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Abstract. “Concentrated differential privacy” was recently introduced
by Dwork and Rothblum as a relaxation of differential privacy, which
permits sharper analyses of many privacy-preserving computations. We
present an alternative formulation of the concept of concentrated differ-
ential privacy in terms of the Rényi divergence between the distributions
obtained by running an algorithm on neighboring inputs. With this refor-
mulation in hand, we prove sharper quantitative results, establish lower
bounds, and raise a few new questions. We also unify this approach with
approximate differential privacy by giving an appropriate definition of
“approximate concentrated differential privacy.”

1 Introduction

Differential privacy [DMNS06] is a formal mathematical standard for protecting
individual-level privacy in statistical data analysis. In its simplest form, (pure)
differential privacy is parameterized by a real number ε > 0, which controls
how much “privacy loss”3 an individual can suffer when a computation (i.e., a
statistical data analysis task) is performed involving his or her data.

One particular hallmark of differential privacy is that it degrades smoothly
and predictably under the composition of multiple computations. In particular,
if one performs k computational tasks that are each ε-differentially private and
combines the results of those tasks, then the computation as a whole is kε-
differentially private. This property makes differential privacy amenable to the
type of modular reasoning used in the design and analysis of algorithms: When a
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sophisticated algorithm is comprised of a sequence of differentially private steps,
one can establish that the algorithm as a whole remains differentially private.

A widely-used relaxation of pure differential privacy is approximate or (ε, δ)-
differential privacy [DKM+06], which essentially guarantees that the probability
that any individual suffers privacy loss exceeding ε is bounded by δ. For suf-
ficiently small δ, approximate (ε, δ)-differential privacy provides a comparable
standard of privacy protection as pure ε-differential privacy, while often permit-
ting substantially more useful analyses to be performed.

Unfortunately, there are situations where, unlike pure differential privacy,
approximate differential privacy is not a very elegant abstraction for mathemat-
ical analysis, particularly the analysis of composition. The “advanced compo-
sition theorem” of Dwork, Rothblum, and Vadhan [DRV10] (subsequently im-
proved by [KOV15,MV16]) shows that the composition of k tasks that are each
(ε, δ)-differentially private is (≈

√
kε,≈kδ)-differentially private. However, these

bounds can be unwieldy; computing the tightest possible privacy guarantee for
the composition of k arbitrary mechanisms with differing (εi, δi)-differential pri-
vacy guarantees is #P-hard [MV16]! Moreover, these bounds are not tight even
for simple privacy-preserving computations. For instance, consider the mecha-
nism that approximately answers k statistical queries on a given database by
adding independent Gaussian noise to each answer. Even for this basic compu-
tation, the advanced composition theorem does not yield a tight analysis.4

Dwork and Rothblum [DR16] recently put forth a different relaxation of
differential privacy called concentrated differential privacy. Roughly, a random-
ized mechanism satisfies concentrated differentially privacy if the privacy loss
has small mean and is subgaussian. Concentrated differential privacy behaves
in a qualitatively similar way as approximate (ε, δ)-differential privacy under
composition. However, it permits sharper analyses of basic computational tasks,
including a tight analysis of the aforementioned Gaussian mechanism.

Using the work of Dwork and Rothblum [DR16] as a starting point, we in-
troduce an alternative formulation of the concept of concentrated differential
privacy that we call “zero-concentrated differential privacy” (zCDP for short).
To distinguish our definition from that of Dwork and Rothblum, we refer to
their definition as “mean-concentrated differential privacy” (mCDP for short).
Our definition uses the Rényi divergence between probability distributions as
a different method of capturing the requirement that the privacy loss random
variable is subgaussian.

4 In particular, consider answering k statistical queries on a dataset of n individuals by
adding noise drawn from N (0, (σ/n)2) independently for each query. Each individ-
ual query satisfies (O(

√
log(1/δ)/σ), δ)-differential privacy for any δ > 0. Applying

the advanced composition theorem shows that the composition of all k queries sat-
isfies (O(

√
k log(1/δ)/σ), (k + 1)δ)-differential privacy for any δ > 0. However, it is

well-known that this bound can be improved to (O(
√
k log(1/δ)/σ), δ)-differential

privacy.
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1.1 Our Reformulation: Zero-Concentrated Differential Privacy

As is typical in the literature, we model a dataset as a multiset or tuple of n
elements (or “rows”) in Xn, for some “data universe” X , where each element
represents one individual’s information. A (privacy-preserving) computation is a
randomized algorithm M : Xn → Y, where Y represents the space of all possible
outcomes of the computation.

Definition 1 (Zero-Concentrated Differential Privacy (zCDP)) A ran-
domised mechanism M : Xn → Y is (ξ, ρ)-zero-concentrated differentially pri-
vate (henceforth (ξ, ρ)-zCDP) if, for all x, x′ ∈ Xn differing on a single entry
and all α ∈ (1,∞),

Dα (M(x)‖M(x′)) ≤ ξ + ρα, (1)

where Dα (M(x)‖M(x′)) is the α-Rényi divergence5 between the distribution of
M(x) and the distribution of M(x′).

We define ρ-zCDP to be (0, ρ)-zCDP.6

Equivalently, we can replace (1) with

E
[
e(α−1)Z

]
≤ e(α−1)(ξ+ρα), (2)

where Z = PrivLoss (M(x)‖M(x′)) is the privacy loss random variable:

Definition 2 (Privacy Loss Random Variable) Let Y and Y ′ be random
variables on Ω. We define the privacy loss random variable between Y and Y ′

– denoted Z = PrivLoss (Y ‖Y ′) – as follows. Define a function f : Ω → R by
f(y) = log(P [Y = y] /P [Y ′ = y]). Then Z is distributed according to f(Y ).

Intuitively, the value of the privacy loss Z = PrivLoss (M(x)‖M(x′)) represents
how well we can distinguish x from x′ given only the output M(x) or M(x′).
If Z > 0, then the observed output of M is more likely to have occurred if the
input was x than if x′ was the input. Moreover, the larger Z is, the bigger this
likelihood ratio is. Likewise, Z < 0 indicates that the output is more likely if x′

is the input. If Z = 0, both x and x′ “explain” the output of M equally well.
A mechanism M : Xn → Y is ε-differentially private if and only if P [Z > ε] =

0, where Z = PrivLoss (M(x)‖M(x′)) is the privacy loss of M on arbitrary inputs
x, x′ ∈ Xn differing in one entry. On the other hand, M being (ε, δ)-differentially

5 Rényi divergence has a parameter α ∈ (1,∞) which allows it to interpolate between
KL-divergence (α→ 1) and max-divergence (α→∞). It should be thought of as a
measure of dissimilarity between distributions. We define it formally in Section 2.
Throughout, we assume that all logarithms are natural unless specified otherwise —
that is, base e ≈ 2.718.

6 For clarity of exposition, we consider only ρ-zCDP in the introduction and give more
general statements for (ξ, ρ)-zCDP later. We also believe that having a one-parameter
definition is desirable.
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private is equivalent, up to a small loss in parameters, to the requirement that
P [Z > ε] ≤ δ.

In contrast, zCDP entails a bound on the moment generating function of the
privacy loss Z — that is, E

[
e(α−1)Z

]
as a function of α−1. The bound (2) implies

that Z is a subgaussian random variable with small mean. Intuitively, this means
that Z resembles a Gaussian distribution with mean ξ + ρ and variance 2ρ. In
particular, we obtain strong tail bounds on Z. Namely (2) implies that

P [Z > λ+ ξ + ρ] ≤ e−λ
2/4ρ

for all λ > 0.7

Thus zCDP requires that the privacy loss random variable is concentrated
around zero (hence the name). That is, Z is “small” with high probability, with
larger deviations from zero becoming increasingly unlikely. Hence we are unlikely
to be able to distinguish x from x′ given the output of M(x) or M(x′). Note
that the randomness of the privacy loss random variable is taken only over the
randomnesss of the mechanism M .

Comparison to the Definition of Dwork and Rothblum For compar-
ison, Dwork and Rothblum [DR16] define (µ, τ)-concentrated differential pri-
vacy for a randomized mechanism M : Xn → Y as the requirement that, if
Z = PrivLoss (M(x)‖M(x′)) is the privacy loss for x, x′ ∈ Xn differing on one
entry, then

E [Z] ≤ µ and E
[
e
(α−1)(Z−E[Z])

]
≤ e(α−1)

2 1
2 τ

2

for all α ∈ R. That is, they require both a bound on the mean of the privacy loss
and that the privacy loss is tightly concentrated around its mean. To distinguish
our definitions, we refer to their definition as mean-concentrated differential pri-
vacy (or mCDP).

Our definition, zCDP, is a relaxation of mCDP. In particular, a (µ, τ)-mCDP
mechanism is also (µ− τ2/2, τ2/2)-zCDP (which is tight for the Gaussian mech-
anism example), whereas the converse is not true. (However, a partial converse
holds; see Lemma 24.)

1.2 Results

Relationship between zCDP and Differential Privacy Like Dwork and
Rothblum’s formulation of concentrated differential privacy, zCDP can be thought
of as providing guarantees of (ε, δ)-differential privacy for all values of δ > 0:

7 We only discuss bounds on the upper tail of Z. We can obtain similar
bounds on the lower tail of Z = PrivLoss (M(x)‖M(x′)) by considering Z′ =
PrivLoss (M(x′)‖M(x)).
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Proposition 3 If M provides ρ-zCDP, then M is (ρ+2
√
ρ log(1/δ), δ)-differentially

private for any δ > 0.

There is also a partial converse, which shows that, up to a loss in parameters,
zCDP is equivalent to differential privacy with this ∀δ > 0 quantification (see
Lemma 22).

There is also a direct link from pure differential privacy to zCDP:

Proposition 4 If M satisfies ε-differential privacy, then M satisfies ( 1
2ε

2)-
zCDP.

Dwork and Rothblum [DR16, Theorem 3.5] give a slightly weaker version of
Proposition 4, which implies that ε-differential privacy yields ( 1

2ε(e
ε−1))-zCDP;

this improves on an earlier bound [DRV10] by the factor 1
2 .

Propositions 3 and 4 show that zCDP is an intermediate notion between
pure differential privacy and approximate differential privacy. Indeed, many al-
gorithms satisfying approximate differential privacy do in fact also satisfy zCDP.

Gaussian Mechanism Just as with mCDP, the prototypical example of a
mechanism satisfying zCDP is the Gaussian mechanism, which answers a real-
valued query on a database by perturbing the true answer with Gaussian noise.

Definition 5 (Sensitivity) A function q : Xn → R has sensitivity ∆ if for all
x, x′ ∈ Xn differing in a single entry, we have |q(x)− q(x′)| ≤ ∆.

Proposition 6 (Gaussian Mechanism) Let q : Xn → R be a sensitivity-∆
query. Consider the mechanism M : Xn → R that on input x, releases a sample
from N (q(x), σ2). Then M satisfies (∆2/2σ2)-zCDP.

We remark that either inequality defining zCDP — (1) or (2) — is exactly
tight for the Gaussian mechanism for all values of α. Thus the definition of zCDP
seems tailored to the Gaussian mechanism.

Basic Properties of zCDP Our definition of zCDP satisfies the key ba-
sic properties of differential privacy. Foremost, these properties include smooth
degradation under composition, and invariance under postprocessing:

Lemma 7 (Composition) Let M : Xn → Y and M ′ : Xn → Z be randomized
algorithms. Suppose M satisfies ρ-zCDP and M ′ satisfies ρ′-zCDP. Define M ′′ :
Xn → Y ×Z by M ′′(x) = (M(x),M ′(x)). Then M ′′ satisfies (ρ+ ρ′)-zCDP.

Lemma 8 (Postprocessing) Let M : Xn → Y and f : Y → Z be randomized
algorithms. Suppose M satisfies ρ-zCDP. Define M ′ : Xn → Z by M ′(x) =
f(M(x)). Then M ′ satisfies ρ-zCDP.
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These properties follow immediately from corresponding properties of the Rényi
divergence outlined in Lemma 15.

We remark that Dwork and Rothblum’s definition of mCDP is not closed un-
der postprocessing; we provide a counterexample in the full version of this work.
(However, an arbitrary amount of postprocessing can worsen the guarantees of
mCDP by at most constant factors.)

Group Privacy A mechanism M guarantees group privacy if no small group
of individuals has a significant effect on the outcome of a computation (whereas
the definition of zCDP only refers to individuals, which are groups of size 1).
That is, group privacy for groups of size k guarantees that, if x and x′ are inputs
differing on k entries (rather than a single entry), then the outputs M(x) and
M(x′) are close.

Dwork and Rothblum [DR16, Theorem 4.1] gave nearly tight bounds on the
group privacy guarantees of concentrated differential privacy, showing that a
(µ = τ2/2, τ)-concentrated differentially private mechanism affords (k2µ · (1 +
o(1)), kτ · (1 + o(1)))-concentrated differential privacy for groups of size k =
o(1/τ). We are able to show a group privacy guarantee for zCDP that is exactly
tight and works for a wider range of parameters:

Proposition 9 Let M : Xn → Y satisfy ρ-zCDP. Then M guarantees (k2ρ)-
zCDP for groups of size k — i.e. for every x, x′ ∈ Xn differing in up to k entries
and every α ∈ (1,∞), we have

Dα (M(x)‖M(x′)) ≤ (k2ρ) · α.

In particular, this bound is achieved (simultaneously for all values α) by
the Gaussian mechanism. Our proof is also simpler than that of Dwork and
Rothblum; see Section 5.

Lower Bounds The strong group privacy guarantees of zCDP yield, as an
unfortunate consequence, strong lower bounds as well. We show that, as with
pure differential privacy, zCDP is susceptible to information-based lower bounds,
as well as to so-called packing arguments [HT10,MMP+10,De12]:

Theorem 10 Let M : Xn → Y satisfy ρ-zCDP. Let X be a random variable on
Xn. Then

I (X;M(X)) ≤ ρ · n2,

where I(·; ·) denotes the mutual information between the random variables (in
nats, rather than bits). Furthermore, if the entries of X are independent, then
I(X;M(X)) ≤ ρ · n.

Theorem 10 yields strong lower bounds for zCDP mechanisms, as we can
construct distributions X such that M(X) reveals a lot of information about X
(i.e. I(X;M(X)) is large) for any accurate M .
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In particular, we obtain a strong separation between approximate differen-
tial privacy and zCDP. For example, we can show that releasing an accurate
approximate histogram (or, equivalently, accurately answering all point queries)
on a data domain of size k requires an input with at least n = Θ(

√
log k) en-

tries to satisfy zCDP. In contrast, under approximate differential privacy, n can
be independent of the domain size k [BNS13]! In particular, our lower bounds
show that “stability-based” techniques (such as those in the propose-test-release
framework [DL09]) are not compatible with zCDP.

Our lower bound exploits the strong group privacy guarantee afforded by
zCDP. Group privacy has been used to prove tight lower bounds for pure differ-
ential privacy [HT10,De12] and approximate differential privacy [SU15a]. These
results highlight the fact that group privacy is often the limiting factor for pri-
vate data analysis. For (ε, δ)-differential privacy, group privacy becomes vacuous
for groups of size k = Θ(log(1/δ)/ε). Indeed, stability-based techniques exploit
precisely this breakdown in group privacy.

As a result of this strong lower bound, we show that any mechanism for
answering statistical queries that satisfies zCDP can be converted into a mech-
anism satisfying pure differential privacy with only a quadratic blowup in its
sample complexity. More precisely, the following theorem illustrates a more gen-
eral result we prove in Section 7.

Theorem 11 Let n ∈ N and α ≥ 1/n be arbitrary. Set ε = α and ρ = α2. Let
q : X → [0, 1]k be an arbitrary family of statistical queries. Suppose M : Xn →
[0, 1]k satisfies ρ-zCDP and

E
M

[‖M(x)− q(x)‖∞] ≤ α

for all x ∈ Xn. Then there exists M ′ : Xn′ → [0, 1]k for n′ = 5n2 satisfying
ε-differential privacy and

E
M ′

[‖M ′(x)− q(x)‖∞] ≤ 10α

for all x ∈ Xn′ .

For some classes of queries, this reduction is essentially tight. For example,
for k one-way marginals, the Gaussian mechanism achieves sample complexity
n = Θ(

√
k) subject to zCDP, whereas the Laplace mechanism achieves sample

complexity n = Θ(k) subject to pure differential privacy, which is known to be
optimal. For more details, see Sections 6 and 7.

Approximate zCDP To circumvent these strong lower bounds for zCDP, we
consider a relaxation of zCDP in the spirit of approximate differential privacy
that permits a small probability δ of (catastrophic) failure:

Definition 12 (Approximate zCDP) A randomized mechanism M : Xn →
Y is δ-approximately (ξ, ρ)-zCDP if, for all x, x′ ∈ Xn differing on a single
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entry, there exist events E (depending on M(x)) and E′ (depending on M(x′))
such that P [E] ≥ 1− δ, P [E′] ≥ 1− δ, and

∀α ∈ (1,∞) Dα (M(x)|E‖M(x′)|E′) ≤ ξ + ρ · α
∧ Dα (M(x′)|E′‖M(x)|E) ≤ ξ + ρ · α,

where M(x)|E denotes the distribution of M(x) conditioned on the event E. We
further define δ-approximate ρ-zCDP to be δ-approximate (0, ρ)-zCDP.

In particular, setting δ = 0 gives the original definition of zCDP. However,
this definition unifies zCDP with approximate differential privacy:

Proposition 13 If M satisfies (ε, δ)-differential privacy, then M satisfies δ-
approximate 1

2ε
2-zCDP.

Approximate zCDP retains most of the desirable properties of zCDP, but
allows us to incorporate stability-based techniques and bypass the above lower
bounds. This also presents a unified tool to analyse a composition of zCDP with
approximate differential privacy; see Section 8.

Related Work Our work builds on the aforementioned prior work of Dwork
and Rothblum [DR16].8 We view our definition of concentrated differential pri-
vacy as being “morally equivalent” to their definition of concentrated differential
privacy, in the sense that both definitions formalize the same concept.9 (The for-
mal relationship between the two definitions is discussed in Section 4.) However,
the definition of zCDP generally seems easier to work with than mCDP. In par-
ticular, our formulation in terms of Rényi divergence simplifies many analyses.

Dwork and Rothblum prove several results about concentrated differential
privacy that are similar to ours. Namely, they prove analogous properties of
mCDP as we prove for zCDP. However, as noted, some of their bounds are
weaker than ours; also, they do not explore lower bounds.

Several of the ideas underlying concentrated differential privacy are implicit
in earlier works. In particular, the proof of the advanced composition theorem
of Dwork, Rothblum, and Vadhan [DRV10] essentially uses the ideas of concen-
trated differential privacy.

We also remark that Tardos [Tar08] used Rényi divergence to prove lower
bounds for cryptographic objects called fingerprinting codes. Fingerprinting codes
turn out to be closely related to differential privacy [Ull13,BUV14,SU15b], and
Tardos’ lower bound can be (loosely) viewed as a kind of privacy-preserving
algorithm.

8 Although Dwork and Rothblum’s work only appeared publicly in March 2016, they
shared a preliminary draft of their paper with us before we commenced this work.
As such, our ideas are heavily inspired by theirs.

9 We use “concentrated differential privacy” (CDP) to refer to the underlying concept
formalized by both definitions.
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Further Work We believe that concentrated differential privacy is a useful
tool for analysing private computations, as it provides both simpler and tighter
bounds. We hope that CDP will be prove useful in both the theory and practice
of differential privacy.

Furthermore, our lower bounds show that CDP can really be a much more
stringent condition than approximate differential privacy. Thus CDP defines a
“subclass” of all (ε, δ)-differentially private algorithms. This subclass includes
most differentially private algorithms in the literature, but not all — the most
notable exceptions being algorithms that use the propose-test-release approach
[DL09] to exploit low local sensitivity.

This “CDP subclass” warrants further exploration. In particular, is there a
“complete” mechanism for this class of algorithms, in the same sense that the
exponential mechanism [MT07,BLR13] is complete for pure differential privacy?
Can we obtain a simple characterization of the sample complexity needed to sat-
isfy CDP? The ability to prove stronger and simpler lower bounds for CDP than
for approximate DP may be useful for showing the limitations of certain algorith-
mic paradigms. For example, any differentially private algorithm that only uses
the Laplace mechanism, the exponential mechanism, the Gaussian mechanism,
and the “sparse vector” technique, along with composition and postprocessing
will be subject to the lower bounds for CDP.

There is also room to examine how to interpret the zCDP privacy guaran-
tee. In particular, we leave it as an open question to understand the extent to
which ρ-zCDP provides a stronger privacy guarantee than the implied (ε, δ)-DP
guarantees (cf. Proposition 3).

In general, much of the literature on differential privacy can be re-examined
through the lens of CDP, which may yield new insights and results.

2 Rényi Divergence

Recall the definition of Rényi divergence:

Definition 14 (Rényi Divergence [Rén61, Equation (3.3)]) Let P and Q
be probability distributions on Ω. For α ∈ (1,∞), we define the Rényi divergence
of order α between P and Q as

Dα (P‖Q) =
1

α− 1
log

(∫
Ω

P (x)αQ(x)1−αdx

)
=

1

α− 1
log

(
E
x∼P

[(
P (x)

Q(x)

)α−1])
,

where P (·) and Q(·) are the probability mass/density functions of P and Q re-
spectively or, more generally, P (·)/Q(·) is the Radon-Nikodym derivative of P
with respect to Q.

We also define the KL-divergence

D1 (P‖Q) = lim
α→1

Dα (P‖Q) =

∫
Ω

P (x) log

(
P (x)

Q(x)

)
dx
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and the max-divergence

D∞ (P‖Q) = lim
α→∞

Dα (P‖Q) = sup
x∈Ω

log

(
P (x)

Q(x)

)
.

Alternatively, Rényi divergence can be defined in terms of the privacy loss
(Definition 2) between P and Q:

e(α−1)Dα(P‖Q) = E
Z∼PrivLoss(P‖Q)

[
e(α−1)Z

]
for all α ∈ (1,∞). Moreover, D1 (P‖Q) = E

Z∼PrivLoss(P‖Q)
[Z].

We record several useful and well-known properties of Rényi divergence. We
refer the reader to [vEH14] for proofs and discussion of these (and many other)
properties.

Lemma 15 Let P and Q be probability distributions and α ∈ [1,∞].

– Non-negativity: Dα (P‖Q) ≥ 0 with equality if and only if P = Q.
– Composition: Suppose P and Q are distributions on Ω × Θ. Let P ′ and Q′

denote the marginal distributions on Ω induced by P and Q respectively. For
x ∈ Ω, let P ′x and Q′x denote the conditional distributions on Θ induced by
P and Q respectively, where x specifies the first coordinate. Then

Dα (P ′‖Q′)+min
x∈Ω

Dα (P ′x‖Q′x) ≤ Dα (P‖Q) ≤ Dα (P ′‖Q′)+max
x∈Ω

Dα (P ′x‖Q′x) .

In particular if P and Q are product distributions, then the Rényi divergence
between P and Q is just the sum of the Rényi divergences of the marginals.

– Quasi-Convexity: Let P0, P1 and Q0, Q1 be distributions on Ω, and let P =
tP0 + (1 − t)P1 and Q = tQ0 + (1 − t)Q1 for t ∈ [0, 1]. Then Dα (P‖Q) ≤
max{Dα (P0‖Q0) ,Dα (P1‖Q1)}. Moreover, KL divergence is convex:

D1 (P‖Q) ≤ tD1 (P0‖Q0) + (1− t)D1 (P1‖Q1) .

– Postprocessing: Let P and Q be distributions on Ω and let f : Ω → Θ be
a function. Let f(P ) and f(Q) denote the distributions on Θ induced by
applying f to P or Q respectively. Then Dα (f(P )‖f(Q)) ≤ Dα (P‖Q).
Note that quasi-convexity allows us to extend this guarantee to the case where
f is a randomized mapping.

– Monotonicity: For 1 ≤ α ≤ α′ ≤ ∞, Dα (P‖Q) ≤ Dα′ (P‖Q).

2.1 Gaussian Mechanism

The following lemma gives the Rényi divergence between two Gaussian distri-
butions with the same variance.

Lemma 16 Let µ, ν, σ ∈ R and α ∈ [1,∞). Then

Dα

(
N (µ, σ2)

∥∥N (ν, σ2)
)

=
α(µ− ν)2

2σ2

10



Consequently, the Gaussian mechanism, which answers a sensitivity-∆ query

by adding noise drawn from N (0, σ2), satisfies
(
∆2

2σ2

)
-zCDP (Proposition 6).

For the multivariate Gaussian mechanism, Lemma 16 generalises to the fol-
lowing.

Lemma 17 Let µ, ν ∈ Rd, σ ∈ R, and α ∈ [1,∞). Then

Dα

(
N (µ, σ2Id)

∥∥N (ν, σ2Id)
)

=
α‖µ− ν‖22

2σ2

Thus, if M : Xn → Rd is the mechanism that, on input x, releases a sample
from N (q(x), σ2Id) for some function q : Xn → Rd, then M satisfies ρ-zCDP for

ρ =
1

2σ2
sup

x,x′∈Xn
differing in one entry

‖q(x)− q(x′)‖22. (3)

3 Relation to Differential Privacy

We now discuss the relationship between zCDP and the traditional definitions of
pure and approximate differential privacy. There is a close relationship between
the notions, but not an exact characterization.

Definition 18 (Differential Privacy (DP) [DMNS06,DKM+06]) A ran-
domized mechanism M : Xn → Y satisfies (ε, δ)-differential privacy if, for all
x, x′ ∈ X differing in a single entry, we have

P [M(x) ∈ S] ≤ eεP [M(x′) ∈ S] + δ

for all (measurable) S ⊂ Y. Further define ε-differential privacy to be (ε, 0)-
differential privacy.

3.1 Pure DP versus zCDP

We now show that ε-differential privacy implies (1
2ε

2)-zCDP (Proposition 4).

Proposition 19 Let P and Q be probability distributions on Ω satisfying D∞ (P‖Q) ≤
ε and D∞ (Q‖P ) ≤ ε. Then Dα (P‖Q) ≤ 1

2ε
2α for all α > 1.

Remark 20 In particular, Proposition 19 shows that the KL-divergence D1 (P‖Q) ≤
1
2ε

2. A bound on the KL-divergence between random variables in terms of their
max-divergence is an important ingredient in the analysis of the advanced com-
position theorem [DRV10]. Our bound sharpens (up to lower order terms) and,
in our opinion, simplifies the previous bound of D1 (P‖Q) ≤ 1

2ε(e
ε − 1) proved

by Dwork and Rothblum [DR16].
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Proof (Proof of Proposition 19.). We may assume 1
2εα ≤ 1, as otherwise 1

2ε
2α >

ε, whence the result follows from monotonicity. We must show that

e(α−1)Dα(P‖Q) = E
x∼Q

[(
P (x)

Q(x)

)α]
≤ e 1

2α(α−1)ε
2

.

We know that e−ε ≤ P (x)
Q(x) ≤ eε for all x. Define a random function A : Ω →

{e−ε, eε} by E
A

[A(x)] = P (x)
Q(x) for all x. By Jensen’s inequality,

E
x∼Q

[(
P (x)

Q(x)

)α]
= E
x∼Q

[(
E
A

[A(x)]
)α]
≤ E
x∼Q

[
E
A

[A(x)α]
]

= E
A

[Aα] ,

where A denotes A(x) for a random x ∼ Q. We also have E
A

[A] = E
x∼Q

[
P (x)
Q(x)

]
= 1.

From this equation, we can conclude that

P
A

[
A = e−ε

]
=

eε − 1

eε − e−ε
and P

A
[A = eε] =

1− e−ε

eε − e−ε
.

Thus

e(α−1)Dα(P‖Q) ≤E
A

[Aα]

=
eε − 1

eε − e−ε
· e−αε +

1− e−ε

eε − e−ε
· eαε

=
sinh(αε)− sinh((α− 1)ε)

sinh(ε)
.

The result now follows from the following inequality, which is proved in the full
version of this work.

0 ≤ y < x ≤ 2 =⇒ sinh(x)− sinh(y)

sinh(x− y)
≤ e 1

2xy.

3.2 Approximate DP versus zCDP

The statements in this section show that, up to some loss in parameters, zCDP
is equivalent to a family of (ε, δ)-DP guarantees for all δ > 0.

Lemma 21 Let M : Xn → Y satisfy (ξ, ρ)-zCDP. Then M satisfies (ε, δ)-DP
for all δ > 0 and

ε = ξ + ρ+
√

4ρ log(1/δ).

Thus to achieve a given (ε, δ)-DP guarantee it suffices to satisfy (ξ, ρ)-zCDP
with

ρ =
(√

ε− ξ + log(1/δ)−
√

log(1/δ)
)2
≈ (ε− ξ)2

4 log(1/δ)
.

12



Proof. Let x, x′ ∈ Xn be neighbouring. Define f(y) = log(P [M(x) = y] /P [M(x′) = y]).

Let Y ∼ M(x) and Z = f(Y ). That is, Z = PrivLoss (M(x)‖M(x′)) is the pri-
vacy loss random variable. Fix α ∈ (1,∞) to be chosen later. Then

E
[
e(α−1)Z

]
= E
Y∼M(x)

( P [M(x) = Y ]

P [M(x′) = Y ]

)α−1 = e(α−1)Dα(M(x)‖M(x′)) ≤ e(α−1)(ξ+ρα).

By Markov’s inequality

P [Z > ε] = P
[
e(α−1)Z > e(α−1)ε

]
≤

E
[
e(α−1)Z

]
e(α−1)ε

≤ e(α−1)(ξ+ρα−ε).

Choosing α = (ε− ξ + ρ)/2ρ > 1 gives

P [Z > ε] ≤ e−(ε−ξ−ρ)
2/4ρ ≤ δ.

This implies that for any measurable S ⊂ Y,

P [M(x) ∈ S] ≤ eεP [M(x′) ∈ S] + δ.

Lemma 21 is not tight, and we give a quantitative refinement in Lemma 38
(setting δ = 0 there). There, we also show a partial converse to Lemma 21:

Lemma 22 Let M : Xn → Y satisfy (ε, δ)-DP for all δ > 0 and

ε = ξ̂ +
√
ρ̂ log(1/δ) (4)

for some constants ξ̂, ρ̂ ∈ [0, 1]. Then M is
(
ξ̂ − 1

4 ρ̂+ 5 4
√
ρ̂, 14 ρ̂

)
-zCDP.

Thus zCDP and DP are equivalent up to a (potentially substantial) loss in
parameters and the quantification over all δ.

4 Zero- versus Mean-Concentrated Differential Privacy

We begin by recalling the definition of mean-concentrated differential privacy:

Definition 23 (Mean-Concentrated Differential Privacy [DR16]) A ran-
domized mechanism M : Xn → Y satisfies (µ, τ)-mCDP if, for all x, x′ ∈ Xn
differing in one entry, and letting Z = PrivLoss (M(x)‖M(x′)), we have

E [Z] ≤ µ and E

[
e
λ

(
Z−E[Z]

)]
≤ eλ

2·τ2/2

for all λ ∈ R.

13



In contrast (ξ, ρ)-zCDP requires that, for all α ∈ (1,∞), E
[
e(α−1)Z

]
≤

e(α−1)(ξ+ρα), where Z ∼ PrivLoss (M(x)‖M(x′)) is the privacy loss random vari-
able. In the full version of this work, we show that these definitions are equivalent
up to a (potentially significant) loss in parameters.

Lemma 24 If M : Xn → Y satisfies (µ, τ)-mCDP, then M satisfies (µ −
τ2/2, τ2/2)-zCDP. Conversely, if M : Xn → Y satisfies (ξ, ρ)-zCDP, then M
satisfies (ξ + ρ,O(

√
ξ + 2ρ))-mCDP.

Thus we can convert (µ, τ)-mCDP into (µ−τ2/2, τ2/2)-zCDP and then back
to (µ,O(

√
µ+ τ2/2))-mCDP. This may result in a large loss in parameters,

which is why, for example, pure DP can be characterised in terms of zCDP, but
not in terms of mCDP.

We view zCDP as a relaxation of mCDP; mCDP requires the privacy loss
to be “tightly” concentrated about its mean and that the mean is close to the
origin. The triangle inequality then implies that the privacy loss is “weakly”
concentrated about the origin. (The difference between “tightly” and “weakly”
accounts for the use of the triangle inequality.) On the other hand, zCDP direcly
requires that the privacy loss is weakly concentrated about the origin. That is,
zCDP gives a subgaussian bound on the privacy loss that is centered at zero,
whereas mCDP gives a subgaussian bound that is centered at the mean and
separately bounds the mean.

There may be some advantage to the stronger requirement of mCDP, either
in terms of what kind of privacy guarantee it affords, or how it can be used as an
analytic tool. However, it seems that for most applications, we only need what
zCDP provides.

5 Group Privacy

In this section we show that zCDP provides privacy protections to small groups
of individuals.

Definition 25 (zCDP for Groups) We say that a mechanism M : Xn → Y
provides (ξ, ρ)-zCDP for groups of size k if, for every x, x′ ∈ Xn differing in at
most k entries, we have

∀α ∈ (1,∞) Dα (M(x)‖M(x′)) ≤ ξ + ρ · α.

The usual definition of zCDP only applies to groups of size 1. Here we show that
it implies bounds for all group sizes. We begin with a technical lemma.

Lemma 26 (Triangle-like Inequality for Rényi Divergence) Let P , Q, and
R be probability distributions. Then

Dα (P‖Q) ≤ kα

kα− 1
D kα−1

k−1
(P‖R) + Dkα (R‖Q) (5)

for all k, α ∈ (1,∞).

14



Proof. Let p = kα−1
α(k−1) and q = kα−1

α−1 . Then 1
p + 1

q = α(k−1)+(α−1)
kα−1 = 1. By

Hölder’s inequality,

e(α−1)Dα(P‖Q) =

∫
Ω

P (x)αQ(x)1−αdx

=

∫
Ω

P (x)αR(x)−α ·R(x)α−1Q(x)1−α ·R(x)dx

= E
x∼R

[(
P (x)

R(x)

)α
·
(
R(x)

Q(x)

)α−1]

≤ E
x∼R

[(
P (x)

R(x)

)pα]1/p
· E
x∼R

[(
R(x)

Q(x)

)q(α−1)]1/q
=e(pα−1)Dpα(P‖R)/p · eq(α−1)Dq(α−1)+1(R‖Q)/q.

Taking logarithms and rearranging gives

Dα (P‖Q) ≤ pα− 1

p(α− 1)
Dpα (P‖R) + Dq(α−1)+1 (R‖Q) .

Now pα = kα−1
k−1 , q(α− 1) + 1 = kα, and pα−1

p(α−1) = kα
kα−1 .

Proposition 27 If M : Xn → Y satisfies (ξ, ρ)-zCDP, then M gives (ξ ·
k
∑k
i=1

1
i , ρ · k

2)-zCDP for groups of size k.

In particular, (ξ, ρ)-zCDP implies (ξ ·O(k log k), ρ · k2)-zCDP for groups of size
k. The Gaussian mechanism shows that k2ρ is the optimal dependence on ρ.
However, O(k log k)ξ is not the optimal dependence on ξ: (ξ, 0)-zCDP implies
(kξ, 0)-zCDP for groups of size k.

Proof. We show this by induction on k. The statement is clearly true for groups
of size 1. We now assume the statement holds for groups of size k − 1 and will
verify it for groups of size k.

Let x, x′ ∈ Xn differ in k entries. Let x̂ ∈ Xn be such that x and x̂ differ in
k − 1 entries and x′ and x̂ differ in one entry.

Then, by the induction hypothesis,

Dα (M(x)‖M(x̂)) ≤ ξ · (k − 1)

k−1∑
i=1

1

i
+ ρ · (k − 1)2 · α

and, by zCDP,

Dα (M(x̂)‖M(x′)) ≤ ξ + ρ · α

15



for all α ∈ (1,∞). By (5), for any α ∈ (1,∞),

Dα (M(x)‖M(x′))

≤ kα

kα− 1
D kα−1

k−1
(M(x)‖M(x̂)) + Dkα (M(x̂)‖M(x′))

≤ kα

kα− 1

(
ξ · (k − 1)

k−1∑
i=1

1

i
+ ρ · (k − 1)2 · kα− 1

k − 1

)
+ ξ + ρ · kα

= ξ ·

(
1 +

kα

kα− 1
(k − 1)

k−1∑
i=1

1

i

)
+ ρ ·

(
kα

kα− 1
(k − 1)2

kα− 1

k − 1
+ kα

)

≤ ξ · k
k∑
i=1

1

i
+ ρ · k2 · α,

where the last inequality follows from the fact that kα
kα−1 is a decreasing function

of α for α > 1.

6 Lower Bounds

In this section we develop tools to prove lower bounds for zCDP. We will use
group privacy to bound the mutual information between the input and the out-
put of a mechanism satisfying zCDP. Thus, if we are able to construct a distribu-
tion on inputs such that any accurate mechanism must reveal a high amount of
information about its input, we obtain a lower bound showing that no accurate
mechanism satisfying zCDP can be accurate for this data distribution.

We begin with the simplest form of our mutual information bound, which is
an analogue of the bound of [MMP+10] for pure differential privacy:

Proposition 28 Let M : Xn → Y satisfy (ξ, ρ)-zCDP. Let X be a random
variable in Xn. Then

I(X;M(X)) ≤ ξ · n(1 + log n) + ρ · n2,

where I denotes mutual information (measured in nats, rather than bits).

Proof. By Proposition 27, M is (ξ · n
∑n
i=1

1
i , ρ · n

2)-zCDP for groups of size n.
Thus

D1 (M(x)‖M(x′)) ≤ ξ · n
n∑
i=1

1

i
+ ρ · n2 ≤ ξ · n(1 + log n) + ρ · n2

for all x, x′ ∈ Xn. Since KL-divergence is convex,

I(X;M(X)) = E
x←X

[D1 (M(x)‖M(X))]

≤ E
x←X

[
E

x′←X
[D1 (M(x)‖M(x′))]

]
≤ E
x←X

[
E

x′←X

[
ξ · n(1 + log n) + ρ · n2

]]
=ξ · n(1 + log n) + ρ · n2.
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The reason this lower bound works is the strong group privacy guarantee —
even for groups of size n, we obtain nontrivial privacy guarantees. While this is
good for privacy it is bad for usefulness, as it implies that even information that
is “global” (rather than specific to a individual or a small group) is protected.
These lower bounds reinforce the connection between group privacy and lower
bounds [HT10,De12,SU15a].

In contrast, (ε, δ)-DP is not susceptible to such a lower bound because it
gives a vacuous privacy guarantee for groups of size k = O(log(1/δ)/ε). This
helps explain the power of the propose-test-release paradigm.

Furthermore, we obtain even stronger mutual information bounds when the
entries of the distribution are independent:

Lemma 29 Let M : Xm → Y satisfy (ξ, ρ)-zCDP. Let X be a random variable
in Xm with independent entries. Then

I (X;M(X)) ≤ (ξ + ρ) ·m,

where I denotes mutual information (measured in nats, rather than bits).

Proof. First, by the chain rule for mutual information,

I(X;M(X)) =
∑
i∈[m]

I(Xi;M(X)|X1···i−1),

where

I(Xi;M(X)|X1···i−1) = E
x←X1···i−1

[I(Xi|X1···i−1 = x;M(X)|X1···i−1 = x)]

= E
x←X1···i−1

[I(Xi;M(x,Xi···m))] ,

by independence of the Xis.

We can define mutual information in terms of KL-divergence:

I(Xi;M(x,Xi···m)) = E
y←Xi

[D1 (M(x,Xi···m)|Xi = y‖M(x,Xi···m))]

= E
y←Xi

[D1 (M(x, y,Xi+1···m)‖M(x,Xi···m))] .

By zCDP, we know that for all x ∈ X i−1, y, y′ ∈ X , and z ∈ Xm−i, we have

D1 (M(x, y, z)‖M(x, y′, z)) ≤ ξ + ρ.

Thus, by the convexity of KL-divergence,

D1 (M(x, y,Xi+1···m)‖M(x,Xi···m)) ≤ ξ + ρ

for all x and y. The result follows.
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More generally, we can combine dependent and independent rows as follows.

Theorem 30 Let M : Xn → Y satisfy (ξ, ρ)-zCDP. Take n = m · `. Let
X1, · · · , Xm be independent random variables on X `. Denote X = (X1, · · · , Xm) ∈
Xn. Then

I (X;M(X)) ≤ m ·
(
ξ · `(1 + log `) + ρ · `2

)
,

where I denotes the mutual information (measured in nats, rather than bits).

6.1 Example Applications of the Lower Bound

We informally discuss a few applications of our information-based lower bounds
to some simple and well-studied problems in differential privacy.

One-Way Marginals Consider M : Xn → Y where X = {0, 1}d and Y = [0, 1]d.
The goal of M is to estimate the attribute means, or one-way marginals, of its
input database x:

M(x) ≈ x =
1

n

∑
i∈[n]

xi.

It is known that this is possible subject to ε-DP if and only if n = Θ(d/ε)
[HT10,SU15a]. This is possible subject to (ε, δ)-DP if and only if n = Θ̃(

√
d log(1/δ)/ε),

assuming δ � 1/n [BUV14,SU15a].
We now analyze what can be accomplished with zCDP. Adding independent

noise drawn fromN (0, d/2n2ρ) to each of the d coordinates of x satisfies ρ-zCDP.
This gives accurate answers as long as n�

√
d/ρ.

For a lower bound, consider sampling X1 ∈ {0, 1}d uniformly at random. Set
Xi = X1 for all i ∈ [n]. By Proposition 28,

I(X;M(X)) ≤ n2ρ

for any ρ-zCDP M : ({0, 1}d)n → [0, 1]d. However, if M is accurate, we can
recover (most of) X1 from M(X), whence I(X;M(X)) ≥ Ω(d).This yields a
lower bound of n ≥ Ω(

√
d/ρ), which is tight up to constant factors.

Histograms (a.k.a. Point Queries) Consider M : Xn → Y, where X = [T ] and
Y = RT . The goal of M is to estimate the histogram of its input:

M(x)t ≈ ht(x) = |{i ∈ [n] : xi = t}|

For ε-DP it is possible to do this if and only if n = Θ(log(T )/ε)); the optimal
algorithm is to independently sample

M(x)t ∼ ht(x) + Laplace(2/ε).

However, for (ε, δ)-DP, it is possible to attain sample complexity n = O(log(1/δ)/ε)
[BNS16, Theorem 3.13]. Interestingly, for zCDP we can show that n = Θ(

√
log(T )/ρ)

is sufficient and necessary:
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Sampling
M(x)t ∼ ht(x) +N (0, 1/ρ)

independently for t ∈ [T ] satisfies ρ-zCDP. Moreover,

P
[
max
t∈[T ]

|M(x)t − ht(x)| ≥ λ
]
≤ T · P [|N (0, 1/ρ)| > λ] ≤ T · e−λ

2ρ/2.

In particular P
[
maxt∈[T ] |M(x)t − ht(x)| ≥

√
log(T/β)/ρ

]
≤ β for all β > 0.

Thus this algorithm is accurate if n�
√

log(T )/ρ.
On the other hand, if we sample X1 ∈ [T ] uniformly at random and set

Xi = X1 for all i ∈ [n], then I(X;M(X)) ≥ Ω(log T ) for any accurate M , as
we can recover X1 from M(X) if M is accurate. Proposition 28 thus implies
that n ≥ Ω(

√
log(T )/ρ) is necessary to obtain accuracy. This gives a strong

separation between approximate DP and zCDP.

Lower Bounds with Accuracy The above examples can be easily discussed in
terms of a more formal and quantitative definition of accuracy. For instance, in
the full version of this work, we revisit the histogram example:

Proposition 31 If M : [T ]n → RT satisfies ρ-zCDP and

∀x ∈ [T ]n E
M

[
max
t∈[T ]

∣∣M(x)t − ht(x)
∣∣] ≤ αn,

then n ≥ Ω(
√

log(α2T )/ρα2).

We remark that our lower bounds for zCDP can be converted to lower bounds
for mCDP using Lemma 24.

7 Obtaining Pure DP Mechanisms from zCDP

We now establish limits on what more can be achieved with zCDP over pure
differential privacy. In particular, we prove that any mechanism satisfying zCDP
can be converted into a mechanism satisfying pure DP with at most a quadratic
blowup in sample complexity. Formally, we show the following theorem.

Theorem 32 Fix n ∈ N, n′ ∈ N, k ∈ N α > 0, and ε > 0. Let q : X → Rk and
let ‖ · ‖ be a norm on Rk. Assume maxx∈X ‖q(x)‖ ≤ 1. Suppose there exists a
(ξ, ρ)-zCDP mechanism M : Xn → Rk such that for all x ∈ Xn,

E
M

[‖M(x)− q(x)‖] ≤ α.

Assume ξ ≤ α2, ρ ≤ α2, and

n′ ≥ 4

εα

(
ρ · n2 + ξ · n · (1 + log n) + 1

)
.
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Then there exists a (ε, 0)-differentially private M ′ : Xn′ → Rk satisfying

E
M ′

[‖M ′(x)− q(x)‖] ≤ 10α

and

P
M ′

[
‖M ′(x)− q(x)‖ > 10α+

4

εn′
log

(
1

β

)]
≤ β

for all x ∈ Xn′ and β > 0.

Before discussing the proof of Theorem 32, we make some remarks about its
statement:

– Unfortunately, the theorem only works for families of statistical queries q :
X → Rk. However, it works equally well for ‖ · ‖∞ and ‖ · ‖1 error bounds.

– If ξ = 0, we have n′ = O(n2ρ/εα). So, if ρ, ε, and α are all constants, we have
n′ = O(n2). This justifies our informal statement that we can convert any
mechanism satisfying zCDP into one satisfying pure DP with a quadratic
blowup in sample complexity.

– The requirement that ξ, ρ ≤ α2 is only used to show that

max
x∈Xn′

min
x̂∈Xn

‖q(x)− q(x̂)‖ ≤ 2α. (6)

However, in many situations (6) holds even when ξ, ρ � α2. For example,
if n ≥ O(log(k)/α2) or even n ≥ O(V C(q)/α2) then (6) is automatically
satisfied. The technical condition (6) is needed to relate the part of the
proof with inputs of size n to the part with inputs of size n′.

The proof of Theorem 32 is not constructive. Rather than directly constructing
a mechanism satisfying pure DP from any mechanism satisfying zCDP, we show
the contrapositive statement: any lower bound for pure DP can be converted
into a lower bound for zCDP. Pure DP is characterized by so-called packing
lower bounds and the exponential mechanism.

In the full version of this work, we use a greedy argument to show that for any
output space and any desired accuracy, there is a set T that is simultaneously a
“packing” and a “net:”

Lemma 33 Let (Y, d) be a metric space. Fix α > 0. Then there exists a count-
able T ⊂ Y such that both of the following hold.

– (Net:) Either T is infinite or for all y′ ∈ Y there exists y ∈ T with d(y, y′) ≤
α.

– (Packing:) For all y, y′ ∈ T , if y 6= y′, then d(y, y′) > α.

It is well-known that a net yields a pure DP algorithm:

Lemma 34 (Exponential Mechanism [MT07,BLR13]) Let ` : Xn × T →
R satisfy |`(x, y)− `(x′, y)| ≤ ∆ for all x, x′ ∈ Xn differing in one entry and all
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y ∈ T . Then, for all ε > 0, there exists an ε-differentially private M : Xn → T
such that

P
M

[
`(x,M(x)) ≤ min

y∈T
`(x, y) +

2∆

ε
log

(
|T |
β

)]
≥ 1− β

and

E
M

[`(x,M(x))] ≤ min
y∈T

`(x, y) +
2∆

ε
log |T |

for all x ∈ Xn and β > 0.

On the other hand, in the full version of this work we use Proposition 28 to
show that a packing yields a lower bound for zCDP:

Lemma 35 Let (Y, d) be a metric space and q : Xn → Y a function. Let M :
Xn → Y be a (ξ, ρ)-zCDP mechanism satisfying

P
M

[d(M(x), q(x)) > α/2] ≤ β

for all x ∈ Xn. Let T ⊂ Y be such that d(y, y′) > α, for all y, y′ ∈ T with y 6= y′.
Assume that for all y ∈ T there exists x ∈ Xn with q(x) = y. Then

(1− β) log |T | − log 2 ≤ ξ · n(1 + log n) + ρ · n2.

In particular, if ξ = 0, we have

n ≥

√
(1− β) log |T | − log 2

ρ
= Ω(

√
log |T |/ρ).

In the full version of this work, we combine these lemmas to prove Theorem 32.

8 Approximate zCDP

Recall our definition of approximate zCDP:

Definition 36 (Approximate zCDP) A randomised mechanism M : Xn →
Y is δ-approximately (ξ, ρ)-zCDP if, for all x, x′ ∈ Xn differing on a single
entry, there exist events E = E(M(x)) and E′ = E′(M(x′)) such that, for all
α ∈ (1,∞),

Dα (M(x)|E‖M(x′)|E′) ≤ ξ+ ρ ·α and Dα (M(x′)|E′‖M(x)|E) ≤ ξ+ ρ ·α

and P
M(x)

[E] ≥ 1− δ and P
M(x′)

[E′] ≥ 1− δ.

Clearly 0-approximate zCDP is simply zCDP. Hence we have a generalization
of zCDP. As we will show later in this section, δ-approximate (ε, 0)-zCDP is
equivalent to (ε, δ)-DP. Thus we have also generalized approximate DP. Hence,
this definition unifies both relaxations of pure DP.
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Approximate zCDP is a three-parameter definition which allows us to capture
many different aspects of differential privacy. However, three parameters is quite
overwhelming. We believe that use of the one-parameter ρ-zCDP (or the two-
parameter δ-approximate ρ-zCDP if necessary) is sufficient for most purposes.

It is easy to verify that the definition of approximate zCDP satisfies the usual
composition and post-processing properties. However, the strong group privacy
guarantees of Section 5 no longer apply to approximate zCDP and, hence, the
strong lower bounds of Section 6 also no longer hold. Circumventing these lower
bounds is part of the motivation for considering approximate zCDP.

In the full version of this work, we use techniques developed in [KOV15,MV16]
to show that approximate DP can be converted to approximate zCDP.

Lemma 37 If M : Xn → Y satisfies (ε, δ)-DP, then M satisfies δ-approximate
(ε, 0)-zCDP, which, in turn, implies δ-approximate (0, 12ε

2)-zCDP.

Conversely, approximate zCDP also implies approximate DP. The following
result sharpens Lemma 21.

Lemma 38 Suppose M : Xn → Y satisfies δ-approximate (ξ, ρ)-zCDP. If ρ = 0,
then M satisfies (ξ, δ)-DP. In general, M satisfies (ε, δ + (1 − δ)δ′)-DP for all
ε ≥ ξ + ρ, where

δ′ = e−(ε−ξ−ρ)
2/4ρ ·min


1√
π · ρ

1
1+(ε−ξ−ρ)/2ρ

2

1+ ε−ξ−ρ
2ρ +

√
(1+ ε−ξ−ρ

2ρ )
2
+ 4
πρ

.

A result is that we can give a sharper version of the so-called advanced
composition theorem [DRV10]. Note that the following results are subsumed by
the bounds of Kairouz, Oh, and Viswanath [KOV15] and Murtagh and Vadhan
[MV16]. However, these bounds may be extended to analyse the composition of
mechanisms satisfying CDP with mechanisms satisfying approximate DP. We
believe that such a “unified” analysis of composition will be useful.

Applying Lemma 37 and Lemma 38 yields the following result.

Corollary 39 Let M1, · · · ,Mk : Xn → Y and let M : Xn → Yk be their
composition. Suppose each Mi satisfies (εi, δi)-DP. Then M satisfies(

1

2
‖ε‖22 +

√
2λ‖ε‖2,

√
π

2
· ‖ε‖2 · e−λ

2

+ ‖δ‖1
)

-DP

for all λ ≥ 0. Alternatively M satisfies(
1

2
‖ε‖22 +

√
2 log(

√
π/2 · ‖ε‖2/δ′) · ‖ε‖2, δ′ + ‖δ‖1

)
-DP

for all δ′ ≥ 0.
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In comparison to the composition theorem of [DRV10], we save modestly by
a constant factor in the first term and, in most cases

√
π/2‖ε‖2 < 1, whence

the logarithmic term is an improvement over the usual advanced composition
theorem.

Acknowledgements We thank Cynthia Dwork and Guy Rothblum for sharing a
preliminary draft of their work with us. We also thank Ilya Mironov, Kobbi Nis-
sim, Adam Smith, Salil Vadhan, and the Harvard Differential Privacy Research
Group for helpful discussions and suggestions.

References

BLR13. Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach
to noninteractive database privacy. J. ACM, 60(2):12, 2013.

BNS13. Amos Beimel, Kobbi Nissim, and Uri Stemmer. Private learning and sani-
tization: Pure vs. approximate differential privacy. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques
- 16th International Workshop, APPROX 2013, and 17th International
Workshop, RANDOM 2013, Berkeley, CA, USA, August 21-23, 2013. Pro-
ceedings, pages 363–378, 2013.

BNS16. Mark Bun, Kobbi Nissim, and Uri Stemmer. Simultaneous private learning
of multiple concepts. In Proceedings of the 2016 ACM Conference on In-
novations in Theoretical Computer Science, ITCS ’16, pages 369–380, New
York, NY, USA, 2016. ACM.

BUV14. Mark Bun, Jonathan Ullman, and Salil P. Vadhan. Fingerprinting codes
and the price of approximate differential privacy. In Symposium on Theory
of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014,
pages 1–10, 2014.

De12. Anindya De. Lower bounds in differential privacy. In Proceedings of the
9th International Conference on Theory of Cryptography, TCC’12, pages
321–338, Berlin, Heidelberg, 2012. Springer-Verlag.

DKM+06. Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov,
and Moni Naor. Our data, ourselves: Privacy via distributed noise gen-
eration. In Advances in Cryptology - EUROCRYPT 2006, 25th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings,
pages 486–503, 2006.

DL09. Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In
Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 371–380,
2009.

DMNS06. Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Cali-
brating noise to sensitivity in private data analysis. In Theory of Cryptog-
raphy, Third Theory of Cryptography Conference, TCC 2006, New York,
NY, USA, March 4-7, 2006, Proceedings, pages 265–284, 2006.

DR16. Cynthia Dwork and Guy Rothblum. Concentrated differential privacy.
CoRR, abs/1603.01887, 2016.

23



DRV10. Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and dif-
ferential privacy. In IEEE Symposium on Foundations of Computer Science
(FOCS ’10), pages 51–60. IEEE, 23–26 October 2010.

HT10. Moritz Hardt and Kunal Talwar. On the geometry of differential privacy. In
Proceedings of the Forty-second ACM Symposium on Theory of Computing,
STOC ’10, pages 705–714, New York, NY, USA, 2010. ACM.

KOV15. Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition the-
orem for differential privacy. In Proceedings of the 32nd International Con-
ference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
pages 1376–1385, 2015.

MMP+10. Andrew McGregor, Ilya Mironov, Toniann Pitassi, Omer Reingold, Kunal
Talwar, and Salil P. Vadhan. The limits of two-party differential privacy.
In 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 81–90,
2010.

MT07. F. McSherry and K. Talwar. Mechanism design via differential privacy.
In Foundations of Computer Science, 2007. FOCS ’07. 48th Annual IEEE
Symposium on, pages 94–103, Oct 2007.

MV16. Jack Murtagh and Salil P. Vadhan. The complexity of computing the op-
timal composition of differential privacy. In Theory of Cryptography - 13th
International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13,
2016, Proceedings, Part I, pages 157–175, 2016.
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