
Adaptive Security of Yao’s Garbled Circuits

Zahra Jafargholi ? and Daniel Wichs?

Northeastern University
{zahra|wichs}@ccs.neu.edu

Abstract. A garbling scheme is used to garble a circuit C and an input
x in a way that reveals the output C(x) but hides everything else. Yao’s
construction from the 80’s is known to achieve selective security, where
the adversary chooses the circuit C and the input x in one shot. It
has remained as an open problem whether the construction also achieves
adaptive security, where the adversary can choose the input x after seeing
the garbled version of the circuit C.
A recent work of Hemenway et al. (CRYPTO ’16) modifies Yao’s con-
struction and shows that the resulting scheme is adaptively secure. This
is done by encrypting the garbled circuit from Yao’s construction with
a special type of “somewhere equivocal encryption” and giving the key
together with the garbled input. The efficiency of the scheme and the se-
curity loss of the reduction is captured by a certain pebbling game over
the circuit.
In this work we prove that Yao’s construction itself is already adaptively
secure, where the security loss can be captured by the same pebbling
game. For example, we show that for circuits of depth d, the security loss
of our reduction is 2O(d), meaning that Yao’s construction is adaptively
secure for NC1 circuits without requiring complexity leveraging.
Our technique is inspired by the “nested hybrids” of Fuchsbauer et al.
(Asiacrypt ’14, CRYPTO ’15) and relies on a careful sequence of hybrids
where each hybrid involves some limited guessing about the adversary’s
adaptive choices. Although it doesn’t match the parameters achieved by
Hemenway et al. in their full generality, the main advantage of our work
is to prove the security of Yao’s construction as is, without any additional
encryption layer.

? Research supported by NSF grants CNS-1347350, CNS-1314722, CNS-1413964. This
work was done in part while the authors were visiting the Simons Institute for
the Theory of Computing, supported by the Simons Foundation and by the DI-
MACS/Simons Collaboration in Cryptography through NSF grant CNS-1523467.

1 Introduction

Garbled circuits, introduced by Yao in (oral presentations of) [Yao82,Yao86], can
be used to garble a circuit C and an input x in a way that reveals C(x) but hides
everything else. Yao’s construction is based on one-way functions and achieves a
number of desirable properties with countless applications. One of the features of
this construction is that a circuit C can be garbled off-line in time proportional
to |C| which is presumably large, but an input x can later be garbled very
efficiently on-line in time only proportional to |x| which is presumably much
smaller. We consider the on-line complexity (i.e., time to garble the input x) as
the main measure of efficiency.

Selective vs. Adaptive Security. Unfortunately, Yao’s construction is only known
to satisfy selective security where the adversary must choose the circuit C and
the input x to be garbled in one shot. It has remained an open problem whether
Yao’s construction also achieves the stronger notion of adaptive security where
the adversary can choose the input x after seeing the garbled circuit. Adaptive
security is especially important in the off-line/on-line setting where the adversary
often sees the garbled circuit first and may be able to influence the choice of the
input x.

Prior Work on Adaptive Security. The work of Bellare, Hoang and Rogaway
[BHR12a] raised the question of whether Yao’s construction or indeed any con-
struction of garbled circuits achieves adaptive security. They showed a simple
adaptively secure construction where the on-line complexity is proportional to
the circuit size, but left it as an open problem to do better.

The work of Applebaum et al. [AIKW13] shows that the on-line complexity
in the adaptive setting must at least exceed the output size of the circuit. This is
in contrast to the selective setting, where Yao’s garbling scheme achieves on-line
complexity that depends only on the input size and not the output size. However,
there is a small variant of Yao’s scheme (by giving the mapping of output labels
to output bits with the garbled input) which is natural in the adaptive setting
and which raises the on-line complexity to also depend on the output size. We
refer to this variant as Yao’s construction when we consider the adaptive setting
and it has remained as an open problem if this variant is adaptively secure.

Another approach to proving adaptive security of Yao’s construction is to
use complexity leveraging where we guess the adversary’s choice of x a-priori. A
direct approach results in a security loss of 2n where n is the input size to the
circuit. In particular, if we insist on polynomial security loss then this approach
can only handle circuits with a logarithmic input size.

We mention that there are also other approaches that depart from Yao’s con-
struction and/or rely on significantly heavier assumptions than one-way func-
tions. For example [BHR12a] show how to get an optimal solution (in fact one
that bypasses the lower-bound of [AIKW13]) in the random oracle model. The
work of [BHK13] shows that this solution also works in the standard-model
based on non-standard hash-function assumption referred to as UCE. Boneh et

1

al. [BGG+14] implicitly provides an adaptive garbling scheme with low on-line
complexity that scales with the depth of the circuit under LWE, while the work
of Ananth and Sahai [AS15] shows how to get an essentially optimal schemes
assuming indistinguishability obfuscation.

Work of Hemenway et al. (CRYPTO ’16). The most relevant prior work is a re-
cent result of Hemenway et al. [HJO+15]. This work modifies Yao’s construction
by encrypting the garbled circuit with a special type of “somewhere equivocal
encryption” and giving the key together with the garbled input. The encryp-
tion scheme has an “equivocation parameter” which determines its key size and
therefore affects the on-line complexity of the garbling. They show that the re-
sulting scheme is adaptively secure where the equivocation parameter needed
and the security loss of the reduction are captured by a certain pebbling game
over the circuit. In particular, if a circuit with input size n and output size m
can be pebbled with t pebbles in γ steps then the resulting scheme can be in-
stantiated so as to achieve on-line complexity O(n + m + t) and security loss
γ. Furthermore they show that any circuit of size q, width w, and depth d can
either be pebbled with t = O(w) pebbles in γ = O(q) steps or with t = O(d)
pebbles in γ = q ·2O(d) steps. In particular, this means that (without complexity
leveraging):

– For any circuit of width w, the on-line complexity can be made O(w).
– For NC1 circuits, the on-line complexity can be just O(n+m).

Our Results. In this work we revisit the question of whether Yao’s construction
itself (without modification) is adaptively secure. We give a new reduction which
connects the security of Yao’s construction with the same pebbling game as
studied by Hemenway et al. [HJO+15]. In particular, we show that for circuits
that can be pebbled with t pebbles in γ steps, Yao’s construction is adaptively
secure with a security loss of γ2O(t). For example, since circuits of size q and
depth d can be pebbled in γ = q2O(d) steps with t = O(d) pebbles we get a
security loss of q2O(d). This means that Yao’s construction is already adaptively
secure for NC1 circuits, without the use of complexity leveraging.1

Next we describe our techniques and compare to those of [HJO+15]. On a
very high level, the work of [HJO+15] proves security via a sequence of hybrids,
where in each hybrid some small number of garbled gates of the Yao garbled
circuit are “equivocal” and only needed to be specified by the reduction in the
on-line phase after the input x is known. In this work we replace the role of
“equivocation” with the careful use of “guessing”. Instead of simply guessing
the entire input x, our reduction consists of a sequence of hybrids where in each
hybrid we guess some small number of the wire values in the circuit and abort if
the guess is incorrect. We then show how to patch together hybrids that contain
different guessed wires (and even a different number of guessed wires) to get a

1 Unfortunately, we cannot get a meaningful analogue of the width based result of
[HJO+15] since the security loss would be 2w which exceeds the trivial security loss
of 2n obtained by simply guessing the input.

2

security proof. This approach is reminiscent of the “nested hybrids” technique
employed by Fuchsbauer et al. [FKPR14,FJP15] and we believe our abstraction
of this technique via pebbling will be useful in other contexts.

1.1 Our Techniques

Yao’s Scheme and The Challenge of Adaptive Security ([HJO+15])
To describe our technical contribution, we must first describe Yao’s construction
and the difficulty one faces when trying to prove adaptive security. The following
discussion is taken essentially verbatim from [HJO+15], following the ideas of
Lindell and Pinkas [LP09] who gave the first detailed proof of security for Yao’s
garbled circuits in the selective security setting.

Yao’s Scheme. For each wire w in the circuit, we pick two keys k0w, k
1
w for

a symmetric-key encryption scheme. For each gate in the circuit computing a
function g : {0, 1}2 → {0, 1} and having input wires a, b and output wire c we
create a garbled gate consisting of 4 randomly ordered ciphertexts created as:

c0,0 = Enck0a(Enck0b (k
g(0,0)
c)) c1,0 = Enck1a(Enck0b (k

g(1,0)
c)),

c0,1 = Enck0a(Enck1b (k
g(0,1)
c)) c1,1 = Enck1a(Enck1b (k

g(1,1)
c))

(1)

where (Enc,Dec) is a CPA-secure encryption scheme. The garbled circuit C̃
consists of all of the gabled gates, along with an output mapping {k0w → 0, k1w →
1} which gives the correspondence between the keys and the bits they represent
for each output wire w . To garble an n-bit value x = x1x2 · · ·xn, the garbled
input x̃ consists of the keys kxiwi for the n input wires wi.

To evaluate the garbled circuit on the garbled input, it’s possible to decrypt

(exactly) one ciphertext in each garbled gate and get the key k
v(w)
w corresponding

to the bit v(w) going over the wire w during the computation C(x). Once the
keys for the output wires are computed, it’s possible to recover the actual output
bits by looking them up in the output mapping.

Selective Security Simulator. To prove the selective security of Yao’s scheme, we
need to define a simulator that gets the output y = y1y2 · · · ym = C(x) and must

produce C̃, x̃. The simulator picks random keys k0w, k
1
w for each wire w just like

the real scheme, but it creates the garbled gates as follows:

c0,0 = Enck0a(Enck0b (k
0
c)) c1,0 = Enck1a(Enck0b (k

0
c)),

c0,1 = Enck0a(Enck1b (k
0
c)) c1,1 = Enck1a(Enck1b (k

0
c))

(2)

where all four ciphertext encrypt the same key k0c . It creates the output mapping
{k0w → yw, k

1
w → 1 − yw} by “programming it” so that the key k0w corresponds

to the correct output bit yw for each output wire w. This defines the simulated
garbled circuit C̃. To create the simulated garbled input x̃ the simulator simply
gives out the keys k0w for each input wire w. Note that, when evaluating the
simulated garbled circuit on the simulated garbled input, the adversary only
sees the keys k0w for every wire w.

3

Selective Security Hybrids. To prove indistinguishability between the real world
and the simulation, there is a series of carefully defined hybrid games that switch
the distribution of one garbled gate at a time. Unfortunately, we cannot directly
switch a gate from the real distribution (1) to the simulated one (2) and therefore
must introduce an intermediate distribution (3) as below:

c0,0 = Enck0a(Enck0b (k
v(c)
c)) c1,0 = Enck1a(Enck0b (k

v(c)
c)),

c0,1 = Enck0a(Enck1b (k
v(c)
c)) c1,1 = Enck1a(Enck1b (k

v(c)
c))

(3)

where v(c) is the correct value of the bit going over the wire c during the com-
putation of C(x).

Let us give names to the three modes for creating garbled gates that we
defined above: (1) is called RealGate mode, (2) is called SimGate mode, and
(3) is called InputDepSimGate mode, since the way that it is defined depends
adaptively on the choice of the input x.

We can switch a gate from RealGate to InputDepSimGate mode if the pre-
decessor gates are in InputDepSimGate mode (or we are in the input level).
This follows by CPA security of encryption. In particular, we are not changing

the value contained in ciphertext cv(a),v(b) encrypted under the keys k
v(a)
a , k

v(b)
b

that the adversary obtains during evaluation, but we can change the values
contained in all of the other ciphertexts since the keys k1−v(a), k1−v(b) do not
appear anywhere inside the predecessor garbled gates as long as they are already
in InputDepSimGate mode.

We can also switch a gate from InputDepSimGate to SimGate mode if the
successor gates are in InputDepSimGate or SimGate mode (or we are at the out-
put level). This is actually an information theoretic step; since the keys k0c , k

1
c

are used completely symmetrically in the successor gates there is no difference

between always encrypting k
v(c)
c as in InputDepSimGate mode or encrypting

k0c as in SimGate. This allows us to first switch every gate from RealGate to
InputDepSimGate mode and then from InputDepSimGate to SimGate, proving the
selective security of Yao’s construction.

Challenges in Achieving adaptive security. There are two issues in using the
above strategy in the adaptive setting: an immediate but easy to fix problem
and a more subtle but difficult to overcome problem.

The first immediate issue is that the selective simulator needs to know the
output y = C(x) to create the garbled circuit C̃ and in particular to program the
output mapping {k0w → yw, k

1
w → 1− yw} for the output wires w. However, the

adaptive simulator does not get the output y until after it creates the garbled
circuit C̃. Therefore, we cannot (even syntactically) use the selective security
simulator in the adaptive setting. This issue turns out to be easy to fix by
modifying the construction to send the output-mapping as part of the garbled
input x̃ in the on-line phase, rather than as part of the garbled circuit C̃ in the off-
line phase. This modification raises on-line complexity to also being linear in the
output size of the circuit, which we know to be necessary by the lower bound of
[AIKW13]. We refer to this modification as Yao’s garbled circuit construction in

4

the adaptive setting. With this modification, the adaptive simulator can program
the output mapping after it learns the output y = C(x) in the on-line phase and
therefore we get a syntactically meaningful simulation strategy in the adaptive
setting.

The second problem is where the true difficulty lies. Although we have a syn-
tactically meaningful simulation strategy, the previous proof of indistinguishabil-
ity of the real world and the simulation completely breaks down in the adaptive
setting. In particular InputDepSimGate mode as specified in equation (3) is syn-
tactically undefined in the adaptive setting. Recall that in this mode the garbled
gate is created in a way that depends on the input x, but in the adaptive setting
the input x is chosen adaptively after the garbled circuit is created! Therefore,
although we have a syntactically meaningful simulation strategy for the adaptive
setting, we do not have any syntactically meaningful sequence of intermediate
hybrids to prove indistinguishability between the real world and the simulated
world.

Our Solution As described above, in the selective setting there is a proof
of security via a sequence of hybrids that changes the distribution of gates
from RealGate mode to InputDepSimGate mode to SimGate mode. Unfortunately,
InputDepSimGate mode does not make sense (even syntactically) in the adaptive
setting since it relies on knowing the value on the outgoing wire of that gate,
which isn’t defined until the input x is given.

To overcome this problem, the work of [HJO+15] encrypted the entire gar-
bled circuit with a somewhere equivocal encryption scheme which allowed the
simulator to put dummy values in place of all of the gates in InputDepSimGate
mode and only later after the input x was known replace the dummy values with
correctly distributed garbled gates by equivocating the encryption.

Our Idea: Guess and Hope for the Best. Our idea to overcome this problem is
very different. We define hybrid games in the adaptive setting where we guess
the value v(c) on the outgoing wire c of every gate in InputDepSimGate mode
a-priori and abort if the adversary’s adaptive choice of the input x doesn’t
match our guesses. Note that although the goal is to have the garbled gates in
InputDepSimGate mode depend on the input x, we choose them independently of
x and only abort later if we chose incorrectly. This defines syntactically mean-
ingful hybrid games, but unfortunately the set of guessed wires and even the
number of guessed wires is different in each hybrid making it impossible to com-
pare them directly. However, we show that by carefully adding and removing
guesses in different parts of the proof and then only comparing hybrids with
an equivalent set of guesses, we can patch together this sequence of a-priori in-
comparable hybrids and give an indistinguishability reduction. Overall, we can
take any valid sequence of γ hybrid games that would give an indistinguishabil-
ity proof in the selective setting and translate it into a proof of security in the
adaptive setting with a security loss of γ2O(t) where t is the maximum number
of gates in InputDepSimGate mode in any hybrid. This idea of “carefully” guess-

5

ing different components in different hybrids is reminiscent of the nested hybrids
technique of Fuchsbauer et al. [FKPR14,FJP15].

In comparison to [HJO+15], we rely on “guessing” instead of “equivocat-
ing”. Whereas [HJO+15] had to modify Yao’s scheme and pay for gates in
InputDepSimGate mode by increasing the “equivocation parameter” which re-
sulted in larger key size for the somewhere equivocal encryption, we get to keep
the scheme unmodified but pay for gates in InputDepSimGate mode in the secu-
rity loss of our reduction.

Sequences of Hybrids and Pebbling. With the above framework, the goal of prov-
ing adaptive security reduces to the goal of giving a sequence of hybrids in the
selective setting where the number of gates in InputDepSimGate mode in any
hybrid is as small as possible. This is the same challenge as faced in the work of
[HJO+15] and we can rely on the same idea.

Recall that we need to start with the real world where all gates are in RealGate
mode and end with the simulated world where all gates are in SimGate mode.
As discussed in the overview of the selective security proof of Yao’s garbled
circuits, we are allowed to change a gate from RealGate to InputDepSimGate if
all of its predecessors are in InputDepSimGate (or it’s an input gate) and we
are allowed to change InputDepSimGate to SimGate if all of the successors are in
InputDepSimGate or SimGate modes (or it’s an output gate). A naive sequence
of hybrids, corresponding to the proof of selective security of Lindell and Pinkas
[LP09], would first change all the gates from RealGate mode to InputDepSimGate
mode one level at a time starting from the input level, and then change them all
to SimGate mode by again changing one level at a time starting from the input
level. However, this requires that there is a hybrid step where all of the gates
are in InputDepSimGate mode, while our goal is to minimize the number of such
gates. It turns out that one can do much better.

The work of [HJO+15] abstracts the above problem as a pebbling game. We
associate RealGate mode with not having a pebble, InputDepSimGate mode with
having a black pebble and SimGate mode with having a gray pebble. The rules of
the game go as follows:

– We can place or remove a black pebble on a gate as long as both predecessors
of that gate have black pebbles on them (or the gate is an input gate).

– We can replace a black pebble with a gray pebble on a gate as long as all
successors of that gate have black or gray pebbles on them (or the gate is
an output gate).

The goal of the game is to end up with a gray pebble on every gate while using
as few black pebbles as possible at any point in time. It was shown that any
circuit of size q, width w and depth d can be pebbled in two different ways:
either with t = O(w) black pebbles in γ = O(q) steps or with t = O(d) black
pebbles in γ = q · 2O(d) steps.

Our Parameters. Using the second pebbling strategy based on depth, we get a
security proof of Yao’s garbled circuits in the adaptive setting with a security

6

loss of q2O(d) where q is the circuit size and d is the circuit depth. In particular,
for NC1 circuits we get a security reduction showing the adaptive security of
Yao’s garbled circuits without complexity leveraging.

2 Preliminaries

General Notation. For a positive integer n, we define [n] := {1, . . . , n}. We
use the notation x ← X for the process of sampling a value x according to
the distribution X. We use Un for uniform distribution over n-bit strings. A
function µ(·) is negligible in x if µ(x) ≤ 1/p(x) for any polynomial function p
and all sufficiently large x. We use poly(x) to denote the set of all polynomial
functions p(x). For an interactive game Game with an adversary A, we use
GameA to denote the outcome of the game played with A.

Definition 1. Two distributions X and Y are (T, ε)-indistinguishable, denote
DT [X,Y] = ε if for any probabilistic algorithm A, running in time T ,

|Pr [A(X) = 1]− Pr [A(Y) = 1]| ≤ ε.

For two games Game and Game′ we say they are (T (λ), ε(λ))-indistinguishable,
DT (λ)

[
Game,Game′

]
= ε(λ), if for any adversary A running in time T (λ),∣∣Pr [GameA = 1]− Pr

[
Game′A = 1

]∣∣ ≤ ε(λ).

Let games Game(λ) and Game′(λ) be games parameterized by the security pa-
rameter λ. If for any polynomial function T (λ), there exists a negligible function
ε(λ), such that for all λ, DT (λ)

[
Game(λ),Game′(λ)

]
≤ ε(λ), we say the two

games are computationally indistinguishable and denote this by Game(λ)
comp
≈

Game′(λ).

Circuit Notation. A boolean circuit C consists of gates gate1, . . . , gateq and
wires w1, w2, . . . , wp. A gate is defined by the tuple gatei = (g, wa, wb, wc), where
g : {0, 1}2 → {0, 1} is the function computed by the gate, wa, wb are the incoming
wires, and wc is the outgoing wire. Although each gate has a unique outgoing
wire wc, this wire can be used as an incoming wire to several different gates and
therefore this models a circuit with fan-in 2 and unbounded fan-out. We also
allow wa = wb, for gates with fan-in 1. We denote the number of gates with
q, input wires with m and output wires with m. The total number of wires is
p = n+ q (since each wire can either be input wire or an outgoing wire of some
gate). For convenience, we denote the n input wires by in1, . . . , inn and the m
output wires by out1, . . . , outm. We also use reserve a, b and c as labels for input
wires to a gate and output wire of the same gate (instead of wa, wb, and wc).
For x ∈ {0, 1}n we write C(x) to denote the output of evaluating the circuit C
on input x.

We say C is leveled, if each gate has an associated level and any gate at level
l has incoming wires only from gates at level l − 1 and outgoing wires only to

7

gates at level l+1. We let the depth d denote the number of levels and the width
w denote the maximum number of gates in any level.

A circuit C is fully specified by a list of gate tuples gatei = (g, a, b, c). We
use Φtopo(C) to refer to the topology of a circuit– which indicates how gates
are connected, without specifying the function implement by each gate. In other
words, Φtopo(C) is the list of sanitized gate tuples ĝatei = (⊥, a, b, c) where the
function g that the gate implements is removed from the tuple.

3 Garbling Scheme and Adaptive Security ([HJO+15])

The bulk of this section defining what garbled circuits are and presenting Yao’s
construction is taken verbatim from [HJO+15].

3.1 Garbling Scheme

We now give a formal definition of a garbling scheme. There are many variants
of such definitions in the literature, we use the definition given in [HJO+15] and
refer the reader to [BHR12b] for a comprehensive treatment.

Definition 2. A Garbling Scheme is a tuple of PPT algorithms GC = (GCircuit,
GInput,Eval) such that:

– (C̃, k)
$← GCircuit(1λ, C): takes as input a security parameter λ, a circuit

C : {0, 1}n → {0, 1}m, and outputs the garbled circuit C̃, and key k.
– x̃← GInput(k, x): takes as input,s x ∈ {0, 1}n, and key k and outputs x̃.

– y = Eval(C̃, x̃): given a garbled circuit C̃ and a garbled input x̃ output y ∈
{0, 1}m.

Correctness There is a negligible function ε such that for any λ ∈ N, any
circuit C and input x it holds that Pr[C(x) = Eval(C̃, x̃)] = 1 − ε(λ), where

(C̃, k)← GCircuit(1λ, C), x̃← GInput(k, x).

Adaptive Security.

– GC is (T (λ), ε(λ))-adaptively secure garbling scheme, if there exists a prob-
abilistic polynomial time simulator Sim = (SimC,SimIn) such that, for any
probabilistic adversary A, running in time T (λ),∣∣∣Pr[ExpadaptiveA,GC,Sim(1λ, 0) = 1]− Pr[ExpadaptiveA,GC,Sim(1λ, 1) = 1]

∣∣∣ ≤ ε(λ).

In other words, DT (λ)

[
ExpadaptiveGC,Sim (1λ, 0),ExpadaptiveGC,Sim (1λ, 1)

]
= ε(λ).

– GC is adaptively secure if ExpadaptiveGC,Sim (1λ, 0)
comp
≈ ExpadaptiveGC,Sim (1λ, 1)

where the experiment ExpadaptiveA,GC,Sim(1λ, b) is defined as follows:

8

1. The adversary A specifies C and gets C̃ where C̃ is created as follows:
– if b = 0: (C̃, k)← GCircuit(1λ, C),

– if b = 1: (C̃, state) ← SimC(1λ, Φtopo(C)), where Φtopo(C) reveals the
topology of C.

2. The adversary A specifies x and gets x̃ created as follows:
– if b = 0, x̃← GInput(k, x),
– if b = 1, x̃← SimIn(C(x), state).

3. Finally, the adversary outputs a bit b′, which is the output of the experiment.

On-line Complexity. The time it takes to garble an input x, (i.e., time complex-
ity of GInput(·, ·)) is the on-line complexity of the scheme. Clearly the on-line
complexity of the scheme gives a bound on the size of the garbled input x̃. Ideally,
the on-line complexity should be much smaller than the circuit size |C|.

Projective Scheme. We say a garbling scheme is projective if each bit of the
garbled input x̃ only depends on one bit of the actual input x. In other words,
each bit of the input, is garbled independently of other bits of the input. Pro-
jective schemes are essential for two-party computation where the garbled input
is transmitted using an oblivious transfer (OT) protocol. Our constructions will
be projective.

Hiding Topology. A garbling scheme that satisfies the above security definition
may reveal the topology of the circuit C. However, there is a way to transform
any such garbling scheme into one that hides everything, including the topology
of the circuit, without a significant asymptotic efficiency loss. More precisely,
we rely on the fact that there is a function HideTopo(·)that takes a circuit C
as input and outputs a functionally equivalent circuit C ′, such that for any two
circuits C1, C2 of equal size, if C ′1 = HideTopo(C1) and C ′2 = HideTopo(C2), then
Φtopo(C

′
1) = Φtopo(C

′
2). An easy way to construct such function HideTopo is by

setting C ′ to be a universal circuit, with a hard-coded description of the actual
circuit C. Therefore, to get a topology-hiding garbling scheme, we can simply
use a topology-revealing scheme but instead of garbling the circuit C directly,
we garble the circuit HideTopo(C).

3.2 Yao’s Garbling Scheme

In this section we describe Yao’s garbling scheme and in the next section we give
the simulation strategy.

Construction. Let C be a leveled boolean circuit with fan-in 2 and unbounded
fan-out, with inputs size n, output size m, depth d. Let q denote the number of
gates in C. Recall that wires are uniquely identified with labels and a circuit C
is specified by a list of gate tuples gate = (g, a, b, c), where g computes the gate
and a, b are the input wire labels and c is the output wire label. The topology
of the circuit Φtopo(C) consists of the sanitized gate tuples ĝate = (⊥, a, b, c).
For simplicity, we implicitly assume that Φtopo(C) is public and known to the

9

GCircuit(1λ, C)

(Wires) for i ∈ [p], σ ∈ {0, 1}
kσi ← KeyGen(1λ).

(Input wires) K = (k0ini , k
1
ini

)i∈[n].

(Gates) For each gatei = (g, a, b, c) in C:

g̃i ← GarbleGate(g, {kσa , kσb , kσc }σ∈{0,1}).
(Output tables) For each output ` ∈ [m]:

d̃` := [(k0out` → 0), (k1out` → 1)].

(Garbled Circuit) C̃ := (g̃1, . . . , g̃q).

Output C̃, k = (K, (d̃`)`∈[m]).

GInput(x, k)

(Select input keys) Kx = (kx1in1
, . . . , kxninn).

Output x̃ = (Kx, (d̃`)`∈[m]).

Eval(C̃, x̃)

Parse x̃ = (K, (d̃`)`∈[m]).

Evaluate Circuit.

Parse K = (kin1 , . . . , kinn).

For each level j = 1, . . . , d,

For each ĝatei = (⊥, a, b, c) at level j:

Let g̃i = [ct1, ct2, ct3, ct4] and let

k′c ← Decka(Deckb(ctδ)) For δ ∈ [4]

If k′c 6= ⊥ then set kc := k′c.

Decoding output.

For ` ∈ [m]:

Parse d̃` = [(k0out` → 0), (k1out` → 1)].

Set y` = b iff kout` = kbout` .

Output y1, . . . , ym.

Fig. 1: Yao’s Garbling Scheme.

circuit evaluator without explicitly including it as part of the garbled circuit C̃.
To simplify the description of our construction, we first describe the procedure
for garbling a single gate, that we denote by GarbleGate.

Let Γ = (KeyGen,Enc,Dec) be a CPA-secure symmetric-key encryption scheme
that satisfies the special correctness property, enabling one to recognize success-
ful decryptions (defined in Appendix A.) GarbleGate is defined as follows.

– g̃ ← GarbleGate(g, {kσa , kσb , kσc }σ∈{0,1}): This function computes 4 ciphertexts
ctσ0,σ1

: σ0, σ1 ∈ {0, 1} as defined below and outputs them in a random
order as g̃ = [ct1, ct2, ct3, ct4].

ct0,0 ← Enck0a(Enck0b (k
g(0,0)
c)), ct0,1 ← Enck0a(Enck1b (k

g(0,1)
c))

ct1,0 ← Enck1a(Enck0b (k
g(1,0)
c)), ct1,1 ← Enck1a(Enck0b (k

g(1,1)
c))

3.3 Adaptive Simulator

The adaptive security simulator for our garbling scheme is essentially the same
as the selective security simulator for Yao’s scheme (as in [LP09]), with the only
difference that the output table is sent in the on-line phase, and is computed
adaptively to map to the correct output.

More specifically, the adaptive simulator (SimC,SimIn) works as follows. In
the off-line phase, SimC computes the garbled gates using procedure GarbleSimGate,
that generates 4 ciphertexts that encrypt the same output key. More precisely,

– GarbleSimGate({kσa , kσb }σ∈{0,1}, k′c) takes both keys for input wires wa, wb and
a single key for the output wire wc, that we denote by k′c. It then output

10

g̃c = [ct1, ct2, ct3, ct4] where the ciphertexts, arranged in random order,
are computed as follows.
ct0,0 ← Enck0a(Enck0b (k

′
c)) ct1,0 ← Enck1a(Enck0b (k

′
c))

ct0,1 ← Enck0a(Enck1b (k
′
c)) ct1,1 ← Enck1a(Enck0b (k

′
c))

The simulator invokes GarbleSimGate on input k′c = k0c .

In the on-line phase, SimIn, on input y = C(x) adaptively computes the
output tables so that the evaluator obtains the correct output. This is easily
achieved by associating each bit of the output, yj , to the only key encrypted in
the output gate goutj , which is k0outj . For the input keys, SimIn just sends keys

k0ini for each i ∈ [n]. The detailed definition of (SimC,SimIn) is provided in Fig. 2.

Simulator
SimC(1λ, Φtopo(C))

(Wires) kσwi ← KeyGen(1λ) for i ∈ [p], σ ∈ {0, 1}.
(Garbled gates) For each gate g̃atei = (⊥, a, b, c) in Φtopo(C):

g̃i ← GarbleSimGate
(
{kσa , kσb }σ∈{0,1} , k

0
c

)
.

Output C̃, state =
({
kσwi
})

.

SimIn(y, state)

(Output table) s̃d` ←
[(
ky`out` → 0

)
,
(
k1−y`out` → 1

)]
`∈[m]

. // ensures k0out` → y`

Output x̃ = ((k0ini)i∈[n], (s̃d`)`∈[m]).

Fig. 2: Simulator for Adaptive Security.

4 Hybrid Games

Our goal is to show the indistinguishability of the real world and the simulation
in the adaptive setting. We do so by first introducing a template that allows
us to define various hybrid games and then showing how to patch such games
together to get a full security proof.

4.1 Template for Defining Hybrid Games

Garbling Mode / Guessed Wires. A gate’s garbling mode indicates the way it is
computed and can be one of the following RealGate, SimGate, InputDepSimGate
which corresponds to the distributions outlined in Figure 3. A circuit config-
uration is consists of two sets. A set the garbling modes for each gate in the
circuit (i.e. modei, i ∈ [q]) and as set of guessed wires I ⊆ [p]. We use the pair (

11

(modei)i∈[q], I) to denote a circuit configuration. A circuit configuration is valid
if the outgoing wire of every gate in InputDepSimGate mode, is contained in the
set of guessed wires I.

RealGate SimGate InputDepSimGate

ct0,0 ← Enck0a
(Enck0b

(k
g(0,0)
c))

ct0,1 ← Enck0a
(Enck1b

(k
g(0,1)
c))

ct1,0 ← Enck1a
(Enck0b

(k
g(1,0)
c))

ct1,1 ← Enck1a
(Enck1b

(k
g(1,1)
c))

ct0,0 ← Enck0a
(Enck0b

(k0c))

ct0,1 ← Enck0a
(Enck1b

(k0c))

ct1,0 ← Enck1a
(Enck0b

(k0c))

ct1,1 ← Enck1a
(Enck1b

(k0c))

ct0,0 ← Enck0a
(Enck0b

(k
v(c)
c))

ct0,1 ← Enck0a
(Enck1b

(k
v(c)
c))

ct1,0 ← Enck1a
(Enck0b

(k
v(c)
c))

ct1,1 ← Enck1a
(Enck1b

(k
v(c)
c))

Fig. 3: Garbling Gate modes: RealGate (left), SimGate (center), InputDepSimGate
(right). The value v(c) depends on the input x and corresponds to the bit going
over the wire c in the computation C(x).

The Hybrid Game Hyb((modei)i∈[q], I). Every valid circuit configuration defines
a hybrid game as specified formally in Figure 4 and described informally below.
The hybrid game consists of a guessing step and a garbling step. The garbling
step has two procedures: one for creating the garbled circuit C̃ and one for creat-
ing the garbled input x̃. The initial guessing step, is necessary in order to create
gates in InputDepSimGate mode. For any such gate it is essential to know what is
the bit on its output wire, (referred to as v(c) in Figure 3) once the circuit is com-
puted. However the input is not known at the time of circuit garbling. Therefore
we guess it! In some hybrid games we also need to guess values on other wires in
the circuit. We define a set (called Guess), that stores all these guessed values for
the marked wires. Hyb creates the garbled circuit by picking random keys kσwi for
each wire wi. For each gate i, modei ∈ {RealGate,SimGate, InputDepSimGate}, it
creates a garbled gate g̃i according to the corresponding distribution as described
in Figure 3, and using Guess(c) instead of the unknown v(c). Once Hyb has the
input, it checks whether all the guesses were made correctly. If not, the game is
over with a fixed and dedicated output (say 0). However if they are correct, it
follows the rules below to create the garbled input and map the output wires to
{0, 1}.

– If all of the gates having ini as an input wire are in SimGate mode, then
K[i] := k0ini else K[i] := kxiini .

– If the unique gate having out` as an output wire is in SimGate mode, then
we give the output map the simulated values d̃` := [(ky`out` → 0), (k1−y`out` → 1)]

else the real ones d̃` := [(k0out` → 0), (k1out` → 1)].

Real game and Simulated Game. By the definition of adaptively secure gar-
bled circuits (Definition 2), the real game ExpadaptiveA,GC,Sim(1λ, 0) is equivalent to

HybλA((modei = RealGate)i∈[q], ∅) and the simulated game ExpadaptiveA,GC,Sim(1λ, 1) is

12

equivalent to HybλA((modei = SimGate)i∈[q], ∅). Therefore, the main aim is to
show that these hybrids are indistinguishable.

Game HybλA((modei)i∈[q], I)

1. (Guesses) For all wi ∈ I,
– Let Guess(wi)← {0, 1}

2. Receive C from A
Garble circuit C:

3. (Wires) kσi ← KeyGen(1λ) for i ∈ [p], σ ∈ {0, 1}.
4. (Gates) For each gatei = (g, a, b, c) in C.

– If modei = RealGate:
run g̃i ← GarbleGate(g, {kσa , kσb , kσc }σ∈{0,1}).

– if modei = SimGate:
run g̃i ← GarbleSimGate({kσa , kσb }σ∈{0,1}, k0c).

– If modei = InputDepSimGate:
run g̃i ← GarbleSimGate((kσa , k

σ
b)σ∈{0,1}, k

Guess(c)
c).

5. Send C̃ to A and get back x

Garble Input x:

6. (Check the guesses) For each ∀ i ∈ I,
– Let v(wi) be the bit on the wire wi during the computation C(x).
– if v(wi) 6= Guess(wi) Output 0 and abort the game.

7. (Output tables) Let y = C(x). For ` = 1, . . . ,m:
Let i be the index of the gate with output wire out`.

– If modei 6= SimGate, set d̃` := [(k0out` → 0), (k1out` → 1)],

– else, set d̃` := [(k
y`
out`
→ 0), (k

1−y`
out`

→ 1)].
8. (Select input keys) For ` = 1, . . . , n:

– If all gates i having in` as an input wire satisfy modei = SimGate,
then set K[`] := k0in` ,

– else set K[`] := k
x`
in`

.

9. Send x̃ := (K, {d̃`}`∈[m]) to A and receive A’s output
10. Output A′s output

Fig. 4: The Hybrid Game.

4.2 Rules for Indistinguishable Hybrids

We provide rules that allow us to move from one configuration to another and
prove that the corresponding hybrid games are indistinguishable. We define two
rules that allow us to do this.

Definition 3 (Neighboring Hybrids). We say two valid hybrids or configu-
rations ((modei)i∈[q], I), ((mode′i)i∈[q], I) are “neighboring”, if the set of guessed
wires I is the same in both of them and the garbling modes of all gates except

13

one are the same; i.e. there exists some j ∈ [q] such that for all i 6= j we have
modei = mode′i. We call gatej the target gate of the two hybrids or configura-
tions.

Definition 4 (Predecessor/Successor/Sibling Gates). [HJO+15] Given a
circuit C and a gate j ∈ [q] of the form gatej = (g, wa, wb, wc) with incoming
wires wa, wb and outgoing wire wc:

– We define the predecessors of j, denoted by Pred(j), to be the set of gates
whose outgoing wires are either wa or wb. If wa, wb are input wires then
Pred(j) = ∅, else |Pred(j)| = 2.

– We define the successors of j, denoted by Succ(j) to be the set of gates that
contain wc as an incoming wire. If wc is an output wires then Succ(j) = ∅.

– We define the siblings of j, denoted by Siblings(j) to be the set of gates that
contain either wa or wb as an incoming wire.

We define TimeGC(x) to be the time it takes to garble a circuit of size x using

Yao’s garbling scheme. For convenience, we let mode
def
= (modei)i∈[q] and omit

writing the security parameter λ in the superscript of the hybrid games, since it
is the same for all the games discussed here. For the same reason we use, ε and
T instead of ε(λ) and T (λ).

Indistinguishability Rule 1: RealGate ↔ InputDepSimGate: This rule al-
lows us to change the garbling mode of a gate from RealGate to InputDepSimGate.
It says that one can move from a circuit configuration (mode, I) to neighboring
circuit configuration (mode′, I) where the mode of the target gate changes from
RealGate in mode to InputDepSimGate in mode′ (and vice versa).

Lemma 1. Let Hyb(mode, I) and Hyb(mode′, I) be two neighboring hybrids,
with target gatej such that modej = RealGate and mode′j = InputDepSimGate. In
addition, for all i ∈ Pred(j): modei = InputDepSimGate. Then Hyb(mode, I)and
Hyb(mode′, I) are (T (λ), ε(λ))-indistinguishable as long as Γ = (KeyGen,Enc,Dec)
is an encryption scheme (T ′(λ), ε(λ))-secure under CPA double encryption as
per Definition 6 and T ′(λ) = T (λ) + TimeGC(|C|).

Proof. Let (mode, I) and (mode′, I) be as in the statement of the lemma, two
valid circuit configurations. Towards a contradiction, assume that there exists
a adversary A who runs in time T and distinguishes H0 := Hyb(mode, I) and
H1 := Hyb(mode′, I). i.e.,∣∣Pr

[
H0
A = 1

]
− Pr

[
H1
A = 1

]∣∣ > ε.

We construct an adversary B, running in time T ′ that breaks the double CPA-
security of the encryption scheme Γ = (KeyGen,Enc,Dec) which is used to garble
gates. More specifically, we show that B wins the chosen double encryption
security game (Def. 6) which is implied by CPA security. The formal description
of adversary B is provided in Fig. 5.

14

Adversary B (Reduction)

Input mode, I and j.

1. (Guesses) For all wi ∈ I,

– Let Guess(wi)← U1

2. Receive C from A
Garble circuit C:

3. (Wires) kσi ← KeyGen(1λ) for i ∈ [p], σ ∈ {0, 1}. except for the two keys

k1−αa∗ , k1−βb∗ .

4. (Gates) For each gatei = (g, a, b, c) in C except gatej .

– If modei = RealGate:

run g̃i ← GarbleGate(g, {kσa , kσb , kσc }σ∈{0,1}).
– if modei = SimGate:

run g̃i ← GarbleSimGate({kσa , kσb }σ∈{0,1}, k0c).
– if modei = InputDepSimGate:

run g̃i ← GarbleSimGate((kσa , k
σ
b)σ∈{0,1}, k

Guess(c)
c)

4·A) Let α := Guess(a∗), β := Guess(b∗)

4·B) Let x0 = k
g∗(1−α,β)
c∗ , y0 = k

g∗(α,1−β)
c∗ , z0 = k

g∗(1−α,1−β)
c∗ and x1 = y1 =

z1 = k
g∗(α,β)
c∗ .

4·C) Give kαa∗ , k
β
b∗ and (x0, y0, z0), (x1, y1, z1) to the challenger of

Expdouble(1λ, b). The challenger of Expdouble(1λ, b) chooses two keys

which we implicitly define as k1−αa∗ , k1−βa∗ . It gives B the ciphertexts

ctx, cty, ctz and oracle access to Enc
k1−α
a∗

(·) and Enc
k
1−β
b∗

(·).
4·D) For the gate j :

– Compute ctα,β ← Enckα
a∗

(Enc
k
β
b∗

(k
g(α,β)
c∗)).

– Set ct1−α,β := ctx, ctα,1−β := cty, ct1−α,1−β := ctz.

– Let g̃j be a random ordering of [ct0,0, ct0,1, ct1,0, ct1,1]

5. Send C̃ to A. Obtain x from A.

Garble Input x:

6. (Check the guesses) For each ∀ i ∈ I,
– Let v(wi) be the bit on the wire wi during the computation C(x).

– if v(wi) 6= Guess(wi) Output 0 and abort.

7. (Output tables) Let y = C(x). For ` = 1, . . . ,m:

Let i be the index of the gate with output wire out`.

– If modei 6= SimGate, set d̃` := [(k0out` → 0), (k1out` → 1)],

– else, set d̃` := [(k
y`
out`
→ 0), (k

1−y`
out`

→ 1)].

8. (Select input keys) For ` = 1, . . . , n:

– If all gates i having in` as an input wire satisfy modei = SimGate,

then set K[`] := k0in` ,

– else set K[`] := k
x`
in`

.

9. Set x̃ := (K, {d̃`}`∈[m]). Send x̃ to A and output whatever A out-

puts.

Fig. 5: Proof of security for rule 1: the reduction B uses an adversary A that
distinguishes the hybrids to play the chosen double encryption security game
(Def. 6) denoted by Expdouble.

15

Informally, B –on input (mode, I) and target gate j– aims to use her CPA-
oracle access in Expdouble(1λ, b) to generate distribution Hb. The only difference
between H0 and H1 is in the way gate g̃j is computed. On a high level, the
reduction B will compute all garbled gates g̃i for i 6= j, according to experi-
ment Hyb(mode, I), and will compute the garbled gate g̃j using the ciphertexts

obtained as a challenge in the experiment Expdouble(1λ, b).
In more detail, let gatej = (g∗, a∗, b∗, c∗) be the target gate. Recall, the pre-

decessors of gatej (with output wires a∗ and b∗) are in InputDepSimGate mode.
Therefore garbling of each gate in Pred(j), includes encryptions of one wire label
only. We call these wires (which are fixed by the bit values guessed in step 1,

α, β ∈ {0, 1}) kαa∗ and kβb∗ . Consequently the wire label decrypted during the eval-

uation of gatej is also the same wire label in both games, k
g(α,β)
c∗ . The difference

is modej = RealGate in Hyb(mode, I), meaning, there is another wire label, which
was used to garble gatej and its ciphertext is one of the four ciphertexts cts,

s ∈ {0, 1}2. But in Hyb(mode′, I), garbling mode of gatej is InputDepSimGate and

the only wire label used is k
g(α,β)
c∗ . To create the same garbled gate distributions

using the challenger of the Expdouble(1λ, b), the reduction B –who knows all wire

keys except for k1−αa∗ , k1−βb∗ – will create ctα,β as an encryption of k
g(α,β)
c∗ on its

own, but the remaining three ciphertexts ctα′,β′ will come from the experiment

Expdouble(1λ, b) as either encryptions of different values k
g(α′,β′)
c∗ (real) or of the

same value k
g(α,β)
c∗

2.
The one subtlety is that the reduction needs to create encryptions under the

keys k1−αa∗ , k1−βb∗ to create garbled gates g̃i for gates i that are siblings of gate j.
It can do that by using the encryption oracles which are given to it as part of the
experiment Expdouble(1λ, b). The formal description of the reduction B is provided
in Fig. 5. Finally notice that B’s running time is, the time it takes to create the
garble circuit plus the time it takes to run A, so T ′ = T + TimeGC(|C|).∣∣Pr[H0

A = 1]− Pr[H1
A = 1]

∣∣
≤
∣∣∣Pr[ExpdoubleB (1λ, 0) = 1]− Pr[ExpdoubleB (1λ, 1) = 1]

∣∣∣ ≤ ε.
which proves the Lemma.

Indistinguishability Rule 2. InputDepSimGate ↔ SimGate: This rule al-
lows us to change the mode of a gate j from InputDepSimGate to SimGate
under the condition that all successor gates i ∈ Succ(j) satisfy that modei ∈
{InputDepSimGate,SimGate}.

Lemma 2. Let Hyb(mode, I) and Hyb(mode′, I) be two neighboring hybrids,
with target gatej such that modej = InputDepSimGate in mode and modej =

2 If a∗ = b∗, (gatej has fan-in 1), then B uses the challenger of the CPA encryption in-
stead of the double-encryption scheme. The reduction considers the CPA challenger’s
key as k1−αb∗ , and using appropriate queries garbles gatej .

16

SimGate in mode′. In addition, for all i ∈ Succ(j) we have modei ∈ {SimGate,
InputDepSimGate}. Then for any A, HybA(mode, I) and HybA(mode′, I ′) are
identically distributed.

Proof. Fix any adversaryA. DefineH0 := HybA(mode, I) andH1 := HybA(mode′,
I). The difference between the hybrids is in how the garbled gate g̃j is created:

– In H0, we set g̃j ← GarbleSimGate((kσa∗ , k
σ
b∗)σ∈{0,1}, k

Guess(c∗)
c∗).

– In H1, we set g̃j ← GarbleSimGate((kσa∗ , k
σ
b∗)σ∈{0,1}, k

0
c∗).

If j is not an output gate, and all successor gates i ∈ Succ(j) are in {SimGate,
InputDepSimGate} modes then the keys k0c∗ and k1c∗ are treated symmetrically
everywhere in the game other than in g̃j . Therefore, by symmetry, there is no

difference between using k0c∗ and k
Guess(c∗)
c∗ in g̃j

If j is an output gate then the keys k0c∗ and k1c∗ are only used in g̃j and in

the output map d̃j . Therefore, by symmetry, there is no difference between using

k
yj
c∗ in g̃j and setting d̃j := [(k0outj → 0), (k1outj → 1)] (in H0) versus using k0c∗ in

g̃j and setting d̃j := [(k
yj
outj → 0), (k

1−yj
outj → 1)] (in H1).

One last difference between the hybrids occurs if some wire ini becomes only
connected to gates that are in SimGate in H1. In this case, when we create the
garbled input x̃, then in H0 we give K[i] := kxiini but in H1 we give K[i] := k0ini .

Since the keys k0ini , k
1
ini

are treated symmetrically everywhere in the game (both
in H0 and H1) other than in K[i], there is no difference between setting K[i] :=
k0ini versus K[i] := kxiini .

Scaling Indistinguishability. We now show that by adding guesses we can
make the hybrids more indistinguishable, or equivalently, removing guesses makes
the hybrids more distinguishable. This lemma is crucial for comparing hybrids
with different guesses by scaling the number of guesses up or down to make the
comparison possible.

Lemma 3. If DT

[
Hyb(mode, I),Hyb(mode′, I)

]
= ε and J is a set of wires,

disjoint from I then

DT

[
Hyb(mode, I ∪ J),Hyb(mode′, I ∪ J)

]
= 2−|J| · ε.

Proof. For any probabilistic T bounded adversary A, we have

Pr [HybA(mode, I ∪ J) = 1] = 2−|J| Pr [HybA(mode, I) = 1)]

Because with probability 2−|J|, (the probability of guessing the extra |J | wires
correctly) A playing the game Hyb(mode, I ∪ J) has the exact same interactions
as in game Hyb(mode, I) and therefore the same exact outputs. The same holds
for Pr

[
HybA(mode′, I ∪ J) = 1

]
therefore,[

Pr [HybA(mode, I ∪ J) = 1]− Pr
[
HybA(mode′, I ∪ J) = 1

]]
= 2−|J|

∣∣Pr [HybA(mode, I) = 1]− Pr
[
HybA(mode′, I) = 1

]∣∣ ≤ 2−|J| · ε

17

5 Pebbling and Sequences of Hybrid Games

In the last section we defined hybrid games parameterized by a configuration
(mode, I). We also gave 2 rules, which describe ways that allow us to move
from one configuration to another in indistinguishable steps. Now our goal is to
use the given rules so as to define a sequence of indistinguishable hybrid games
that takes us from the real game Hyb((modei = RealGate)i∈[q], I = ∅) to the
simulation Hyb((modei = SimGate)i∈[q], I = ∅).

Pebbling Game. We capture the problem of finding a sequences of hybrid games
using a certain type of pebbling game on the graph of circuit C.

– Graph of circuit C is obtained by assigning a node to each gate, and a directed
edge from node i to node j for each wire going out of gate i and into gate
j. To make this consistent, we think of each input wire (in) as outgoing wire
of an empty (dummy) gate, going into a gate in level 1 of the circuit. Since
we are always considering a pebbling on the graph of a circuit, we use words
gate/node and wire/edge interchangeably.

– Pebbles. Each gate can either have no pebble, a black pebble, or a gray pebble
on it (this will correspond to RealGate, InputDepSimGate and SimGate modes
respectively). Initially, the circuit starts out with no pebbles on any gate. The
game consist of the following possible moves:

Pebbling Rule A. We can place or remove a black pebble on a gate as long
as both predecessors of that gate have black pebbles on them (or it is an
input gate).

Pebbling Rule B. We can replace a black pebble with a gray pebble on a
gate as long as all successors of that gate have black or gray pebbles on
them (or the gate is an output gate).

– A pebbling of a circuit C starts with no pebbles on the graph and is a sequence
of γ moves that follow rules A and B and that end up with a gray pebble on
every gate. We say that a pebbling uses t black pebbles if this is the maximal
number of black pebbles on the circuit at any point in time during the game.

– A pebble configuration specifies for each gate, whether it contains no pebble,
a gray pebble, or a black pebble.

From Pebbling to Sequence of Hybrids. A pebbling in γ moves has a sequence of
γ+1 pebble configurations starting with no pebbles and ending with a gray peb-
ble on each gate. Each pebble configuration follows from the preceding one by a
move that satisfies pebbling rules A or B. Next we create a sequence of hybrids
by defining one hybrid from each pebbling configuration.

– For every gate i ∈ [q], we set modei = RealGate if gate i has no pebble,
modei = InputDepSimGate if gate i has a black pebble, and modei = SimGate
if gate i has a gray pebble.

– We set I to be the set of the output wires of the gates with black pebbles.

18

Therefore a pebbling defines a sequence of hybrids Hα = Hyb(modeα, Iα) for
α = 0, . . . , γ where H0 = Hyb((mode0i = RealGate)i∈[q], ∅) is the real game and
Hγ = Hyb((modeγi = SimGate)i∈[q], ∅) is the simulated game, and each Hα is
induced by the pebbling configuration after α moves. In our next theorem and
the following corollary, we prove that the sequence of hybrids obtained from a
pebbling, as explained above, shows indistinguishability of the real and simulated
games.

Theorem 1. Assume that there is a pebbling of circuit C in γ moves, using t
black pebbles. Also assume that the encryption scheme Γ = (KeyGen,Enc,Dec)
is (T + TimeGC(|C|), ε)-secure under CPA double encryption.

Then, the sequence of hybrids obtained from such pebbling as described above
has the following property. For any α ∈ {0, 1, · · · , γ}, Hα = Hyb(modeα, Iα)

DT

[
Hyb(mode0, Iα), Hα

]
≤

α∑
i=1

2ri−|I
α| · ε ≤ α2t−|I

α|ε

where rα = max
(∣∣Iα−1∣∣ , |Iα|) ≤ t, for α ∈ [γ].

Proof. We show the claim holds for mode0 and any configurations; (modeα, Iα),
α ∈ {0, 1, · · · γ} by induction on the number of pebbling steps taken so far (i.e.,
α). For convenience, let sα = |Iα| and remember rα = max (sα−1, sα) .
Base case. Let α = 0, DT

[
Hyb(mode0, I0), H0

]
= DT [H0, H0] = 0.

Inductive step. Assume the claim holds for α, we show it holds for α+ 1.

Fig. 6: Pebbling Rules

19

– If the α + 1st move in the pebbling game is to add a black pebble: sα+1 =
sα + 1 and rα+1 = sα+1

DT

[
Hyb(mode0, Iα+1),Hyb(modeα+1, Iα+1)

]
≤ DT

[
Hyb(mode0, Iα+1),Hyb(modeα, Iα+1)

]
+ DT

[
Hyb(modeα, Iα+1),Hyb(modeα+1, Iα+1)

]
(4)

≤ 2−1 ·DT

[
Hyb(mode0, Iα),Hyb(modeα, Iα)

]
+ ε (5)

≤ 2−1
α∑
i=1

2ri−sα · ε+ ε ≤
α∑
i=1

2ri−sα−1 · ε+ ε (6)

≤
α∑
i=1

2ri−sα+1 · ε+ 2rα+1−sα+1 · ε ≤
α+1∑
i=1

2ri−sα+1 · ε

Line 4 follows from the previous line by the Triangle Inequality. By Lemma
1 or 2, DT [Hyb(modeα, Iα+1), Hyb(modeα+1, Iα+1)] ≤ ε. By Lemma 3 we
have that DT

[
Hyb(mode0, Iα+1),Hyb(modeα, Iα+1)

]
≤ DT [Hyb(mode0, Iα),

Hyb(modeα, Iα)]/2. Combining the two we get Line 5. We use the induction
hypothesis to arrive at Line 6. The last line follows by noticing sα+1 = sα+1
and rα+1 = sα+1 .

– If the α+1st move in the pebbling game is to remove a black pebble: sα+1 =
sα − 1 and rα+1 = sα

DT

[
Hyb(mode0, Iα+1),Hyb(modeα+1, Iα+1)

]
≤ 2DT

[
Hyb(mode0, Iα),Hyb(modeα+1, Iα)

]
(7)

≤ 2DT

[
Hyb(mode0, Iα),Hyb(modeα, Iα)

]
+ 2DT

[
Hyb(modeα, Iα),Hyb(modeα+1, Iα)

]
(8)

≤ 2

(
α∑
i=1

2ri−sα · ε+ ε

)
≤

α∑
i=1

2ri−sα+1 · ε+ 2ε (9)

≤
α∑
i=1

2ri−sα+1 · ε+ 2rα+1−sα+1 · ε ≤
α+1∑
i=1

2ri−sα+1 · ε

Similar to the last case, Line 7 follows from the previous line By Lemma
3. Line 8 follows from the Triangle inequality. By Lemma 1 or 2 and the
induction hypothesis we arrive at Line 9. The last line follows by noticing
sα+1 = sα − 1 and rα+1 = sα .

The reason we can apply lemmas 1 or 2, is that the pebbling game rules (A and
B) guarantee that the garbling modes of each two hybrids in our sequence have
the necessary properties for applying lemmas 1 or 2. In addition we created the
set I such that it includes all the necessary wires to keep the configuration valid.
For more details, see Figure 7, where we change gatej ’s mode at step α + 1,
following rule A or B.

20

Rule wires in Iα, Iα+1 modeαj → modeα+1
j Hybrids Lemma

A
WPred ⊆ Iα,

WPred ∪ {c∗} ⊆ Iα+1 RealGate → InputDepSimGate
(modeα, Iα+1)

(modeα+1, Iα+1) 1
WPred ∪ {c∗} ⊆ Iα,

WPred ⊆ Iα+1 InputDepSimGate→ RealGate
(modeα, Iα)

(modeα+1, Iα)

B
WPred ∪ {c∗} ⊆ Iα,

WPred ⊆ Iα+1 InputDepSimGate→ SimGate
(modeα, Iα)

(modeα+1, Iα) 2
WPred ⊆ Iα,

WPred ∪ {c∗} ⊆ Iα+1 SimGate → InputDepSimGate
(modeα, Iα+1)

(modeα+1, Iα+1)

Fig. 7: From Pebbling Rules to Indistinguishable Hybrids. WPred :=
{output wires of Pred(j)}, WSucc := {output wires of Succ(j)}.

Corollary 1. Assume that Γ = (KeyGen,Enc,Dec) is an encryption scheme
which is (T (λ), ε(λ))-secure under CPA double encryption. If there is a peb-

bling of circuit C in γ moves, using t black pebbles then ExpadaptiveGC,Sim (1λ, 0) and

ExpadaptiveGC,Sim (1λ, 1) are (T ′(λ), ε′(λ))-indistinguishable where

– ε′(λ) ≤
∑γ
i=1 2ri · ε(λ) ≤ γ · 2t · ε(λ)

– T ′(λ) = T (λ)− TimeGC (|C|).

where ri = max (si−1, si) and si is the number of black pebbles used at the ith
pebbling step.

Proof. By definition ExpadaptiveGC,Sim (1λ, 0) = Hybλ(mode0, I0) and ExpadaptiveGC,Sim (1λ, 1) =

Hybλ(modeγ , Iγ) where I0 = Iγ = ∅. By Theorem 1 with α = γ, we have

DT (λ)

[
Hybλ(mode0, ∅),Hybλ(modeγ , ∅)

]
≤
∑γ
i=1 2ri ·ε(λ) which proves the Corol-

lary.

Corollary 2. If there is a pebbling of circuit C in γ moves, using t black pebbles
then GC is adaptively secure with online complexity

1. (m+n)λ, when Γ is secure under CPA double encryption and 2tγ = poly(λ).
2. (m + n)poly(λ + log γ + t), when Γ is sub-exponentially secure under CPA

double encryption and log(γ) + t = poly(λ).

Proof. The online complexity of the garbling scheme consist of (m + n) secret
keys of the scheme Γ .

For case (1) we only need standard security of Γ to survive a polynomial
security loss of 2tγ = poly(λ). Therefore, we can set the security parameter of Γ
to λ, which gives a key size of λ.

For case (2) we need to survive a security loss of 2tγ = 2poly(λ). If the encryp-
tion scheme Γ is sub-exponentially secure it means that when instantiated with
security parameter λ′ it has security ε(λ′) ≤ 2−(λ

′)ν for some constant ν and all
large enough λ′. Therefore we need to set λ′ = (λ+ log(γ) + t)1/ν to ensure that
2tγε(λ′) is negligible, which results in a key size of λ′ = poly(λ+ log(γ) + t).

21

5.1 Pebbling Strategies

We now rely on a result of [HJO+15] to instantiate Corollary 2. In particular, it
shows that for any circuit with q gates and depth d there is a pebbling strategy
which makes at most γ = q · 22d moves and uses t = 2d black pebbles. See
Appendix B for the description of the strategy. By instantiating Corollary 2
with the above strategy, we obtain the following corollary.

Corollary 3. Assuming the existence of (standard) one-way functions, Yao’s
garbling schemes is adaptively secure with on-line complexity (n + m)λ for all
circuits of depth d = O(log λ).

Assuming the existence of sub-exponentially secure one-way functions Yao’s
garbling schemes is adaptively secure with on-line complexity (n+m)poly(λ, d),
for arbitrary circuits of depth d = poly(λ).

6 Conclusions

We show that Yao’s garbled circuit construction is already adaptively secure,
without the need for any modification, at least when it comes to NC1 circuits.
More generally, we give a reduction where the security loss is related (exponen-
tially) to the pebble complexity of the circuit, which can often be much smaller
than the input size, and therefore beats the naive reduction that guesses the
entire input. It remains as an open problem to improve the reduction further or
to give some negative results showing that it cannot be done.

References

AIKW13. Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. Encod-
ing functions with constant online rate or how to compress garbled circuits
keys. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II,
volume 8043 of LNCS, pages 166–184. Springer, Heidelberg, August 2013.

AS15. Prabhanjan Ananth and Amit Sahai. Functional encryption for turing
machines. Cryptology ePrint Archive, Report 2015/776, 2015. http:

//eprint.iacr.org/.
BGG+14. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Niko-

laenko, Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayaga-
murthy. Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In Phong Q. Nguyen and Elisabeth Oswald, edi-
tors, EUROCRYPT 2014, volume 8441 of LNCS, pages 533–556. Springer,
Heidelberg, May 2014.

BHK13. Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating
random oracles via UCEs. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 398–415. Springer,
Heidelberg, August 2013.

BHR12a. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure
garbling with applications to one-time programs and secure outsourcing. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658
of LNCS, pages 134–153. Springer, Heidelberg, December 2012.

22

http://eprint.iacr.org/
http://eprint.iacr.org/

BHR12b. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of gar-
bled circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
ACM CCS 12, pages 784–796. ACM Press, October 2012.

FJP15. Georg Fuchsbauer, Zahra Jafargholi, and Krzysztof Pietrzak. A quasipoly-
nomial reduction for generalized selective decryption on trees. In Rosario
Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, vol-
ume 9215 of LNCS, pages 601–620. Springer, Heidelberg, August 2015.

FKPR14. Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and Van-
ishree Rao. Adaptive security of constrained PRFs. In Palash Sarkar and
Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS,
pages 82–101. Springer, Heidelberg, December 2014.

HJO+15. Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro,
and Daniel Wichs. Adaptively secure garbled circuits from one-way func-
tions. IACR Cryptology ePrint Archive, 2015:1250, 2015.

LP09. Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for
two-party computation. Journal of Cryptology, 22(2):161–188, April 2009.

Yao82. Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd FOCS, pages 160–164. IEEE Computer Society Press,
November 1982.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS, pages 162–167. IEEE Computer Society Press,
October 1986.

A Symmetric-Key Encryption with Special Correctness
[LP09]

In our construction of the garbling scheme, we use a symmetric-key encryption
scheme Γ = (KeyGen,Enc,Dec) which satisfies the standard definition of CPA
security and an additional special correctness property below (this is a simplified
and sufficient variant of the property described in from [LP09]). We need this
property to ensure the correctness of our garbled circuit construction.

Definition 5 (Special Correctness). A CPA-secure symmetric-key encryp-
tion Γ = (KeyGen,Enc,Dec) satisfies special correctness if there is some negligi-
ble function ε such that for any message m we have:

Pr[Deck2(Enck1(m)) 6= ⊥ : k1, k2 ← KeyGen(1λ)] ≤ ε(λ).

Construction. Let F = {fk} be a family of pseudorandom functions where fk :
{0, 1}λ → {0, 1}λ+s, for k ∈ {0, 1}λ and s is a parameter denoting the message

length. Define Enck(m) = (r, fk(r) ⊕m0λ) where m ∈ {0, 1}s, r $← {0, 1}λ and
m0λ denotes the concatenation of m with a string of 0s of length λ. Define
Deck(c) which parses c = (r, z), computes w = z⊕ fk(r) and if the last λ bits of
w are 0’s it outputs the first s bits of w, else it outputs ⊥.

It’s easy to see that this scheme is CPA secure and that it satisfies the special
correctness property.

23

Double Encryption Encryption Security. For convenience, we define a notion of
double encryption security, following [LP09]. This notion is implied by standard
CPA security but is more convenient to use in our security proof of garbled
circuit security.

Definition 6 (Double-encryption security). An encryption scheme Γ =
(KeyGen,Enc,Dec)

– is (T (λ), ε(λ))-secure under chosen double encryption if

DT (λ)

[
Expdouble(1λ, 0),Expdouble(1λ, 1)

]
= ε(λ).

– is secure under chosen double encryption if

Expdouble(1λ, 0)
comp
≈ Expdouble(1λ, 1).

– is sub-exponentially secure if

∃ ν > 0,∀ T (λ) ∈ poly(λ) DT (λ)

[
Expdouble(1λ, 1),Expdouble(1λ, 0)

]
≤ ε(λ) = 1/2λ

ν

.

where the experiment ExpdoubleA is defined as follows.

Experiment ExpdoubleA (1λ, b)

1. The adversary A on input 1λ outputs two keys ka and kb of length λ and
two triples of messages (x0, y0, z0) and (x1, y1, z1) where all messages are of
the same length.

2. Two keys k′a, k
′
b

$← KeyGen(1λ) are chosen.

3. AEnck′a
(·),Enck′

b
(·)

is given the challenge ciphertexts cx ← Encka(Enck′b(xb)),
cy ← Enck′a(Enckb(yb)), cz ← Enck′a(Enck′b(zb)) as well as oracle access to
Enck′a(·) and Enck′b(·).

4. A outputs b′ which is the output of the experiment.

The following lemma is essentially immediate - see [LP09] for a formal proof.

Lemma 4. If (KeyGen,Enc,Dec) is CPA-secure then it is secure under chosen
double encryption with the same security parameter.

B Pebbling Strategy [HJO+15]

This is a recursive strategy defined as follows.

– Pebble(C):
For each gate i in C starting with the gates at the top level moving to the
bottom level:
1. RecPutBlack(C, i)
2. Replace the black pebble on gate i with a gray pebble.

24

– RecPutBlack(C, i): // Let LeftPred(C, i) and RightPred(C, i) be the two pre-
decessors of gate i in C.
1. If gate i is an input gate, put a black pebble on i and return.
2. Run RecPutBlack(C, LeftPred(C, i)), RecPutBlack(C,RightPred(C, i))
3. Put a black pebble on gate i.
4. Run RecRemoveBlack(C, LeftPred(C, i)) and

RecRemoveBlack(C,RightPred(C, i)),
– RecRemoveBlack(C, i): This is the same as RecPutBlack, except that instead

of putting a black pebble on gate i, in steps 1 and 3, we remove it.

To analyze the correctness of this strategy, we note the following invariants:
if the circuit C is in a configuration where it does not contain any pebbles at
any level below that of gate i, then (1) the procedure RecPutBlack(C, i) results
in a configuration where a single black pebble is added to gate i, but nothing
else changes, (2) the procedure RecRemoveBlack(C, i) results in a configuration
where a single black pebble is removed from gate i, but nothing else changes.
Using these two invariants the correctness of of the entire strategy follows.

To calculate the number of black pebbles used and the number of moves
that the above strategy takes to pebble C, we use the following simple recursive
equations. Let #PebPut(d) and #PebRem(d) be the number of black pebbles on
gate i and below it used to execute RecPutBlack and RecRemoveBlack on a gate
at level d, respectively. We have,

#PebPut(1) = 1, #PebPut(d) ≤ max(#PebPut(d− 1),#PebRem(d− 1)) + 2

#PebRem(1) = 1, #PebRem(d) ≤ max(#PebPut(d− 1),#PebRem(d− 1)) + 2

Therefore the strategy requires at most 2d black pebbles to pebble the circuit.
To calculate the number of moves it takes run Pebble(C), we use the following

recursive equations. Let #Moves(d) be the number of moves it takes to put a
black pebble on, or remove a black pebble from, a gate at level d. Then

#Moves(1) = 1, #Moves(d) = 4(#Moves(d− 1)) + 1

Hence, each call of RecPutBlack takes at most 4d moves, and the total number
of moves to pebble the circuit is at most q4d. In summary, the above gives
us a strategy to pebble any circuit with at most γ = q4d moves and t = 2d
black pebbles.

25

	Adaptive Security of Yao's Garbled Circuits

