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Abstract. Recently, proof of space (PoS) has been suggested as a more
egalitarian alternative to the traditional hash-based proof of work. In
PoS, a prover proves to a verifier that it has dedicated some specified
amount of space. A closely related notion is memory-hard functions
(MHF), functions that require a lot of memory/space to compute. While
making promising progress, existing PoS and MHF have several problems.
First, there are large gaps between the desired space-hardness and what
can be proven. Second, it has been pointed out that PoS and MHF
should require a lot of space not just at some point, but throughout the
entire computation/protocol; few proposals considered this issue. Third,
the two existing PoS constructions are both based on a class of graphs
called superconcentrators, which are either hard to construct or add a
logarithmic factor overhead to efficiency. In this paper, we construct
PoS from stacked expander graphs. Our constructions are simpler, more
efficient and have tighter provable space-hardness than prior works. Our
results also apply to a recent MHF called Balloon hash. We show Balloon
hash has tighter space-hardness than previously believed and consistent
space-hardness throughout its computation.

1 Introduction

Proof of work (PoW) has found applications in spam/denial-of-service counter-
measures [22,13] and in the famous cryptocurrency Bitcoin [36]. However, the
traditional hash-based PoW does have several drawbacks, most notably poor
resistance to application-specific integrated circuits (ASIC). ASIC hash units
easily offer ∼ 100× speedup and ∼ 10, 000× energy efficiency over CPUs. This
gives ASIC-equipped adversaries a huge advantage over common desktop/laptop
users. Recently, proof of space (PoS) [11,24] has been suggested as a potential
alternative to PoW to address this problem. A PoS is a protocol between two
parties, a prover and a verifier. Analogous to (but also in contrast to) PoW, the
prover generates a cryptographic proof that it has invested a significant amount
of memory or disk space (as opposed to computation), and the proof should be
easy for the verifier to check. It is believed that if an ASIC has to access a large
external memory, its advantage over a CPU will be small, making PoS more
egalitarian than PoW.

Somewhat unfortunately, two competing definitions of “proof of space” have
been proposed [11,24] with very different security guarantees and applications.
Adding to the confusion are other closely related and similar-sounding notions
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Fig. 1: Relation between PoSE/MHF, PoTS, PoPS and PDP/PoR.

such as memory-hard functions (MHF) [39], proof of secure erasure (PoSE) [40],
provable data possession (PDP) [12] and proof of retrievability (PoR) [30]. A
first goal of this paper is to clarify the connections and differences between
these notions. Section 2 will give detailed comparisons. For now, we give a short
summary below and in Figure 1.

As its name suggests, a memory-hard function (MHF) is a function that
requires a lot of memory/space to compute. Proof of secure erasure (PoSE) for
the most part is equivalent to MHF. Proof of space by Ateniese et al. [11] extends
MHF with efficient verification. That is, a verifier only needs a small amount of
space and computation to check a prover’s claimed space usage. Proof of space
by Dziembowski et al. [24] further gives a verifier the ability to repeatedly audit
a prover and check if it is still storing a large amount of data. The key difference
between the two proofs of space lies in whether the proof is for transient space
or persistent space. We shall distinguish these two notions of space and define
them separately as proof of transient space (PoTS) and proof of persistent space
(PoPS). PDP and PoR solve a very different problem: availability check for a
user’s outsourced storage to an untrusted server. They do force the server to use a
lot of persistent space but do not meet the succinctness (short input) requirement
since a large amount of data needs to be transferred initially. Since PoPS is the
strongest among the four related primitives (MHF, PoSE, PoTS, and PoPS), the
end goal of this paper will be a PoPS with improved efficiency and space-hardness.
Along the way, our techniques and analysis improve MHF/PoSE and PoTS as
well.

Let us return to the requirements for a MHF f . Besides being space-hard, it
must take short inputs. This is to rule out trivial solutions that only take long
and incompressible input x of size |x| = N . Such an f trivially has space-hardness
since N space is needed to receive the input, but is rather uninteresting. We
do not have many candidate problems that satisfy both requirements. Graph
pebbling (also known as pebble games) in the random oracle model is the only
candidate we know of so far. Although the random oracle model is not the most
satisfactory assumption from a theoretical perspective, it has proven useful in
practice and has become standard in this line of research [26,31,11,24,28,8,20].
Following prior work, we also adopt the graph pebbling framework and the
random oracle model in this work.

A pebble game is a single-player game on a directed acyclic graph (DAG).
The player’s goal is to put pebbles on certain vertices. A pebble can be placed on
a vertex if it has no predecessor or if all of its predecessors have pebbles on them.
Pebbles can be removed from any vertex at any time. The number of pebbles on
the graph models the space usage of an algorithm.
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Pebble games on certain graphs have been shown to have high space complexity
or sharp space-time trade-offs. The most famous ones are stacked superconcen-
trators [38,32], which have been adopted in MHF [28], PoSE [31] and PoS [11,24].
However, bounds in graph pebbling are often very loose, especially for stacked
superconcentrators [38,32]. This translates to large gaps between the desired
memory/space-hardness and the provable guarantees in MHF and PoS (Sec-
tion 1.1). Furthermore, MHFs and PoS need other highly desired properties
that have not been studied in graph pebbling before (Section 1.2). The main
contribution of this paper is to close these unproven or unstudied gaps while
maintaining or even improving efficiency.

We illustrate these problems in the next two subsections using MHF as an
example, but the analysis and discussion apply to PoS as well. We use “memory-
hard” and “space-hard” interchangeably throughout the paper.

1.1 Gaps in Provable Memory Hardness

The most strict memory-hardness definition for a MHF f is that for any x, f(x)
can be efficiently computed using N space, but is impossible to compute using
N − 1 space. Here, “impossible to compute” means the best strategy is to take
a random guess in the output space of f(·) (by the random oracle assumption).
Achieving this strict notion of memory-hardness is expensive. Aside from the
trivial solution that sets input size to |x| = N , the best known construction has
O(N2) time complexity for computing f [26]. The quadratic runtime makes this
MHF impractical for large space requirements.

All other MHFs/PoSE and PoS in the literature have quasilinear runtime, i.e.,
N · polylogN , by adopting much more relaxed notions of memory-hardness. One
relaxation is to introduce an unproven gap [31,24]. For example, in the PoSE by
Karvelas and Kiayias [31], while the best known algorithm to compute f needs
N space, it can only be shown that computing f using less than N/32 space is
impossible. No guarantees can be provided if an adversary uses more than N/32
but less than N space.

The other way to relax memory-hardness is to allow space-time trade-offs, and
it is usually combined with unproven gaps. Suppose the best known algorithm (to
most users) for a MHF takes S space and T time. These proposals hope to claim
that any algorithm using S′ = S/q space should run for T ′ time, so that the time
penalty T ′/T is “reasonable”. If the time penalty is linear in q, it corresponds
to a lower bound on S′T ′ = Ω(ST ), as scrypt [39] and Catena-BRG [28] did.
Notice that the hidden constant in the bound leaves an unproven gap. Other
works require the penalty to be superlinear in q [28,15] or exponential in some
security parameter [33,11,20], but the penalty only kicks in when S′ is below
some threshold, e.g., N/8, again leaving a gap.

We believe an exponential penalty is justifiable since it corresponds to the
widely used computational security in cryptography. However, an ST lower bound
and a large unproven gap are both unsatisfactory. Recall that the motivation of
MHF is ASIC-resistance. With an ST bound, an attacker is explicitly allowed
to decrease space usage, at the cost of a proportional increase in computation.
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Then, an adversary may be able to fit S/100 space in an ASIC, and get in return
a speedup or energy efficiency gain well over 100.

A large unproven gap leaves open the possibility that an adversary may gain
an unfair advantage over honest users, and fairness is vital to applications like
voting and cryptocurrency. A more dramatic example is perhaps PoSE [31]. With
an unproven gap of 32, a verifier can only be assured that a prover has wiped
1/32 fraction of its storage, which can hardly be considered a “proof of erasure”.
The authors were well aware of the problem and commented that this gap needs
to be very small for a PoSE to be useful [31], yet they were unable to tighten it.
Every MHF, PoSE or PoS with quasilinear efficiency so far has a large unproven
gap (if it has a provable guarantee at all).

In fact, MHFs have been broken due to the above weaknesses. Scrypt [39],
the most popular MHF, proved an asymptotic ST lower bound. But an ST
bound does not prevent space-time trade-offs, and the hidden constants in the
bounds turned out to be too small to provide meaningful guarantees [16]. As
a result, ASICs for scrypt are already commercially available [1]. The lesson is
that space-hardness is one of the examples where exact security matters. PoS
proposals so far have not received much attention from cryptanalysis, but the
loose hidden constants in prior works are equally concerning. Therefore, we will
be explicit about every constant in our constructions, and also make best efforts
to analyze hidden constants in prior works (in Tables 1, 2 and 3).

1.2 Consistent Memory Hardness

In a recent inspiring paper, Alwen and Serbinenko pointed out an overlooked
weakness in all existing MHFs’ memory-hardness guarantees [8]. Again, the
discussion below applies to PoS. The issue is that in current definitions, even
if a MHF f is proven to require N space in the most strict sense, it means N
space is needed at some point during computation. It is possible that f can be
computed by an algorithm that has a short memory-hard phase followed by a long
memory-easy phase. In this case, an adversary can carry out the memory-hard
phase on a CPU and then offload the memory-easy phase to an ASIC, defeating
the supposed ASIC-resistance.

Alwen and Serbinenko argue, and we fully agree, that a good MHF should
require a lot of memory not just at some point during its computation, but
throughout the majority of its computation. However, we think the solution they
presented has limitations. Alwen and Serbinenko suggested lower bounding a
MHF’s cumulative complexity (CC), the sum of memory usage in all steps of
an algorithm [8]. For example, if the algorithm most users adopt takes T time
and uses S space at every time step, its CC is ST . If we can lower bound the
CC of any algorithm for this MHF to ST , it rules out an algorithm that runs
for T time, uses S space for a few steps but very little space at other steps. A
CC bound is thus an improved version of an ST bound, and this is also where
the problem is. Like an ST bound, CC explicitly allows proportional space-time
trade-offs: algorithms that run for qT time and use S/q space for any factor
q. Even when combined with a strict space lower bound of S, it still does not
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rule out an algorithm that runs for qT time, uses S space for a few steps but
S/q space at all other steps. We have discussed why a proportional space-time
trade-off or a long memory-easy phase can be harmful, and CC allows both.

Instead, we take a more direct approach to this problem. Recall that our goal
is to design a MHF that consistently uses a lot of memory during its computation.
So we will simply lower bound the number of time steps during the computation
with high space usage. If this lower bound is tight, we say a MHF has consistent
memory-hardness.

Another difference between our approach and that of [8] is the computation
model. Alwen and Serbinenko assumed their adversaries possess infinite parallel
processing power, and admirably proved lower bounds for their construction
against such powerful adversaries. But their construction is highly complicated
and the bound is very loose. We choose to stay with the sequential model
or limited parallelism for two reasons. First, cumulative/consistent memory-
hardness and parallelism are two completely independent issues and should not
be coupled. Consistent (cumulative) memory-hardness is extremely important in
the sequential model. Mixing it with the parallel model gives the wrong impression
that it only becomes a problem when an adversary has infinite parallelism. Second,
massive parallelism seems unlikely for MHFs in the near future. Even if parallel
computation is free in ASICs, to take advantage of it, an adversary also needs
proportionally higher memory bandwidth (at least in our construction). Memory
bandwidth is a scarce resource and is the major bottleneck in parallel computing,
widely known as the “memory wall” [10]. It is interesting to study the infinitely
parallel model from a theoretical perspective as memory bandwidth may become
cheap in the future. But at the time being, it is not worth giving up practical
and provably secure solutions in the sequential model.

1.3 Our Results

We construct PoTS and PoPS from stacked expanders. Our constructions are
conceptually simpler, more efficient and have tighter space-hardness guarantees
than prior works [11,24]. We could base our space-hardness on a classical result
by Paul and Tarjan [37], but doing so would result in a large unproven gap.
Instead, we carefully improve the result by Paul and Tarjan to make the gap
arbitrarily small. We then introduce the notion of consistent memory-hardness
and prove that stacked expanders have this property.

These results lead to better space-hardness guarantees for our constructions.
For our PoTS, we show that no computationally bounded adversary using γN
space can convince a verifier with non-negligible probability, where γ can be
made arbitrarily close to 1. The prover also needs close to N space not just at
some point in the protocol, but consistently throughout the protocol. In fact, the
honest strategy is very close to the theoretical limits up to some tight constants.
For PoPS, we show that an adversary using a constant fraction of N persistent
space (e.g., N/3) will incur a big penalty. It is a bit unsatisfactory that we are
unable to further tighten the bound and have to leave a small gap. But our result
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still represents a big improvement over the only previous PoPS [24] whose gap is
as large as 2× 256× 25.3× logN .

Our tight and consistent memory-hardness results can be of independent
interest. Independent of our work, Corrigan-Gibbs et al. recently used stacked
expanders to build a MHF called Balloon hash [20]. They invoked Paul and
Tarjan [37] for space-hardness and left an unproven gap of 8. (Their latest space-
hardness proof no longer relies on [37], but the gap remains the same.) Our
results show that Balloon hash offers much better space-hardness than previously
believed. Our work also positively answers several questions left open by Corrigan-
Gibbs et al. [20]: Balloon hash is consistently space-hard, over time and under
batching.

2 Related Work

MHF. It is well known that service providers should store hashes of user
passwords. This way, when a password hash database is breached, an adver-
sary still has to invert the hash function to obtain user passwords. However,
ASIC hash units have made the brute force attack considerably easier. This
motivated memory-hard functions (MHF) as better password scramblers. Perci-
val [39] proposed the first MHF, scrypt, as a way to derive keys from passwords.
Subsequent works [28,33,3,15,20] continued to study MHFs as key derivation
functions, password scramblers, and more recently as proof of work. In the recent
Password Hashing Competition [27], the winner Argon2 [15] and three of the
four “special recognitions”—Catena [28], Lyra2 [3] and yescrypt [41]—claimed
memory-hardness.

The most relevant MHF to our work is Balloon hash [20], which also adopted
stacked expanders. We adopt a technique from Balloon hash to improve our
space-hardness. Our analysis, in turn, demonstrates better space-hardness for
Balloon hash and positively answers several open questions regarding its consistent
memory-hardness [20]. We also develop additional techniques to obtain PoS.

Attacking MHF. MHFs have been classified into data-dependent ones (dMHF)
and data-independent ones (iMHF), based on whether a MHF’s memory access
pattern depends on its input [28,20]. Catena and Balloon hash are iMHF, and
the rest are dMHF. Some consider dMHFs less secure for password hashing due
to cache timing attacks.

Most MHF proposals lack rigorous analysis, and better space-time trade-
offs (in the traditional sequential model) have been shown against them [16,20].
The only two exceptions are Catena-DBG and Balloon, both of which use graph
pebbling. Alwen and Blocki considered adversaries with infinite parallel processing
power, and showed that such a powerful attacker can break any iMHF, including
Catena-DBG and Balloon [5,6].

MBF. Prior to memory-hard functions, Dwork et al. [21,23] and Abadi et al. [2]
proposed memory-bound functions (MBF). The motivation of MBF is also ASIC-
resistance, but the complexity metric there is the number of cache misses. A
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MHF may not be memory-bound since its memory accesses may hit in cache
most of the time. A MBF has to be somewhat memory-hard to spill from cache,
but it may not consume too much memory beyond the cache size. A construction
that enjoys both properties should offer even better resistance to ASICs, but we
have not seen efforts in this direction.

PoSE. Proof of secure erasure (PoSE) was first studied by Perito and Tsudik [40]
as a way to wipe a remote device. Assuming a verifier knows a prover (a remote
device) has exactly N space, any protocol that forces the prover to use N space
was considered a PoSE [40]. This includes the trivial solution where the verifier
sends the prover a large random file of size N , and then asks the prover to send it
back. Since this trivial solution is inefficient and uninteresting, for the rest of the
paper when we say PoSE, we always mean communication-efficient PoSE [31],
where the prover receives a short challenge but needs a lot of space to generate a
proof. A reader may have noticed that space-hardness and short input are exactly
the same requirements we had earlier for MHFs. Thus, we can think of PoSE as
an application of MHFs, with one small caveat in the definition of space-hardness.
We have mentioned that a proportional space-time trade-off or a large unproven
gap are undesirable for MHFs; for PoSE, they are unacceptable. On the flip side,
PoSE does not need consistent space-hardness.

PoTS and memory-hard PoW. Two independent works named their pro-
tocols “proofs of space” [11,24]. The key difference is whether the proof is for
transient space or persistent space. Ateniese et al. [11] corresponds to a proof of
transient space (PoTS). It enables efficient verification of a MHF with polylog(N)
verifier space and time. If we simply drop the efficient verification method and
have the verifier redo the prover’s work, PoTS reduces to PoSE/MHF.

Two recent proposals Cuckoo Cycle [48] and Equihash [17] aim to achieve
exactly the same goal as PoTS, and call themselves memory-hard proof of work.
This is also an appropriate term because a prover in PoTS has to invest both
space and time, usually N space and N · polylog(N) computation. Cuckoo Cycle
and Equihash are more efficient than Ateniese et al. [11] but do not have security
proofs. An attack on Cuckoo Cycle has already been proposed [9].

PoPS. Dziembowski et al. [24] is a proof of persistent space (PoPS). Compared
to Ateniese et al. [11], it supports “repeated audits”. The protocol has two stages.
In the first stage, the prover generates some data of size N , which we call advice.
The prover is supposed to store the advice persistently throughout the second
stage. In the second stage, the verifier can repeatedly audit the prover and check
if it is still storing the advice. All messages exchanged between the two parties
and the verifier’s space/time complexity in both stages should be polylog(N). If
the prover is audited only once, PoPS reduces to PoTS.

It is worth pointing out that an adversary can always discard the advice and
rerun setup when audited. To this end, the space-hardness definition is somewhat
relaxed (see Section 6 for details). PoPS also attempts to address the other
drawback of PoW: high energy cost. It allows an honest prover who faithfully
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stores the advice to respond to audits using little computation, hence consuming
little dynamic energy. Whether these features are desirable depends heavily on
the application. Proof of Space-Time [35] is a recent proposal that resembles
PoPS but differs in the above two features. In their protocol, an honest prover
needs to access the entire N -sized advice or at least a large fraction to pass each
audit. In return, they argue that the penalty they guarantee for a cheating prover
is larger.

PDP and PoR. Provable data possession (PDP) [12] and proof of retrievability
(PoR) [30] allow a user who outsources data to a server to repeatedly check
if the server is still storing his/her data. If a verifier (user) outsources large
and incompressible data to a prover (server), PDP and PoR can achieve the
space-hardness goal of both PoTS and PoPS. However, transmitting the initial
data incurs high communication cost. In this aspect, PoS schemes [11,24] are
stronger as they achieve low communication cost. PDP and PoR are stronger in
another aspect: they can be applied to arbitrary user data while PoS populates
prover/server memory only with random bits. In summary, PDP and PoR solve
a different problem and are out of the scope of this paper.

Graph pebbling. Graph pebbling is a powerful tool in computer science, dating
back at least to 1970s in studying Turing machines [19,29] and register alloca-
tion [46]. More recently, graph pebbling has found applications in various areas
of cryptography [23,26,25,47,34,28,31,11,24].

Superconcentrators. The simplest superconcentrator is perhaps the butterfly
graph, adopted in MHF/PoSE [28,31] and PoTS [11], but it has a logarithmic
factor more vertices and edges than linear superconcentrators or expanders.
Linear superconcentrators, adopted in PoPS [24], on the other hand, are hard to
construct and recursively use expanders as building blocks [18,44,4,45]. Thus, it is
expected that superconcentrator-based MHFs and PoS will be more complicated
and less efficient than expander-based ones (under comparable space-hardness).

3 Pebble Games on Stacked Expanders

3.1 Graph Pebbling and Labelling

A pebble game is a single-player game on a directed acyclic graph (DAG) G with
a constant maximum in-degree d. A vertex with no incoming edges is called a
source and a vertex with no outgoing edges is called a sink. The player’s goal is
to put pebbles on certain vertices of G using a sequence of moves. In each move,
the player can place one pebble and remove an arbitrary number of pebbles
(removing pebbles is free in our model). The player’s moves can be represented as
a sequence of transitions between pebble placement configurations on the graph,
P = (P0, P1, P2 · · · , PT ). If a pebble exists on a vertex v in a configuration Pi, we
say v is pebbled in Pi. The starting configuration P0 does not have to be empty;
vertices can be pebbled in P0. The pebble game rule is as follows: to transition
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from Pi to Pi+1, the player can pebble (i.e., place a pebble on) one vertex v if v
is a source or if all predecessors of v are pebbled in Pi, and then unpebble (i.e.,
remove pebbles from) any subset of vertices. We say a sequence P pebbles a
vertex v if there exists Pi ∈ P such that v is pebbled in Pi. We say a sequence P
pebbles a set of vertices if P pebbles every vertex in the set.

A pebble game is just an abstraction. We need a concrete computational
problem to enforce the pebble game rules. Prior work has shown that the graph
labelling problem with a random oracle H implements pebble games. In graph
labelling, vertices are numbered, and each vertex vi is associated with a label
h(vi) ∈ {0, 1}λ where λ is the output length of H.

h(vi) =

{
H(i, x) if vi is a source

H(i, h(u1), h(u2), · · · , h(ud)) otherwise, u1 to ud are vi’s predecessors

Clearly, any legal pebbling sequence gives a graph labelling algorithm. It has been
shown that the converse is also true for PoSE/MHF [23,26,31] and PoTS [11],
via a now fairly standard “ex post facto” argument. The equivalence has not
been shown for PoPS due to subtle issues [24], but there has been recent progress
in this direction [7]. We refer readers to these papers and will not restate their
results.

Given the equivalence (by either a proof or a conjecture), we can use metrics
of the underlying pebble games to analyze higher-level primitives. Consider a
pebble sequence P = (P0, P1, P2 · · · , PT ). Let |Pi| be the number of pebbles on
the graph in configuration Pi. We define the space complexity of a sequence
S(P) = maxi(|Pi|), i.e., the maximum number of pebbles on the graph at any
step. It is worth noting that space in graph labelling is measured in “label size”
λ rather than bits.

We define the time complexity of a sequence T (P) to be the number of
transitions in P. T (P) equals the number of random oracle H calls, because
we only allow one new pebble to be placed per move. This corresponds to the
sequential model. We can generalize to limited parallelism, say q-way parallelism,
by allowing up to q pebble placements per move. But we do not consider infinite
parallelism in this paper as discussed in Section 1.2.

For a more accurate timing model in graph labelling, we assume the time
to compute a label is proportional to the input length to H, i.e., the in-degree
of the vertex. Another way to look at it is that we can transform a graph with
maximum in-degree d into a graph with maximum in-degree 2 by turning each
vertex into a binary tree of up to d leaves.

To capture consistent space-hardness, we define MS′(P) = |{i : |Pi| ≥ S′}|,
i.e., the number of configurations in P that contain at least S′ pebbles. Consider
a pebble game that has a legal sequence P. If there exist some S′ < S(P)
and T ′ < T (P), such that any legal sequence P′ for that same pebble game
has MS′(P′) ≥ T ′, we say the pebble game is consistently memory-hard. The
distance between (S′, T ′) and (S(P), T (P)) measures the quality of consistent
memory-hardness.
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3.2 Bipartite Expanders

Now we introduce bipartite expanders, the basic building blocks for our construc-
tions, and review classical results on their efficient randomized constructions.

Definition 1. An (n, α, β) bipartite expander (0 < α < β < 1) is a directed
bipartite graph with n sources and n sinks such that any subset of αn sinks are
connected to at least βn sources.

Prior work has shown that bipartite expanders for any 0 < α < β < 1
exist given sufficiently many edges. We adopt the randomized construction by
Chung [18]. This construction gives a d-regular bipartite expander, i.e., there
are d outgoing edges from each source and d incoming edges to each sink. It
simply connects the dn outgoing edges of the sources and the dn incoming edges
of the sinks according to a random permutation. Given a permutation Π on
{0, 1, 2, · · · , dn − 1}, if Π(i) = j, add an edge from source (i mod n) to sink
(j mod n).

Theorem 1. Chung’s construction yields an (n, α, β) bipartite expander
(0 < α < β < 1) for sufficiently large n with overwhelming probability if

d >
Hb(α) + Hb(β)

Hb(α)− βHb(αβ )

where Hb(α) = −α log2 α− (1− α) log2(1− α) is the binary entropy function.

The theorem has been proven by Bassalygo [14] and Schöning [44], but both
proofs were quite involved. We give a proof using a simple counting argument.

Proof. There are (dn)! permutations in total. We analyze how many permutations
are “bad”, i.e., do not yield an expander. A bad permutation must connect some
subset U of αn sinks to a subset V of βn sources. There are

(
n
αn

)(
n
βn

)
combinations.

Within each combination, there are
(
dβn
dαn

)
(dαn)! ways to connect U to V . There

are (dn− dαn)! ways to connect the rest of edges (those not incident to U). The
probability that we hit a bad permutation is

Pr(Π is bad) =

(
n

αn

)(
n

βn

)(
dβn

dαn

)
(dαn)!(dn− dαn)!/(dn)!

=

(
n

αn

)(
n

βn

)(
dβn

dαn

)
/

(
dn

dαn

)
Using Robbins’ inequality for Stirling’s approximation

√
2πn(n/e)ne

1
12n+1 <

n! <
√

2πn(n/e)ne
1

12n [43], we have log2

(
n
αn

)
= nHb(α)− 1

2 log2 n+ o(1). Thus,

log2 Pr(Π is bad) = n[Hb(α) + Hb(β) + dβHb(α/β)− dHb(α)]− log2 n+ o(1).

If Hb(α) + Hb(β) + dβHb(α/β) − dHb(α) < 0, or equivalently the bound on d
in the theorem statement holds, then Pr(Π is bad) decreases exponentially as n
increases. ut
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Fig. 2: A stacked bipartite expander G(4,4, 14 ,
1
2 )

.

Pinsker [42] used a different randomized construction, which indepen-
dently selects d predecessors for each sink. Pinsker’s construction requires

d > Hb(α)+Hb(β)
−α log2 β

[20], which is a slightly worse bound than Theorem 1. But

Pinsker’s construction is arguably simpler than Chung’s because it only needs a
random function as opposed to a random permutation.

3.3 Pebble Games on Stacked Bipartite Expanders

Construct G(n,k,α,β) by stacking (n, α, β) bipartite expanders. G(n,k,α,β)

has n(k + 1) vertices, partitioned into k + 1 sets each of size n,
V = {V0, V1, V2, · · · , Vk}. All edges in G(n,k,α,β) go from Vi−1 to Vi for some
i from 1 to k. For each i from 1 to k, Vi−1 and Vi plus all edges between them
form an (n, α, β) bipartite expander. The bipartite expanders at different layers
can but do not have to be the same. G(n,k,α,β) has n sources, n sinks, and the
same maximum in-degree as the underlying (n, α, β) bipartite expander. Figure 2
is an example of G(4,4, 14 ,

1
2 )

with in-degree 2.
Obviously, simply pebbling each expander in order results in a sequence P

that pebbles G(n,k,α,β) using S(P) = 2n space in T (P) = n(k + 1) moves. Paul
and Tarjan [37] showed that G(n,k, 18 ,

1
2 )

has an exponentially sharp space-time

trade-off. Generalized to (n, α, β) expanders, their result was the following:

Theorem 2 (Paul and Tarjan [37]). If P pebbles any subset of 2αn sinks
of G(n,k,α,β), starting with |P0| ≤ αn and using S(P) ≤ αn space, then

T (P) ≥ b β2αc
k.

This theorem forms the foundation of Balloon hash. We could base our
PoTS/PoPS protocols on it. However, the space-hardness guarantee we get
will be at most n/4. We need β

2α ≥ 2 to get an exponential time penalty, so
αn < βn/4 < n/4.

Through a more careful analysis, we show a tighter space-time trade-off
for stacked bipartite expanders, which will lead to better space-hardness for
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Fig. 3: Minimum in-degree d to achieve a given γ = β − 2α.

our PoTS/PoPS protocols as well as Balloon hash. We improve Theorem 2 by
considering only initially unpebbled sinks. Let γ = β − 2α > 0 for the rest of the
paper.

Theorem 3. If P pebbles any subset of αn initially unpebbled sinks of G(n,k,α,β),

starting with |P0| ≤ γn and using S(P) ≤ γn space, then T (P) ≥ 2kαn.

Proof. For the base case k = 0, G(n,0,α,β) is simply a collection of n isolated
vertices with no edges. Each vertex is both a source and a sink. The theorem is
trivially true since the αn initially unpebbled sinks have to be pebbled.

Now we show the inductive step for k ≥ 1 assuming the theorem holds for k−1.
In G(n,k,α,β), sinks are in Vk. The αn to-be-pebbled sinks in Vk are connected to
at least βn vertices in Vk−1 due to the (n, α, β) expander property. Out of these
βn vertices in Vk−1, at least βn−γn = 2αn of them are unpebbled initially in P0

since |P0| ≤ γn. These 2αn vertices in Vk−1 are unpebbled sinks of G(n,k−1,α,β).
Divide them into two groups of αn each in the order they are pebbled in P for
the first time. P can be then divided into two parts P = (P1,P2) where P1

pebbles the first group (P1 does not pebble any vertex in the second group) and
P2 pebbles the second group. Due to the inductive hypothesis, T (P1) ≥ 2k−1αn.
The starting configuration of P2 is the ending configuration of P1. At the end
of P1, there are at most γn pebbles on the graph, and the second group of αn
vertices are all unpebbled. So we can invoke the inductive hypothesis again, and
have T (P2) ≥ 2k−1αn. Therefore, T (P) = T (P1) + T (P2) ≥ 2kαn. ut

Theorem 3 lower bounds the space complexity of any feasible pebbling strategy
for stacked bipartite expanders to γn, where γ = β − 2α. If we increase β or
decrease α, γ improves but the in-degree d also increases due to Theorem 1. For
each γ = β − 2α, we find the α and β that minimize d, and plot it in Figure 3.
The curves show the efficiency vs. space-hardness trade-offs our constructions can
provide. For γ < 0.7, d is reasonably small. Beyond γ = 0.9, d starts to increase
very fast. We recommend parameterizing our constructions around 0.7 ≤ γ ≤ 0.9.

However, even if γ is close to 1, we still have a gap of 2 as our simple pebbling
strategy for stacked bipartite expanders needs 2n space. To address this gap, we
adopt the localization technique in Balloon hash [20].
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Fig. 4: Localization for a bipartite expander.

3.4 Localization of Bipartite Expanders

Localization [20] is a transformation on the edges of a bipartite expander. Con-
sider an (n, α, β) bipartite expander with sources V = {v1, v2, · · · vn} and sinks
U = {u1, u2, · · ·un}. The localization operation first adds an edge (vi, ui) for all i
(if it does not already exist), and then replaces each edge (vi, uj) where i < j with
(ui, uj). Figure 4 highlights the removed and the added edges in red. Pictorially,
it adds an edge for each horizontal source-sink pair, and replaces each “downward
diagonal” edge with a corresponding “downward vertical” edge. This adds at
most one incoming edge for each vertex in U .

Let LG(n,k,α,β) be a stack of localized expanders, i.e., the resulting graph
after localizing the bipartite expander at every layer of G(n,k,α,β). LG(n,k,α,β)

can be efficiently pebbled using n space, by simply pebbling each layer in order
and within each layer from top to bottom. Once vk,i is pebbled, vk−1,i can be
unpebbled because no subsequent vertices depend on it. A vertex vk,j ∈ Vk that
originally depended on vk−1,i is either already pebbled (if j ≤ i), or has its
dependency changed to vk,i by the localization transformation.

When we localize a bipartite expander, the resulting graph is no longer bipar-
tite. The expanding property, however, is preserved under a different definition.
After localization, the graph has n sources and n non-sources (the original sinks).
Any subset U ′ of αn non-sources collectively have βn sources as ancestors (v is
an ancestor of u if there is a path from v to u). Crucially, the paths between
them are vertex-disjoint outside U ′. This allows us to prove the same result in
Theorem 3 for stacked localized expanders.

Lemma 1. Let U ′ be any subset of αn sinks of an (n, α, β) bipartite expander,
and V ′ be the set of sources connected to U ′ (we have |V ′| ≥ βn). After localization,
there exist βn paths from V ′ to U ′ that are vertex-disjoint outside U ′.

Proof. After localization, vertices in V ′ fall into two categories. A vertex vi ∈ V ′
may still be an immediate predecessor to some u ∈ U ′, which obviously does
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not share any vertex outside U ′ with a path starting from any vj (j 6= i). If
vi is not an immediate predecessor, then the path vi → ui → u must exist for
some u ∈ U ′, because there was an edge (vi, u) in the original bipartite expander.
Any other vj ∈ V ′ (j 6= i) is either an immediate predecessor or uses uj as the
intermediate hop in its path to U ′. In either case, vi does not share any source
or intermediate-hop with any other vj .

Theorem 4. Let γ = β − 2α > 0. If P pebbles any subset U ′ of αn initially
unpebbled vertices in the last layer Vk of LG(n,k,α,β), starting with |P0| ≤ γn and

using S(P) ≤ γn space, then T (P) ≥ 2kαn.

Proof. The proof remains unchanged from Theorem 3 as long as we show that P
still needs to pebble 2αn initially unpebbled vertices in Vk−1.

A path from v to u is “initially pebble-free”, if no vertex on the path, including
v and u, is pebbled in P0. Due to the pebble game rule, if a vertex v ∈ Vk−1 has
an initially pebble-free path to some u ∈ U ′, then it needs to be pebbled before u
can be pebbled. Since Vk−1 and Vk form a localized expander, due to Lemma 1,
there exist at least βn ancestors in Vk−1 whose paths to U ′ are vertex-disjoint
outside U ′. Since vertices in U ′ are initially unpebbled, pebbles in P0 can only
be placed on the vertex-disjoint parts of these paths. Therefore, each pebble
can block at most one of these paths. Since |P0| ≤ γn, there must be at least
βn− γn = 2αn vertices in Vk−1 that have initially pebble-free paths to U ′, and
they have to be pebbled by P. ut

We now have tight space lower bounds for pebble games on stacked localized
expanders. LG(n,k,α,β) can be efficiently pebbled with n space but not with γn
space, where γ can be set close to 1. Next, we show that pebble games on localized
stacked expanders are also consistently space-hard.

3.5 Consistent Space Hardness

Theorem 5. Let 0 < η < γ = β − 2α. If P pebbles any subset of αn initially
unpebbled vertices in the last layer of LG(n,k,α,β), starting with |P0| ≤ ηn, and

using T (P) ≤ 2k0αn moves, then

Mηn(P) ≥


0 k < k0

2k−k0 k0 ≤ k ≤ k1
(k − k1 + 1)(γ − η)n k > k1

where k1 = k0 + dlog2(γ − η)ne.

Proof. We will derive a lower bound Mk for Mηn(P) where k is the number
of layers in LG(n,k,α,β). Similar to the proof of Theorem 3, there are (β − η)n
initially unpebbled vertices in Vk−1 that have to pebbled by P. Let U be the set
of these (β − η)n vertices. Again, we sort U according to the time they are first
pebbled. We divide P into three parts P = (P1,P2,P3). P1 pebbles the first αn
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vertices in U ⊂ Vk−1. P1 starts from the same initial configuration as P and has
fewer moves than P, so we have Mηn(P1) ≥Mk−1.

We define P2 to include all consecutive configurations immediately after P1

until (and including) the first configuration whose space usage is below ηn. P3

is then the rest of P. By definition, every Pi ∈ P2, except the last one, satisfies
|Pi| > ηn. The last configuration in P2 is also the starting configuration of P3,
and its space usage is below ηn. It is possible that T (P2) = 1 or T (P3) = 0, if
the space usage after P1 immediately drops below ηn or never drops below ηn.

Now we have two cases based on T (P2). If T (P2) > (γ − η)n, we have
Mk > Mk−1 + (γ − η)n. If T (P2) ≤ (γ − η)n, then P3 has to pebble at least
αn vertices in U , because P1 and P2 combined have pebbled no more than
αn+ (γ − η)n = (β − α− η)n vertices in U . And P3 starts with no more than
ηn pebbles and has fewer moves than P, so Mηn(P3) ≥Mk−1. In this case, we
have Mk ≥ 2Mk−1. Combining the two cases, we have the following recurrence

Mk ≥ min(Mk−1 + (γ − η)n, 2Mk−1).

For a base case of this recurrence, we have Mk0 ≥ 1, because Theorem 4 says any
pebbling strategy that never uses ηn space needs at least 2k0αn moves. Solving
the recurrence gives the result in the theorem. ut

For a tight bound on the entire sequence, we further chain the vertices in
LG(n,k,α,β), by adding an edge (vi,j , vi,j+1) for every 0 ≤ i ≤ k and 1 ≤ j ≤ n−1.
(We can prove a looser bound without the chaining technique.) This forces any
sequence to pebble all vertices in the same order as the simple strategy.

Corollary 1. Any sequence P that pebbles the chained stacked localized expanders
LG(n,k,α,β) starting from an empty initial configuration in T (P) ≤ 2k0αn steps
has M(β−3α)n(P) ≥ n(k − k1) where k1 = k0 + dlog2(αn)e.

Proof. Set η = β − 3α. Theorem 5 shows that beyond the first k1 layers, it is
expensive to ever reduce space usage below ηn. Doing so on layer k > k1 would
require at least (k − k1 + 1)αn > αn steps with ηn space usage to pebble the
next αn vertices. The penalty keeps growing with the layer depth. So the better
strategy is to maintain space usage higher than ηn for every step past layer k1.
There are at least n(k−k1) steps past layer k1, and hence the theorem holds. ut

The simple strategy maintains n space for nk steps, i.e., the entire duration
except for the first n steps which fill memory. Corollary 1 is thus quite tight as
n(k − k1) and ηn can be very close to nk and n with proper parameters.

4 Improved Analysis for Balloon Hash MHF

A memory-hard function (MHF) is a function f that (i) takes a short input, and
(ii) requires a specified amount of, say N , space to compute efficiently. To our
knowledge, all MHF proposals first put the input through a hash function H so
that f(H(·)) can take input of any size, and f(·) only deals with a fixed input
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Table 1: Comparison of MHFs with strict space-hardness or exponential penalty.

DKW [26] KK [31] Catena-DBG [28] Balloon [20] Balloon + our analysis

T N2 2N(log2N)2 2kN log2N 7kN dkN

N ′ N N/32 N/20 N/8 γN

KK [31] reported T = Θ(N log2N) due to a miscalculation on the number of vertices.
We generalized Catena-DBG [28] to exponential penalty though the designers of Catena
recommended tiny security parameters like k = 2 for better efficiency.

size λ = |H(·)|. λ is considered short since it does not depend on N . There is no
agreed upon criterion of memory-hardness. As discussed in Section 1.1, we adopt
the exponential penalty definition.

Definition 2 (MHF). Let k be a security parameter, N be the space requirement,
and N ′ be the provable space lower bound. A memory-hard function y = f(x),
parameterized k, N and N ′, has the following properties:

(non-triviality) the input size |x| does not depend on N ,
(efficiency) f can be computed using N space in T = poly(k,N) time,
(memory-hardness) no algorithm can compute f using less than N ′ space in

2k time with non-negligible probability.

The graph labelling problem on a hard-to-pebble graph immediately gives a
MHF. Table 1 lists the running time T and the provable space lower bound N ′ for
all existing MHFs with strict memory-hardness or exponential penalty (though the
former two did not use the term MHF). All of them are based on graph pebbling.
DKW [26] has perfect memory-hardness but requires a quadratic runtime. The
other three have quasilinear runtime but large gaps in memory-hardness. The
single-buffer version of Balloon hash (Balloon-SB) [20] used stacked localized
expanders. Using the analysis in the Balloon hash paper, the space lower bound
N ′ for Balloon-SB is at most N/4 no matter how much we sacrifice runtime. Our
improved analysis shows that Balloon-SB enjoys tighter space-hardness as well
as consistent space-hardness. Theorem 4 shows that Balloon-SB with T = dkN
achieves N ′ = γN , where γ can be made arbitrarily small. The relation between
γ and d is shown in Figure 3. In addition, Corollary 1 gives a tight bound on
consistent memory-hardness. This gives positive answers to two open questions
left in the Balloon hash paper [20]: Balloon hash is space-hard over time and
under batching.

5 Proofs of Transient Space from Stacked Expanders

5.1 Definition

We use notation (yv, yp) ← 〈V(xv),P(xp)〉 to denote an interactive protocol
between a verifier V and a prover P. xv, xp, yv, yp are V’s input, P’s input,
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V’s output and P’s output, respectively. We will omit (xv) or (xp) if a party
does not take input. We will omit yp if P does not have output. For example,
{0, 1} ← 〈V,P〉 means neither V nor P takes input, and V outputs one bit
indicating if it accepts (output 1) or rejects (output 0) P’s proof. Both P and V
can flip coins and have access to the same random oracle H.

Definition 3 (PoTS). Let k, N and N ′ be the same as in Definition 2. A proof
of transient space is an interactive protocol {0, 1} ← 〈V,P〉 that has the following
properties:

(succinctness) all messages between P and V have size poly(k, logN),
(efficient verifiability) V uses poly(k, logN) space and time,
(completeness) P uses N space, runs in poly(k,N) time, and 〈V,P〉 = 1,
(space-hardness) there does not exist A that uses less than N ′ space, runs in

2k time, and makes 〈V,A〉 = 1 with non-negligible probability.

The definition above is due to Ateniese et al. [11]. Metrics for a PoTS include
message size, prover runtime, verifier space/runtime, and the gap between N and
N ′. The first three measure efficiency and the last one measures space-hardness.
We also care about consistent space-hardness as defined in Section 3.5.

5.2 Construction

We adopt the Merkle commitment framework in Ateniese et al. [11] and Dziem-
bowski et al. [24] to enable efficient verification. At a high level, the prover
computes a Merkle commitment C that commits the labels of all vertices in
LG(n,k,α,β) using the same random oracle H. The verifier then checks if C is
“mostly correct” by asking the prover to open the labels of some vertices. The
opening of label h(v) is the path from the root to the leaf corresponding to v in
the Merkle tree. To compute a commitment C that is “mostly correct”, a prover
cannot do much better than pebbling the graph following the rules, which we
have shown to require a lot of space consistently. We say “a vertex” instead of
“the label of a vertex” for short. For example, “commit/open a vertex” means
“commit/open the label of a vertex”.

Computing a Merkle tree can be modeled as a pebble game on a binary tree
graph. It is not hard to see that a complete binary tree with n leaves can be
efficiently pebbled with roughly log2 n space (dlog2 ne + 1 to be precise) in n
moves. So P can compute the commitment C using N = n+ log2 n+k ≈ n space.
The strategy is as follows: pebble V0 using n space, compute Merkle commitment
C0 for all vertices in V0 using additional log2 n space, discard the Merkle tree
except the root, and then pebble V1 rewriting V0, compute C1, discard the rest
of the Merkle tree, and continue like this. Lastly, C1 to Ck are committed into a
single Merkle root C.

After receiving C, V randomly selects l0 vertices, and for each vertex v asks
P to open v, and all predecessors of v if v is not a source. Note that P did not
store the entire Merkle tree but was constantly rewriting parts of it because the
entire tree has size nk � n. So P has to pebble the graph for a second time
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Table 2: Efficiency and space-hardness of PoTS.
prover runtime verifier space/time and message size N ′

ABFG [11] 12kN log2N 6δ−1k2(log2N)2 ( 1
6
− δ)N

This paper 2(d+ 1)kN (d+ 1)δ−1k2 log2N (γ − δ)N

to reconstruct the l0(d + 1) paths/openings V asked for. This is a factor of 2
overhead in prover’s runtime.

Given the labels of all the predecessors of v (or if v is a source), V can check
if h(v) is correctly computed. If any opening or h(v) is incorrect, V rejects. If no
error is found, then C is “mostly correct”. We say a label h(vi) is a “fault” under
C if it is not correctly computed either as h(i, x) or from vi’s predecessors’ labels
under C. A cheating prover is motivated to create faults using pseudorandom
values, because these faulty labels are essentially free pebbles that are always
available but take no space. Dziembowski et al. [24] called them red pebbles and
pointed out that a red pebble is no more useful than a free normal pebble because
a normal pebble can be removed and later placed somewhere else. In other words,
any sequence P that starts with |P0| = s0 initial pebbles and uses m red pebbles
and s normal pebbles can be achieved by some sequence P′ that starts with
|P ′0| = s0 +m initial pebbles and uses 0 red pebbles and s+m normal pebbles.
We would like to bound the number of faults, which translate to a bounded loss
in provable space-hardness.

If we want to lower bound the number of faults to δn (δ < 1) with over-

whelming probability, we can set l0 = k|V |
δn = δ−1k2. Then, any commitment C

with δn faults passes the probabilistic checking with at most (1− δn
|V | )

l0 < e−k.

Again, k is our security parameter. With at most δn faults, P needs to pebble
at least n− δn sinks (> αn with a proper δ). By Theorem 4 and accounting for
faults, a cheating prover needs at least N ′ = (γ − δ)n ≈ (γ − δ)N space to avoid
exponential time.

5.3 Efficiency and Space-Hardness

Table 2 gives the efficiency and space-hardness of our construction, and compares
with prior work using stacked butterfly superconcentrators [11]. Our prover
runtime is 2(d+1)Nk where 2 is due to pebbling the graph twice, and d+1 is due
to the in-degree of our graph plus hashing in Merkle tree. Message size includes
Merkle openings for the l0 = δ−1k2 challenges and their predecessors. The verifier
has to check all these Merkle openings, so its space/time complexity are the
same as message size. The efficiency of ABFG [11] can be calculated similarly
using the fact that stacked butterfly superconcentrators have 2kN logN vertices
with in-degree 2. To match their space-hardness, which cannot be improved past
N ′ = 1

6N with existing proof techniques, we only need in-degree d = 9. To match
their efficiency, we set d = 6 log2N , which we approximate as 150. That gives
our construction very tight space-hardness at N ′ = (γ − δ)N with γ = 0.85.
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Furthermore, Corollary 1 gives a tight bound on consistent memory-hardness.
Adjusting for faults, an adversary needs n(k − k1) steps whose space usage is at
least (β − 3α− δ)n.

For simplicity, we used a single security parameter k. But in fact, the term
k2 in message size and verifier complexity should be kk′ where k′ is a statistical
security parameter. k′ can be set independently from our graph depth k, which
captures computational security. The same applies to the DFKP construction in
Table 3.

6 Proof of Persistent Space from Stacked Expanders

6.1 Definition

Definition 4 (PoPS).
Let k be a security parameter, N be the space/advice requirement, N ′0 and

N ′1 be two space lower bound parameters. A proof of persistent space is a pair of
interactive protocols (C, y)← 〈V0,P0〉 and {0, 1} ← 〈V1(C),P1(y)〉 that have the
following properties:

(succinctness) all messages between P0 and V0, and between P1 and V1 have
size poly(k, logN),

(efficient verifiability) V0 and V1 use poly(k, logN) space and time,
(completeness) P0 and P1 satisfy the following

– P0 uses N space, runs in poly(k,N) time, and outputs y of size N ,
– P1 uses N space, runs in poly(k, logN) time, and 〈V1(C),P1(y′)〉 = 1,

(space-hardness) there do not exist A0 and A1 such that
– A0 uses poly(k,N) space, runs in poly(k,N) time, and 〈V0,A0〉 = (C, y′)

where |y′| < N ′0,
– A1 takes y′ as input, uses N ′1 space, runs in 2k time, and makes
〈V1(C),A1(y′)〉 = 1 with non-negligible probability.

(C, y) ← 〈V0,P0〉 represents the setup stage. P outputs advice y of size N ,
which is supposed to be stored persistently. V (through interaction with P)
outputs a verified commitment C. {0, 1} ← 〈V1(C),P1(y)〉 represents one audit.
The input of two parties are their respective output from the setup stage, and
in the end V either accepts or rejects. It is implied that an audit V1 has to use
random challenges. Otherwise, it is easy to find A1 that takes as input and also
outputs the correct response to a fixed audit.

Efficiency metrics (message size, prover runtime, verifier space/runtime) are
defined similarly to PoTS but now take into account both stages of the protocol.

The space-hardness definition and metric become a little tricky. Since the
focus here is persistent space or advice size, one natural definition is to require
that no polynomial adversary A1 with advice size |y′| < N ′0 can convince V with
non-negligible probability. Unfortunately, this ideal space-hardness definition
is not achievable given the succinctness requirement, and we will describe an
adversary who can violate it. In the setup phase, A0 behaves in the same way as
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an honest P0 except that it outputs the transcript (all the messages combined)
between A0 and V0 as the cheating advice y′. Due to succinctness, the transcript
size |y′| = poly(k, logN) is much shorter than any reasonable N ′0. In an audit,
A1 can rerun P0 by simulating V0, using the recorded transcript y′, to obtain the
advice y that P0 would have produced, and then go on to run an honest P1 to
pass the audit.

Given the impossibility of ideal space-hardness, multiple alternative definitions
have been proposed. Dziembowski et al. [24] gave two definitions. The first one
requires A1 to use O(N) space. The second one requires A1 to use O(N) runtime,
which is strictly weaker than the first one because O(N) transient space implies
O(N) runtime. Proof of Space-Time [35] introduces a conversion rate between
space and computation, and requires the sum of the two resources spent by A1 to
be within a constant factor of the sum spent by P0. In this paper, we adopt the
first definition of Dziembowski et al. [24] because it forces a prover to use space
(either transient or persistent). In contrast, the latter two definitions explicitly
allow a cheating prover to use tiny space and compensate with computation.

Under our space-hardness definition, if a cheating prover discards persistent
advice in an attempt to save space, he/she will find himself/herself repeatedly
refilling that space he/she attempts to save. If (N ′0, N

′
1) are close to (N,N), a

rational prover will choose to dedicate persistent space for the advice. We would
like to be explicit that such a PoPS relies on a prover’s cost of persistent space
relative to computation and transient space, and very importantly the frequency
of audits.

6.2 Construction

The setup phase is basically the PoTS protocol we presented in Section 5. P
computes a Merkle commitment C, and V makes sure C is “mostly correct”
through a probabilistic check. At the end of the setup phase, an honest P stores
the labels of all sinks Vk and the Merkle subtree for Vk as advice. Any vertices
in Vi for i < k are no longer needed. V now can also discard C and use Ck which
commits Vk from this point onward. Since an honest P has to store the Merkle
tree, it makes sense to use a different random oracle H1 with smaller output size
for the Merkle commitment. If |H(·)| is reasonably larger than |H1(·)|, then the
labels in the graph dominate, and the advice size is thus roughly n. Using the
same random oracle results in an additional factor of 2 loss in space-hardness.

In the audit phase, V asks P to open l1 randomly selected sinks. The binding
property of the Merkle tree forces P to pebble these sinks, possibly with the help
of at most δn faults. But due to the red pebble argument, we can focus on the
case with no faults first and account for faults later.

There is still one last step from Theorem 4 to what we need. Theorem 4 says
any subset of αn initially unpebbled sinks are hard to pebble, but we would hope
to challenge P on l1 � αn sinks. Therefore, we need to show that a significant
fraction of sinks are also hard to pebble individually.
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Table 3: Efficiency and space-hardness of PoPS.
prover verifier space/runtime N ′0

runtime and message size N ′1

DFKP [24]
setup 3N 3δ−1k(log2N)2 ( 1

3
× 1

256×25.3
− δ) N

log2 N

audit 0 k log2N ( 2
3
× 1

256×25.3
− δ) N

log2 N

This paper
setup 2(d+ 1)kN (d+ 1)δ−1k2 log2N ( 1

3
γ − δ)N

audit 0 k log2N ( 2
3
γ − δ)N

Theorem 6. Let γ = β − 2α. Starting from any initial configuration P0 of size
|P0| ≤ 1

3γn, less than αn initially unpebbled sinks of G(n,k,α,β) can be pebbled

individually using 2
3γn space in 2k moves.

Proof. Suppose for contradiction that there are at least αn such sinks. Consider
a strategy that pebbles these sinks one by one, never unpebbles P0, and restarts
from P0 after pebbling each sink. This strategy pebbles a subset of αn initially
unpebbled sinks, starting with |P0| < 1

3γn < γn, using at most 1
3γn+ 2

3γn = γn
pebbles in at most 2kαn moves. This contradicts Theorem 4. ut

At most 1
3γn pebbles may be initially pebbled in P0, so no more than

( 13γ + α)n < 1
2n individual sinks can be pebbled using 2

3γn space in 2k moves by
Theorem 6. With more than half of the sinks being hard to pebble individually,
we can set l1 = k. The probability that no hard-to-pebble sink is included in
the challenge is at most 2−k. Lastly, accounting for faults, no computationally
bounded P using N ′0 = ( 13γ − δ)n advice and N ′1 = ( 23γ − δ)n space can pass an
audit. The choice of constants 1

3 and 2
3 are arbitrary. The theorem holds for any

pair of constants that sum to 1.

6.3 Efficiency and Space-Hardness

We compare with prior work [24] based on recursively stacked linear supercon-
centrators [38] in Table 3. The efficiency and (consistent) space-hardness of the
setup phase are the same as our PoTS. In the audit phase, the prover sends
Merkle openings for k sinks to the verifier to check. If the prover stores less than
N ′0 = ( 13γ − δ)N advice, it needs at least N ′1 = ( 23γ − δ)N space to pass an audit.
This also sets a lower bound of N ′1 −N ′0 = ( 1

3γ − δ)N on prover’s time to pass
the audit, as it needs to fill its space to N ′1. Consistent space-hardness is not well
defined for audits as an honest prover needs very little time to respond to audits.

The DFKP construction [24] treats the labels of all vertices as advice. This
optimizes runtime but leaves a very large (even asymptotic) gap in space-hardness.
It is possible for them to run audits only on the sinks, essentially generating
less advice using the same graph and runtime. This will improve space-hardness
up to N ′0 = N ′1 = ( 1

2 ×
1

256 − δ)N while increasing runtime by a factor of
25.3 logN . There is currently no known way to remove the remaining gap of
512. We did not count the cost of including vertex ID in random oracle calls (for
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both our construction and theirs) since vertex ID is small compared to labels.
This explains the different prover runtime we report in Table 3 compared to [24].
For completeness, we mention that the second construction of DFKP [24] and
proof of Space-Time [35] are not directly comparable to our construction or the
first DFKP construction because they provide very different efficiency and/or
space-hardness guarantees.

7 Conclusion and Future Work

We derived tight space lower bounds for pebble games on stacked expanders,
and showed that a lot of space is needed not just at some point, but throughout
the pebbling sequence. These results gave MHF (Balloon hash) and PoTS with
tight and consistent space-hardness. We also constructed a PoPS from stacked
expanders with much better space-hardness than prior work.

While the space-hardness gap for Balloon hash and our PoTS can be made
arbitrarily small, pushing it towards the limit would lead to very large constants
for efficiency. How to further improve space-hardness for MHF and PoS remains
interesting future work. It is also interesting to look for constructions that
maintain consistent space-hardness under massive or even infinite parallelism.

At the moment, PoTS and PoPS are still far less efficient than PoW in terms
of proof size and verifier complexity. A PoW is a single hash, while a PoS consists
of hundreds (or more) of Merkle paths. The challenge remains in constructing
practical PoTS/PoPS with tight and consistent space-hardness.
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