assumption for groups equipped with a bilinear map
[GOS12].

The remainder of this section is devoted to the proof of Theorem 6. Let RL
be a witness relation for a language L ∈ NP. Let (PNIZK, VNIZK) be a NIZK
proof system in the common random string model. We now describe Dwork and
Naor’s [DN07] zap proof system for RL based on (PNIZK, VNIZK).
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For simplicity, assume we are interested in proving statements x having length
which is a fixed polynomial in k. Let ` = `(k) be a fixed polynomial. (This
depends on the length of x and on the soundness error of the NIZK proof system.
We defer discussion of its value to the proof of Proposition 6, where it will
also depend on the knowledge error of the NIZK knowledge extractor E2.) The
verifier’s first message is a string ρ ∈ {0, 1}`·m, which should be interpreted as
a sequence of random strings ρ1, . . . , ρ` each in {0, 1}m. Here, m = poly(k) is
the length of the crs used in the proof system (PNIZK, VNIZK). The prover and
verifier algorithms appear as Algorithms 4 and 5 respectively.

Algorithm 4 Zap Prover P (1k, x, w, ρ)

Input: Security parameter k, instance x, witness w such that (x,w) ∈ RL, first message
ρ
Output: Proof π

1. Choose a random m-bit string b ∈ {0, 1}m. For each j = 1, . . . , `, let crsj = b⊕ ρj
be the bitwise exclusive-OR of b with ρj

2. For each j = 1, . . . , `, let πj ← PNIZK(crsj , x, w)
3. Send the verifier π = (b, π1, . . . , π`)

Algorithm 5 Zap Verifier V (1k, x, ρ, π)

Input: Security parameter k, instance x, first message ρ, proof π = (b, π1, . . . , π`)
Output: Accept or reject decision

1. Let crsj = b⊕ ρj for each j = 1, . . . , `
2. Accept iff VNIZK(crsj , x, π) = 1 for all j = 1, . . . , `

Theorem 7 ([DN07]). Suppose (PNIZK, VNIZK) is a perfectly complete and sta-
tistically sound NIZK proof system for RL in the common random string model.
Then (P, V ) is a perfectly complete, statistically sound zap proof system for RL.

Our goal now is to show that if (PNIZK, VNIZK) is also a statistically sound
proof of knowledge, then the zap proof system (P, V ) is extractable in the sense
of Definition 6.

Proposition 6. If, in addition, (PNIZK, VNIZK) is statistically knowledge ex-
tractable, then (P, V ) is also an extractable zap for RL.

Proof (Proof). Consider the extraction Algorithm 6.
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Algorithm 6 Zap Extractor E(1k, x, ρ, π)

Input: Security parameter k, instance x, first message ρ, proof π = (b, π1, . . . , π`)
Output: Witness w

For each j = 1, . . . , `:

1. Via brute force, identify (and verify) an extraction key ξj corresponding to a com-
mon random string crsj = b⊕ ρj

2. Run the NIZK knowledge extractor E2(crsj , ξj , x, πj) to obtain a witness w
3. If (x,w) ∈ RL, halt and output w

Let x ∈ {0, 1}∗. We say a common random string crs ∈ {0, 1}k is knowledge-
sound for x if there does not exist a pair (π, ξ) such that

1. VNIZK(crs, x, π) = 1,
2. (crs, ξ) is in the support of E1(1k, 1|x|), and
3. (x,w) /∈ RL for w ← E2(crs, ξ, x, π).

Lemma 7. There exists a polynomial `(k) for which the following holds. Let x ∈
{0, 1}poly(k) and let ρ1, . . . , ρ` be random m-bit strings. Then with overwhelming
probability over the choice of ρ, for every b ∈ {0, 1}m, there exists an index j for
which crsj = b⊕ ρj is knowledge-sound for x.

Proof. Let q(k) denote the knowledge error of the NIZK proof system, i.e.

q(k) = Pr
crs←Gen(1k,1|x|)

[∃ξ, π : (crs, ξ) ∈ E1(1k, 1|x|)

∧ (x,E2(crs, ξ, x, π)) /∈ RL ∧ VNIZK(crs, x, π) = 1].

Statistical extractability of the NIZK proof system requires that q(k) = negl(k)
for any |x| = poly(k). For any fixed b, the strings crsj = b⊕ ρj are independent
and uniformly random. Therefore, the probability that all ` copies fail to be
knowledge-sound for x is at most q`. The number of possible assignments to
b ∈ {0, 1}m is 2m. Therefore, it suffices to take ` = 2m to make 2mq` < negl(k).

We may now complete the proof of Proposition 6.

By Lemma 7, with overwhelming probability over the choice of ρ, there exists
an index j for which crsj = b ⊕ ρj is knowledge-sound for x. If the zap verifier
V accepts, then in particular, VNIZK(crsj , x, π) = 1. Thus, the zap knowledge
extractor E2(crsj , ξj , x, πj) recovers a valid witness w for x. Since the number of
strings crsj that need to be checked is polynomial in k, and each extraction key
has length O(k), the extractor runs in time 2O(k).
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