
Post-Quantum Security of
the Fujisaki-Okamoto and OAEP Transforms

Ehsan Ebrahimi Targhi and Dominique Unruh

University of Tartu, Estonia

Abstract. In this paper, we present a hybrid encryption scheme that
is chosen ciphertext secure in the quantum random oracle model. Our
scheme is a combination of an asymmetric and a symmetric encryption
scheme that are secure in a weak sense. It is a slight modification of the
Fujisaki-Okamoto transform that is secure against classical adversaries. In
addition, we modify the OAEP-cryptosystem and prove its security in the
quantum random oracle model based on the existence of a partial-domain
one-way injective function secure against quantum adversaries.

Keywords: Quantum, Random oracle, Indistinguishability against cho-
sen ciphertext attacks.

1 Introduction

The interest in verifying the security of cryptosystems in the presence of a
quantum adversary increased after the celebrated paper of Shor [10]. Shor showed
that any cryptosystem based on the factoring problem and the discrete logarithm
problem is breakable in the presence of a quantum adversary. Also, many efficient
classical cryptosystems are proved to be secure in the random oracle model [3]
and many of them still lack an equivalent proof in the quantum setting. Therefore,
even if we find a cryptographic primitive immune to quantum attacks, to construct
an efficient cryptosystem secure against quantum adversaries, we may have to
consider its security in the quantum random oracle model in which the adversary
has quantum access to the random oracle.

Fujisaki and Okamoto [8] constructed a hybrid encryption scheme that is
secure against chosen ciphertext attacks (IND-CCA) in the random oracle model.
Their scheme is a combination of a symmetric and an asymmetric encryption
scheme using two hash functions where the symmetric and asymmetric encryption
schemes are secure in a very weak sense. However, their proof of security works
against only classical adversaries and it is not clear how one can fix their proof
in the quantum setting. In the following, we mention the parts of the classical
proof that may not work in the quantum setting.
(a) The classical proof uses the list of all queries made to the random oracles to

simulate the decryption algorithm without possessing the secret key of the
asymmetric encryption scheme. In the quantum case, where the adversary has
quantum access to the random oracles and submits queries in superpositions,
such a list is not a well-defined concept.

(b) Also, the classical proof uses the fact that using a random value h∗ instead
of a given random oracle output H(x) cannot be noticed by the adversary,
provided that the adversary never queries x from the random oracle. In the
quantum setting, the adversary may in a certain sense always query all values
x by querying the random oracle on the superposition

∑
x |x〉 of all values.

The situation gets especially difficult since the value x depends in turn on
messages produced by the adversary.

(c) Finally, the classical proof uses the fact that for a randomized encryption
scheme, it is hard to find values x 6= x′ such that encrypting a message m
with randomness H(x) or H(x′) leads to the same ciphertext. (Note: this
does not follow directly from the collision resistance of the random oracle
H.)

Consequently, the quantum security of the scheme is left as an open problem by
Boneh et al. [6] and Zhandry [17].

We show how to circumvent those problems. Problem (c) is solved by using a
recent result showing the collision resistance of random functions with outputs
sampled from a non-uniform distribution [12]. Problem (b) is solved by the
“one-way to hiding” lemmas from [13,14] which gives us a tool for handling the
reprogramming of the random oracle. Problem (a) remains. In fact, we do not
have a proof for the unmodified Fujisaki-Okamoto scheme. However, we show
how to solve the problem by adding one more hash value H ′(δ) to the ciphertext.
Although in general, it may not be well-defined in the quantum setting what the
list of queries to the random oracle is, we can show it to be well-defined in this
case, using the fact that range and domain of H ′ have the same size. (A similar
idea was used by [15] for the construction of quantum-secure non-interactive
zero-knowledge proofs.)

Bellare and Rogaway [4] proposed another method, named OAEP, for con-
verting a trapdoor permutation into an encryption scheme. It was believed
that the OAEP-cryptosystem is provable secure in the random oracle model
based on one-wayness of trapdoor permutation, but Shoup [11] showed it is
an unjustified belief. Later, Fujisaki et al. [9] proved IND-CCA security of the
OAEP-cryptosystem based on a stronger assumption, namely, partial-domain
one-wayness of the underlying permutation. As pointed out by [6], the proof of
OAEP security uses preimage awareness (i.e., that the preimage of a random
oracle query is well-defined and known to the algorithm making it), a technique
that does not seem to work in the quantum setting. This problem is the same as
problem (a) above, we show that a similar approach works also in the case of
OAEP.

Our Contribution. We modify the hybrid encryption scheme presented by
Fujisaki and Okamoto using an extra hash function H ′. We prove that our scheme
is indistinguishable secure against chosen ciphertext attacks in the quantum
random oracle model. For a message m, the encryption algorithm of our scheme,
Enchypk , works as follows:

Enchypk(m; δ) =

(
Encasypk

(
δ;H

(
δ‖EncsyG(δ)(m)

))
, EncsyG(δ)(m), H ′(δ)

)

2

where pk and sk are the public key and the secret key of the asymmetric encryp-
tion scheme. Encasypk and Encsysk are the asymmetric and symmetric encryption
algorithms respectively and δ is a random element from the message space of the
asymmetric encryption scheme. H, G and H ′ are random oracles. The asymmetric
encryption scheme is one-way secure, that is, the adversary can not decrypt the
encryption of a random message. The symmetric encryption scheme is one-time
secure, that is, the adversary can not distinguish between the encryptions of
two messages when a fresh key is used for every encryption. In addition, the
asymmetric encryption scheme is well-spread, i.e. any message can lead to at
least 2ω(logn) potential ciphertexts.

Note that our modification increases the ciphertext size by only a single hash
value H ′(δ) and is computationally inexpensive.

As already mentioned above, the added hash value H ′(δ) solves problem (a)
because given H ′(δ), it is well-defined what δ is. This is because H ′ is chosen
to have the same domain and range size, and hence is indistinguishable from a
permutation [16]. However, in the formal proof, we do not directly use that fact,
instead our proof goes along the following lines: We replace H ′ with a random
polynomial to force the adversary to submit the input that has been used to
obtain the ciphertext. This can be done due to a result by Zhandry [17] that
shows a random oracle is indistinguishable from a 2q-wise independent function
where q is the number of queries that the adversary makes to the oracle function.
In addition, we use the “one way to hiding” lemmas presented in [13, 14]. As
soon H ′ is implemented as a polynomial, we can use the fact that roots of a
polynomial can be found in polynomial-time; this allows us to efficiently get all
candidates for δ given H ′(δ).

Also, we modify OAEP-cryptosystem and prove its security in the quantum
random oracle model based on the existence of a partial-domain one-way trapdoor
injective function secure against quantum adversaries. This will remain theoretical
until a candidate for a quantum secure partial-domain one-way trapdoor injective
function is discovered. The proof follows similar lines as that of the Fujisaki-
Okamoto transform.

A note on superposition queries. Following [6], we use the quantum random
oracle model in which the adversary can make queries to the random oracle in
superposition (that is, given a superposition of inputs, he can get a superposition
of output values). This is necessary since a quantum adversary attacking a scheme
based on a real hash function is necessarily able to evaluate that function in
superposition. Hence the random oracle model must reflect that ability.

However, we do not model superposition queries to the encryption and
decryption oracles. (As was done, for example, in [7].) We do strive to achieve
security for the case where the encryption is used within a classical protocol
(this is modeled by the fact that plaintexts and ciphertexts are classical, while
the adversary is quantum), which is probably the most important use case for
post-quantum secure encryption schemes.

3

In contrast, [7] considers security where an encryption scheme intended for
classical plaintexts is used with a quantum superposition of plaintexts. And [1]
considers the case where an encryption scheme intended for encrypting quantum
data is used.

On the necessity of our modifications. We have slightly modified both the
Fujisaki-Okamoto and the OAEP-cryptosystem by adding one additional hash
to the ciphertexts. Although these additions are not very costly, it is a natural
question whether they are necessary, especially in light of the question whether
existing implementations are post-quantum secure. Although it is clear that
our proof technique strongly relies on these additional hashes, this does not
mean that the original schemes are insecure. However, we urge the reader not
to assume that they are post-quantum secure just because they are classically
secure. For example, in [2] it was shown that (at least relative to a specific oracle)
the Fiat-Shamir transform is insecure in the quantum setting (using quantum
random oracles). Their setting is similar to ours, so while there are no known
attacks on Fujisaki-Okamoto or OAEP, we should not rely on their security until
a security proof is found. We leave finding either an attack or a proof as a (highly
non-trivial) open problem.

Organization. In Section 2, we present the required security definitions and
other definitions, as well as various theorems related to random oracles that we
import from the prior works. In Section 3, we define our variant of the Fujisaki-
Okamoto transform and prove its security. In Section 5, we define our variant of
OAEP. The security proof of our variant of OAEP is presented in Appendix ??.

2 Preliminaries

Let KSP and MSP stand for the key space and the message space respectively. The
notation x $←− X means that x is chosen uniformly at random from the set X. A
symmetric encryption scheme and an asymmetric encryption scheme are defined
as follows:

A symmetric encryption scheme Π consists of two polynomial time (in the
security parameter n) algorithms, Π = (Enc,Dec), such that:

1. Enc, the encryption algorithm, is a probabilistic algorithm which takes as
input a key k ∈ KSP and a message m ∈ MSP and outputs a ciphertext
c ← Enck(m). The message space can be infinite and may depend on the
security parameter.

2. Dec, the decryption algorithm, is a deterministic algorithm that takes as
input a key k and a ciphertext c and returns message the m := Deck(c).
It is required that decryption algorithm returns the original message, i.e.,
Deck(Enck(m)) = m, for every k ∈ KSP and every m ∈ MSP.

An asymmetric encryption scheme Π consists of three polynomial time (in
the security parameter n) algorithms, Π = (Gen,Enc,Dec), such that:

4

1. Gen, the key generation algorithm, is a probabilistic algorithm which on
input 1n outputs a pair of keys, (pk, sk) ← Gen(1n), called the public key
and the secret key for the encryption scheme, respectively.

2. Enc, the encryption algorithm, is a probabilistic algorithm which takes as
input a public key pk and a message m ∈ MSP and outputs a ciphertext
c← Encpk(m). The message space, MSP, may depend on pk.

3. Dec, the decryption algorithm, is a deterministic algorithm that takes as input
a secret key sk and a ciphertext c and returns message the m := Decsk(c).
It is required that the decryption algorithm returns the original message, i.e.,
Decsk(Encpk(m)) = m, for every (pk, sk) ← Gen(1n) and every m ∈ MSP.
The algorithm Dec returns ⊥ if ciphertext c is not decryptable.

Let y := Encpk(x;h) be the encryption of message x using the public key pk and
the randomness h ∈ COIN where COIN stands for the coin space of the encryption
scheme. Pr[P : G] is the probability that the predicate P holds true where free
variables in P are assigned according to the program in G.

Definition 1 (γ-spread, Definition 5.2 [8]). An asymmetric encryption scheme
Π = (Gen,Enc,Dec) is γ-spread if for every pk generated by Gen(1n) and every
x ∈ MSP,

max
y∈{0,1}∗

Pr[y = Encpk(x;h) : h
$←− COIN] ≤ 1

2γ
.

Particularly, we say that the encryption scheme Π is well-spread if γ = ω(log(n)).

Definition 2. We say that a function f : {0, 1}n1 → {0, 1}n2 has min-entropy k
if

− log max
y∈{0,1}n2

Pr[y = f(x) : x
$←− {0, 1}n1] = k.

2.1 Security Definitions

Let negl(n) be any non-negative function that is smaller than the inverse of any
non-negative polynomial p(n) for sufficiently large n. That is, limn→∞ negl(n)p(n) =
0 for any polynomial p(n). In the following, we present the security definitions
that are needed in this paper. Note that the definitions are the same as the
security definitions in [8], except they have been represented in the presence of a
quantum adversary in this paper. As the following two security definitions will
both be used in the security proof of our scheme, we differentiate between them
by using negl(n)sy and negl(n)asy in the definitions.

Definition 3 (One-time secure). A symmetric encryption scheme Π = (Enc,Dec)
is one-time secure if no quantum polynomial time adversary A can win in the
PrivKOT

A,Π(n) game, except with probability at most 1/2 + negl(n)sy:

PrivKPrivKPrivKOTOTOT
A,ΠA,ΠA,Π(n) game:

Key Gen: The challenger picks up a key k from KSP uniformly at random, i.e.,

5

k
$←− KSP.

Query: The adversary A on input (1n) chooses two messages m0,m1 of the same
length and sends them to the challenger. The challenger chooses b $←− {0, 1} and
responds with c∗ ← Enck(mb).

Guess: The adversary A produces a bit b′, and wins if b = b′.

Definition 4 (One-way secure). An asymmetric encryption scheme Π =
(Gen,Enc,Dec) is one-way secure if no quantum polynomial time adversary A
can win in the PubKOW

A,Π(n) game, except with probability at most negl(n)asy:

PubKPubKPubKOWOWOW
A,ΠA,ΠA,Π(n) game:

Key Gen: The challenger runs Gen(1n) to obtain a pair of keys (pk, sk).

Challenge Query: The challenger picks a uniformly random x from the message
space, i.e., x $←− MSP, and encrypts it using the encryption algorithm Encpk to
obtain the ciphertext y ← Encpk(x), and sends y to the adversary A.

Guess: The adversary A on input (pk, y) produces a bit string x′, and wins if x′
= x.

In the next definition, we say that the quantum algorithm A has quantum
access to the random oracle H if A can submit queries in superposition and the
oracle H answers to these queries by applying a unitary transformation that
maps |x, y〉 to |x, y ⊕H(x)〉.

Definition 5 (IND-CCA in the quantum random oracle model). An
asymmetric encryption scheme Πasy = (Gen,Enc,Dec) is IND-CCA secure if
no quantum polynomial time adversary A can win in the PubKCCA−QRO

A,Π (n)
game, except with probability at most 1/2 + negl(n):

PubKPubKPubKCCA−QROCCA−QROCCA−QRO
A,ΠA,ΠA,Π (n) game:

Key Gen: The challenger runs Gen(1n) to obtain a pair of keys (pk, sk) and
chooses random oracles.

Query: The adversary A is given the public key pk and with classical oracle ac-
cess to the decryption oracle and quantum access to the random oracles chooses
two messages m0,m1 of the same length and sends them to the challenger. The
challenger chooses b $←− {0, 1} and responds with c∗ ← Encpk(mb).

Guess: The adversary A continues to query the decryption oracle and the random
oracles, but may not query the ciphertext c∗ in a decryption query. Finally, the

6

adversary A produces a bit b′, and wins if b = b′.

2.2 Quantum accessible random oracles

In this section, we present some existing results about random oracles that we
need to prove the security of our scheme.

Lemma 1 (One way to hiding (O2H) [14]). Let H : {0, 1}n → {0, 1}m
be a random oracle. Consider an oracle algorithm A1 that makes at most q1
queries to H. Let C be an oracle algorithm that on input x does the following:
pick i $←− {1, . . . , q1} and y

$←− {0, 1}m, run AH1 (x, y) until (just before) the i-
th query, measure the argument of the query in the computational basis, and
output the measurement outcome. (When A1 makes less than i queries, C outputs
⊥ /∈ {0, 1}n.)
Let

P 1
A := Pr[b′ = 1 : H

$←− ({0, 1}n → {0, 1}m), x
$←− {0, 1}n, b′ ← AH1 (x,H(x))]

P 2
A := Pr[b′ = 1 : H

$←− ({0, 1}n → {0, 1}m), x
$←− {0, 1}n, y $←− {0, 1}m,

b′ ← AH1 (x, y)]

PC := Pr[x′ = x : H
$←− ({0, 1}n → {0, 1}m), x

$←− {0, 1}n, x′ ← CH(x, i)]

Then ∣∣P 1
A − P 2

A

∣∣ ≤ 2q1
√
PC .

Lemma 2 (One way to hiding, adaptive (O2HA) [13]). Let H : {0, 1}∗ →
{0, 1}n be a random oracle. Consider an oracle algorithm A0 that makes at most q0
queries to H. Consider an oracle algorithm A1 that uses the final state of A0 and
makes at most q1 queries to H. Let C be an oracle algorithm that on input (j, B, x)
does the following: run AH1 (x,B) until (just before) the j-th query, measure the
argument of the query in the computational basis, and output the measurement
outcome. (When A1 makes less than j queries, C outputs ⊥ /∈ {0, 1}`.)
Let

P 1
A := Pr[b′ = 1 : H

$←− ({0, 1}∗ → {0, 1}n),m← AH0 (), x
$←− {0, 1}`,

b′ ← AH1 (x,H(x||m))]

P 2
A := Pr[b′ = 1 : H

$←− ({0, 1}∗ → {0, 1}n),m← AH0 (), x
$←− {0, 1}`,

B
$←− {0, 1}n, b′ ← AH1 (x,B))]

PC := Pr[x = x′ ∧m = m′ : H
$←− ({0, 1}∗ → {0, 1}n),m← AH0 (), x

$←− {0, 1}`,

B
$←− {0, 1}n, j $←− {1, · · · , q1}, x′||m′ ← CH(j, B, x)]

Then ∣∣P 1
A − P 2

A

∣∣ ≤ 2q1
√
PC + q02

−`/2+2.

7

Lemma 3 (Corollary 6 of [12]). Let f : {0, 1}n1 → {0, 1}n2 be a function
with min-entropy k. Let H : {0, 1}∗ → {0, 1}n1 be a random oracle. Then any
quantum algorithm A making q queries to H returns a collision for f ◦H with
probability at most O

(
q9/5

2k/5

)
.

3 The hybrid scheme and its security

In this section, we combine an asymmetric encryption scheme with a symmetric
encryption scheme by using three hash functions in order to gain an IND-CCA
secure public encryption scheme Πhy = (Genhy, Enchy, Dechy) in the quantum
random oracle model.

Let Πasy = (Genasy, Encasy, Decasy) be an asymmetric encryption scheme
with the message space MSPasy = {0, 1}n1 and the coin space COINasy = {0, 1}n2 .
Let Πsy = (Encsy, Decsy) be a symmetric encryption scheme where MSPsy and
KSPsy = {0, 1}m are its message space and key space, respectively. The parameters
n1, n2 and m depend on the security parameter n. We define three hash functions:

G : MSPasy → KSPsy, H : {0, 1}∗ → COINasy and H ′ : MSPasy → MSPasy.

These hash functions will be modeled as random oracles in the following.
The hybrid scheme Πhy = (Genhy, Enchy, Dechy) is constructed as follows,

with MSPhy as its message space:

1. Genhy, the key generation algorithm, on input 1n runs Genasy to obtain a
pair of keys (pk, sk).

2. Enchy, the encryption algorithm, on input pk and message m ∈ MSPhy

:= MSPsy does the following:
– Select δ $←− MSPasy.
– Compute c← Encsya (m), where a := G(δ).
– Compute e := Encasypk (δ;h), where h := H(δ‖c).
– Finally, output (e, c, d) as Enchypk(m; δ), where d := H ′(δ).

3. Dechy, the decryption algorithm, on input sk and ciphertext (e, c, d) does
the following:
– Compute δ̂ := Decasysk (e).

– If δ̂ =⊥: abort and output ⊥.
– Otherwise set ĥ := H(δ̂‖c).
– If e 6= Encasypk (δ̂; ĥ): abort and output ⊥.
– Else if d = H ′(δ̂):
• Compute â := G(δ̂) and output Decsyâ (c).

– Else output ⊥.

Note that our construction is the same as the Fujisaki-Okamoto construction,
except that we use an extra random oracle H ′. Consequently, the ciphertext
has one more component, the encryption algorithm has an additional instruc-
tion to compute H ′(δ) and the decryption algorithm has an additional check
corresponding to H ′.

8

Theorem 1. The hybrid scheme Πhy constructed above is IND-CCA secure in the
quantum random oracle model if Πsy is an one-time secure symmetric encryption
scheme and Πasy is a well-spread one-way secure asymmetric encryption scheme.

Proof. Let Ahy be a quantum polynomial time adversary that attacks Πhy in the
sense of IND-CCA in the quantum random oracle model. Suppose that Ahy makes
at most qH , qG and qH′ quantum queries to the random oracles H, G and H ′,
respectively, and qdec classical decryption queries. Set qhy := qH+qG+qH′+qdec+1,
i.e., the total number of queries that the adversary Ahy may make, including the
challenge query. Let ΩH , ΩG, ΩH′ be the set of all functionH : {0, 1}∗ → {0, 1}n2 ,
G : {0, 1}n1 → {0, 1}m and H ′ : {0, 1}n1 → {0, 1}n1 , respectively. The following
game shows the chosen ciphertext attack by the adversary Ahy in the quantum
setting where the adversary Ahy has quantum access to the random oracles H,
G and H ′ and classical access to the decryption algorithm Dechy.

Game 0:

let H $←− ΩH , G
$←− ΩG, H ′

$←− ΩH′ , δ∗
$←− MSPasy, (pk, sk)← Genasy(1n)

let m0,m1 ← AH,G,H
′,Dechy

hy (pk)

let b $←− {0, 1}, c∗ ← EncsyG(δ∗)(mb), e∗ ← Encasypk (δ∗;H(δ∗‖c∗)),
d∗ := H ′(δ∗)

let b′ ← AH,G,H
′,Dechy

hy (e∗, c∗, d∗)
return [b = b′]

In order to show that the success probability of Game 0 is at most 1/2+negl(n),
we shall introduce a sequence of games and compute the difference between
their success probabilities. For simplicity, we omit the definitions of random
variables that appear with the same distribution and without any changes in
all of the following games. These random variables are: H $←− ΩH , G

$←− ΩG,
δ∗

$←− MSPasy, (pk, sk)← Genasy(1n), and b $←− {0, 1}.

In the next game, we replace the decryption algorithm Dechy with Dec∗

where Dec∗ on (e, c, d) does the following:

1. If e∗ is defined and e = e∗: abort and return ⊥.
2. Else do:

– Compute δ̂ := Decasysk (e).
– If δ̂ =⊥: query H ′(δ∗ ⊕ 1),1 abort and output ⊥.
– Otherwise set ĥ := H(δ̂‖c).
– If e 6= Encasypk (δ̂; ĥ): query H ′(δ∗ ⊕ 1),1 abort and output ⊥.
– Else if d = H ′(δ̂): compute â := G(δ̂) and output Decsyâ (c).
– Else: output ⊥.

1This extra query is needed later to prove that Game 4 and Game 5 are identical.

9

Therefore, Game 1 is as follows:

Game 1:

let H ′ $←− ΩH′

let m0,m1 ← A
H,G,H′,Dec∗

hy (pk)

let c∗ ← EncsyG(δ∗)(mb), e∗ ← Encasypk (δ∗;H(δ∗‖c∗))

let b′ ← A
H,G,H′,Dec∗

hy (e∗, c∗, H ′(δ∗))
return [b = b′]

We prove that the probabilities of success in Game 0 and Game 1 have
negligible difference. We can conclude the result by the fact that the asymmetric
encryption scheme is well-spread. We present the proof of the following lemma in
Section 4.

Lemma 4. If the asymmetric encryption scheme Πasy is well-spread, then∣∣∣Pr[1← Game 0]− Pr[1← Game 1]
∣∣∣ ≤ O((qH + qdec + 1)9/5

2ω(log(n))/5

)
=: `(n).

It is clear that `(n) is a negligible function and as a result Game 0 and Game
1 have negligible difference.

We replace G(δ∗) and H ′(δ∗) with random elements in the next game.

Game 2:

let H ′ $←− ΩH′ , a∗
$←− KSPsy, d∗ $←− MSPasy

let m0,m1 ← AH,G,H
′,Dec∗

hy (pk)

let c∗ ← Encsy
a∗
(mb), e∗ ← Encasypk (δ∗;H(δ∗‖c∗))

let b′ ← AH,G,H
′,Dec∗

hy (e∗, c∗, d∗)
return [b = b′]

Now, we can prove that Pr[1← Game 2] = 1/2+negl(n)sy. This follows from the
one-time security assumption of the symmetric encryption scheme. We postpone
the detailed proof of the following lemma to Section 4 in favor of having a simple
proof.

Lemma 5. If the symmetric encryption scheme Πsy is one-time secure, then
Pr[1← Game 2] = 1/2 + negl(n)sy.

By using Lemma 5, we only need to show that the difference between the
success probabilities of Game 1 and Game 2 is negligible.

Note that if we were in the classical random oracle setting, we could define
the bad event to be querying G or H ′ on input δ∗ and argue that the two
games are indistinguishable until the bad event happens. However, there is no

10

well-defined concept for the bad event when the adversary A can query G and H ′
in superposition and each quantum query can contain δ∗ in some sense. Therefore,
we use the O2H Lemma 1 to obtain an upper bound for

∣∣∣Pr[1 ← Game 1] -

Pr[1← Game 2]
∣∣∣.

Let AG×H
′
be an adversary that has quantum access to random oracle

G×H ′
(
where (G×H ′)(δ) :=

(
G(δ), H ′(δ)

))
. The adversary AG×H

′
on input(

δ∗, (a∗, d∗)
)
does the following:

The adversary AG×H
′(
δ∗, (a∗, d∗)

)
:

let H $←− ΩH , (pk, sk)← Genasy(1n), b $←− {0, 1}
let m0,m1 ← AH,G,H

′,Dec∗

hy (pk)

let c∗ ← Encsya∗(mb), e∗ ← Encasypk (δ∗;H(δ∗‖c∗))
let b′ ← AH,G,H

′,Dec∗

hy (e∗, c∗, d∗)
return [b = b′]

Note that the adversary AG×H
′
makes at most qo2h := qG + qH′ + 2qdec queries

to the random oracle G×H ′ in order to respond to the Ahy-queries.2

Let C be an oracle algorithm that on input δ∗ does the following: pick
i

$←− {1, . . . , qo2h} and (a∗, d∗)
$←− KSPsy × MSPasy, run AG×H

′(
δ∗, (a∗, d∗)

)
until

(just before) the i-th query, measure the argument of the G×H ′-query in the
computational basis, output the measurement outcome (when AG×H

′
makes less

than i queries, C outputs ⊥ /∈ {0, 1}n1). Note that with this definition we have
P 1
A = Pr[1← Game 1] and P 2

A = Pr[1← Game 2] where P 1
A and P 2

A are defined
in O2H Lemma 1 for the adversary AG×H

′
. Therefore, we will define Game 3

such that PC = Pr[1← Game 3] where PC is defined in O2H Lemma 1 for the
adversary CG×H

′
. Thus by O2H Lemma 1:

∣∣∣Pr[1← Game 1] - Pr[1← Game 2]
∣∣∣ ≤ 2qo2h

√
Pr[1← Game 3].

We define Game 3 as follows:

2For example, to respond to a query to the random oracle G with input register I
and output register O, the adversary AG×H′ prepares an additional register T (for the
output of H ′) in state |+〉n1 and invokes UG×H′ on I,O, T . It is easy to verify that
this leaves T unchanged and applies UG to I,O. (This idea was already used in [18] to
ignore part of the output of an oracle.)

11

Game 3:

let H ′ $←− ΩH′ , a∗
$←− KSPsy, d∗ $←− MSPasy, i $←− {1, . . . , qo2h}

run until i-th query to oracle G×H ′

let m0,m1 ← AH,G,H
′,Dec∗

hy (pk)

let c∗ ← Encsya∗(mb), e
∗ ← Encasypk (δ∗;H(δ∗‖c∗))

let b′ ← AH,G,H
′,Dec∗

hy (e∗, c∗, d∗)

measure the argument δ̃ of the i-th query to oracle G×H ′

return [δ̃ = δ∗]

In the next game, we replace the random oracle H ′ with a 2(qH′ + qdec)-wise
independent function. Random polynomials of degree 2(qH′ + qdec)− 1 over finite
field GF (2n1) are 2(qH′ + qdec)-wise independent. Let Ωwise be the set of all such
polynomials.

Game 4:

let H ′ $←− Ωwise, a∗
$←− KSPsy, d∗ $←− MSPasy, i $←− {1, . . . , qo2h}

run until i-th query to oracle G×H ′

let m0,m1 ← AH,G,H
′,Dec∗

hy (pk)

let c∗ ← Encsya∗(mb), e
∗ ← Encasypk (δ∗;H(δ∗‖c∗))

let b′ ← AH,G,H
′,Dec∗

hy (e∗, c∗, d∗)

measure the argument δ̃ of the i-th query to oracle G×H ′
return [δ̃ = δ∗]

Due to a result by Zhandry [17], a 2(qH′ + qdec)-wise independent function H ′ is
perfectly indistinguishable from a random function when the adversary makes at
most qH′ + qdec queries to H ′. Therefore, Game 3 and Game 4 are identical.

We replace the decryption algorithm Dec∗ with a new decryption algorithm
Dec∗∗ in Game 5. Dec∗∗ has access to the description (as a polynomial) of H ′.
Dec∗∗ on input (e, c, d) works as follows:

1. If e∗ is defined and e = e∗: output ⊥.
2. Else do:

– Calculate all roots of the polynomial H ′ − d. Let S be the set of those
roots.

– If there exists δ̂ ∈ S \ {δ∗} such that e = Encasypk

(
δ̂;H(δ̂‖c)

)
:

• query H ′ on input δ̂.
• compute â := G(δ̂) and return Decsyâ (c).

– Else if e = Encasypk

(
δ∗;H(δ∗‖c)

)
:

• If H ′(δ∗) = d, then compute â := G(δ∗) and return Decsyâ (c).
• Else: return ⊥.

– Else: query H ′ on random input δ $←− (MSPasy \ {δ∗}), and output ⊥.

12

Note that Dec∗∗ depends on the randomness used in choosing H ′. This is formally
unproblematic (it is comparable to Dec∗∗ implicitly depending on secret key)
and appears only in intermediate game within the proof. We emphasise that
finding roots of polynomial H ′ − d is possible in polynomial time [5] and it does
not involve query to the polynomial H ′. (We need that Dec∗∗ as well as all other
parts of our games run in polynomial time because we want to use the one-way
security of the asymmetric encryption scheme in Lemma 6 below.)

Game 5:

let H ′ $←− Ωwise, a∗
$←− KSPsy, d∗ $←− MSPasy, i $←− {1, . . . , qo2h}

run until i-th query to oracle G×H ′

let m0,m1 ← A
H,G,H′,Dec∗∗

hy (pk)

let c∗ ← Encsya∗(mb), e
∗ ← Encasypk (δ∗;H(δ∗‖c∗))

let b′ ← A
H,G,H′,Dec∗∗

hy (e∗, c∗, d∗)

measure the argument δ̃ of the i-th query to oracle G×H ′
return [δ̃ = δ∗]

In order to show that Game 4 and Game 5 are identical, we need to prove
that the two decryption algorithms Dec∗ and Dec∗∗ return the same output.
Also, note that Game 4 and Game 5 succeed if they measure a query containing
the argument δ∗. Therefore, we have to prove that the total number of queries
submitted to the random oracles G and H ′ are equal in two decryption algorithms
and the number of queries with argument δ∗ are equal and appear at the same
time.

Suppose the adversary submits a decryption query (e, c, d). Let δ̂ := Decasysk (e).
We consider the following cases:

1. If δ̂ =⊥: In this case, both decryption algorithms return ⊥ and query the
random oracle H ′, but not on input δ∗.

2. If δ̂ 6=⊥, δ̂ 6= δ∗ and H ′(δ̂) 6= d: Note that δ̂ 6= δ∗ implies that e 6= e∗ and
e 6= Encasypk (δ∗;H(δ∗‖c)). Therefore, there are two subcases:
(a) If e 6= Encasypk (δ̂;H(δ̂ ‖ c)), then the decryption algorithm Dec∗ queries

the random oracle H ′ on input δ∗⊕1 and the decryption algorithm Dec∗∗

queries H ′ on a random element from MSPasy \ {δ∗} since δ̂ 6∈ S. Both
algorithms return ⊥.

(b) Else, the decryption algorithm Dec∗ queries random oracle H ′ on input
δ̂ and the decryption algorithm Dec∗∗ queries H ′ on a random element
from MSPasy \ {δ∗} since δ̂ 6∈ S. Both algorithms return ⊥.

3. If δ̂ 6=⊥, δ̂ 6= δ∗ and H ′(δ̂) = d: Note that δ̂ 6= δ∗ implies that e 6= e∗ and
e 6= Encasypk (δ∗;H(δ∗‖c)). Therefore, there are two subcases:
(a) If e 6= Encasypk (δ̂;H(δ̂ ‖ c)), then the decryption algorithm Dec∗ queries

the random oracle H ′ on input δ∗⊕ 1 and outputs ⊥, and the decryption
algorithm Dec∗∗ queries H ′ on a random element from MSPasy \ {δ∗} and
outputs ⊥.

13

(b) Else, both decryption algorithms query random oracles G and H ′ on
input δ̂ and output Decsy

G(δ̂)
.

4. If δ̂ = δ∗ and H ′(δ̂) 6= d: There are three subcases:
(a) If e∗ is defined and e = e∗: Then both decryption algorithms return ⊥

without any query to the random oracles G and H ′.
(b) Else if e 6= Encasypk (δ∗;H(δ∗‖c)): Then the decryption algorithm Dec∗

queries the random oracle H ′ on input δ∗ ⊕ 1 and the decryption algo-
rithm Dec∗∗ queries H ′ on a random element from MSPasy \ {δ∗}. Both
decryption algorithms return ⊥.

(c) Else, both decryption algorithms query H ′ on input δ∗ and output ⊥.
5. If δ̂ = δ∗ and H ′(δ̂) = d: There are three subcases:

(a) If e∗ is defined and e = e∗: Then both decryption algorithms return ⊥
without any query to the random oracles G and H ′.

(b) Else if e 6= Encasypk (δ∗;H(δ∗‖c)): Then the decryption algorithm Dec∗

queries the random oracle H ′ on input δ∗ ⊕ 1 and decryption algorithm
Dec∗∗ queries H ′ on a random element from MSPasy \ {δ∗}. Both decryp-
tion algorithms return ⊥.

(c) Else, both decryption algorithms query random oracles G and H ′ on
input δ∗ and output DecsyG(δ∗).

Hence, Pr[1← Game 4] = Pr[1← Game 5].

Note that Dec∗∗ does not use the secret key of the asymmetric encryption
scheme to decrypt the ciphertext. This will allow us below to make use of the
one-way security of Πasy (This is only possible if the secret key is never used).

The next step is to replace the random coins H(δ∗‖c∗) of the asymmetric
encryption scheme by truly random coins from COINasy.

Game 6:

let H ′ $←− Ωwise H ′
$←− ΩH′ , a∗

$←− KSPsy, d∗ $←− MSPasy, i $←− {1, . . . , qo2h}
run until i-th query to oracle G×H ′

let m0,m1 ← AH,G,H
′,Dec∗∗

hy (pk)

let c∗ ← Encsya∗(mb), e
∗ ← Encasypk (δ∗)

let b′ ← AH,G,H
′,Dec∗∗

hy (e∗, c∗, d∗)

measure the argument δ̃ of the i-th query to oracle G×H ′
return [δ̃ = δ∗]

Suppose that adversary Ahy makes q0GH′ queries to the random oracle G×H ′
before the challenge query and q1GH′ queries after the challenge query. In order
to obtain an upper bound for

∣∣∣Pr[1← Game 5] - Pr[1← Game 6]
∣∣∣, we use O2HA

Lemma 2. Let AH0 be a quantum adversary that has oracle access to the random
oracle H. The adversary AH0 does the following:

14

The adversary AH0 :

let G $←− ΩG, H ′
$←− Ωwise, (pk, sk)← Genasy(1n), b $←− {0, 1}, a∗ $←− KSPsy,

d∗
$←− MSPasy, i $←− {1, . . . , qo2h}

run until i-th query to oracle G×H ′

let m0,m1 ← AH,G,H
′,Dec∗∗

hy (pk)

let c∗ ← Encsya∗(mb)
return c∗

Let AH1 be an adversary that has quantum access to the random oracle H and
can use the final state of AH0 . Therefore, he can access all the random variables
that are chosen by AH0 and also he can use the output of AH0 . The adversary AH1
on input (δ∗, h∗) does the following:

The adversary AH1 (δ∗, h∗):

let δ∗ $←− MSPasy

if i > q0GH′ then
run until (i− q0GH′)-th query to oracle G×H ′

let e∗ ← Encasypk (δ∗;h∗)

let b′ ← AH,G,H
′,Dec∗∗

hy (e∗, c∗, d∗)

measure the argument δ̃ of the i-th query to oracle G×H ′
return [δ̃ = δ∗]

Note that the adversary AH0 may be stopped before receiving the challenge query
(or when i ≤ q0GH′), in this case the adversary AH1 measures the argument δ̃
of i-th query to the random oracle G ×H ′ and outputs [δ̃ = δ∗]. If i > q0GH′ ,
then the adversary AH1 continues to run the adversary Ahy till the (i− q0GH′)-th
query to the random oracle G×H ′ and measures the argument δ̃ of i-th query to
the random oracle G×H ′ and outputs [δ̃ = δ∗]. Note that with these definitions
we have P 1

A = Pr[1 ← Game 5] and P 2
A = Pr[1 ← Game 6] where P 1

A and P 2
A

are as in the O2HA Lemma 2 for the random oracle H.
AH0 makes q0 queries to the random oracle H, and AH1 makes at most q1

queries to the random oracle H. Let C be an oracle algorithm that on input δ∗

does the following: pick j $←− {1, . . . , q1} and h∗
$←− {0, 1}n2 , run AH1

(
δ∗, h∗

)
until

(just before) the j-th query to the random oracle H, measure the argument of
that query in the computational basis, output the measurement outcome (when
AH1 makes less than j queries, C outputs ⊥ /∈ {0, 1}n). Now, we can introduce
Game 7 such that by O2HA Lemma 2,

∣∣∣Pr[1← Game 5] - Pr[1← Game 6]
∣∣∣ ≤ 2q1

√
Pr[1← Game 7] + q02

−n1/2+2.

15

Game 7:

let H ′ $←− Ωwise, a∗
$←− KSPsy, d∗ $←− MSPasy, i $←− {1, . . . , qo2h}

run until i-th query to oracle G×H ′

let m0,m1 ← AH,G,H
′,Dec∗∗

hy (pk)

let c∗ ← Encsya∗(mb)

let δ∗ $←− MSPasy, j $←− {1, . . . , q1}
run until j-th query to oracle H

if i > q0GH′ then
run until (i− q0GH′)-th query to oracle G×H ′

let e∗ ← Encasypk (δ∗;h∗)

let b′ ← AH,G,H
′,Dec∗∗

hy (e∗, c∗, d∗)

measure the argument δ̃ of the i-th query to oracle G×H ′
measure the argument δ̂||ĉ of the j-th query to oracle H
return [δ̂ = δ∗] ∧ [ĉ = c∗]

The next lemma shows that the success probabilities in Game 6 and Game 7
are negligible. We present the proof of the lemma in Section 4.

Lemma 6. If the asymmetric scheme Πasy is one-way secure then

Pr[1← Game 6] ≤ negl(n)asy and Pr[1← Game 7] ≤ negl(n)asy.

Combining this with the bounds derived above we can conclude that

Pr[1← Game 0] ≤ 1

2
+ negl(n)sy +O

(
(qH + qdec + 1)9/5

2ω(log(n))/5

)
+

2qo2h

√
negl(n)asy + 2q1

√
negl(n)asy + q02−n1/2+2.

4 Deferred proofs

4.1 Proof of Lemma 4

Proof. We list all the possibilities that the adversary can do to differentiate
between the two games. Suppose that the adversary sends the ciphertext (e, c, d).
Note that if e 6= e∗ or e∗ is not defined, then two decryption algorithms Dechy
and Dec∗ return the same output and nothing is left to show. Therefore we
analyze the following cases where e∗ is defined and e = e∗.

1. (e = e∗, c = c∗, d 6= d∗) or (e = e∗, c 6= c∗, d 6= d∗): In these two cases, the
two decryption algorithms return ⊥.

16

2. (e = e∗, c 6= c∗, d = d∗): This means that Encasypk (δ∗;H(δ∗‖c)) = Encasypk (δ∗;H(δ∗‖c∗)).
This is a collision in the sense of Lemma 3 since δ∗ is chosen randomly and
the Encasypk (δ∗;H(δ∗‖·)) has min-entropy ω(log(n)). Therefore, it occurs with

probability at most O
(

(qH+qdec+1)9/5

2ω(log(n))/5

)
.

3. (e = e∗, c = c∗, d = d∗). This query never occurs.

We can conclude that:∣∣∣Pr[1← Game 0] - Pr[1← Game 1]
∣∣∣ ≤ O ((qH+qdec+1)9/5

2ω(log(n))/5

)
.

4.2 Proof of Lemma 5

Proof. Let ε(n) :=Pr[1← Game 2]. We construct the adversary Asy such that:

Pr[PriKOT
Asy,Πsy = 1] = ε(n).

The adversary Asy on input 1n does the following:

1. Run Genasy(1n) to obtain (pk, sk).
2. Run the adversary Ahy(pk).
3. Use a 2(qH + qdec + 1)-wise independent function, a 2(qG + qdec)-wise inde-

pendent function, and a 2(qH′ + qdec)-wise independent function to answer
the queries submitted to the random oracles H, G and H ′, respectively.

4. Whenever Ahy outputs challenge messages (m0,m1), do the following:

– Select b $←− {0, 1}, r $←− COINsy, δ∗ $←− MSPasy, a∗ ← KSPsy, d∗ $←− {0, 1}n1 .
– Set c∗ := Encsya∗(mb; r) and e∗ := Encasypk (δ∗;H(δ∗, c∗)).
– Send (e∗, c∗, d∗) to the adversary Ahy.

5. Answer the random oracle queries and decryption queries as before.
6. When Ahy returns bit b′, output the same bit b′.

It is obvious that Pr[PriKOT
Asy,Πsy = 1] = ε(n). Therefore, ε(n) ≤ 1/2+ negl(n)sy.

4.3 Proof of Lemma 6

As the proof for two games is similar we provide the instances for Game 7 in
brackets J. . .K wherever there is a difference.

Proof. Let ε(n) := Pr[1 ← Game 6] J := Pr[1 ← Game 7]K. We construct an
adversary Aasy such that:

Pr[PubKOW
Aasy,Πasy = 1] = ε(n).

The adversary Aasy on input (1n, pk, y) does the following:

1. Run the adversary Ahy(pk).

17

2. Use a 2(qH+qdec)-wise independent function, a 2(qG+qdec)-wise independent
function, and a polynomial of degree 2(qH′ + qdec)− 1 to answer the queries
submitted to random oracles H, G and H ′, respectively.

3. Answer the decryption queries using Dec∗∗.
4. Whenever Ahy outputs challenge messages (m0,m1), do the following:

– Select b $←− {0, 1}, r $←− COINsy, a∗ ← KSPsy, d∗ $←− {0, 1}n1 .
– Set c∗ := Encsya∗(mb; r) and e∗ := y.
– Send (e∗, c∗, d∗) to the adversary Ahy.

5. Answer the random oracle queries as before and to the decryption queries
using Dec∗∗.

6. When Ahy returns bit b′ and halts, Aasy selects i $←− {1, · · · , qo2h} Ji $←−
{1, · · · , q1}K and measures the argument δ̂ of i-th J (i + q0)-th K query to
the random oracle G×H ′ JHK and outputs δ̂ (When Ahy makes less than i
queries output ⊥).

It is obvious that Pr[PubKOW
Aasy,Πasy = 1] = ε(n). Therefore, ε(n) ≤ negl(n)asy.

5 A variant of OAEP

The following definitions are similar to the definitions presented in [9], except we
define them in the presence of a quantum adversary.

Definition 6 (Quantum partial-domain one-way function). We say a
function f : {0, 1}n+k1 × {0, 1}k0 → {0, 1}m is partial-domain one-way if for any
polynomial time quantum adversary A,

Pr[s̃ = s : s
$←− {0, 1}n+k1 , t $←− {0, 1}k0 , s̃← A(f(s, t))] ≤ negl(n).

Definition 7. Let G : {0, 1}k0 → {0, 1}k−k0 , H : {0, 1}k−k0 → {0, 1}k0 and
H ′ : {0, 1}k → {0, 1}k be random oracles. The Q-OAEP = (Gen,Enc,Dec)
encryption scheme is defined as:

1. Gen: Specifies an instance of the injective function f and its inverse f−1.
Therefore, the public key and secret key are f and f−1 respectively.

2. Enc: Given a message m ∈ {0, 1}n, the encryption algorithm computes

s := m||0k1 ⊕G(r) and t := r ⊕H(s),

where r $←− {0, 1}k0 , and outputs the ciphertext (c, d) :=
(
f(s, t), H ′(s‖t)

)
.

3. Dec: Given a ciphertext (c, d), the decryption algorithm does the following:
– When c /∈ Im f :
(a) If c∗ is defined (where c∗ is the challenge ciphertext), then query the

random oracle H ′ on input (s∗‖t∗) ⊕ 1 (where f(s∗, t∗) = c∗) and
return ⊥.

18

(b) If c∗ is not defined, then query the random oracle H ′ on a random
input and return ⊥.

– When c ∈ Im f , the decryption algorithm extracts (s, t) = f−1(c). If
H ′(s‖t) 6= d it returns ⊥, otherwise it does the following:
(a) query the random oracle H on input s and compute r := t⊕H(s).
(b) query the random oracle G on input r and compute M := s⊕G(r).
(c) if the k1 least significant bits of M are zero then return the n most

significant bits of M , otherwise return ⊥.

Note that k0 and k depend on the security parameter n.

Note that Dec contains several unnecessary oracle calls (after it already
decided to output ⊥). These obviously do not effect correctness or security, but
make the proof a bit simple to formulate.

Theorem 2. If the underlying injective function is quantum partial-domain one-
way, then the Q-OAEP scheme is IND-CCA secure in the quantum random oracle
model.

Proof. Since the proof is similar and relatively easier compared to the proof of
Fujisaki-Okamoto transform, we only present the main games in pseudocode and
the intuition of the their negligibility. Let ΩH , ΩG, ΩH′ be the set of all function
H : {0, 1}k−k0 → {0, 1}k0 , G : {0, 1}k0 → {0, 1}k−k0 and H ′ : {0, 1}k → {0, 1}k,
respectively. Let A be a polynomial time quantum adversary that attacks the
OAEP-cryptosystem in the sense of IND-CCA in the quantum random oracle
model and makes at most qH , qG and qH′ queries to the random oracles H, G
and H ′ respectively and qdec decryption queries.

Game 0:

let H $←− ΩH , G
$←− ΩG, H ′

$←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk)← Gen(1n)

let m0,m1 ← AH,G,H
′,Dec(pk)

let b $←− {0, 1}, s∗ := mb||0k1 ⊕G(r), t∗ := r ⊕H(s∗), c∗ := f(s∗, t∗),
d∗ := H ′(s∗‖t∗)
let b′ ← AH,G,H

′,Dec(c∗, d∗)
return [b = b′]

Game 1:

let H $←− ΩH , G
$←− ΩG, H ′

$←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk)← Gen(1n),

α∗
$←− {0, 1}k−k0

let m0,m1 ← AH,G,H
′,Dec(pk)

let b $←− {0, 1}, s∗ = mb||0k1 ⊕ α∗, t∗ = r ⊕H(s∗), c∗ = f(s∗, t∗),
d∗ := H ′(s∗‖t∗)
let b′ ← AH,G,H

′,Dec(c∗, d∗)
return [b = b′]

19

The probability of success in Game 1 is 1/2 for the reason that s∗ is a random
element and independent of the bit b.

Game 2:

let H $←− ΩH , G
$←− ΩG, H ′

$←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk)← Gen(1n),

α∗
$←− {0, 1}k−k0 , i $←− {1, . . . , qG + qdec}

run until i-th query to oracle G
let m0,m1 ← AH,G,H

′,Dec(pk)

let b $←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕H(s∗), c∗ := f(s∗, t∗),
d∗ := H ′(s∗‖t∗)
let b′ ← AH,G,H

′,Dec(c∗, d∗)
measure the argument r̃ of the i-th query to oracle G
return [r̃ = r] (When A makes less than i queries return ⊥)

By O2H Lemma 1,

|Pr[1← Game 0]− Pr[1← Game 1]| ≤ 2(qG + qdec)
√
Pr[1← Game 2].

Game 3:

let H $←− ΩH , G
$←− ΩG, H ′

$←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk)← Gen(1n),

α∗
$←− {0, 1}k−k0 , i $←− {1, . . . , qG + qdec}, β∗

$←− {0, 1}k0
run until i-th query to oracle G

let m0,m1 ← AH,G,H
′,Dec(pk)

let b $←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕ β∗, c∗ := f(s∗, t∗),
d∗ := H ′(s∗‖t∗)
let b′ ← AH,G,H

′,Dec(c∗, d∗)
measure the argument r̃ of the i-th query to oracle G
return [r̃ = r] (When A makes less than i queries return ⊥)

Since t∗ and s∗ are random and independent of r, the probability of success
in Game 3 is 1

2k0
.

20

Game 4:

let H $←− ΩH , G
$←− ΩG, H ′

$←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk)← Gen(1n),

α∗
$←− {0, 1}k−k0 , i $←− {1, . . . , qG + qdec}, β∗

$←− {0, 1}k0 ,
j

$←− {1, . . . , qH + qdec}
run until j-th query to oracle H

run until i-th query to oracle G
let m0,m1 ← AH,G,H

′,Dec(pk)

let b $←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕ β∗, c∗ := f(s∗, t∗),
d∗ := H ′(s∗‖t∗)
let b′ ← AH,G,H

′,Dec(c∗, d∗)
measure the argument r̃ of the i-th query to oracle G

measure the argument s̃ of the j-th query to oracle H
return [s̃ = s∗] (When A makes less than j queries return ⊥)

By O2H Lemma 1,

|Pr[1← Game 2]− Pr[1← Game 3]| ≤ 2(qH + qdec)
√
Pr[1← Game 4].

Game 5:

let H $←− ΩH , G
$←− ΩG, H ′

$←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk)← Gen(1n),

s∗
$←− {0, 1}k−k0 , i $←− {1, . . . , qG + qdec}, β∗

$←− {0, 1}k0 ,
j

$←− {1, . . . , qH + qdec}, d∗
$←− {0, 1}k

run until j-th query to oracle H
run until i-th query to oracle G

let m0,m1 ← AH,G,H
′,Dec(pk)

let b $←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r⊕ β∗, c∗ := f(s∗, t∗),
let b′ ← AH,G,H

′,Dec(c∗, d∗)
measure the argument r̃ of the i-th query to oracle G

measure the argument s̃ of the j-th query to oracle H
return [s̃ = s∗] (When A makes less than j queries return ⊥)

21

Game 6:

let H $←− ΩH , G
$←− ΩG, H ′

$←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk)← Gen(1n),

α∗
$←− {0, 1}k−k0 , i $←− {1, . . . , qG + qdec}, β∗

$←− {0, 1}k0 ,
j

$←− {1, . . . , qH + qdec}, d∗
$←− {0, 1}k, ` $←− {1, . . . , qH′ + qdec}

run until `-th query to oracle H ′
run until j-th query to oracle H

run until i-th query to oracle G
let m0,m1 ← AH,G,H

′,Dec(pk)

let b $←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕ β∗, c∗ = f(s∗, t∗)
let b′ ← AH,G,H

′,Dec(c∗, d∗)
measure the argument r̃ of the i-th query to oracle G

measure the argument s̃ of the j-th query to oracle H
measure the argument (s̃, t̃) of the `-th query to oracle H ′

return [s̃ = s∗] ∧ [t̃ = t∗] (When A makes less than ` queries return ⊥)

By O2H Lemma 1,

|Pr[1← Game 4]− Pr[1← Game 5]| ≤ 2(qH′ + qdec)
√
Pr[1← Game 6].

Therefore, we only need to prove that the probability of success in Game 5 and
Game 6 are negligible. Since a 2q-wise independent function is indistinguishable
from a random oracle provided the adversary makes at most q queries [17], we
replace H ′ in Game 5 and Game 6 with a random polynomials of the proper
degree. Let Ωwise be the set of all such polynomials.

Game 5.b:

let H $←− ΩH , G
$←− ΩG, H ′

$←− Ωwise, r
$←− {0, 1}k0 , (pk, sk)← Gen(1n),

α∗
$←− {0, 1}k−k0 , i $←− {1, . . . , qG + qdec}, β∗

$←− {0, 1}k0 ,
j

$←− {1, . . . , qH + qdec}, d∗
$←− {0, 1}k

run until j-th query to oracle H
run until i-th query to oracle G

let m0,m1 ← AH,G,H
′,Dec(pk)

let b $←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕ β∗, c∗ = f(s∗, t∗)
let b′ ← AH,G,H

′,Dec(c∗, d∗)
measure the argument r̃ of the i-th query to oracle G

measure the argument s̃ of the j-th query to oracle H
return [s̃ = s∗] (When A makes less than j queries return ⊥)

By Zhandry’s result [17]:

Pr[1← Game 5] = Pr[1← Game 5.b].

Now we define the decryption algorithm Dec∗ that on input (c, d) does as follows:

1. It calculates the roots of polynomial H ′ − d. Let S be the set of all the roots.

22

2. If there exists (s, t) ∈ S such that f(s, t) = c, then it outputs a message m
using (s, t) and similar to the algorithm Dec. Otherwise it outputs ⊥.

Game 5.c:

let H $←− ΩH , G
$←− ΩG, H ′

$←− Ωwise, r
$←− {0, 1}k0 , (pk, sk)← Gen(1n),

α∗
$←− {0, 1}k−k0 , i $←− {1, . . . , qG + qdec}, β∗

$←− {0, 1}k0 ,
j

$←− {1, . . . , qH + qdec}, d∗
$←− {0, 1}k

run until j-th query to oracle H
run until i-th query to oracle G

let m0,m1 ← AH,G,H
′,Dec∗(pk)

let b $←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕ β∗, c∗ = f(s∗, t∗)

let b′ ← AH,G,H
′,Dec∗(c∗, d∗)

measure the argument r̃ of the i-th query to oracle G
measure the argument s̃ of the j-th query to oracle H
return [s̃ = s∗] (When A makes less than j queries return ⊥)

We show that two decryption algorithms Dec and Dec∗ return the same output
with the same number of queries to the random oracle H. For given ciphertext
(c, d):

1. If c /∈ Im f , then both decryption algorithms return ⊥ with no query to the
random oracle H.

2. If c ∈ Im f . Let (ŝ, t̂) := f−1(c). There are two subcases:
– If H ′(ŝ‖t̂) 6= d, then both algorithms return ⊥ with no query to the

random oracle H.
– If H ′(ŝ‖t̂) = d, then both decryption algorithms return the same output

and query H on input ŝ for the reason that (ŝ, t̂) ∈ S and f(ŝ, t̂) = c.

As a result:
Pr[1← Game 5.b] = Pr[1← Game 5.c].

Note that the decryption algorithm Dec∗ does not use the secret key f−1,
therefore we can reduce the success probability of Game 5.c to the partial-domain
one-wayness of function f .

We repeat a similar approach (define Game 6.b and Game 6.c as before) to
prove the success probability of Game 6 is negligible. Note that the decryption
algorithm Dec∗∗ does as follows in the case of Game 6:

1. It calculates the roots of polynomial H ′ − d. Let S be the set of all the roots.
2. If there exists (s, t) ∈ S such that f(s, t) = c, then it queries the random

oracle H ′ on input (s‖t) and outputs a message m using (s, t) and similar to
the algorithm Dec.

3. Else:
– If c∗ is defined and c = c∗, then query H ′ on input (s∗‖t∗) and return ⊥.

23

– If c∗ is defined and c 6= c∗, then query H ′ on input (s∗‖t∗)⊕ 1 and return
⊥.

– If c∗ is not defined then query H ′ on a random input and return ⊥.

We show that two decryption algorithms Dec and Dec∗∗ return the same output
with the same number of queries to the random oracle H ′. For given ciphertext
(c, d):

1. If c /∈ Im f , then both decryption algorithms return ⊥ and query the random
oracle H ′ on a random input or on input (s∗‖t∗)⊕ 1.

2. If c ∈ Im f and c∗ is defined. Let (ŝ, t̂) := f−1(c). Then:
– If H ′(ŝ‖t̂) = d, then both decryption algorithms return the same output

and query H ′ on input (ŝ‖t̂).
– If H ′(ŝ‖t̂) 6= d and c 6= c∗, then both algorithms return ⊥ and query the

random oracle H ′ on an input different from (s∗‖t∗).
– If H ′(ŝ‖t̂) 6= d and c = c∗, then both algorithms return ⊥ and query the

random oracle H ′ on input (s∗‖t∗).
3. If c ∈ Im f and c∗ is not defined. Let (ŝ, t̂) := f−1(c). Then:

– If H ′(ŝ‖t̂) 6= d, then both algorithms return ⊥ and query the random
oracle H ′ on an input.

– If H ′(ŝ‖t̂) = d, then both decryption algorithms return the same output
and query H ′ on input (ŝ‖t̂).

By combining all the inequalities from the proof, we can conclude that:

Pr[1← Game 0] ≤ 1/2 + negl(n).

Since our security proof does not depend on the bit padding, the message space
can be extended to the set {0, 1}n+k1 .

Acknowledgments. This work was supported by the Estonian ICT program
2011-2015 (3.2.1201.13-0022), the European Union through the European Regional
Development Fund through the sub-measure “Supporting the development of
R&D of info and communication technology”, by the European Social Fund’s
Doctoral Studies and Internationalisation Programme DoRa, by the Estonian
Centre of Excellence in Computer Science, EXCS.

References

1. G. Alagic, A. Broadbent, B. Fefferman, T. Gagliardoni, C. Schaffner, and M. S.
Jules. Computational security of quantum encryption. IACR ePrint 2016/424,
April 2016.

2. A. Ambainis, A. Rosmanis, and D. Unruh. Quantum attacks on classical proof
systems (the hardness of quantum rewinding). In FOCS 2014, pages 474–483. IEEE,
October 2014.

24

https://eprint.iacr.org/2016/424

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and
V. Ashby, editors, CCS ’93, Proceedings of the 1st ACM Conference on Computer
and Communications Security, Fairfax, Virginia, USA, November 3-5, 1993., pages
62–73. ACM, 1993.

4. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In A. D. Santis,
editor, Advances in Cryptology - EUROCRYPT ’94, Workshop on the Theory
and Application of Cryptographic Techniques, Perugia, Italy, May 9-12, 1994,
Proceedings, volume 950 of Lecture Notes in Computer Science, pages 92–111.
Springer, 1994.

5. M. Ben-Or. Probabilistic algorithms in finite fields. In 22nd Annual Symposium on
Foundations of Computer Science, Nashville, Tennessee, USA, 28-30 October 1981,
pages 394–398. IEEE Computer Society, 1981.

6. D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry.
Random oracles in a quantum world. In D. H. Lee and X. Wang, editors, Advances in
Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and
Application of Cryptology and Information Security, Seoul, South Korea, December
4-8, 2011. Proceedings, volume 7073 of Lecture Notes in Computer Science, pages
41–69. Springer, 2011.

7. D. Boneh and M. Zhandry. Secure signatures and chosen ciphertext security in
a quantum computing world. In Crypto 2013, 2013. Full version at IACR ePrint
2013/088.

8. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Proceedings of the 19th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’99, pages 537–554, London, UK,
UK, 1999. Springer-Verlag.

9. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under
the RSA assumption. J. Cryptology, 17(2):81–104, 2004.

10. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

11. V. Shoup. OAEP reconsidered. In J. Kilian, editor, Advances in Cryptology -
CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara,
California, USA, August 19-23, 2001, Proceedings, volume 2139 of Lecture Notes in
Computer Science, pages 239–259. Springer, 2001.

12. E. E. Targhi, G. N. Tabia, and D. Unruh. Quantum collision-resistance of non-
uniformly distributed functions. In T. Takagi, editor, Post-Quantum Cryptography
- 7th International Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26,
2016, Proceedings, volume 9606 of Lecture Notes in Computer Science, pages 79–85.
Springer, 2016.

13. D. Unruh. Quantum position verification in the random oracle model. In J. A.
Garay and R. Gennaro, editors, Advances in Cryptology - CRYPTO 2014 - 34th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part II, volume 8617 of Lecture Notes in Computer Science, pages
1–18. Springer, 2014.

14. D. Unruh. Revocable quantum timed-release encryption. In P. Q. Nguyen and
E. Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes
in Computer Science, pages 129–146. Springer, 2014.

25

http://eprint.iacr.org/2013/088
http://eprint.iacr.org/2013/088

15. D. Unruh. Non-interactive zero-knowledge proofs in the quantum random or-
acle model. In E. Oswald and M. Fischlin, editors, Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Pro-
ceedings, Part II, volume 9057 of Lecture Notes in Computer Science, pages 755–784.
Springer, 2015.

16. H. Yuen. A quantum lower bound for distinguishing random functions from random
permutations. Quantum Information & Computation, 14(13-14):1089–1097, 2014.

17. M. Zhandry. Secure identity-based encryption in the quantum random oracle model.
In R. Safavi-Naini and R. Canetti, editors, Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Science, pages
758–775. Springer, 2012.

18. M. Zhandry. A note on the quantum collision and set equality problems. Quantum
Information & Computation, 15(7&8):557–567, 2015.

26

	Introduction
	Preliminaries
	Security Definitions
	Quantum accessible random oracles

	The hybrid scheme and its security
	Deferred proofs
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6

	A variant of OAEP

