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Abstract. In the model that has become known as “Perfectly Secure
Message Transmission” (PSMT), a sender Alice is connected to a receiver
Bob through n parallel two-way channels. A computationally unbounded
adversary Eve controls t of these channels, meaning she can acquire and
alter any data that is transmitted over these channels. The sender Alice
wishes to communicate a secret message to Bob privately and reliably, i.e.
in such a way that Eve will not get any information about the message
while Bob will be able to recover it completely.
In this paper, we focus on protocols that work in two transmission rounds
for n = 2t+ 1. We break from previous work by following a conceptually
simpler blueprint for achieving a PSMT protocol. We reduce the previ-
ously best-known communication complexity, i.e. the number of trans-
mitted bits necessary to communicate a 1-bit secret, from O(n3 logn) to
O(n2 logn). Our protocol also answers a question raised by Kurosawa
and Suzuki and hitherto left open: their protocol reaches optimal trans-
mission rate for a secret of size O(n2 logn) bits, and the authors raised
the problem of lowering this threshold. The present solution does this
for a secret of O(n logn) bits.

Keywords: Perfectly Secure Message Transmission

1 Introduction

The problem of Perfectly Secure Message Transmission (PSMT for short) was
introduced by Dolev et al. in [2] and involves two parties, a sender Alice and
a receiver Bob, who communicate over n parallel channels in the presence of
an adversary Eve. Eve is computationally unbounded and controls t ≤ n of
the channels, meaning that she can read and overwrite any data sent over the
channels under her control. The goal of PSMT is to design a protocol that allows
Alice to communicate a secret message to Bob privately and reliably, i.e. in such
a way that Eve will not be able to acquire any information on the message, while
Bob will always be able to completely recover it.
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Two factors influence whether PSMT is possible and how difficult it is to
achieve, namely the number t of channels corrupted and controlled by Eve, and
the number r of transmission rounds, where a transmission round is a phase
involving only one-way communication (either from Alice to Bob, or from Bob
to Alice).

It was shown in Dolev et al.’s original paper [2] that for r = 1, i.e. when
communication is only allowed from Alice to Bob, PSMT is possible if and only
if n ≥ 3t + 1. It was also shown in [2] that for r ≥ 2, i.e. when communication
can be performed in two or more rounds, PSMT is possible if and only if n ≥
2t+ 1, although only a very inefficient way to do this was proposed. A number
of subsequent efforts were made to improve PSMT protocols, notably in the
most difficult case, namely for two rounds and when n = 2t + 1. The following
two quantities, called communication complexity and transmission rate, were
introduced and give a good measure of the efficiency of a PSMT protocol. They
are defined as follows:

Communication complexity := total number of bits transmitted to
communicate a single-bit secret,

Transmission rate :=
total number of bits transmitted

bit-size of the secret
.

Focusing exclusively on the case n = 2t + 1, Dolev et al. [2] presented a
PSMT protocol for r = 3 with transmission rate O

(
n5
)
: for r = 2 a protocol

was presented with non-polynomial rate.

Sayeed and Abu-Amara [8] were the first to propose a two-round protocol
with a polynomial transmission rate of O

(
n3
)
. They also achieved communi-

cation complexity of O
(
n3 log n

)
. Further work by Agarwal et al. [1] improved

the transmission rate to O(n) meeting, up to a multiplicative constant, the lower
bound of [10]. However, this involved exponential-time algorithms for the partic-
ipants in the protocol. The current state-of-the art protocol is due to Kurosawa
and Suzuki [4,5]. It achieves O(n) transmission rate with a polynomial-time ef-
fort from the participants. All these protocols do not do better than O

(
n3 log n

)
for the communication complexity.

We contribute to this topic in the following ways. We present a constructive
protocol for which only polynomial-time, straightforward computations are re-
quired of the participants, that achieves the improved communication complexity
of O

(
n2 log n

)
. In passing, we give an affirmative answer to an open problem

of Kurosawa and Suzuki (at the end of their paper [5]) that asks whether it is
possible to achieve the optimal transmission rate O(n) for a secret of size less
than O(n2 log n) bits. We do this for a secret of O(n log n) bits.

Just as importantly, our solution is conceptually significantly simpler than
previous protocols. Two-round PSMT involves Bob initiating the protocol by
first sending an array of symbols (xij) over the n parallel channels, where the
first index i means that symbol xij is sent over the i-th channel. All previous
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proposals relied on arrays (xij) with a lot of structure, with linear relations be-
tween symbols that run both along horizontal (constant j) and vertical (constant
i) lines. In contrast, we work with an array (xij) consisting of completely inde-
pendent rows x(j) = (x1j , x2j , . . . , xnj) that are simply randomly chosen words
of a given Reed-Solomon code. In its simplest, non-optimized, form, the PSMT
protocol we present only involves simple syndrome computations from Alice, and
one-time padding the secrets it wishes to transfer with the image of linear forms
applied to corrupted versions of the codewords x(j) it has received from Bob.
Arguably, the method could find its way into textbooks as relatively straightfor-
ward applications of either secret-sharing or wiretap coset-coding techniques. In
its optimized form, the protocol retains sufficient simplicity to achieve a trans-
mission rate 5n + o(n), compared to the previous record of 6n + o(n) of [3]
obtained by painstakingly optimizing the 25n+ o(n) transmission rate of [5].

In the next Section we give an overview of our method and techniques.

2 Protocol Overview

The procedure takes as input the number n = 2t+ 1 of channels between Alice
and Bob and the number ` of secret messages to be communicated; we assume
that the messages lie in a finite field Fq. First, a code C that will be the basic
communication tool is selected; C is a linear block code of length n over Fq,
dimension t + 1 and minimum distance t + 1. It furthermore has the property
that the knowledge of t symbols of any of its codewords x leaves hxT completely
undetermined, where h is a vector produced together with C at the beginning of
the protocol. The code C can be a Reed-Solomon code.

Since we require at most two rounds of communication, Bob starts the proce-
dure; he chooses a certain number of random and independent codewords x, and
communicates them by sending the i-th symbol of each codeword over the i-th
channel. This is a first major difference from previous papers, notably [5], where
codewords are communicated in a more complicated “horizontal-and-vertical”
fashion; our construction is thus conceptually simpler and eliminates techniques
introduced by early papers [8] which marked substancial progress at the time but
also hindered the development of more efficient protocols when they survived in
subsequent work.

As a result of this first round of communication, Alice receives a corrupted
version y = x + e for each codeword x sent by Bob. As in previous PSMT
protocols, Alice then proceeds by broadcast, meaning every symbol she physically
sends to Bob, she sends n times, once over every channel i. In this way privacy is
sacrificed, since Eve can read everything Alice sends, but reliability is ensured,
since Bob recovers every transmitted symbol by majority decoding.

A secret message consisting of a single symbol s ∈ Fq is encoded by Alice
as s + hyT for some received vector y. In other words, s is one-time padded
with the quantity hyT and this is broadcast to Bob. Notice that at this point,
revealing s + hyT to Eve gives her zero information on s. This is because she
can have intercepted at most t symbols of the codeword x: therefore the element
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hxT is completely unknown to her by the above property of C and h, and the
mask hyT = hxT + heT is unknown to her as well.

Now broadcasting the quantity s + hyT is not enough by itself to convey
the secret s to Bob, because Bob also does not have enough information to
recover the mask hyT . To make the protocol work, Alice needs to give Bob
extra information that tells Eve nothing she doesn’t already know.

This extra information comes in two parts. The first part is simply the syn-
drome σ(y) = HyT of y, where H is a parity-check matrix of C; notice that
this data is indeed useless to Eve, who already knows it given that HyT =
HxT + HeT = HeT where e is chosen by herself.

The second part makes use of the fact that during the first phase, Bob has
not sent a single codeword x to Alice, but a batch of codewords X and Alice has
received a set Y of vectors made up of the corrupted versions y = x + e of the
codewords x. Alice will sacrifice a chosen subset of these vectors y and reveal
them completely to Bob and Eve by broadcast. Note that this does not yield any
information on the unrevealed vectors y since Bob has chosen the codewords x
of X randomly and independently. At this point we apply an idea that originates
in [5]: the chosen revealed subset of Y is called in [5] a pseudo-basis of Y. To
compute a pseudo-basis of Y, Alice simply computes all syndromes σ(y) for
y ∈ Y, and choses a minimal subset of Y whose syndromes generate linearly all
syndromes σ(y) for y ∈ Y. A pseudo-basis of Y could alternatively be called a
syndrome-spanning subset of Y. Now elementary coding-theory arguments imply
that the syndrome function σ is injective on the subspace generated by the set of
all errors e that Eve applies to all Bob’s codewords x (Lemma 2 and Proposition
1). Therefore a pseudo-basis of Y gives Bob access to the whole space spanned
by Eve’s errors and allows him, for any non-revealed y = x + e, to recover the
error e from the syndrome σ(y) = σ(e).

The above protocol is arguably “the right way” of exploiting the pseudo-
basis idea of Kurosawa and Suzuki, by which we mean it is the simplest way of
turning it into a two-round PSMT protocol. We shall present optimised variants
that achieve the communication complexity and transmission rate claimed in the
Introduction. Our final protocol involves two additional ideas; the first involves a
more efficient broadcasting scheme than pure repetition: this idea was also used
by Kurosawa and Suzuki. The second idea is new and involves using a decoding
algorithm for the code C.

The rest of the paper is organised as follows. In Section 3 we recall the coding
theory that we need to set up the protocol. In particular, Section 3.1 introduces
the code C and the vector h with the desired properties. Section 3.2 introduces
Kurosawa and Suzuki’s pseudo-basis idea, though we depart somewhat from
their original description to fit our syndrome-coding approach to PSMT.

In Section 4 we describe in a formal way the protocol sketched above, and
we compute its communication cost; it will turn out that this construction has
a communication complexity of O

(
n3 log n

)
and a transmission rate of O

(
n2
)
.

Section 5 is devoted to improving the efficiency of the protocol; specifically,
Section 5.1 introduces generalized broadcast, Sections 5.2 and 5.3 show how to
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lower the cost of transmitting the pseudo-basis, while Section 5.4 presents a way
to improve the efficiency of the last part of the protocol. A key aspect of this
section is that Alice must make extensive use of a decoding algorithm for linear
codes, a new feature compared to previous work on the topic.

Finally, in Section 6 we implement these improvements and compute the cost
of the resulting protocol, reaching a communication complexity of O

(
n2 log n

)
and a transfer rate of 5n+o(n); we also show in this section that optimal transfer
rate is achieved for a secret of O(n log n) bits. Section 7 gives concluding remarks.

3 Setting and Techniques

3.1 Error-Correcting Codes for Communication

We will use the language of Coding Theory, for background, see e.g. [6]. Let
us briefly recall that when a linear code over the finite field Fq is defined as
C = {x ∈ Fn

q , HxT = 0}, the r × n matrix H is called a parity-check matrix for
C and the mapping

σ : Fn
q → Fr

q

x 7→ HxT

is referred to as the syndrome map. Recall also that a code of parameters (length,
dimension, minimum Hamming distance) [n, k, d] is said to be Maximum Dis-
tance Separable or MDS, if d+k = n+ 1. Particular instances of MDS codes are
Reed-Solomon codes, which exist whenever the field size q is equal to or larger
than the length n. In a secret-sharing context, Reed-Solomon codes are equiva-
lent to Shamir’s secret-sharing scheme [9], and they have been used extensively
to construct PSMT protocols. We could work from the start with Reed-Solomon
codes, equivalently Shamir’s scheme, but prefer to use more general MDS codes,
not purely for generality’s sake, but to stay unencumbered by polynomial evalu-
ations and to highlight that we have no need for anything other than Hamming
distance properties. In section 6, we will need our MDS codes to come with a
decoding algorithm and will have to invoke Reed-Solomon codes specifically: we
will only need to know of the existence of a polynomial-time algorithm though,
and will not require knowledge of any specifics.

We will need an MDS code C that will be used to share randomness, together
with a vector h such that the value of hxT is completely undetermined for a
codeword x ∈ C even when t symbols of x are known. The linear combination
given by h will then be used to create the masks that hide the secrets.

The following Lemma states the existence of such a pair (C,h): it is a slightly
non-standard use of Massey’s secret sharing scheme [7]. It is implicit that we
suppose q > n, so that MDS codes exist for all dimensions and length up to
n+ 1.

Lemma 1. For any n and any t < n there exists an MDS code C of parameters
[n, t + 1, n − t] and a vector h ∈ Fn

q such that given a random codeword x ∈ C,
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the scalar product hxT is completely undetermined even when t symbols of x are
known.

Proof. Let C′ be an MDS code of parameters [n+ 1, t+ 1, n− t+ 1]; notice that
such a code exists for any n and t ≤ n [6]. Let C be the code obtained from C′
by puncturing at its last coordinate, i.e.

C :=
{
x ∈ Fn

q : ∃x ∈ Fq with (x, x) ∈ C′
}

The minimum distance of C is at most one less than that of C′, and C is MDS of
parameters [n, t+ 1, n− t] as requested. Now let H′ be a parity-check matrix of
C′; since C′ has minimum distance n− t+ 1 > 1, there is at least one row of H′

whose last symbol is non-zero, i.e. such a row is of the form

(h, α) ∈ Fn+1
q with h ∈ Fn

q , 0 6= α ∈ Fq.

We claim that the pair (C,h) is of the desired type: indeed, let x be a random
codeword of C. Then there exists a (unique) codeword x′ of C′ such that x′ =
(x, x); now hxT = −αx, i.e. the knowledge of hxT is equivalent to the knowledge
of x, given that α is non-zero.

Now since C′ has dimension t+ 1, for any t known symbols xi1 , · · · , xit of x
and any x̃ ∈ Fq, there exists exactly one x̃′ ∈ C′ such that x̃′ij = xij for any j

and such that x̃′n+1 = x̃. Hence the claim holds.
ut

As stated above, this lemma will guarantee the privacy of our protocols;
conversely, we can achieve reliable (although not private) communication via
the following remark: Alice and Bob can broadcast a symbol by sending it over
all the channels; since Eve only controls t < n/2 of them, the receiver will be able
to correct any error introduced by Eve with a simple majority choice. Broadcast
thus guarantees reliability by sacrificing privacy.

3.2 Pseudo-Bases or Syndrome-Spanning Subsets

The second fundamental building block of our paper is the notion of pseudo-basis,
introduced by Kurosawa and Suzuki [5]. The concept stems from the following
intuition: assume that Bob communicates a single codeword x of an MDS code
C to Alice by sending each of its n symbols over the corresponding channel. Eve
intercepts t of these symbols, thus C must have dimension at least t + 1 if we
want to prevent her from learning x; but this means that the minimum distance
of C cannot exceed n+1−(t+1) = t+1, which is not enough for Alice to correct
an arbitrary pattern of up to t errors that Eve can introduce.

If, however, we repeat the process for several different x(i), then Alice and
Bob have an important advantage: they know that all the errors introduced by
Eve always lie in the same subset of t coordinates. Kurosawa and Suzuki propose
the following strategy to exploit this knowledge: Alice can compute a pseudo-
basis (a subset with special properties) of the received vectors; she can then
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transmit it to Bob, who will use this special structure of the errors to determine
their support.

The key is the following simple lemma:

Lemma 2. Let C be a linear code of parameters [n, k, d]q, and let H be a parity-
check matrix of C; let E be a linear subspace of vectors of Fn

q such that the
Hamming weight wH(e) of e satisfies wH(e) < d for any e ∈ E.

We then have that the following map is injective:

σ|E : E → Fn−k
q

e 7→ HeT

Proof. Simply notice that ker
(
σ|E
)

= {0}: indeed, ker
(
σ|E
)
⊆ C; but by as-

sumption all elements of E have weight smaller than d, so that ker
(
σ|E
)

= {0}.
ut

We can now introduce the concept of pseudo-basis; for the rest of this section,
we assume that a linear code C of parameters [n, k, d]q has been chosen, together
with a parity-check matrix H and associated syndrome map σ.

Definition 1 (Pseudo-Basis [5]). Let Y be a set of vectors of Fn
q ; a pseudo-

basis of Y is a subset W ⊆ Y such that σ(W) is a basis of the syndrome subspace
〈σ(Y)〉.

Notice that a pseudo-basis has thus cardinality at most n− k, and that it can
be computed in time polynomial in n.

The following property formalizes the data that Bob can acquire after he
obtains a pseudo-basis of the words received by Alice:

Proposition 1 ([5]). Let X , E ,Y be three subsets:

X :=
{
x(1), · · · ,x(r)

}
⊆ C,

E :=
{
e(1), · · · , e(r)

}
⊆ Fn

q such that #
⋃(

support
(
e(j)
)

: j = 1, · · · , r
)
< d,

Y :=
{
y(1), · · · ,y(r)

}
⊆ Fn

q with y(j) = x(j) + e(j) for every j

Then, given knowledge of X and a pseudo-basis of Y, we can compute e(j)

from its syndrome σ(e(j)), for any 1 ≤ j ≤ r.

Proof. The hypothesis on the supports of the elements of E implies that the
subspace E = 〈E〉 satisfies the hypothesis of Lemma 2 and the syndrome func-
tion is therefore injective on 〈E〉. Given the pseudo-basis

{
y(i) : i ∈ I

}
, we can

decompose any syndrome σ(e(j)) as

σ(e(j)) =
∑
i∈I

λiσ(y(i)) =
∑
i∈I

λiσ(e(i))

= σ

(∑
i∈I

λie
(i)

)
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which yields

e(j) =
∑
i∈I

λie
(i)

by injectivity of σ on E.
ut

Remark 1. Since the syndrome map induces a one-to-one mapping from E to
σ(E), we also have that

{
y(i) : i ∈ I

}
is a pseudo-basis of Y if and only if{

e(i) : i ∈ I
}

is a basis of E = 〈E〉.

The reader should now have a clear picture of how the pseudo-basis will be
used to obtain shared randomness: Bob will select a few codewords x(1), · · · ,x(r)

in an MDS code of distance at least t + 1, then communicate them to Alice by
sending the i-th symbol of each codeword over channel i; Alice will be able to
compute a pseudo-basis of the received words, a clearly non-expensive computa-
tion, then communicate it to Bob. Bob will then be able to determine any error
introduced by Eve just from its syndrome as just showed in Proposition 1.

The following section gives all the details.

4 A First Protocol

We now present the complete version of our first communication protocol, fol-
lowing the blueprint of Section 2.

Protocol 1 The protocol allows Alice to communicate ` secret elements
s(1), · · · , s(`) of Fq to Bob, where q is an arbitrary integer with q > n. The
protocol takes as input an MDS code C of parameters [n, t+ 1, t+ 1]q and a
vector h of length n as in Lemma 1.

I. Bob chooses t + ` uniformly random and independent codewords
x(1), · · · ,x(t+`) of C and communicates them to Alice by sending the
i-th symbol of each codeword over the i-th channel.

II. Alice receives the corrupted versions y(1) = x(1) + e(1), · · · ,y(t+`) =
x(t+`) + e(t+`); she then proceeds with the following actions:
(i) She computes a pseudo-basis

{
y(i) : i ∈ I

}
for I ⊂ {1, · · · , t+ `} of

the received values and broadcasts to Bob
(
i,y(i) : i ∈ I

)
.

(ii) She then considers the first ` words that do not belong to the pseudo-
basis; to ease the notation, we will re-name them y(1), · · · ,y(`). For
each secret s(j) to be communicated she broadcasts to Bob the fol-
lowing two elements:

- H
(
y(j)

)T
, the syndrome of y(j);

- s(j) + h
(
y(j)

)T
.
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III. Proposition 1 guarantees that for any j, 1 ≤ j ≤ `, Bob can compute
the error vector e(j) and hence reconstruct y(j) = x(j) + e(j) from his

knowledge of x(j). He can therefore open the mask h
(
y(j)

)T
and obtain

the secret s(j).

Proposition 2. The above protocol allows for private and reliable communica-
tion of ` elements of Fq.

Proof. As a first remark, notice that since the pseudo-basis has cardinality at
most t as remarked in Definition 1, Alice has enough words to mask her ` secret
messages, since the total number of words is equal to t + `. We can now prove
that the protocol is private and reliable:

– Privacy: Eve can intercept at most t coordinates of each codeword sent over
the channels in the first step; the codewords corresponding to the pseudo-
basis are revealed in step II-(i), but this information is useless since the
words are chosen independently and those belonging to the pseudo-basis
are no longer used. For any y(j) that does not belong to the pseudo-basis,

the syndrome H
(
y(j)

)T
is also transmitted, but Eve already knows it since

H
(
y(j)

)T
= H

(
x(j) + e(j)

)T
= H

(
e(j)
)T

, where e(j) denotes the error she

introduced herself on x(j).
Hence thanks to Lemma 1, Eve has no information on any h

(
y(j)

)T
, so that

privacy holds.
– Reliability: Eve can disrupt the communication only at step I, since all the

following ones only use broadcasts. Proposition 1 then ensures that Bob
can recover the vectors y(j) from their syndromes and the corresponding

codeword x(j). From there he can compute and remove the mask h
(
y(j)

)T
without error.

ut

We now compute the communication complexity and transmission rate of
this first protocol, underlining the most expensive parts:

Communication complexity: we can set ` := 1.

– Step I requires transmitting t+1 codewords over the channels, thus requiring
a total of O

(
n2
)

symbols to be transmitted.
– Step II-(i) requires broadcasting up to t words of Fn

q , thus giving a total of

O
(
n3
)

symbols to be transmitted.
– Finally, step II-(ii) requires broadcasting a total of t + 1 symbols (a size-t

syndrome and the masked secret), thus giving a total of O
(
n2
)

elements to
be transmitted.

Hence since we can assume that q = O(n), we get a total communication com-
plexity of

O
(
n3 log n

)
9



bits to be transmitted to communicate a single-bit secret.

Tranfer rate: optimal rate is achieved for ` = Ω (n).

– Step I requires transmitting t+ ` codewords, for a total of O
(
n2 + n`

)
sym-

bols.
– Step II-(i) remains unchanged from the single-bit case, and thus requires

transmitting O
(
n3
)

symbols.
– Finally, step II-(ii) requires broadcasting a total of `(t+ 1) symbols (` size-t

syndromes and the masked secrets), thus giving a total of O
(
n2`
)

symbols;

To sum up, the overall transmission rate is equal to

O
(
n2 + n`+ n3 + n2`

)
`

= O
(
n2
)
.

It is immediately seen that the main bottleneck for communication complex-
ity is step II-(i), i.e. the communication of the pseudo-basis, while for transmis-
sion rate it is step II-(ii), i.e. the communication of the masked secrets and of
the syndromes. We address these issues in the following sections.

5 Improvements to the Protocol

We discuss in this section some key improvements to the protocol; Section 5.1
presents the key technique of generalized broadcast, Sections 5.2 and 5.3 show a
new way to communicate the pseudo-basis (the main bottleneck for communica-
tion complexity) and Section 5.4 a new way to communicate the masked secret
and the information to open the masks (bottleneck for transmission rate).

5.1 Generalized Broadcast

Our improvements on the two bottlenecks showed in Section 4 rely on the fun-
damental technique of generalized broadcast, which has been highlighted in the
paper by Kurosawa and Suzuki [5].

The intuition is the following: we want to choose a suitable code CBCAST for
perfectly reliable transmission, i.e. we require that if any word x ∈ CBCAST is com-
municated by sending each symbol xi over the i-th channel, then x can always
be recovered in spite of the errors introduced by the adversary. In the general
situation, since Eve can introduce up to t errors, CBCAST must have minimum dis-
tance 2t+ 1 = n, and hence dimension 1; for instance, CBCAST can be a repetition
code, yielding the broadcast protocol of Section 3.1.

Now assume that at a certain point of the protocol, Bob gets to know the
position of m channels under Eve’s control; then the communication system
between the two has been improved: instead of n channels with t errors, we
have n channels with m erasures and t − m errors (since Bob can ignore the
symbols received on the m channels under Eve’s control that he has identified).
We can thus expect that reliable communication between Alice and Bob (i.e.,
broadcast) can be performed at a lower cost by using a code with smaller distance
and greater dimension; the following lemma formalizes this intuition.
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Lemma 3 (Generalized Broadcast). Let m ≤ t and let Cm be an MDS code
of parameters [n,m+ 1, n−m]q; assume that Bob knows the location of m chan-
nels controlled by Eve. Then Alice can communicate with perfect reliability m+1
symbols x1, · · · , xm+1 of Fq to Bob in the following way: she first takes the code-
word c ∈ Cm which encodes (x1, · · · , xm+1), then sends each symbol of c through
the corresponding channel; Eve cannot prevent Bob from completely recovering
the message.

We refer to this procedure as m-generalized broadcast.

Proof. Notice that c is well-defined since Cm has dimension m+1. Now since Bob
knows the location of m channels that are under Eve’s control, he can replace the
symbols of c received via these channels with erasure marks ⊥, and consider the
truncated codeword c̃ lacking these symbols. Now c̃ belongs to the punctured
code obtained from Cm by removing m coordinates, which has minimum distance
(n −m) −m ≥ 2(t −m) + 1; it can thus correct up to t −m errors, which is
exactly the maximum number of errors that Eve can introduce (since she controls
at most t −m of the remaining channels). Once he has obtained the shortened
codeword c̃, he can then recover the complete one since Cm can correct from m
erasures, given that it has minimum distance n−m ≥ m.

ut

Hence if Alice knows that Bob has identified at least m channels under Eve’s
control, she can divide the cost of a broadcast by a factor m (since the above
method requires to transmit n symbols of Fq to communicate m+ 1 symbols of
Fq).

In the following sections we will make use of Lemma 3 to improve the effi-
ciency of the protocol.

5.2 Improved Transmission of the Pseudo-Basis: a Warm-Up

We present here a new method of communicating the pseudo-basis, which is a
straightforward implementation of the generalized broadcasting technique.

The key point is the following observation:

Lemma 4. Let W =
(
y(i) : i ∈ I

)
be a pseudo-basis of the set of received vec-

tors; then if Bob knows m elements of W, he knows at least m channels that
have been forged by Eve.

Proof. By subtracting the original codeword from an element of the pseudo-
basis, Bob knows the corresponding error; furthermore, these errors form a basis
of the entire error space (Remark 1). Now if Bob knows m elements of the
pseudo-basis, he then knows m of these errors, which necessarily affect at least
m coordinates since they are linearly independent. The claim then follows.

ut

The sub-protocol consisting of the transmission of the pseudo-basis by Alice
is simply the following:
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Protocol 2 Alice wishes to communicate to Bob a pseudo-basis W of car-
dinality w.

For any i = 1, · · · , w, she then uses (i − 1)-generalized broadcast to
communicate the i-th element of the pseudo-basis to Bob.

Lemmas 3 and 4 ensure that this technique is secure; we now compute its
cost:

– Each element of the pseudo-basis is a vector of Fn
q ;

– using m-generalized broadcast to communicate n elements of Fq requires

communicating
⌈

n
m+1

⌉
n field elements;

– hence Protocol 2 requires communicating the following number of elements
of Fq:

w∑
i=1

⌈n
i

⌉
n = O

(
n2

w∑
i=1

1

i

)
= O

(
n2 log n

)
which means that we have reduced to O

(
n2 log2 n

)
the total communication

complexity.

This complexity is still one logarithmic factor short of our goal; in the next
section we show a more advanced technique that allows to bring down the cost
to O

(
n2
)

field elements.

5.3 Improved Transmission of the Pseudo-Basis: the Final Version

In this section we show a more advanced technique to communicate the pseudo-
basis. The key idea is the following: denote by w the size of the pseudo-basis; if
Alice can find a received word y which is subject to an error of weight cw for
some constant c and sends it to Bob, then Bob will learn the position of at least
cw corrupted channels. Alice will thus be able to use cw-generalized broadcast as
in Lemma 3 to communicate the elements of the pseudo-basis (which amount to
wn symbols); since cw-generalized broadcast of a symbol has a cost of O(n/cw),
the total cost of communicating the pseudo-basis will thus be (wn) ·O(n/cw) =
O
(
n2
)
.

We thus devise an algorithm that allows Alice to find a word y subject to
at least m = Ω(w) errors (for instance, such condition is met if y is subject to
Ω(t) errors, since w ≤ t). Notice that such a word y may not exist among the
received words

{
y(i)
}

, therefore we will look for a linear combination of the y(i)
with this property.

As mentioned in Sections 2 and 3, Alice will make extensive use of a decoding
algorithm. Recall that a code of distance d can be uniquely decoded from up to
b(d− 1)/2c errors, and that in the case of Reed-Solomon codes, such decoding

12



can be performed in time polynomial in n [6]; this means that for any Reed-
Solomon code C there exists an algorithm that takes as input a word y ∈ Fn

q and
outputs a decomposition y = x + e with x ∈ C and wH(e) ≤ b(d− 1)/2c (if such
a decomposition does not exist, the algorithm outputs an error message ⊥).

Protocol 3 Alice has received the words y(1), · · · ,y(r) and has computed a
pseudo-basis

{
y(i) : i ∈ I

}
of them; denote by w its cardinality. Alice pro-

ceeds with the following actions:

– she uses Algorithm 1 below to find a “special word” y, with coefficients
(µi : i ∈ I) such that y =

∑
i∈I µiy

(i). She then communicates to Bob

the triplet
(
I, (µi : i ∈ I),y

)
by using ordinary broadcast.

– Finally, she communicates the pseudo-basis of the received values by us-
ing m-generalized broadcast, where m := min(w, t/3), w being the car-
dinality of the pseudo-basis.

Before describing the algorithm formally and proving its validity, we sketch
the idea. Alice has computed a pseudo-basis {y(i) : i ∈ I}. For i ∈ I, she applies
the decoding algorithm to y(i) = x(i) + e(i). If the decoding algorithm fails, it
means that y(i) is at a large Hamming distance from any codeword, in particular
from Bob’s codeword x(i), and the single y(i) is the required linear combination.
If the decoding algorithm succeeds for every i, Alice obtains decompositions

y(i) = x̃(i) + ẽ(i)

where x̃(i) is some codeword. Alice must be careful, because she has no guarantee
that the codeword x̃(i) coincides with Bob’s codeword x(i), and hence that ẽ(i)

coincides with Eve’s error vector e(i). What Alice then does is look for a linear
combination

∑
i µiẽ

(i) that has Hamming weight at least t/3 and at most 2t/3.
If she is able to find one, then a simple Hamming distance argument guaran-
tees that the corresponding linear combination of Eve’s original errors

∑
i µie

(i)

also has Hamming weight at least t/3. If Alice is unable to find such a linear
combination, then she falls back on constructing one that has weight not more
than 2t/3 and at least the cardinality w of the pseudo-basis. This will yield an
alternative form of the desired result. We now describe this formally.

Algorithm 1 Alice has a pseudo-basis
(
y(i) : i = 1, · · · , w

)
(indices have

been changed to simplify the notation); the algorithm allows Alice to identify
a word y subject to at least m := min(w, t/3) errors introduced by Eve.

In the following steps, whenever we say that the output of the algorithm
is a word y(i), we implicitly assume that the algorithm also outputs the

13



index i; more generally, whenever the algorithm outputs a linear combination∑
i µiy

(i) of the words in the pseudo-basis, we assume that it also outputs
the coefficient vector (µ1, · · · , µw) of the linear combination.

1. Alice uses a unique decoding algorithm to decode the elements of the
pseudo-basis; if the algorithm fails for a given word y(i) (i.e., it doesn’t
output a codeword having distance at most t/2 from y(i)), then Algo-
rithm 1 stops and outputs y(i).

2. If the decoding algorithm worked for every i, Alice gets a decomposition
y(i) = x̃(i) + ẽ(i) with x̃(i) ∈ C and wH

(
ẽ(i)
)
≤ t/2 for every i; notice

that it is not guaranteed that the x̃(i) coincide with the codewords x(i)

originally chosen by Bob.
If any of the ẽ(i) has weight greater than t/3, the algorithm stops and
outputs y(i).

3. Define f̃ (1) := ẽ(1) and ỹ(1) := y(1). For any i = 2, · · · , w, proceed with
the following actions:

• let λ(i) be a non-zero element of Fq such that f̃
(i−1)
j + λ(i)ẽ

(i)
j 6= 0

for any coordinate j ∈ {1, 2, . . . , n} for which f̃
(i−1)
j 6= 0.

• let f̃ (i) := f̃ (i−1) + λ(i)ẽ(i) and ỹ(i) := ỹ(i−1) + λ(i)y(i);

if wH

(
f̃ (i)
)
> t/3, stop and output ỹ(i).

4. Output ỹ(w).

We can now prove that this algorithm allows Alice to find the desired code-
word, which naturally implies that Protocol 3 indeed allows for reliable commu-
nication of the pseudo-basis:

Proposition 3. Algorithm 1 allows Alice to find a word y subject to an error
introduced by Eve of weight at least m := min(w, t/3).

Proof. The following observation is the key point of the algorithm:

Lemma 5. Let y = x+e = x̃+ ẽ for x, x̃ ∈ C. Then if ẽ satisfies wH(ẽ) ≤ 2t/3,
we have that wH(e) ≥ min {wH(ẽ), t/3}.

Proof. The claim is trivial if e = ẽ; hence assume that e 6= ẽ. Notice that
e− ẽ = x̃− x; hence since dmin(C) = t+ 1, we have that

t+ 1 ≤ wH (e− ẽ) ≤ wH (e) + wH (ẽ) ≤ wH (e) +
2t

3

Hence we have that wH (e) ≥ t/3, so that the claim is proved.
ut

We now analyze the algorithm step-by-step:
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1. if decoding fails for a word y(i), then it is guaranteed that the error intro-
duced by Eve on it has weight bigger than t/2 > m (otherwise, the unique
decoding algorithm would succeed since dmin(C) = t+ 1).

2. since by assumption wH

(
ẽ(i)
)
≤ t/2 ≤ 2t/3, if we also have t/3 ≤ wH

(
ẽ(i)
)
,

then thanks to Lemma 5 the output y(i) is of the desired type.
3. Since the algorithm did not abort at step 2, all elements ẽ(i) have weight at

most t/3.
First notice that if the algorithm did not produce f̃ (i−1) as output, then f̃ (i)

is well-defined: indeed, we have that wH

(
f̃ (i−1)

)
≤ t/3; this means that λ(i)

is well-defined, since it is an element of Fq that has to be different from 0
and from at most t/3 < n− 1 elements.

Now if the algorithm outputs f̃ (i), then necessarily wH

(
f̃ (i−1)

)
≤ t/3 (other-

wise the algorithm would have stopped before computing f̃ (i)); furthermore,

by assumption we have that wH

(
ẽ(i)
)
≤ t/3, so that wH

(
f̃ (i)
)
≤ 2t/3 and

we can apply Lemma 5, so that the output is of the desired type.
4. Notice that for any i = 1, · · · , w, we have that f̃ (i) has maximal weight

among elements of the vector space 〈ẽ(1), · · · , ẽ(i)〉 (the condition on λ(i)

ensures that this condition is met at each step). Hence since the elements{
ẽ(1), · · · , ẽ(w)

}
are linearly independent (because their syndromes are lin-

early independent, since (y(1), . . . ,y(w)) is a pseudo-basis), we have that

wH

(
f̃ (i)
)
≥ i for any i.

In particular, we have that wH

(
f̃ (w)

)
≥ w; hence since wH

(
f̃ (w)

)
≤ 2t/3 as

remarked above, we have that the output ỹ(w) is of the desired type.
ut

Remark 2. Protocol 3 requires Alice to use ordinary broadcast to communicate
a single vector of Fn

q (hence transmitting n2 elements of Fq), then to use m-
generalized broadcast with m ≥ min{w, t/3} to communicate w ≤ t vectors of
Fn
q (hence transmitting at most 3n2 elements of Fq). We thus get a total of at

most 4n2 elements of Fq to be transmitted.
Furthermore, Algorithm 1 has running time polynomial in n, as long as the

code C has a unique-decoding algorithm of polynomial running time as well. As
already remarked, such algorithms exist for instance for Reed-Solomon codes.

We study the second bottleneck of the original protocol in the next section.

5.4 The Improved Communication of the Masked Secrets

We present in this section the second key improvement to the protocol: after the
pseudo-basis is communicated, we devise a way to lower the cost of transmitting
to Bob the masked secrets and the information to open the masks. We aim at a
cost linear in the number ` of secrets to be transmitted (while it was quadratic in
Protocol 1). As in Section 5.3, Alice makes use of a unique decoding algorithm.
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Protocol 4 The protocol is performed once the pseudo-basis has been com-
municated to Bob; we thus assume that Bob knows the global support
S := ∪isupport

(
e(i)
)

of the errors affecting the elements y(i) (cf. Re-
mark 1). We assume that Alice wishes to communicate ` secret elements
s(1), · · · , s(`) of Fq to Bob, and that ` codewords x(1), · · · ,x(`) of C have
been sent by Bob to Alice (who has received y(1), · · · ,y(`)) and have not
been disclosed in other phases.

– Alice uses a unique decoding algorithm to decode y(i), so that for every i
she obtains (if decoding was successful) a decomposition y(i) = x̃(i)+ ẽ(i)

with x̃(i) ∈ C and wH

(
ẽ(i)
)
≤ t/2.

For every i = 1, · · · , ` she then communicates the following elements to
Bob:

• the syndrome H
(
y(i)
)T

via t/2-generalized broadcast;

• the elements z
(i)
1 , z

(i)
2 of Fq by ordinary broadcast, where

z
(i)
1 := s(i) + h

(
y(i)
)T

z
(i)
2 :=

{
s(i) + h

(
x̃(i)
)T

if decoding succeeded,
0 otherwise.

– Bob can then obtain each secret s(i) in a different way depending on the
size of the global support S of the errors:
• if |S| ≥ t/2, he uses the knowledge of the syndrome of y(i) and of

the support of the error to compute y(i), so that he can compute

z
(i)
1 − h

(
y(i)
)T

as well.
• if |S| < t/2, he ignores the syndrome that has been communicated to

him, and computes z
(i)
2 − h

(
x(i)
)T

.

We now prove that this protocol works and is secure:

Proposition 4. The above protocol allows for private and reliable communica-
tion of ` elements of Fq.

Proof. We check Privacy and Reliability.

Privacy: we have already observed in Proposition 2 that Eve has no information
on hyT (we drop the index (i) to simplify notation), so that z1 perfectly hides
the secret. Now notice that if y can be decoded, then z2 = s+ hx̃T = z1 −hẽT ;
hence to conclude, it suffices to prove that Eve already knows whether y can be
decoded or not, and that she knows ẽ if y can be decoded. We prove this claim
in the following lemma:

16



Lemma 6. Let x be a codeword sent by Bob to Alice, and let y = x + e be the
received vector. Then Eve knows whether y can be decoded (i.e. y = x̃ + ẽ as
above) or not; furthermore, if y can be decoded, then she knows ẽ.

Proof. By definition, ẽ is a vector of minimum weight (and of weight at most
t/2) such that y− ẽ belongs to C; notice that the last condition is equivalent to
require that e − ẽ belongs to C. Now these requirements uniquely determine ẽ:
indeed, if by contradiction e − e′ ∈ C for another e′, then e′ − ẽ would belong
to C, a contradiction since wH(e

′ − ẽ) ≤ t/2 + t/2 < dmin(C).
Hence ẽ is uniquely determined by e and C: Eve can thus compute it from

the data in her possession. Notice that, in particular, she knows whether ẽ exists
or not, i.e. whether decoding of y is possible or not.

ut

Reliability: we have two possible cases:

– if |S| ≥ t/2, then Bob is able to acquire the syndrome HyT of y via t/2-
generalized broadcast (cf. Lemma 3); thus as remarked in Proposition 2, he
can recover y and open the mask to get the secret.

– if |S| < t/2, then Bob knows that Alice has correctly decoded y, since
Eve introduced less than dmin/2 errors; thus x̃ = x so that z2 − hxT =(
s+ hx̃T

)
− hxT = s.

Notice that in this case Bob will have failed to decode the t/2-generalized
broadcast but he will simply ignore the elements received in this way.

ut

Remark 3. Notice that we could further improve the efficiency of this protocol
by requiring Alice to use w-generalized broadcast (instead of regular one) to

communicate the elements z
(i)
1 and z

(i)
2 , where w is the size of the pseudo-basis;

this, however, would not reduce the order of magnitude of the total cost.

6 The Improved Protocol

The improved protocol simply implements the new techniques of sections 5.3
and 5.4.

Protocol 5 The protocol allows Alice to communicate ` secret elements
s(1), · · · , s(`) of Fq to Bob, where q is an arbitrary integer with q > n. The
protocol takes as input an MDS code C of parameters [n, t+ 1, t+ 1]q and a
vector h of length n as in Lemma 1.

I. Bob chooses t + ` + 1 uniformly random and independent codewords
x(1), · · · ,x(t+`+1) of C and sends them over the channels to Alice.
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II. Alice receives the corrupted versions y(1), · · · ,y(t+`+1), and she com-
putes a pseudo-basis

{
y(i) : i ∈ I

}
of the received values; she then pro-

ceeds with the following actions:
(i) She uses Protocol 3 to communicate the pseudo-basis to Bob.

(ii) She then uses the remaining words to communicate to Bob the
masked secrets and the data to retrieve them as in the first part
of Protocol 4.

III. Upon receiving the pseudo-basis, Bob proceeds to compute the global sup-
port S of the error space; he can then obtain each secret s(i) as specified
in the corresponding part of Protocol 4.

Notice that privacy and reliability of the protocol follow from the previous
discussions; we now analyze the complexity of the protocol:

Communication complexity: we can set ` := 1.

– Step I requires transmitting t+2 words of Fn
q over the channels, thus requiring

a total of O
(
n2
)

symbols to be transmitted.

– Step II-(i) requires transmitting O
(
n2
)

elements of Fq as shown in Remark 2.
– Finally, step II-(ii) requires using t/2-generalized broadcast to communicate
n symbols, and standard broadcast to communicate 2 symbols, thus giving
a total of O(n) elements to be transmitted.

Hence since we can assume that q = O(n), we get a total communication
complexity of

O
(
n2 log n

)
bits to be transmitted to communicate a single-bit secret.

Transfer rate: optimal rate is achieved for ` = Ω (n).

– Step I requires transmitting t + ` + 1 = ` + O(n) codewords, for a total of
n`+O(n2) symbols.

– Step II-(i) remains unchanged from the single-bit case, and thus requires
transmitting O

(
n2
)

symbols.
– Finally, step II-(ii) uses t/2-generalized broadcast to communicate `t ele-

ments of Fq and standard broadcast to communicate 2` elements of Fq, so
that the overall cost is equal to 4n` symbols to be transmitted.

To sum up, the overall transmission rate is equal to

5n`+O
(
n2
)

`
= 5n+O

(
n2/`

)
Furthermore, by using Reed-Solomon codes (instead of arbitrary MDS ones),

we then have that Protocol 5 has computational cost polynomial in n for both
Alice and Bob.
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7 Concluding Remarks

We have presented a two-round PSMT protocol that has polynomial compu-
tational cost for both sender and receiver, and that achieves transmission rate
linear in n and communication complexity in O

(
n2 log n

)
; we believe that our

protocol is conceptually simpler compared to previous work and fully harnesses
the properties of the pseudo-basis.

As proved in [10], the transfer rate is asymptotically optimal; furthermore,
our protocol has a low multiplicative constant of 5.

Conversely, it remains open whether the O
(
n2 log n

)
communication com-

plexity is optimal or not; the only known lower bound on this parameter is still
O(n), as the one for transfer rate [10]. We believe that a communication com-
plexity lower than O

(
n2
)

is unlikely to be achievable, at least not without a
completely different approach to the problem.
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