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Abstract. Most cryptographic schemes are designed in a model where
perfect secrecy of the secret key is assumed. In most physical imple-
mentations, however, some form of information leakage is inherent and
unavoidable. To deal with this, a flurry of works showed how to con-
struct basic cryptographic primitives that are resilient to various forms
of leakage.
Dodis et al. (FOCS ’10) formalized and constructed leakage resilient one-
way functions. These are one-way functions f such that given a random
image f(x) and leakage g(x) it is still hard to invert f(x). Based on any
one-way function, Dodis et al. constructed such a one-way function that
is leakage resilient assuming that an attacker can leak any lossy function
g of the input.
In this work we consider the problem of constructing leakage resilient
one-way functions that are secure with respect to arbitrary computation-
ally hiding leakage (a.k.a auxiliary-input). We consider both types of
leakage — selective and adaptive — and prove various possibility and
impossibility results.
On the negative side, we show that if the leakage is an adaptively-chosen
arbitrary one-way function, then it is impossible to construct leakage
resilient one-way functions. The latter is proved both in the random
oracle model (without any further assumptions) and in the standard
model based on a strong vector-variant of DDH. On the positive side, we
observe that when the leakage is chosen ahead of time, there are leakage
resilient one-way functions based on a variety of assumption.

? Supported in part by a Levzion fellowship, by grants from the Israel Science Foun-
dation grant no. 1255/12, BSF and from the I-CORE Program of the Planning and
Budgeting Committee and the Israel Science Foundation (grant no. 4/11).



1 Introduction

The holy grail of cryptography is designing systems that remain secure in the
presence of adversarial behavior. For this, one has to specify (1) a cryptographic
primitive of interest (e.g. an encryption scheme or a signature scheme), and (2)
a model that captures the power of a potential adversary and what it means for
it to break the system.

One of the most common assumptions is that secret keys are perfectly secret
and are completely unknown to an adversary. However, in many physical im-
plementations some information does leak due to various side-channel attacks,
reuse of randomness, and more.

This deficiency raised the necessity to build a theory of security against
classes of side-channel attacks. Starting with the works of [14,27,30], a flurry of
works in which different classes of side channel attacks have been defined and dif-
ferent cryptographic primitives have been designed to provably withstand these
attacks (see, for example, [14,27,21,30,22,34,18,1,2,16,23,20,8,9,15,6,31,7,24]).

We consider the problem of constructing the most basic cryptographic prim-
itive, a one-way function, in a setting where an adversary obtains side-channel
information (this notion was first formalized by [3,17]). A one-way function f
is an efficiently computable function such that given f(x) for a random input
x, any efficient adversary cannot find an x′ such that f(x) = f(x′). A leakage
resilient one-way function f is a one-way function such that given f(x) as above
and g(x), where g is adversarially chosen, it is still hard to invert f and recover
such an x′.

To obtain some sort of security, one clearly has to restrict the adversary
to choose g from some collection of functions that do not trivially reveal x by
themselves. Indeed, if g is the identity function, no leakage resilient function
f exists. Thus, several assumptions on the power of the adversary have been
considered. Already in the work of Canetti et al. [14], the authors showed how
to obtain a leakage-resilient one-way function assuming that the attacker can leak
an arbitrary but sufficiently small subset of the bits of the input. However, this
may be overly restrictive as it provides no guarantees if the attacker can learn
the XOR of all the input bits. This issue was addressed in several works (see, for
example, [3,17,15]) showing that there exists a leakage-resilient one-way function
assuming that the attacker can leak any lossy function of the input, namely, any
function whose image size is significantly smaller than the domain size. The
leakage-resilience in both settings is proven based on the existence of any one-
way function which is the weakest assumption possible. For completeness, we
provide a proof of the following theorem in Appendix A.

Theorem 1 ([3,17], Informal). Assuming that one-way functions exist, there
exists a one-way function f , such that for any adversarially-chosen lossy function
g, given f(x) and g(x) for a random x, it is computationally hard to invert f .

Motivated by the positive results for a wide class of leakage functions, we
study the question of designing leakage-resilient one-way functions that are se-
cure with respect to arbitrary computationally hiding leakage function. We model



this by allowing the leakage to be an arbitrary one-way function, even such that
fully determine the input.1 We consider both an adaptive notion of security in
which the leakage function is adversarially chosen (from a restricted pre-defined
collection) after f is fixed, and a selective notion in which the leakage is chosen
ahead of time, before f is.

1.1 Our contributions

Adaptively-chosen leakage. We show that if the leakage can be an arbitrary
one-way function, then there cannot be a leakage resilient one-way function f .
More precisely, we show that for every one-way function f , there exists a one-
way function g (that depends on f) such that when one gets both f(x) and g(x),
it is easy to invert f .

We prove this result in two ways: in the random oracle model and in the
standard model based on a strong vector-variant of DDH. Specifically, we first
show that if the leakage function has access to a random oracle O, then we can
construct an oracle-aided function gO which is one-way and gO(x) together with
f(x) allow to recover x. For the result in the standard model, we rely on multi-
bit point obfuscators that exist based on a strong vector-variant of the DDH
assumption [13,5]; see Section 2.3 and Theorem 8.

Theorem 2 (Informal). Let O be a random oracle. For every one-way function
f , there is a one-way function gO such that for every x given f(x) and g(x) it
is easy to recover x.

Theorem 3 (Informal). Assuming multi-bit point obfuscators, for every one-
way function f , there is a one-way function g such that for every x given f(x)
and g(x) it is easy to recover x.

Moreover, such multi-bit point obfuscators can be constructed from a strong
vector-variant of the DDH assumption.

Selectively-chosen leakage. We show that if the leakage function g is fixed
ahead of time, then there exists a leakage resilient one-way function f for g from
various assumptions. To this end, we observe that one-wayness with respect
to selectively-chosen leakage is tightly related to extracting polynomially-many
hard-core bits.

Theorem 4 (Informal). For every leakage one-way function g, a hardcore
function for g that outputs polynomially-many hard-core bits is a leakage-resilient
one-way function for g.

If g is a sub-exponentially hard one-way function, then extracting polynomial-
ly-many hard-core bits is possible due to Goldreich and Levin [25] (and any pseu-
dorandom generator). Bellare, Stepanovs, and Tessaro [4] (see also the follow-up

1 This setting is sometimes referred to as the auxiliary-input setting (see, for example,
[26,18,16]).



work of Brzuska and Mittelbach [11]) were the first to show how to extract
any polynomial number of hard-core bits from any one-way function. Their con-
struction is based on obfuscation. More recently, Zhandry [36] obtained the same
result based on exponentially-hard DDH.

Thus, instantiating Theorem 4 with the variety of known methods for ex-
tracting polynomially-many hard-core bits from g, we obtain a leakage-resilient
one-way function for g, whose security is based either on one-way functions, on
obfuscation, on exponential hardness of DDH, and more.

1.2 Overview of our techniques

In Theorem 2 the underlying idea is very simple. We assume a random oracle O
and assume that there exists a leakage resilient one-way function f , where the
leakage is any one-way function. We define a leakage function g(x) = O(f(x))⊕x.
Recovering x given f(x) and g(x) is easy by first applying O to f(x) and then
XORing the result with g(x). The non-trivial part is showing that this function
g is also one-way.

Roughly speaking, our analysis uses the fact that any adversary trying to
invert g(x) will have to query the oracle at the point f(x). Otherwise, all it
sees are uniform strings from which it cannot infer anything about a possible
pre-image. It is left to show that f(x) is sufficiently random so that it cannot
be guessed by any polynomial-time adversary with non-negligible probability.
Indeed, since f by itself is a one-way function, its image distribution has super-
logarithmic min-entropy which satisfied our requirement.

For Theorem 3, our construction is based on multi-bit point obfuscators
MBPO and can be seen as an instantiation of the above idea in the stan-
dard model. The leakage function, on input x, will output a multi-bit point
obfuscation of the multi-bit point function that maps f(x) to x, denoted by
g(x) = MBPO(If(x)→x). One obstacle is that an obfuscator is a probabilistic
procedure, and thus cannot be used directly in our setting. Hence, we use public-
coin multi-bit point obfuscators, which are obfuscators that output their internal
random coins. This allows us to define a leakage function which has hard-wired
random coins for the use of the point obfuscator. Specifically, we hardwire into
g random coins r and define gr(x) = MBPO(If(x)→x; r). We show that gr, with
very high probability, is a one-way function using the security of the obfuscator.2

We observe that such a multi-bit point obfuscator exists based on the strong
vector-variant of DDH of Bitansky and Canetti [5] given in Section 2.3.3

2 Theorem 2 can also be proved by first showing how to use a random oracle to
construct a multi-bit point obfuscator. We thank a reviewer for pointing this out.

3 We emphasize we do not require security with respect to auxiliary-input, which was
shown to be a problematic assumption [10].



2 Preliminaries

In this section we present the notation and basic definitions that are used in this
work. For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution
X we denote by x← X the process of sampling a value x from the distribution
X. Similarly, for a set X we denote by x ← X the process of sampling a value
x from the uniform distribution over X . For a randomized function f and an
input x ∈ X , we denote by y ← f(x) the process of sampling a value y from
the distribution f(x). A function neg : N→ R is negligible if for every constant
c > 0 there exists an integer Nc such that neg(λ) < λ−c for all λ > Nc. For two
strings x ∈ {0, 1}n and y ∈ {0, 1}m we denote by x||y the string concatenation
of x and y.

Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are
computationally indistinguishable if for any probabilistic polynomial-time algo-
rithm A there exists a negligible function neg(·) such that |Pr[A(1λ, Xλ) = 1]
−Pr[A(1λ, Yλ) = 1]| ≤ neg(λ) for all sufficiently large λ ∈ N.

2.1 Min-entropy

The min-entropy of a distribution X over {0, 1}n is defined by

H∞(X) = − min
x∈{0,1}n

log2 Pr[X = x].

2.2 One-way functions

Definition 1 (One-way functions). A function f : {0, 1}∗ → {0, 1}∗ is said
to be one-way if the following two conditions hold:

1. There exists a polynomial-time algorithm A such that A(x) = f(x) for every
x ∈ {0, 1}∗.

2. For every probabilistic polynomial-time algorithm B there exists a negligible
function neg(·) such that

ADVOWF
f,B = Pr[B(1n, f(x)) ∈ f−1(f(x))] ≤ neg(n),

where the probability is taken uniformly over all possible x ∈ {0, 1}n and the
internal randomness of B.

The following claim will be useful.

Claim 5 Let f : {0, 1}n → {0, 1}m be a one-way function where m = m(n) is a
polynomial. It holds that H∞(f(X)) ≥ ω(log n).

Proof. Since f is a one-way function, it must be that on a random x ∈ {0, 1}n, it
is hard to a preimage for f(x). Assume, towards contradiction, that H∞(f(X)) =
O(log n). That is,

min
y∈{0,1}m

log2

1

Prx∈{0,1}n [f(x) = y]
= O(log n).



Thus, there exists a y∗ ∈ {0, 1}m for which Prx∈{0,1}n [f(x) = y∗] ≥ 1/p(n) for
some polynomial p(·).

Define an adversary A that given a random image y = f(x) outputs a uni-
formly random x′. This adversary wins if both f(x) = y∗ and f(x′) = y∗. Since
x and x′ are chosen independently and uniformly at random, we have that

Pr
x′∈{0,1}n

[A(f(x′)) ∈ f−1(y)] ≥ Pr
x,x′∈{0,1}n

[f(x) = y∗ and f(x′) = y∗]

= ( Pr
x∈{0,1}n

[f(x) = y∗])2 ≥ 1/(p(n))2.

That is, A will successfully invert y with non-negligible probability, contradiction
the one-wayness of f .

We extend the definition of a one-way function to oracle-aided one-way func-
tions. Roughly speaking, an oracle-aided function fO is an oracle-aided one-way
function if there is an oracle-aided efficient algorithm that computes fO on every
point, and given an image of fO on a random preimage, any efficient algorithm
(that has oracle access to O) cannot find the preimage.

Definition 2 (Oracle aided one-way function). Let O be an oracle. A func-
tion fO that has oracle access to O is said to be oracle aided one-way if the
following two conditions hold:

1. There exists an oracle-aided polynomial-time algorithm AO such that AO(x) =
fO(x) for every x ∈ {0, 1}∗.

2. For every oracle-aided probabilistic polynomial-time algorithm BO and n ∈
N,

ADVOOWF
f,B = Pr[BO(1n, fO(x)) ∈ (fO)−1(fO(x))] < neg(n),

where the probability is taken uniformly over all possible x ∈ {0, 1}n and the
internal randomness of B.

2.3 Point obfuscations

A point function Ix : {0, 1}n → {0, 1} returns 1 on input x ∈ {0, 1}n and 0 on
all other inputs. A point obfuscator is an obfuscator that gets a point function
Ix as input (in some canonical form in which x is explicit) and outputs a circuit
with the same functionality but where x is computationally hidden.

Definition 3 (Point obfuscator). A point obfuscator PO(·) is a probabilistic
polynomial-time algorithm that gets as input a point function Ix, where x ∈
{0, 1}n, and outputs a circuit C such that

1. For all x, the circuit C ← PO(Ix) is functionally equivalent to Ix.
2. For any probabilistic polynomial-time algorithm A, there is an probabilistic

polynomial-time simulator S and a negligible function neg(·), such that for
all x ∈ {0, 1}n and n ∈ N,

ADVPO
A,D = | Pr

A,PO
[A(PO(Ix)) = 1]−Pr

S
[SIx(1n)) = 1]| ≤ neg(n).



Moreover, a point obfuscator is called public coin if it publishes all internal coin
tosses as part of its output.

In [12], Canetti provided a construction that satisfies Definition 3 assuming
a strong variant of the DDH assumption. The construction of Canetti is given
next.

Construction 6 ([12]’s point obfuscator) Let G = {Gn}n∈N be a group en-
semble with uniform and efficient representation and operations, where each Gn
is a group of prime order pn ∈ (2n−1, 2n). The public coin point obfuscator PO
for points in the domain Zpn is defined as follows: PO(Ix) samples a random
generator r ← G∗n of Gn and outputs r, rx. Evaluation of the obfuscation at
point z is done by checking whether rx = rz.

A multi-bit point function Ix→y : {0, 1}n → {0, 1}m is a function that returns
y ∈ {0, 1}m on input x ∈ {0, 1}n and ⊥ on all other inputs. A multi-bit point
function obfuscator, given a multi-bit point function in some canonical form in
which x and y are explicit, outputs a circuit with the same functionality but
where x and y are computationally hidden.

Definition 4 (Multi-bit point obfuscator). A multi-bit point obfuscator
MBPO is a probabilistic polynomial-time algorithm that gets as input a multi-bit
point function Ix→y, where x ∈ {0, 1}n and y ∈ {0, 1}m, and outputs a circuit C
such that

1. For all x ∈ {0, 1}n and y ∈ {0, 1}m, the circuit C ← MBPO(Ix→y) is func-
tionally equivalent to the function Ix→y.

2. For any probabilistic polynomial-time algorithm A, there is a probabilistic
polynomial-time simulator S and a negligible function neg(·),4 such that for
all n ∈ N, x ∈ {0, 1}n, and y ∈ {0, 1}m and

ADVMBPO
A,D = | Pr

A,MBPO
[A(MBPO(Ix→y)) = 1]−Pr

S
[SIx→y (1n+m) = 1]|

≤ neg(n).

Moreover, a multi-bit point obfuscator is called public coin if it publishes all
internal coin tosses as part of its output.

One way to obtain a multi-bit point obfuscator was suggested by Canetti
and Dakdouk [13]. Specifically, they showed that a composable point obfuscator
gives rise to a multi-bit point obfuscator.

Definition 5 (Composable point obfuscator). A point obfuscator PO(·) is
said to be t-composable if for any probabilistic polynomial-time algorithm A,

4 We note that for our application of the multi-bit point obfuscator, it is enough to
consider the seemingly relaxed notion of virtual grey-box (VGB) multi-bit point
obfuscators, where the simulator has a polynomial bound on the number of queries
to its oracle, but is otherwise unlimited. We use the stronger definition which is
implied by the weaker one [5, Proposition 7.3].



there is a probabilistic polynomial-time simulator S and a negligible function
neg(·) such that for any x1, . . . , xt it holds that

ADVt-POA,D = | Pr
A,PO

[A(PO(Ix1
), . . . ,PO(Ixt

)) = 1]−Pr
S

[SIx1 ,...,Ixt (1t·n)) = 1]|

≤ neg(n).

Canetti and Dakdouk [13] showed how to use anm-composable point function
obfuscator PO to obtain a multi-bit point function that supports outputs (i.e. y
values) of length m. Specifically, they suggested the following construction.

Construction 7 ([13]’s multi-bit point obfuscator) Let PO be a point ob-
fuscator for the domain {0, 1}n. Given a point x ∈ {0, 1}n and value y =
y1 . . . ym ∈ {0, 1}m, sample s← {0, 1}n uniformly at random and let

ai =

{
x if i = 0 or yi = 1,

s otherwise.

Now, the obfuscation of Ix,y is

MBPO(Ix→y) = PO(Ia0), . . . ,PO(Iam), (1)

and in order to evaluate MBPO(Ix→y) on input z one first checks if z = a0 = x
(by evaluating the first obfuscated circuit). If not (namely, z 6= a0), then it out-
puts ⊥. Otherwise (namely, if z = a0), it evaluated all other point obfuscations
to find all coordinates in which z = ai = x and outputs y1 . . . ym, where yi = 1 if
a1 = z = x (and 0 otherwise). Notice that if PO is public coin then so is MBPO.

Bitansky and Canetti [5] showed that under the (m+ 1)-strong vector DDH
assumption (defined next), the point obfuscator of Canetti from Theorem 6 is
(m+ 1)-composable and thus can be used to get a multi-bit point function. We
further observe that since Canetti’s point obfuscator is public coin (see Theo-
rem 6), it follows that Canetti and Dakdouk’s multi-bit point obfuscator is public
coin. We begin with the assumption and then state the theorem.

Definition 6 (Well spread distribution). A distribution Xn over {0, 1}n is
well-spread if it is efficiently and uniformly samplable, and it has super-logarithmic
min-entropy. Namely, H∞(Xn) ≥ ω(log n).

Let m = m(n) be a polynomial. An ensemble of distributions X (1)
n , . . . ,X (m)

n

(each over {0, 1}n) is coordinate-wise well-spread if for each i ∈ [m], X (i)
n is

well-spread.

Assumption 8 (m-strong vector DDH [5]) Let m = poly(n). There exists
a group ensemble G = {Gn}n∈N, , where each Gn is a group of prime order
pn with uniform and efficient representation and operations, such that for any

coordinate-wise well-spread distribution ensemble X = {Xn = (X (1)
n , . . . ,X (m)

n )}n∈N



over vectors in Zmpn the following two ensembles are computationally indistin-
guishable:5

((g1, g
a1
1 ), . . . , (gm, g

am
m )), where g1, . . . , gm ← G∗n and (a1, . . . , am)← Xn

and

((g1, g
a1
1 ), . . . , (gm, g

am
m )), where g1, . . . , gm ← G∗n and (a1, . . . , am)← Zmpn .

Now we are ready to state the resulting theorem of [5] from Theorem 7 with
the underlying Theorem 8.6

Theorem 9. Assume the (m + 1)-strong vector DDH assumption. Then, the
construction from Equation (1) is a public coin multi-bit point obfuscator for
multi-bit point functions that output m bits.

3 Definition of Leakage Resilient One-Way Func-
tions

Here we define leakage resilient one-way functions. Intuitively, a one-way function
f is leakage resilient for leakage function g if given f(x) and g(x) it is hard to
recover an x′ such that f(x′) = f(x), where x is chosen uniformly at random.
Our actual definition is a relaxation and a generalization of the above informal
description: (1) we allow f to be sampled from a collection of functions, and (2)
we let g come from an a-priori fixed collection of leakage functions.

More precisely, a leakage resilient one-way function collection F = {f : {0, 1}n
→ {0, 1}∗} is defined with respect to a collection of leakage functions L =
{g : {0, 1}n → {0, 1}∗}. F is said to be leakage resilient one-way if given f ← F
it is hard to invert f(x) on a random image even given f and g(x) for any
adaptively chosen g ∈ L (namely, the choice of g can depend on f).

Definition 7 (Leakage resilient one-way function). Let F = {f : {0, 1}n →
{0, 1}∗} be a collection of functions associated with an efficient probabilistic sam-
pler GenF (1n) that outputs a function f ∈ F together with an efficient (deter-
ministic) algorithm for evaluating f .

The function collection F is a leakage resilient one-way function collection
for a collection of functions L = {g : {0, 1}n → {0, 1}∗} if for every probabilis-
tic polynomial-time algorithms A = (A0,A1), there exists a negligible function

5 There is a variant for this definition which bears more similarities to DDH, general-
izes the assumption of Canetti [12], and it is equivalent to the definition we presented
as long as m ≥ 2. See [5] for more information.

6 It may seem odd that Definitions 3 and 4 are stated in a “worst-case” language,
while Theorem 8 is stated in an “average-case” language. However, notice that the
former are definitions that are given in a simulation-based language while the latter
is an indistinguishability-based one. It is known that for (multi-bit) point functions
all of these variants are equivalent (see [5, Theorem 5.1 & Proposition 7.3] for a
proof).



neg(·) such that for every n ∈ N it holds that

ADVlrOWF
A,F,L = Pr[EXPA,F,L(n) = 1] ≤ neg(n),

where the random variable EXPA,F,L(n) is defined via the following experiment:

1. f ← GenF (1n).
2. (g, state)← A0(1n, f), where g ∈ L.
3. x∗ ← {0, 1}n (chosen uniformly at random and independently of f and g).
4. x← A1(f, f(x∗), g(x∗), state).
5. If f(x) = f(x∗), then output 1, and otherwise output 0.

If L consists of one fixed leakage function g,7 then we say that f is a selective
leakage resilient one-way function for L. Otherwise, it is called an adaptive
leakage resilient one-way function.

One vs. a collection of leakage resilient functions. One may also be inter-
ested in a single one-way function f : {0, 1}n → {0, 1}∗ which is leakage resilient.
In this case, Item 1 in the definition of the experiment EXPA,F,L(n) can be
ignored. We chose to present and work with a definition which allows f to be
chosen from a family as it is more general and since some of our results actually
require having f be chosen from a collection.

Adaptive vs. selective security. Our definition captures both adaptive and
selective (i.e. non-adaptive) choice of the leakage. Indeed, if the collection L
consists of a single function g, then we can choose the leakage resilient collection
F knowing the leakage g ahead of time (we think of this as the selective setting).
On the other hand, if the collection L contains more functions, we view the
security requirement as an adaptive one, since one has to design the collection
F without knowing in advance which g ∈ L will be chosen by an adversary.
To exemplify an extreme case of the last point, consider the case in which L is
the set of all one-way functions. Then, when designing F , one has very little
information about the leakage.

What kind of leakage makes sense? It does not make sense to allow g ∈ L
to output x, as in this case there is no leakage resilient one-way function family
L. This means that every g ∈ L has to introduce some hardness for inverting
x from g(x) (when x is a uniform input). (This is a standard and necessary
assumption.) There are several interesting settings for the leakage collection L,
for example:

1. All one-way functions.
2. All sub-exponentially hard one-way functions.
3. All functions whose image size is significantly smaller than the domain size.
4. An arbitrary single one-way function.

7 Recall that f and g receive the same input so defining g to be some sort of a universal
circuit and thereby obtaining a huge family of functions is useless.



The notion in Item 3 was studied earlier (see, for example, [3,17] and implic-
itly in [2,29]) and was proven to be achievable from any one-way function. For
completeness we present the construction and proof in Appendix A. In the main
body, we study all other notions.

4 Impossibility of Adaptive Leakage Resilient
One-Way Functions

In this section we prove our negative results. We show that without non-trivial
limitation on the leakage collection L, there cannot be a leakage resilient one-
way functions. Specifically, we show that if the leakage collection L consists of
all one-way functions, there cannot be a leakage resilient one-way function for
L. In particular, the leakage can be chosen after the leakage resilient function is
chosen and depend on it.

In Section 4.1 we prove this in the random oracle model, where functions have
access to a random oracle (and without any further cryptographic assumptions).
In Section 4.2 we provide a construction in the standard model whose security
relies on any public-coin multi-bit point obfuscator.

4.1 Impossibility in the Random Oracle Model

The following theorem shows that there cannot be a leakage resilient one-way
function family F if the leakage function can depend on the function f chosen
from F and if it has oracle access to a random oracle.

Theorem 10. Let O : {0, 1}∗ → {0, 1}n be a random oracle. Let LO = {g : {0, 1}n
→ {0, 1}∗} be the collection of all oracle-aided one-way functions. There is no
leakage-resilient one-way function family F = {f : {0, 1}n → {0, 1}∗} for the
collection LO.

Proof. Assume towards contradiction that such a function f : {0, 1}n → {0, 1}∗
exists, where f ∈ F . We shall define an oracle-aided one-way function g ∈ LO

for which

Pr
x←{0,1}n

[A(1n, f(x), g(x)) = x] = 1. (2)

This will contradict the assumption that f is leakage-resilient one-way.
Let g : {0, 1}n → {0, 1}∗ be the following function:

g(x) = O(f(x))⊕ x.

We show that Equation (2) holds and that g is indeed in LO. Given y = f(x)
and y′ = g(x) on a uniform x ∈ {0, 1}n, A can recover x as follows. Apply the
random oracle O on y to get O(y) = O(f(x)) and XOR the output with y′. By
the definition of g, the output must be x.



We are left with showing that g is in LO, that is, it is one-way. Fix n ∈ N
and let A be any q(n)-query inverter. For y ∈ {0, 1}∗ and i ∈ [q(n)] let Qi(y) be
the random variable corresponding to the i-th query made by A to O when A
is given as input the string y. Let us denote by Suci(y) the event that the i-th
query of A to the random oracle defines a preimage. Namely,

Suci(y) = 1 ⇐⇒ ∃x′ ∈ {0, 1}n : Qi(y) = f(x′) and O(f(x′))⊕ x′ = y

Therefore,

Pr[AO(y) ∈ f−1(y)] ≤Pr[Suc1(y) = 1]+

q(n)∑
i=1

Pr[Suci+1(y) = 1 | Suc1(y), . . . ,Suci(y) = 0],

where y = g(x) and the probabilities are taken over the choice of O and over the
choice of x ∈ {0, 1}n.

To bound the probability of the event Suc1(y) = 1, notice that

Pr[Suc1(y) = 1] ≤ Pr[Q1(y) = f(x)] + Pr[Suc1(y) = 1 | Q1(y) 6= f(x)]

Claim 11 Pr[Q1(y) = f(x)] ≤ neg(n).

Proof. Recall that Q1(y) is the first query that A makes to O. Since x is random
and O maps every input to a random output, in the view of A, f(x) is distributed
uniformly in the distribution of images of f . Since H∞(f(X)) ≥ ω(log n) (see
Theorem 5), it holds that Pr[Q1(y) = f(x)] ≤ neg(n).

Claim 12 Pr[Suc1(y) = 1 | Q1(y) 6= f(x)] = 1/2n.

Proof. Note that

Pr[Suc1(y) = 1 | Q1(y) 6= f(x)] ≤
Pr[O(Q1(y)) = z ⊕ O(f(x))⊕ x and z ∈ f−1(Q1(y)) | Q1(y) 6= f(x)].

Since Q1(y) 6= f(x), then the value O(Q1(y)) is completely uniform over {0, 1}n
and independent of O(f(x)). Therefore, the probability that indeed O(Q1(y))⊕
z = O(f(x))⊕ x, where z ∈ f−1(Q1(y)), is 1/2n.

We use a similar argument to bound the probability that Suci+1(y) = 1
conditioned on Suc1(y) . . . ,Suci(y) = 0. Specifically, we bound the expression

Pr[Suci+1(y) = 1 | Suc1(y), . . . ,Suci(y) = 0] ≤
Pr[Qi+1(y) = f(x) | Suc1(y), . . . ,Suci(y) = 0]+

Pr[Suci+1(y) = 1 | Suc1(y), . . . ,Suci(y) = 0 and Qi+1(y) 6= f(x)]

Notice that Suc1(y), . . . ,Suci(y) = 0 implies that Q1(y) . . . , Qi(y) 6= f(x). Thus,
the view of A is that f(x) is uniformly distributed in the distribution of im-
ages of f except the points Q1(y) . . . , Qi(y) (some of which may not even be



valid images). Namely, for A the value f(x) is uniformly distribution w.r.t the
distribution in which one samples a random x′ ← {0, 1}n, computes f(x′) and
outputs f(x′) conditioned on f(x′) /∈ {Q1(y) . . . , Qi(y)} (otherwise, we sample
x′ again). This distribution has super-logarithmic min-entropy, namely,

H∞(f(X) | f(X) /∈ {Q1(y) . . . , Qi(y)}) ≥ H∞(f(X))− log i

≥ ω(log n),

where the last inequality follows from Theorem 5 and since i ≤ q(n) is a poly-
nomial in n. Therefore, as in Theorem 11, we get that

Pr[Qi+1(y) = f(x) | Suc1(y), . . . ,Suci(y) = 0] ≤ neg(n).

Given that Suc1(y), . . . ,Suci(y) = 0 and Qi+1(y) 6= f(x), we have that
Q1+1(y) is completely uniform over {0, 1}n and independent of O(f(x)) and all
previous queries O(Q1(y)), . . . ,O(Qi(y)) (we assume, without loss of generality,
that all queries to O are distinct). Therefore, the probability that O(Qi+1(y))⊕
z = O(f(x))⊕ x, where z ∈ f−1(Qi+1(y)), is 1/2n. Thus, as in Theorem 12, we
have that

Pr[Suci+1(y) = 1 | Suc1(y), . . . ,Suci(y) = 0 and Qi+1(y) 6= f(x)] = 1/2n.

In conclusion, since q(n) is a polynomial, we get that

Pr[AO(y) ∈ f−1(y)] ≤
q(n)∑
i=0

Pr[Suci+1(y) = 1 | Suc1(y), . . . ,Suci(y) = 0]

≤
q(n)∑
i=0

(neg(n) + 1/2n) ≤ neg(n).

4.2 Impossibility in the standard model

The following theorem shows that there cannot be a leakage resilient one-way
function family F if the leakage function can depend on the function f chosen
from F .

Theorem 13. Let L = {g : {0, 1}n → {0, 1}∗} be the collection of all one-way
functions. Assuming a public-coin multi-bit point obfuscator, there is no leak-
age resilient one-way function collection F = {f : {0, 1}n → {0, 1}m} for the
collection L.

Proof. Assume towards contradiction that such a function f : {0, 1}n → {0, 1}m
in F exists. We shall construct a function g ∈ L (depending on f) and show
that for any x ∈ {0, 1}n, f(x) together with g(x) reveal x. Our building block
is a public-coin multi-bit point obfuscator MBPO. Assume that MBPO takes as
input a pair of strings (x, y) ∈ {0, 1}m × {0, 1}n and randomness of length λ.
Let r ← {0, 1}λ be a uniformly random string. We define gr : {0, 1}n → {0, 1}m



that outputs, on input x, a multi-bit point obfuscation of the function If(x)→x.
Namely,

gr(x) = MBPO(If(x)→x; r) (3)

For correctness, we argue that given f(x) and gr(x) together it is easy to
recover x. Indeed, one can just plug in f(x) into the output of gr(x), namely
into MBPO(If(x)→x; r). By the correctness of the multi-bit point obfuscator it
follows that the output of this operation has to be x.

For security we have to prove that gr(x) is a one-way function. Namely,
given gr and gr(x) on a uniformly random x, one cannot recover any x′ such
that gr(x

′) = gr(x). First, we observe that by the (perfect) correctness of
MBPO it holds that for every x′ 6= x, it cannot be that MBPO(If(x)→x; r) =
MBPO(If(x′)→x′ ; r). Thus, gr is injective. It is left to show that given gr(x)
any computationally bounded adversary cannot recover x with non-negligible
probability.

We consider an even easier task for A of just outputting the first bit of x. By
the security of MBPO, we have that for every such adversary A, if there exists
a polynomial p such that

Pr[A(MBPO(If(x)→x; r)) = x1] ≥ 1/2 + 1/p(n),

then there is an efficient simulator S such that

Pr[SIf(x)→x(1n) = x1] ≥ 1/2 + 1/p(n)− neg(n).

However, since If(x)→x outputs ⊥ on all inputs which are not f(x), and since
the distribution f(x) has super-logarithmic min entropy (see Theorem 5), any
efficient simulator will never query the oracle on f(x) and thus will get no in-
formation about x. Hence, it is impossible for it to guess with non-negligible
advantage the first bit of x.

5 Possibility of Selective Leakage Resilient One-
Way Functions

In both impossibility results (Theorem 10 and Theorem 13) we used the fact that
the leakage functions can be chosen adaptively and depend on f . In contrast,
the following theorem shows that if we limit the choice of the leakage to be
independent of f , a leakage resilient one-way function exists based on various
assumptions.

The high level idea is that if the leakage g is fixed ahead of time, we can still
extract from the input (for f and g) enough pseudorandom bits that will ensure
one-wayness.

Theorem 14. Let g : {0, 1}n → {0, 1}m be a fixed leakage one-way function.
Then, there is a leakage-resilient one-way function f : {0, 1}n → {0, 1}∗ for
L = {g} assuming that polynomially-many hardcore bits can be extracted from
g.



Instantiating the theorem with known results we obtain the following corollaries:

1. if g is sub-exponentially secure (with known hardness), then f can be based
on any one-way function.

2. if g is a one-way function (with known hardness), then f can be based on
any exponentially-secure one-way function.

3. if g is a injective one-way function, then f can be based on indistinguisha-
bility obfuscation [4].

4. if g is a one-way function, then f can be based on indistinguishability ob-
fuscation and auxiliary-input point obfuscators [11].

5. if g is a one-way function, then f can be based on exponential hardness of
DDH [36].

Proof of Theorem 14. Let g be the leakage function and let H = {h : {0, 1}n
→ {0, 1}2n} be a family of hardcore function for any one-way function that
output polynomially-many hard-core bits. Note that letting the range be 2n is
without loss of generality since from any polynomial number of hardcore bits we
can use a (standard) PRG and obtain the desired length. The leakage resilient
one-way function f is defined as follows. We sample a random hard-core function
from H and let

fH(x) = H(x)

We argue that fH(x) is a one-way function even given g(x), where g is a
one-way function. For this we use the definition of a hard-core function which
says that the distribution

(H,H(x), g(x))

is computationally indistinguishable from

(H, r, g(x)),

where x ← {0, 1}n, H ← H, and r ← {0, 1}2n are chosen independently uni-
formly at random. Now, since r is of length 2n, with all but exponentially small
probability, it holds that there is no preimage x′ for fH for which fH(x′) = r.
Thus, since g is one-way as well, any polynomial-time adversary cannot find a
preimage.

6 Future Directions

In this work we introduced and studied leakage resilient one-way functions with
arbitrary computationally-hiding leakage. We showed that the natural adaptive
definition is impossible to achieve in the random oracle model and in the standard
model based on a (non-standard) computation assumption. We further observed
that the non-adaptive variant is very related to hardcore functions and in some
sense is dual to it.



It is interesting to base the impossibility result on other assumptions (any
one-way function, DDH or even based on indistinguishability obfuscation). Also,
extracting polynomially-many hardcore bits from any one-way function based
on better assumptions is also an interesting problem,
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A One-Way Functions Resilient for Bounded
Leakage

In both impossibility results (Theorem 10 and Theorem 13) we used the fact
that the leakage functions can output enough information to allow anyone to
invert the original one-way function. In contrast, the theorem below shows that
if we limit the image size of the functions in the leakage collection L, a leakage
resilient one-way function exists assuming one-way functions exist.

We start with a definition of a lossy function (as defined by [33]). This will
capture our restriction on the amount of information the output of the leakage
must “lose”.

Definition 8 ((n, `)-lossy function). A function f : {0, 1}n → {0, 1}n is said
to be (n, `)-lossy if its image {f(x) | x ∈ {0, 1}n} has size at most 2n−` for every
x ∈ {0, 1}n.

Roughly speaking, the parameter ` captures the number of information bits f
loses about a typical input x. We note that it is enough for us to relax the
definition of a lossy function and only require that it has bounded image size
on all but a negligible fraction of the x’s. We use the stronger requirement for
simplicity.

The construction will rely on universal one-way hash functions (UOWHFs)
that were introduced by Naor and Yung [32]. The main feature of UOWHFs
is that given an element x in the domain, it is computationally hard to find a
different domain element x′ 6= x which collides with x. Naor and Yung showed
how to use UOWHFs to construct digital signatures. Besides this application,
they showed how to construct them using any injective one-way function. Later,
Rompel [35] showed how to construct UOWHFs from any one-way function (see
also [28]).

In the following definition we define a weak variant of UOWHFs in which the
initial domain element is a uniform random input (rather than an adversarially
chosen input).8 The goal of the adversary is then to find a collision with that
random input.

8 This is sometimes called a second pre-image resistant function.



Definition 9 ((Weak) universal one-way hash functions). Let p(n) =
n1/c be a polynomial where c ∈ N is a constant. A collection of functions
{Fh : {0, 1}n → {0, 1}p(n)} mapping strings of length n to strings of length p(n)
is a (collection of) universal one-way hash functions if it is described by a pair of
efficient algorithms UOWHF = (Gen, F ) with the following properties.

1. Gen is a probabilistic algorithm that is given as input the unary value of n,
and it outputs a function index h.

2. For every function index h in the image of Gen, Fh is given as input x ∈
{0, 1}n and it outputs a string of length p(n).

3. For every probabilistic polynomial-time adversary A, there exists a negligible
function neg(·), such that

Pr[x′ ← A(h, x, Fh(x)) : x 6= x′ and Fh(x′) = Fh(x)] ≤ neg(n),

where the probability is over the choice of x ← {0, 1}n, the choice of h ←
Gen(1n), and the internal randomness of A.

Theorem 15 ([3,17]). Let k = n1/c for a constant c ∈ N and let κ = ω(log n).
Let F = {Fh : {0, 1}n → {0, 1}k−κ} be a family of universal one-way hash func-
tions mapping strings of length n to strings of length k−κ described by (Gen, F ).
Let L = {g : {0, 1}n → {0, 1}n} be the collection of all (n, k)-lossy functions.
Then, F is a leakage resilient one-way function collection for L .

The proof uses the notion of average min-entropy defined by Dodis et al. [19]
which captures the remaining unpredictability of X conditioned on the value of
Y . Roughly speaking, the average min-entropy of X given Y is the logarithm of
the average probability of the most likely value of X given Y . That is,

H̃∞(X | Y ) = − log

(
E

y←Y
[2−H∞(X|Y=y)]

)
.

The following property of average min-entropy was shown by Dodis et al.
[19].

Lemma 1 ([19, Lemma 2.2]). Let X and Y be two random variables. Then,

1. For any δ > 0, it holds that

Pr
y←Y

[H∞(X | Y = y) ≥ H̃∞(X | Y )− log(1/δ)] ≥ 1− δ.

2. If Y has at most 2k possible values, then H̃∞(X | Y ) ≥ H∞(X)− k.

Proof of Theorem 15. We assume towards contradiction that the statement
is false. Namely, there exists a function g : {0, 1}n → {0, 1}n−k for which there
exists an adversary A such that for x∗ ← {0, 1}n chosen uniformly at random
given

h, Fh(x∗), g(x∗),



where h ← Gen(1n), A is able to recover any x such that Fh(x∗) = Fh(x) with
non-negligible probability 1/p(n). We use this adversary A and construct an
adversary B that breaks the security of the universal one-way hash function.

Let h, x∗, Fh(x∗) be a challenge for the universal one-way hash function,
where h ← Gen(1n) and x∗ ← {0, 1}n is chosen uniformly and independently.
Our adversary B will first simulate the choice of g and compute g(x∗). Then, it
runs the inverter A on input (h, Fh(x∗), g(x∗)) and obtains a preimage x. Finally,
B outputs x as its guess for the collision. We now argue that this adversary
indeed breaks the security of the UOWHF. First, it is clear by the correctness
of the adversary A that Fh(x) = Fh(x∗). We are left to argue that x 6= x∗ with
non-negligible probability.

Roughly speaking, the idea is that since x∗ is chosen uniformly at ran-
dom, given only Fh(x∗) and g(x∗), whose image size altogether � 2n, there
is not enough information regarding the real x∗ that maps to Fh(x∗) and g(x∗).
Namely, we will show that with high probability over the choice of x∗, there
could be many consistent x’s that map to the same output. The inverted can-
not distinguish between them and thus will output the real x∗ with very small
probability. We formalize this intuition next.

Fix the function index h ← Gen(1n) and leakage function g (that might
depend h). Since Fh(x∗) and g(x∗) have together at most 2k−κ · 2n−k = 2n−κ

possible outputs and x∗ ← {0, 1}n is uniform and independent of h, by item 2
of Lemma 1 we have that

H̃∞(x∗ | h, Fh(x∗), g(x∗)) ≥ H∞(x∗ | h)− (n− κ) = κ.

By item 1 of Lemma 1, we get that for any δ > 0, it holds that

Pr
x∗←{0,1}n

[H∞(x∗ | h, Fh(x∗), g(x∗)) ≥ H̃∞(x∗ | h, Fh(x∗), g(x∗))− log(1/δ)]

≥ 1− δ.

Therefore,

Pr
x∗←{0,1}n

[H∞(x∗ | h, Fh(x∗), g(x∗)) ≥ κ− log(1/δ)] ≥ 1− δ. (4)

Let δ = 1/2κ/2. Then, with all but a negligible probability over the choice of
x∗, it holds that

H∞(x∗ | h, Fh(x∗), g(x∗)) ≥ κ− κ/2 = κ/2.

Therefore, since κ = ω(log n), by the definition of min-entropy Pr[x∗ ←
A(h, Fh(x∗), g(x∗))] ≤ neg(·). In conclusion, the adversary B is able to find a
collision with non-negligible probability:

Pr[x← B(h, Fh(x∗), g(x∗)) : x 6= x∗ and Fh(x∗) = Fh(x), g(x∗) = g(x)] =

Pr[x← A(h, Fh(x∗), g(x∗)) : Fh(x∗) = Fh(x), g(x∗) = g(x)]

−Pr[x∗ ← A(h, Fh(x∗), g(x∗))] ≥
1/p(n)− neg(n) ≥ 1/(2p(n)).
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