
Fast Pseudorandom Functions
Based on Expander Graphs?

Benny Applebaum and Pavel Raykov

School of Electrical Engineering, Tel-Aviv University
{bennyap,pavelraykov}@post.tau.ac.il

Abstract. We present direct constructions of pseudorandom function
(PRF) families based on Goldreich’s one-way function. Roughly speak-
ing, we assume that non-trivial local mappings f : {0, 1}n → {0, 1}m
whose input-output dependencies graph form an expander are hard to
invert. We show that this one-wayness assumption yields PRFs with rel-
atively low complexity. This includes weak PRFs which can be computed
in linear time of O(n) on a RAM machine with O(logn) word size, or
by a depth-3 circuit with unbounded fan-in AND and OR gates (AC0
circuit), and standard PRFs that can be computed by a quasilinear size
circuit or by a constant-depth circuit with unbounded fan-in AND, OR
and Majority gates (TC0).
Our proofs are based on a new search-to-decision reduction for expander-
based functions. This extends a previous reduction of the first author
(STOC 2012) which was applicable for the special case of random local
functions. Additionally, we present a new family of highly efficient hash
functions whose output on exponentially many inputs jointly forms (with
high probability) a good expander graph. These hash functions are based
on the techniques of Miles and Viola (Crypto 2012). Although some of our
reductions provide only relatively weak security guarantees, we believe
that they yield novel approach for constructing PRFs, and therefore
enrich the study of pseudorandomness.

1 Introduction

A pseudorandom function (PRF) is a family of efficiently computable functions
with the property that the input-output behavior of a random instance of the
family is “computationally indistinguishable” from that of a truly random func-
tion. Abstractly, such functions provide a “direct access” to an exponentially
long pseudorandom string. Since their discovery by Goldreich, Goldwasser and

? A full version of this paper is available in [AR16]. Research supported by the Eu-
ropean Union’s Horizon 2020 Programme (ERC-StG-2014-2020) under grant agree-
ment no. 639813 ERC-CLC, ISF grant 1155/11, the Blavatnik Interdisciplinary Cy-
ber Research Center and by the Check Point Institute for Information Security. This
work was done in part while the first author was visiting the Simons Institute for the
Theory of Computing, supported by the Simons Foundation and by the DIMAC-
S/Simons Collaboration in Cryptography through NSF grant CNS-1523467.

Micali [GGM86], PRFs have played a central role in cryptography and complex-
ity theory. Correspondingly, the question of minimizing the complexity of PRFs
has attracted a considerable amount of attention.

Indeed, apart of being a fundamental object, fast PRFs are strongly moti-
vated by a wide range of applications. Being the core component of symmetric
cryptography, highly-efficient PRFs directly imply highly-efficient implementa-
tions of Private-Key cryptosystems, Message-Authentication Codes, and Identi-
fication Schemes. Fast pseudorandom objects (PRFs and PRGs) can be also used
to speed-up several expensive Cryptomania-type applications. For example, se-
cure computation protocols, functional encryption schemes, and program obfus-
cators that efficiently support a PRF functionality can be bootstrapped with rel-
atively minor cost to general functionalities (cf., [DI05,IKOS08,GVW12,App14]).
Interestingly, for these applications parallel-complexity (e.g., circuit depth) seems
to be the main relevant complexity measure (affecting round complexity or the
number of multilinear levels), while time (e.g., circuit size) is secondary. Another
somewhat different motivation comes from the theory of computational com-
plexity. PRFs with low-complexity shed light on the power of low-complexity
functions, and partially explain our inability to analyze them. For example, the
existence of PRFs in a complexity class C can be used to show that this class
is not PAC-learnable [PW88,Val84] and that certain “natural proof” techniques
will fail to prove circuit lower-bounds for functions in C [RR97]. Last, but not
least, identifying the simplest construction of PRFs may provide valuable in-
sights regarding the nature of computational intractability and the way it is
achieved by a sequence of cheap and basic operations. This “magic” of hardness
which arises from highly-efficient computation can be viewed as the essence of
modern cryptography.

Being relatively complicated objects, a considerable research effort has been
made to put PRFs on more solid ground at the form of simpler one-wayness
assumptions (cf. [GGM86,HILL99,NR95,NR97,NRR00,LW09,BMR10,BPR12]).
Annoyingly, the existence of a security reduction seem to incur a cost in efficiency.
Indeed, existing theoretical constructions (either based on general primitives or
on concrete intractability assumptions) are relatively slow compared to “practi-
cal constructions” whose security is based on first-order cryptanalytic principles
rather than on a security reduction. As a concrete example, theoretical construc-
tions of PRFs Fk : {0, 1}n → {0, 1}n have super-linear (or even quadratic) circuit
size. In contrast, Miles and Viola [MV12] presented a candidate PRF which can
be computed by a quasilinear circuit of size Õ(n). (The notation Õ(n) subsumes
polylogarithmic factors.) Similarly, Akavia et al. [ABG+14] proposed a candi-
date for a weak PRF1 which can be computed by a constant-depth circuit with
unbounded fan-in AND, OR and XOR gates, whereas it is unknown how to
construct such a weak PRF based on one-wayness assumption.

Our goal in this paper is to narrow the gap between provably-secure con-
structions and highly-efficient candidates. We present several constructions of

1 A weak PRF is a relaxation of a PRF which is indistinguishable from a random
function for an adversary whose queries are chosen uniformly at random.

pseudorandom functions with low-complexity, and show that their security can
be reduced to variants of Goldreich’s one-way function. Before introducing our
constructions, let us present Goldreich’s one-way function. (For more details see
the survey [App15].)

1.1 Goldreich’s one-way function

Let n be an input length parameter, m ≥ n be an output length parameter and
d � n be a locality parameter. For a d-local predicate P : {0, 1}d → {0, 1} and
a sequence G = (S1, . . . , Sm) of d-tuples over the set [n] := {1, . . . , n}, we let
fG,P : {0, 1}n → {0, 1}m denote the mapping

z 7→ (P (z[S1]), . . . , P (z[Sm])),

i.e., the i-th output bit is computed by applying the predicate P to the input
bits which are indexed by the i-th tuple Si. Goldreich [Gol00] conjectured that
for m = n and possibly small value of d (e.g., logarithmic or even constant),
the function fG,P is one-way as long as the set system (S1, . . . , Sm) is “highly
expanding” and the predicate P is sufficiently “non-degenerate”. We elaborate
on these two requirements.

Expansion. To formalize the expansion property let us think of G = (S1, . . . , Sm)
as a d-uniform hypergraph with m hyperedges (which correspond to the outputs)
over n nodes (which correspond to the inputs). The expansion property essen-
tially requires that every not-too-large subset of hyperedges is almost pair-wise
disjoint. Formally, for a threshold r, the union of every set of ` ≤ r hyperedges
Si1 , . . . , Si` should contain at least (1− β)d` nodes, i.e., |

⋃`
j=1 Sij | ≥ (1− β)d`,

where β is some constant smaller than 1
2 (e.g., 0.1).

Secure predicates. A noticeable amount of research was devoted to studying
the properties of “secure” predicates accumulating in several algebraic crite-
ria (cf., [Ale03,MST03,ABW10,BQ12,ABR12,OW14,FPV15]). It is known for
example, that in order to support an output length of m = nc the predicate
P must have resiliency of k = Ω(c), i.e., P should be uncorrelated with any
GF(2)-linear combination of at most k of its inputs. Additionally, the predicate
P must have algebraic degree (as a GF(2) polynomial) of at least c. Moreover, P
must have high rational degree in the following sense: any polynomial Q whose
roots cover the roots of P or its complement must have algebraic degree of
Ω(c) [AL15]. An example for such a predicate (suggested in [AL15]) is the d-ary
XOR-MAJd predicate which partitions its input w = (w1, . . . , wd) into two parts
wL = (w1, . . . , wbd/2c) and wR = (wbd/2c+1, . . . , wd), computes the XOR of the
left part and the majority of the right part, and XOR’s the results together.2

This predicate achieves resiliency of d/2 and rational degree of d/4 and therefore
seems to achieve security for m = nΩ(d) outputs.

2 In fact, it seems better to allocate a larger fraction of the inputs to the Majority
part. See [AL15].

Security. Intuitively, large expansion (together with high resiliency) provide se-
curity against local algorithms that employ some form of divide-and-conquer
approach. Due to the expansion of the input-output hypergraph, any small
subset of the outputs gives very little information on the global solution x.
High rational degree provides security against more global approaches which
rely on different forms of linearization and algebraic attacks. These intuitions
were formalized and proved for several classes of algorithms in previous works
(cf.[AHI05,ABW10,CEMT14,ABR12,BR13,OW14]). Following these works, we
make the following strong version of Goldreich’s conjecture:

Assumption 1 (Expander-based OWFs (Informal)). For some univer-
sal constant α ∈ (0, 1) and every d-uniform hypergraph G with n nodes and
m < nαd hyperedges which is expanding for sets of size r = nΩ(1), the function
fG,XOR-MAJd cannot be inverted in polynomial time.3

This assumption is consistent with known attacks. In fact, hardness results
(against limited families of attacks) suggest that inversion is hard even for ad-
versaries of complexity exp(r) where r is the expansion threshold. We refer to
this variant as the strong EOWF assumption. We further mention that although
previous works mainly focused on the case where the locality d is constant or
logarithmic in n (which is going to be our main setting here as well), it seems
reasonable to conjecture that the assumption holds even for larger values of d
(e.g., d = nδ for constant δ ∈ (0, 1)). Finally, we note that the expansion require-
ment implicitly puts restrictions on the values of n,m and d. Roughly speaking,
an expansion of r = n1−β requires Θ(1/β2) ≤ d ≤ nΘ(β) and restricts m to be

at most nΘ(dβ2).

1.2 Results and Techniques

We present several constructions of expander-based PRFs.

Weak PRF Let P be some d-ary predicate (e.g., XOR-MAJd). In our first
construction F1, we think of the input x ∈ {0, 1}n as specifying a hypergraph
Gx and let the output y be the value of fGx,P applied to the collection key k ∈
{0, 1}n. Namely, we think of the data x as specifying a computation that should
be applied to k. The hypergraph Gx is defined in the natural way: Partition x
to (d log n)-size substrings, and view each substring as a d-tuple of elements in
[n] where each element is given in its binary representation. An adversary that
makes q queries x1, . . . , xq essentially sees the value of fG,P (k) where G =

⋃
Gxi .

When the adversary is allowed to choose the queries, the outcome cannot be

3 In Section 2 we provide a more general assumption which allows the hypergraph to
be non-uniform, and is parameterized by an expansion parameter, by a predicate
family P and by a concrete bound on the security of the function in terms of the
(circuit) size of the adversary and its success probability. The above assumption is
given here in a simplified form for ease of presentation.

pseudorandom (think of the case where Gx1
and Gx2

share the same hyperedge).
However, when the queries x1, . . . , xq are chosen at random (as in the setting of a
weak PRF), the resulting hypergraph G is a random hypergraph which is likely
to be expanding. At this point, we can employ a search-to-decision reduction
from [App13], which shows that for random hypergraphs G, one-wayness implies
pseudorandomness. It follows that, for a proper choice of parameters (e.g., d =
Ω(log n)), our assumption implies that the function F1 is a weak PRF.4

This construction can be instantiated with different locality parameters d,
ranging from O(log n) to nδ. In the logarithmic regime, this gives rise to a con-

struction F1 : {0, 1}n → {0, 1}n/ log2 n which is computable in linear time of O(n)
on a RAM machine with O(log n) word size. Additionally, this function can be
computed, for any fixed key k, by a depth-3 circuit with unbounded fan-in AND
and OR gates (i.e., an AC0 circuit).5 To the best of our knowledge this is the
first construction of a weak PRF that achieves such efficiency guarantees.

Concrete security and application to learning. The (strong) EOWF assump-
tion implies that F1 resists almost-exponential size adversaries (computable
by circuits of size t = exp(n1−β) for any β > 0) as long as they make only
q = nO(d) queries to the function. Hence, logarithmic locality provides only se-
curity against a quasi-polynomial number of queries (e.g., exp(polylog(n)). Sim-
ilarly, the distinguishing advantage of the adversary is only quasi-polynomial
ε = exp(−polylog(n)). While this setting of parameters may seem too weak for
many cryptographic applications, it provides a useful theoretical insight. The
classical learning algorithm of Linial, Mansour and Nisan [LMN93] shows that
any AC0-computable weak PRF can be broken either with quasipolynomial dis-
tinguishing advantage or by making quasipolynomial number of queries. (In the
computational learning terminology, AC0 functions are PAC-learnable under
the uniform distribution using a quasipolynomial number of samples and time,
or weakly learnable in polynomial-time with advantage 1/polylog(n) over 1

2 .)
The LMN algorithm relies on the Fourier spectrum of AC0 functions, and the
possibility of improving it to a polynomial-time algorithm is considered to be
an important open problem in learning theory. Our construction suggests that
this is impossible even for depth-3 circuits, and so the Fourier-based algorithm
of [LMN93] is essentially optimal. To the best of our knowledge, this is the first
hardness result for learning depth-3 AC0 circuits over the uniform distribution.
Previous hardness results either apply to AC0 circuits of depth d for large (un-
specified) constant depth d [Kha93], to depth-3 arithmetic circuits [KS09], or to
depth-2 AC0 circuits but over a non-uniform distribution [ABW10,DLS14].

4 Formally, Assumption 1 implies that for a random hypergraph G, the function fG,P

is one-way (since such a hypergraph is likely to be expanding). Then, we can apply
the result of [App13].

5 When analyzing parallel-complexity it is common to restrict the attention for the
case where the key is fixed, cf. [NR95,NR97,NRR00,LW09,BMR10,MV12,ABG+14].

Reducing the distinguishing advantage Our second construction attempts
to strengthen the distinguishing advantage ε of F1. In F1 the hypergraph G =⋃
Gxi fails to be expanding with quasipolynomial probability, and in this case

pseudorandomness may be easily violated. As a concrete example note that, with
probability Ω(n−d), the hypergraph G contains a pair of identical hyperedges
Si = Sj , and so the corresponding outputs will be identical, and distinguishing
(with constant advantage) becomes trivial.

Following [CEMT14], we observe that, although expansion is violated with
quasipolynomial small probability, not all is lost, and, except for a tiny (almost
exponentially small) probability, the hypergraph G is almost expanding in the
sense that after removing a small (say sub-linear) amount of hyperedges the re-
maining hypergraph is expanding. We use this combinatorial structure to argue
that fG,P (k) can be partitioned into two functions f1 and f2, where the input-
output hypergraph G1 of f1 is highly expanding and the function f2 depends
only on a relatively small (sub-linear) number of inputs. As a result we can show
that, for such an almost-expander G, the distribution fG,P (Un) is pseudoran-
dom except for small number of “bad outputs”.6 In fact, the number of “bad
outputs” is small enough to argue that each block of fG,P (Un) (corresponding
to the i-th query) has a large amount of “pseudoentropy”. Hence, we can get
a pseudorandom output (even for almost expanding hypergraphs) by adding a
postprocessing stage in which a randomness extractor is applied to the output
of F1 (i.e., extraction is performed separately per each block of fG,P (Un)).

Formally, our second construction F2 is keyed by a pair of n-bit strings (k, s),
and for a given input x, we output the value Exts(fGx,P (k)) where Ext is a
strong seeded randomness extractor. Since there are linear-time computable ex-
tractors [IKOS08], the construction can be still implemented by a linear-time
RAM machine. Moreover, since the extractor can be computed by a linear func-
tion (and therefore by a single layer of unbounded fan-in parity gates), the
function F2 can be computed by a constant-depth circuit with unbounded fan-in
AND, OR and XOR gates (or even in MOD2 ◦AC0). We prove that the distin-
guishing advantage of the construction is almost exponentially-small. We do not
know whether F2 provides security against larger (say subexponential) number
of queries, and leave it as an open question.

Handling non-random inputs Our next goal is to move from the weak PRF
setting in which the function is evaluated only over random inputs, to the stan-
dard setting where the queries can be chosen by the adversary.7 It is natural to
try to achieve this goal by introducing a preprocessing mapping M that maps
an input x to a hypergraph M(x) with the property that every set of q queries

6 Technically, this requires an extension of our assumption to the case of non-uniform
hypergraphs, and the ability to analyze the function with respect to new predicates
(obtained by restricting some of the inputs of the original predicate).

7 We do not use general transformations from weak PRFs to standard PRFs
(e.g., [NR97]) since they make a linear number of calls to the underlying weak PRF
and therefore incur at least a quadratic overhead in the size of the resulting circuit.

x1 . . . , xq form together a hypergraph G =
⋃
iM(xi) with good expansion prop-

erties. This approach faces two challenges. First, it is not clear at all how to
implement the mapping M (let alone in a very efficient way). Second, we can
no longer rely on the standard search-to-decision reduction from [App13] since
it applies only to randomly chosen hypergraphs (as opposed to arbitrary ex-
panders).

Search-to-decision reduction for expander-based functions. We solve the second
challenge, by proving a new search-to-decision reduction that applies directly
to expander hypergraphs. Namely, we show that if fG,P is one-way for every
expander hypergraph G (as conjectured by in Assumption 1) then it is also
pseudorandom for every expander hypergraph. Technically, the original reduc-
tion of [App13] shows that if an adversary A can distinguish fG,P (Un) from a
truly random string, then there exists an adversary B that inverts fH,P (Un)
where G and H are random hypergraphs (with polynomially related parame-
ters). This reduction strongly exploits the ability of A to attack many different
hypergraphs G. Roughly speaking, every attack on a hypergraph Gi is translated
into a small piece of information on the input x (i.e., a noisy estimation on some
bit xi), and by accumulating the information gathered from different Gi’s the
input x is fully recovered.8

In contrast, in the new search-to-decision theorem we are given a distinguisher
AG which succeeds only over some fixed expanding hypergraph G. First, we
observe that one can slightly modify G and define, for every index i ∈ [n], a
hypergraph Gi such that given y = fGi(x) the attacker AG can be used to obtain
an estimation for the i-th bit of x. (This is already implicit in [App13].) One
may therefore try to argue that the function f⋃

iGi,P
(x) = (fG1

(x), . . . , fGn(x))
can be inverted by calling AG for each block separately. This is problematic for
two reasons: (1) inversion may fail miserably since the calls to AG are all over
statistically-dependent inputs (the same x is being used); and (2) the resulting
hypergraph H =

⋃
iGi is non-expanding (due to the use of almost identical

copies of the same hypergraph G), and so inversion over H does not contradict
the theorem.

Fortunately, both problems can be solved by randomizing each of the Gi’s
(essentially by permuting the names of the inputs). By concatenating the ran-
domized Gi’s, we get a probability distribution D(G) over hypergraphs which

satisfies the following two properties: (1) a random hypergraph H
R← D(G) is

typically a good expander; and (2) Inverting fH,P for a random H
R← D(G)

reduces to inverting fG,P . Since we work in a non-uniform model of adversaries
(circuits), this suffices to prove the theorem. (See Section 3 for details.)

Mapping inputs to expanders. Going back to the first challenge, we still need to
provide a mapping M(x) which, when accumulated over different inputs, results

8 An analogous use of public randomness appears in the seminal Goldreich-Levin the-
orem [GL89] which can be viewed as search-to-decision reduction for the keyed func-
tion fk(x) = (g(x), 〈x, k〉).

in a highly expanding hypergraph. Note that although M operates on n-bit
inputs, it should satisfy a global property that applies to collection of super-
polynomial (or even exponential) number of inputs. Unfortunately, we do not
know how to obtain such a mapping deterministically with a low computational
cost. Instead, we show how to provide a family of mappings Mσ with the prop-
erty that for every fixed sequence of inputs x1, . . . , xq and for a random σ, the
hypergraph G =

⋃
iMσ(xi) is highly expanding with all but exponentially small

probability. The key idea is to note that in order to guarantee expansion for
r-size sets, it suffices to make sure that each set of r hyperedges of G is (almost)
uniformly distributed. This means that Mσ should satisfy the following form of
pseudorandomness: For a random σ, every subset of R = rd log(n) bits of the
random variable (Mσ(x))x∈{0,1}n should be statistically-close to uniform. This
setting is somewhat non-standard: Efficiency is measured with respect to a single
invocation of Mσ (i.e., the complexity of generating a block of m hyperedges),
but pseudorandomness should hold for any set of r hyperedges (R bits) across
different invocations.

We construct such a mapping Mσ by tweaking a construction of Miles and
Viola [MV12]. We view σ ∈ {0, 1}2n as a pair of GF(2n) elements σ1, σ2, and
map an input x ∈ GF(2n) to the GF(2n)-element (x+σ1)−1 ·σ2. (The statistical
analysis of Mσ appears in Section 4.3.) The resulting function F3 is keyed by
(k, σ, s) and for an input x it outputs the value Exts(fMσ(x),P (k)) where Mσ(x)
is parsed as a d-uniform hypergraph with m = n/(d log n) hyperedges and d is
treated as a parameter. Due to the high efficiency of M (which consists of a
single multiplication and a single inversion over GF(2n)), the function F3 can
be computed by a quasilinear circuit Õ(n) or by a constant-depth circuit with
unbounded fan-in AND, OR, and Majority gates (i.e., TC0 circuit), for any
choice of the locality parameter d.

The use of keyed mapping, allows us to prove security against a non-adaptive
adversary whose i-th query is independent of the answers for the previous queries.
We do not know whether the construction remains secure for adaptive adver-
saries, however, using the non-adaptive to adaptive transformation of [BH15],
we can turn our function into a standard PRF without increasing the asymp-
totic cost of the construction (in terms of size and depth). We mention that the
parallel complexity (i.e., TC0) seems essentially optimal for PRF and it matches
the complexity of the best known PRF constructions based on number-theoretic
or lattice assumptions [NR95,NR97,NRR00,BPR12].

Concrete security. Recall that the locality parameter d can vary from logarith-
mic to nδ for some δ ∈ (0, 1). To get an expansion for sets of size n1−β (and
therefore security against exp(n1−β)-size circuits), we must restrict the number

of queries q to be smaller than ndβ
2

. In addition, the locality d should satisfy
4/β2 < d < nβ/4. Hence, polynomial locality d = nδ allows to support sub-
exponential number of queries while providing security against sub-exponential
size circuits with respect to sub-exponential distinguishing advantage. Note that
polynomial locality has also some effect on efficiency: The number of output bits
per invocations decreases to Õ(n/d) and so the computational cost per output

bit is Õ(d) = Õ(nδ). On the other extreme, a logarithmic value of d achieves
an almost-optimal complexity per bit (i.e., Õ(1)), and provides security against
circuits of almost-exponential size (exp(n1−β) for every β > 0) which make a
quasipolynomial number of queries.

Security beyond expansion. We do not know whether our analysis is tight. To
the best of our knowledge, F3 with logarithmic locality may achieve security
even in the presence of sub-exponentially many queries. We remark that our
analysis is somewhat pessimistic since it essentially assumes that the seed s of
the extractor and the seed σ of the preprocessing mapping are both given to
the adversary. Indeed, in this case the adversary sees the underlying hypergraph
and, after sufficiently many queries, it can exploit its non-expanding properties.
In contrast, when s and, more importantly, σ are not given, the adversary does
not get a direct access to the hypergraph. One may assume that as long as M
somewhat hides the hypergraph G, lack of expansion cannot be used to break
the system. The question of identifying the right (and minimal) notion of hiding
remains open for future research.9

1.3 Related candidate PRFs

It is instructive to compare the structure of our constructions to three somewhat
related candidates for PRFs.

The BFKL candidate weak-PRF [BFKL93]. Blum et al. conjectured that the
function

fA,B : x 7→
(⊕
i∈A

xi

)
⊕
(

MAJj∈B(xj)

)
,

is a weak PRF 10, where the key (A,B) is a random pair of logarithmic size
sets A,B ⊆ [n]. That is, the function fA,B takes an n-bit vector x, computes
the parity of the bits of x which are indexed by A and the majority of the bits
which are indexed by B, and outputs the XOR of the two results. This candidate
is essentially dual to our first suggestion. Here the sets A and B are used as a
secret key and the XOR-MAJ predicate is applied to a public random x (the
input to the weak PRF). In contrast, we use x as a key (and keep it private) and
let the input specify the graph structure. Observe that, unlike our construction,
the key of Blum et al. can be described by a string of length nO(logn) and so
it can be broken in quasi-polynomial time and polynomially many samples. In
contrast, we conjecture that, in the presence of polynomially many samples, our
constructions resist attacks of sub-exponential (or even “almost” exponential)
complexity of exp(n1−β).

9 It is not hard to show that if M by itself is a PRF then security holds for F3. The
hope is to get somewhat weaker form of hiding, ideally, one which can be satisfied
by some concrete and highly-efficient mapping M such as the one proposed here.

10 In the terminology of learning theory this means that a random function from the
family is hard to weakly-predict over the uniform distribution.

Goldreich’s suggestion [Gol00]. In the paper which introduced the expander-
based one-way functions (leading to Assumption 1), Goldreich suggested to con-
struct a pseudorandom function by iterating the basic (length-preserving) OWF
fG,P : {0, 1}n → {0, 1}n a logarithmic number of times and letting the (se-
cret) key specify the sequence of randomly chosen predicates. This construction
yields a candidate PRF of circuit complexity O(n log n) and logarithmic depth.
Analyzing the security of this candidate was left as an interesting open question.

A suggestion by Gowers [Gow96]. Gowers conjectured that, for sufficiently large
polynomial m(n), a random m(n)-depth Boolean circuit is a PRF. More accu-
rately, each level of the circuit contains n wires and a single gate P : {0, 1}3 →
{0, 1}3. For each level ` we select three random indices (i, j, k) ∈ [n] and use
the corresponding wires in the `-th layer as the incoming wires to the `-th gate,
the output values of the gate are connected to the wires (i, j, k) located at the
next level. (All other wires simply copy the previous values to the next layer).
When the gate P computes a permutation (over three bits) the resulting circuits
computes a permutation over n-bits. Letting the key consists of the description
of the circuit (i.e., the wiring of the gates), yields a candidate pseudorandom
permutation. Moreover, Gowers proved that the resulting collection is `-wise in-
dependent after m = poly(n, `) levels. (The polynomial dependency in n and `
was improved by [HMMR05,BH08].)

Unlike the constructions presented in this paper, it is currently unknown how
to base any of the above candidates on a one-wayness assumption. Interestingly,
all the above candidates (as well as the candidates of Miles and Viola [MV12]
and Akavia et al. [ABG+14]) can be naturally viewed as letting the key k specify
a “simple” function Fk which is then applied to the (public) input x. In contrast,
in our construction every public input x specifies a simple function fx that is
applied to the key k. This approach is conceptually similar to the structure of the
classical GGM construction [GGM86] which uses the input x to specify a circuit
(whose building blocks are length-doubling pseudorandom generators) that is
applied to the key.

1.4 Conclusion

We presented several elementary constructions of pseudorandom functions. All
our constructions follow a similar template: The input x is mapped to a hyper-
graph Gx, which represents a simple (essentially single-layered) circuit fGx,P , the
resulting circuit is applied to the key k, and the output is fed through some ran-
domness extractor. We believe that this structure provides a new methodology
for constructing pseudorandom functions which deserves to be further studied.

Following Goldreich, we conjecture that as long as the input-output relations
is expanding the computation is hard to invert. We further show that such one-
wayness leads to pseudorandomness by extending the techniques of [App13].
We believe that understanding this assumption, or more generally, relating the
combinatorial structure of circuits to their cryptographic properties is a key
question, which may eventually lead to faster and highly secure PRFs. Our

proofs, which fall short of providing optimal security (in some cases they are
very far from that), should be viewed as a first step in this direction.

Finally, we believe that the tools developed here (e.g., pseudoranodmness
over imperfect expanders, the expander-based search-to-decision reduction, and
the expander-generating hash function M) will turn out to be useful for future
works in the field.

Acknowledgement. We thank Adam Klivans and Shai Shalev-Shwartz for helpful
discussions.

1.5 Organization

We begin with some standard preliminaries along with a basic hypergraph nota-
tion in Section 2. In Section 3 we give the new search-to-decision reduction that
applies to arbitrary expander hypergraphs. The PRF constructions are described
in Section 4.

2 Preliminaries

General preliminaries. We let [n] denote the set {1, . . . , n}. For a string x ∈
{0, 1}n and i ∈ [n], we let x[i] denote the ith bit of x. For a tuple S = (i1, . . . , id),
we let x[S] = x[i1, . . . , id] denote the restriction of x to indices in S, i.e., the string
x[i1] . . . x[id]. For strings x1, . . . , xq we write (xi)

q
i=1 to denote the concatenation

of the strings x1|| · · · ||xq. We write logd n to denote the logarithm of n base d,
if d = 2 we omit writing it explicitly. A function ε(·) is said to be negligible if
ε(n) < n−c for any constant c > 0 and sufficiently large n. We will sometimes
use neg(·) to denote an unspecified negligible function. For a function t(·), we
write t = Õ(n), if t = O(n logk(n)) for some k ∈ N.

Probabilistic notation. For a probability distribution or random variable X

(resp., set), we write x
R← X to denote the operation of sampling a random x

according to X (resp., sampled uniformly from X). We let Un (resp., US) denote
a random variable uniformly distributed over {0, 1}n (resp., over the set S). We
write supp(X) to denote the support of the random variable X, i.e., supp(X) =
{x | Pr[X = x] > 0}. The statistical distance between two probability distribu-
tions X and Y , denoted ∆(X;Y), is defined as the maximum, over all functions
A, of the distinguishing advantage ∆A(X,Y) := |Pr[A(X) = 1]− Pr[A(Y) = 1]|.
We say that X is ε-statistically indistinguishable from Y if ∆(X;Y) ≤ ε and

write X
s≡ε Y . The random variable X is (t, ε)-computationally indistinguish-

able from Y if for every circuit A of size t, the distinguishing advantage ∆A(X,Y)

is at most ε, and we write X
c≡t,ε Y .

Cryptographic primitives. A random variable X over n-bit strings is called (t, ε)-

pseudorandom if X
c≡t,ε Un. A function f : {0, 1}n → {0, 1}m is (t, ε) one-way if

for every t-size adversary A it holds that Prx[A(f(x)) ∈ f−1(f(x))] < ε.

Definition 1 (PRF). A keyed function f : K × X → Y is called (q, t, ε)-
pseudorandom if for any t-size circuit D(·) aided with q oracle gates, the distin-
guishing advantage ∣∣∣∣∣ Pr

k
R←K

[Dfk = 1]− Pr
h
R←H

[Dh = 1]

∣∣∣∣∣ ≤ ε,
where H is a set of all functions mapping inputs from X to Y. An adversary is
called non-adaptive if it generates all the queries at the beginning independently
of the received responses from the oracle gates.

A (q, t, ε)-PRF family is a sequence of keyed functions F = {fn : Kn ×Xn → Yn}
equipped with an efficient key sampling algorithm and an efficient evaluation al-
gorithm where each fn is (q(n), t(n), ε(n))-pseudorandom. We say that F is a
(q, t, ε) non-adaptive PRF (resp., weak PRF) if the above holds for non-adaptive
adversaries (resp., for adversaries such that each of their queries is chosen inde-
pendently and uniformly from Xn).

Low-bias generators. We employ the following notions of low-bias and bitwise-
independence generators. As in the case of PRFs, we view a two-argument func-
tion f(k, x) as a keyed function whose first argument k serves as a key. We
emphasize this distinction by writing fk(x) for f(k, x).

Definition 2. Let g : {0, 1}κ × {0, 1}m → {0, 1}n be a keyed function. For

x ∈ {0, 1}m, let Y (x) denote the random variable gk(x) induced by k
R← {0, 1}κ,

and let Y denote the random variable (Y (x))x∈{0,1}n where the same random
key is used for all x’s. We say that g is:

– (t, ε)-bitwise independent if every t-bit subset of Y is ε-close to uniform (in
statistical distance), i.e., for every ` ≤ t distinct indices i1, . . . , i` we have
that

∆(U`; (Y[ij])
`
j=1) ≤ ε.

– (t, ε)-biased over GF(2) if for every ` ≤ t distinct indices {i1, . . . , i`}, we
have that ∣∣∣∣∣∣Pr

∑̀
j=1

Y[ij] = 1

− 1

2

∣∣∣∣∣∣ ≤ ε,
where the sum is computed over GF(2).

– (t, ε)-linear-fooling over GF(2n) if for every t outputs Y (x1), . . . , Y (xt) (parsed
as elements of GF(2n)) of distinct x1, . . . , xt, every t constants b1, . . . , bt
from GF(2n) (that are not all equal to zero), we have that

∆

(
t∑
i=1

biY (xi) ; UGF(2n)

)
≤ ε.

Sources and Extractors. The min-entropy of a random variable X is defined
to be minx∈supp(X) log 1

Pr[X=x] and is denoted by H∞(X). A keyed function

E : S × X → Y is a strong (k, ε)-extractor if for every distribution X over X
with H∞(X) ≥ k, it holds that ∆((s,Exts(x)) ; (s, U(Y))) ≤ ε, where s

R← S ,

x
R← X and ∆(·; ·) stands for statistical distance.
We consider the following notion of random sources that can be viewed as a

convex combination of the traditional bit-fixing sources [CGH+85].

Definition 3 (Generalized Bit-Fixing Source). A distribution X over {0, 1}n
is a generalized k-bit-fixing source if there exist k distinct indices S such that
X[S] is distributed like Uk and X[[n] \ S] is independent from X[S].

We use the following simple lemma (whose proof is deferred to the full ver-
sion [AR16]).

Lemma 1. Let Ext be a strong (m− r, δ)-extractor for m-bit sources. Let Z =
Z1|| · · · ||Zq be a generalized (qm−r)-bit-fixing source, where each |Zi| = m. Then
for a uniformly chosen seed s, the random variable (s,Exts(Z1), . . . ,Exts(Zq))
is (q · δ)-statistically indistinguishable from uniform.

Hypergraphs. An (n,m)-hypergraph G is a hypergraph over vertices [n] with m
hyperedges (S1, . . . , Sm) where each hyperedge is viewed as a tuple (i1, . . . , ik),
i.e., it is ordered and may contain duplications. It is sometimes convenient to
think of a hypergraph G as a bipartite graph, where the n vertices represent
the lower layer of the graph, the hyperedges represent the upper layer of the
graph such that each hyperedge S = (i1, . . . , ik) is connected to the vertices
i1, . . . , ik. We say that G is d-uniform (denoted by (n,m, d)-hypergraph) if all
the hyperedges are of the same cardinality d. G is almost d-uniform (denoted by
[n,m, d]-hypergraph) if d/2 < |Si| ≤ d for all i ∈ [m]. We let Gn,m,d denote the
probability distribution over (n,m, d)-hypergraphs in which each of the m hyper-
edges is chosen independently and uniformly at random from [n]d. We say that a
distribution over (n,m, d)-hypergraphs is (k, ε)-random if any k hyperedges are
ε-close (in statistical distance) to the uniform distribution Gn,k,d. A distribution
over hypergraphs is (r, d, ε)-random if any s ≤ r hyperedges S1, . . . , Ss contain
at least sd entries that are ε-close to uniform.

For a set of hyperedges T = {S1, . . . , Sk} we write Γ(T) to denote the union
of tuples S1, . . . , Sk (where the union of tuples is naturally defined to be the set
of all indices occuring in S1, . . . , Sk). Let G \ T denote the hypergraph obtained
from G by removing hyperedges T and updating the remaining hyperedges by
deleting from them vertices that belong to Γ(T). A hypergraph G is an (r, c)-
expander if for any set I of hyperedges of size at most r we have Γ(I) ≥ c|I|. We
refer to r as “the expansion threshold” and to c as “the expansion factor”. A
hypergraph G is an rbad-imperfect (r, c)-expander if there exists a subset of G’s
hyperedges Ibad of size |Ibad| ≤ rbad such that G \ Ibad is an (r, c)-expander.

It is well known that a random hypergraph is likely to be highly expanding.
The following lemma (whose proof is deferred to the full version [AR16]) gen-
eralizes this fact to the case of (r, d, ε)-random hypergraphs and to the case of

imperfect expansion. (Note that the failure probability drops down exponentially
with the size of the imperfectness parameter t.)

Lemma 2. Let β be a constant in (0, 1) and d ∈ N such that 4/β2 ≤ d ≤ nβ/4.

Let r = n1−β and m ≤ ndβ
2/4. Let t = t(n) be a non-negative function such

that t ≤ r. Then, a (r+ t, d, 2−Ω(n))-random (n,m)-hypergraph G is t-imperfect

(r, (1− β)d)-expander except with probability n−(t+1)dβ2/10.

The union of an (n,m1)-hypergraphG = (S1, . . . , Sm1
) and (n,m2)-hypergraph

H = (R1, . . . , Rm2
) is the (n,m1 + m2)-hypergraph J = G ∪ H whose hyper-

edges are (S1, . . . , Sm1 , R1, . . . , Rm2). Since union is an associative operation,
the union of q hypergraphs G1 ∪ · · · ∪Gq is defined unambiguously.

2.1 Expander-based Functions

For an (n,m)-hypergraph G = (S1, . . . , Sm), a sequence of m predicates P =
(P1, . . . , Pm) where Pi : {0, 1}|Si| → {0, 1}, we let fG,P : {0, 1}n → {0, 1}m
denote the function that takes an input x ∈ {0, 1}n and maps it to the m-
bit string (P1(x[S1]), . . . , Pm(x[Sm])). (If all predicates are identical we simply
write fG,P .) In its most abstract form, our assumption is parameterized by an
expansion parameter β (that quantifies the “expansion loss”), and by a (possibly
infinite) predicate family P. Formally, the Expander-based OWF assumption
(EOWF) and Expander-based PRG assumption (EPRG) are defined as follows.

Definition 4 (EOWF and EPRG). The EOWF(P,m, β, t, ε) assumption asserts
that for every [n,m, d]-hypergraph G = (S1, . . . , Sm) that is (n1−β , (1 − β)d)-
expanding, and every sequence of predicates11 P = (Pi)i∈[m] taken from P, the
function fG,P is (t, ε) one-way. The EPRG(P,m, β, t, ε) is defined similarly ex-
cept that fG,P (Un) is (t, ε) pseudorandom.

A considerable amount of research was devoted to studying the properties of
“secure” predicates. (See [App15] and references therein.) These results sug-
gest that for some predicates of logarithmic arity d = Θ(log n), and some
constant β < 1

2 , the EOWF(P,m, β, t, ε) assumption holds for every polyno-
mial m, t and every inverse polynomial ε. We adopt this setting as our main
intractability assumption and abbreviate this assumption by EOWF(P). Simi-
larly, we let EPRG(P) denote the analogous assumption for pseudorandomness.
In fact, known results suggest that for a proper family of predicates P, every
d = d(n) and every β < 1

2 , the assumption holds against adversaries whose
size t and success probability ε are exponential in the expansion threshold, i.e.,
t = exp(Ω(n1−β)) and ε = 1/t, as long as the output length satisfies m < no(d)

or even m < nαd for some constant α. We refer to this variant of the assumption
as the strong EOWF(P) and strong EPRG(P).

11 Here and through the paper, we implicitly assume that for all i ∈ [m] the arity of
the i-th predicate Pi matches the cardinality of the i-th hyperedge Si of G.

Concrete instantiation. A candidate for such a secure predicate (that is sug-
gested in [AL15]) is the d-ary XOR-MAJd predicate which partitions its input
w = (w1, . . . , wd) into two parts wL = (w1, . . . , wbd/2c) and wR = (wbd/2c+1, . . . ,
wd), computes the XOR of the left part and the majority of the right part,
and XOR’s the results together. This predicate satisfies several useful proper-
ties such as high resiliency, high algebraic degree and high rational degree (see
Section 1.1). In fact, these properties hold for the more general case of XOR-
Threshold predicates defined by:

XOR-THd,α,τ (w1, . . . , wd) =

bαdc∑
j=1

wj > τbαdc

⊕
 d⊕
i=bαdc+1

wi

 ,

where the first term evaluates to one if w1 + · · · + wbαdc > τ and to zero oth-
erwise. We define12 XOR-THd = {XOR-THd,α,τ : ∀α, τ ∈ (1/3, 2/3)} and let
XOR-TH =

⋃
d∈N XOR-THd. We conjecture that strong EOWF holds for this

family predicates.

3 From One-Wayness to Pseudorandomness

In this section, we show that EPRG reduces to EOWF as long as the predicate
family P is sensitive. The latter condition means that every d-ary predicate
P ∈ P can be written as P (w) = wi ⊕P ′(w) where i is some input variable and
P ′ does not depend on wi. (Namely, the predicate is fully sensitive to one of its
coordinates.)

Theorem 1. Let β be a constant in (0, 1); and d = d(n), m = m(n) and ε =
ε(n) be such that:

4

β
≤ d(1− β) ≤ nβ/4 and

4nm3 lnn

ε2
≤ n(β

2/4)(1−β)d,

and P be a sensitive predicate family. Then, the EPRG(P,m, β, t, ε) assumption
follows from the EOWF(P,m′, β′, t′, ε′) assumption where m′ = m·O(n lnnm2/ε2),
β′ = 3β, t′ = t ·O(n lnnm2/ε2) and ε′ = Ω(ε/(mn)).

Note that once d(n) is logarithmic in n, the conditions in the theorem are satisfied
for every polynomial m = poly(n), every inverse polynomial ε(n), and every
constant β. We conclude the following corollary.

Corollary 1. For every sensitive family of predicates P, if EOWF(P) holds then
so does EPRG(P). In particular, this holds for the special case of P = XOR-TH.

Note that if we plug in larger (super logarithmic) values of d in Theorem 1, we
can support larger (super-polynomial) values of m and smaller values of ε (at
the expense of decreasing β to some concrete constant).

12 The constants (1/3, 2/3) in the definition are somewhat arbitrary and it seems that
any constants bounded away from 0 and 1 will do.

3.1 Proof of Theorem 1

Assume, towards a contradiction, that there exists a t-size adversary that breaks
the pseudorandomness of fG,P with advantage ε for some [n,m, d]-hypergraph
G which is (n1−β , (1−β)d)-expanding and some sequence of sensitive predicates
P = (P1, . . . , Pm) ∈ Pm. Then, due to Yao’s theorem [Yao82], there exists an
adversary AG of similar complexity that predicts some bit of fG,P with advantage
εp = ε/m. To simplify notation, we assume that AG predicts the last bit13 of
fG,P . That is,

Pr
x
R←{0,1}n,y=fG,P (x)

[AG(y[1, . . . ,m− 1]) = y[m]]− 1

2
≥ εp. (1)

We will prove the following lemma.

Lemma 3. Let κ = 4 lnn/ε2p, m′ = κ ·m · n and P ′ = Pκn = (P1, . . . , Pm)κn.
There exists a distribution D over (n,m′, d)-hypergraphs such that:

1. A hypergraph H sampled from D is (n1−3β , (1− 3β)d)-expanding with prob-
ability 1− 1/(n lnn).

2. There exists an adversary B of size t′ = O(κ · n · t) and a set of inputs
Good ⊆ {0, 1}n which contains at least εp/2-fraction of all n-bit strings,
such that for every string x ∈ Good,

Pr
H
R←D

[B(H, fH,P ′(x)) = x] ≥ 1/(2n).

We show that Theorem 1 follows from Lemma 3. Call H good if

Pr
x
R←{0,1}n

[B(H, fH,P ′(x)) = x|x ∈ Good] ≥ 1/(3n).

By a Markov argument, a random H
R← D is likely to be good with probability

Ω(1/n). Combing this with the first item, it follows, by a union bound, that
there exists a good H which is also (n1−3β , (1−3β)d)-expanding. By hardwiring
H to B, we get an adversary BH which inverts fH,P ′ with probability of at least

Pr
x
R←{0,1}n

[x ∈ Good]· Pr
x
R←{0,1}n

[BH(fH,P ′(x)) = x|x ∈ Good] ≥ Ω(εp/n) = Ω(ε/(mn)),

contradicting the EOWF(P,m′, 3β, t′, ε/(mn)) assumption. We move on to prove
Lemma 3.

Proof (Proof of Lemma 3.). Before describing the distribution D, we need some
additional notation. For a permutation π : [n]→ [n] and a tuple S = (i1, . . . , id) ⊆
[n]d, let π(S) denote the tuple (π(i1), . . . , π(id)). For an [n,m, d]-hypergraph G
with the hyperedges (S1, . . . , Sm), let π(G) denote a [n,m, d]-hypergraph with

13 The choice of the last bit unpredictability is without loss of generality since we can
permute the order of the bits of fG,P (see [App13]).

the hyperedges (π(S1), . . . , π(Sm)). For a string x ∈ {0, 1}n, let π(x) denote the
bit-string whose coordinates are permuted under π. We define the distribution
D based on the hypergraph G via the following procedure:

Figure 1: The Distribution D
1. Take [n,m, d]-hypergraph G as an input. Let `∗ ∈ [n] denote the first

index of the last hyperedge of G.

2. Sample a random index τ
R← [n]. For each j ∈ [n], let πj1, . . . , π

j
κ be

κ = 4 lnn/ε2p random permutations over [n] subject to πji (`
∗) = τ .

3. For each j ∈ [n] and i ∈ [κ], let Gji be the hypergraph πji (G) modified
such that the first entry of its last hyperedge is set to j.

4. The output of D is the hypergraph H =
⋃
j∈[n],i∈[κ]G

j
i .

We start by proving the first item of Lemma 3. Consider the distribution D′
resulting from generating κ · n uniform and independent permutations φji (j ∈
[n], i ∈ [κ]), and outputting the hypergraph H ′ = ∪i,jH ′i,j where H ′i,j = φji (G).
Observe that D can be viewed as a two step process in which: (1) H ′ is sampled
from D′; and (2) We modify at most two nodes in every hyperedge of H ′ based
on some random process.14 Since the second step can reduce the expansion of a
set T by at most 2|T |, and since our setting of parameters implies that βd > 2, it
suffices to show that PrH′ [H

′ is (n1−2β , (1− 2β)d)-expanding] ≥ 1− 1/(n lnn).
To see this, recall that G is (r, d′ = (1 − β)d)-expanding and therefore, for

every i, j, the random variable φji (G) is (r, d′, 0)-random. Moreover, the permu-

tations φji are sampled independently at random, and therefore H ′ =
⋃
i,j φ

j
i (G)

is a (r, d′, 0)-random (n, κmn)-hypergraph. Observe that our parameters satisfy

the requirements of Lemma 2 (i.e., 4/β2 ≤ d′ ≤ nβ/4 and κmn ≤ nβ2d′/4). By ap-
plying the lemma with t = 0, we conclude that H ′ is (n1−β , (1−β)2d)-expanding
(and thus also (n1−2β , (1− 2β)d)-expanding), except with failure probability of

at most n−(β
2/4)(1−β)d. The latter quantity is upper-bounded by 1/(n lnn) since

4nm3 lnn
ε2 ≤ n(β2/4)(1−β)d. This completes the proof of the first part of Lemma 3.
We proceed with the proof of the second item of Lemma 3. Let S = (`∗, i2, . . . , id)

be the last hyperedge of G. Let S′ denote the d − 1 tuple (i2, . . . , id) and let
Pm : {0, 1}d → {0, 1} be the predicate computed by the last output of fG,P . We
assume (WLOG) that the first input of Pm is sensitive and so it can be written
as Pm(w1, . . . , wd) = w1 ⊕Q(w2, . . . , wd) for some (d− 1)-ary predicate Q.

The algorithm B is a variant of the inversion algorithms given in [App13].
The input is a hypergraph H =

⋃
j∈[n],i∈[κ]G

j
i and a string y ∈ {0, 1}κ·n·m

such that y = fH,P ′(x). Let y be parsed as (yji)j∈[n],i∈[κ] where each yji =
fGji ,P

(x). For each j ∈ [n] and i ∈ [κ], the algorithm B runs AG on input

yji [1, . . . ,m− 1] and gets a prediction bit eji . Let σji be the inverse permutation

14 Specifically, sample a random index τ ∈ [n], and for every sub-hypergraph H ′i,j and

hyperedge S ∈ H ′i,j swap the node φj
i (`
∗) with the node τ , except for the first entry

in the last hyperedge of Hi,j which φj
i (`
∗) is replaced by j.

of πji , and xji = σji (x); then, we get that yji = fσi(Gji),P
(xji). By construction,

this means that yji [1, . . . ,m−1] = fG,P (xji)[1, . . . ,m−1] and so AG attempts to

predict the value Pm(xji [S]) = xji [`
∗]⊕Q(xji [S

′]). Note that the bit yji [m] equals

to xji [σ
j
i (j)]⊕Q(xji [S

′]), and so

Pm(xji [S])⊕ yji [m] = xji [`
∗]⊕ xji [σ

j
i (j)] = x[πji (`

∗)]⊕ x[j] = x[τ]⊕ x[j].

Assuming that x[τ] is known (indeed, we can either guess it or try both values),
the above equation provides an estimation for x[j]. Since our predictor may err,
this estimation is “noisy”, i.e., it equals to x[j] only with probability 1

2 +Ω(εp).
After collecting κ such votes (and arguing that these votes are “independent
enough”) we eventually recover the input x bit by bit by deciding on the majority
of the votes for each x[j]. We proceed by formally describing the algorithm B.

Figure 2: The inverter B

– Input: A hypergraph H =
⋃
j∈[n],i∈[κ]G

j
i and yji = fGji ,P

(x).

– Initialize v1, . . . , vn to 0.
– For j ∈ [n] and i ∈ [κ]:

1. Compute eji := AG(yji [1, . . . ,m− 1]), and let bji = eji ⊕ y
j
i [m].

2. If bji = 1, then increase vj by 1, otherwise decrease vj by 1.

– For j ∈ [n], set zj to 1 if vj > 0, otherwise set it to 0. Let s0 = z1 · · · zn
and s1 = z1 · · · zn.

– Output: s0 if y = fH,P ′(s0) and s1 if y = fH,P ′(s1). Otherwise, output ⊥.

We now prove that B inverts fH,P ′ well. Let wt(x) be the hamming weight
of x ∈ {0, 1}n and for w ∈ [n], let Xw = {x ∈ {0, 1}n|wt(x) = w}. Call x good if

AG predicts with advantage εp/2 the last bit of fG,P (x′) for x′
R← Xwt(x), i.e.,

Pr
x′
R←Xwt(x),y=fG,P (x′)

[AG(y[1 . . .m− 1]) = y[m]]− 1/2 ≥ εp/2.

We let Good denote the set of good x’s and show that this set is εp/2-dense.

Claim. Pr
x
R←{0,1}n

[x ∈ Good] ≥ εp/2.

Proof. Recall that our predictor AG has an advantage of εp when it is invoked on

fG,P (x′) where x′
R← Un. Note that we can sample a uniform vector x′

R← {0, 1}n

by first selecting x
R← Un and then selecting x′

R← Xwt(x). Hence, the claim follows
from Markov’s inequality. ut

Now fix a good x. Let Sn denote the set of all permutations from [n] to [n].

Observe that sampling x′
R← Xwt(x) is equivalent to taking a random permutation

σ
R← Sn and computing x′ = σ(x). Hence, it holds that

Pr
σ
R←Sn,y=fG,P (σ(x))

[AG(y[1 . . .m− 1]) = y[m]]− 1/2 ≥ εp/2.

By an averaging argument, we get that there exists an index τx ∈ [n] such that

Pr
σ
R←{π∈Sn|π(τx)=`∗},y=fG,P (σ(x))

[AG(y[1 . . .m− 1]) = y[m]]− 1/2 ≥ εp/2.

Next, we show that the algorithm B recovers x with probability at least 1
2

when invoked with a good input x and with a hypergraph H generated under
condition that τ = τx. Since τ is generated uniformly at random this implies
that PrH [B(H, fH,P ′(x)) = x] ≥ 1/(2n).

Claim. For every good x, it holds that PrH [B(H, fH,P ′(x)) = x|τ = τx] ≥ 1
2 .

Proof. We assume that x[τ] = 0 and show that, with high probability, s0 is likely
to be x. (A similar argument shows that when x[τ] = 1, s1 is likely to be x). We
prove that for each j ∈ [n] the value zj equals to x[j] with probability 1−1/(2n).
The theorem then follows by applying a union bound over all n indices.

Fix some index j ∈ [n]. Call a vote bji good if it is equal to x[j]. Our goal
is to show that with high probability a majority of the votes are good. Observe
that in each iteration i ∈ [κ], the predictor AG is invoked on yji [1, . . . ,m− 1] =

fG,P (xji)[1, . . . ,m − 1] where xji = σji (x) and that the vote bji is good if the

predictor succeeds in predicting Pm(xji [S]). Since the permutations σji ’s (that are

the inverses of πji ’s) are independent and are uniform subject to σji (τ) = `∗, and
since x is good, each call to the predictor succeeds independently with probability
1
2 + εp/2. Hence, by an additive Chernoff bound, the majority of the votes are
good except with probability exp(−2κ · (εp/2)2) = exp(−2 lnn) < 1/(2n). ut

This completes the proof of Lemma 3. ut

4 PRF constructions

We describe a general template for constructing pseudorandom functions. The
template is parameterized with a predicate family P = {Pd} where Pd is a d-
ary predicate15 and two (possibly keyed) algorithms: mapper M and extractor
E. Let n ∈ N denote the security parameter and let d = d(n) be a locality
parameter. Given an input x ∈ {0, 1}n and a uniformly chosen key k ∈ {0, 1}n
we define the output of the function as follows. First, we use the mapper M
to map x to an (n, n/(d log n), d)-hypergraph Gx. Second, given the key k we
compute a pseudorandom string y = fGx,P (k), where P = Pd. Finally, we apply
a randomness extractor E to y in order to produce the final output. (The keys
of E and M are appended to the key k and are treated as part of the key of the
construction.) The main intuition behind this template is that if the hypergraph
Gx has good expanding properties, the string y contains enough pseudoentropy
which once extracted via E looks pseudorandom.

In the following we describe several instantiations of the template by choosing
different M and E.
15 The construction can be easily generalized to handle non-uniform hypergraphs

and/or different predicates d-ary predicates for each output.

Notation switch. Through this section, the symbol x denotes a query to the PRF
while k denotes the PRF’s key. Due to the structure of our construction, this
means that the input to the function fG,P is denoted by k (the key) and the
hypergraph G is computed based on the input x. (Unlike the notation used in
Section 3.)

4.1 Instantiation F1

The first instantiation F1 can be seen as a “plain” instantiation of the template,
where the inputs are mapped to the hypergraphs directly and no extractor is
applied in the end.

Figure 3: Instantiation F1

– Parameters: Let K = {0, 1}n be the key space, X = {0, 1}n be the input
space, and Y = {0, 1}n/(d logn) be the output space of F1. Let d = Θ(log n)
and let P ∈ P be a d-ary predicate.

– Mapper M : The input x is parsed into n/(log n) indices, then each consec-
utive group of d indices is interpreted as a hyperedge of the hypergraph G.

– Extractor E: No extractor is applied in the end.
– Code of F1: The function F1 : K × X → Y is defined as F1(k, x) :=

fM(x),P (k).

Theorem 2. Let n be the security parameter. For every q = no(logn), every
t(n), ε(n), and every constant β ∈ (0, 1) the function F1 is a (q, t, ε+n−Ω(logn))
weak PRF under assumption EPRG(P, n · q, β, t, ε).

Proof. Fix some constant β and let d = Θ(log n). Let x1, . . . , xq be q = no(logn)

random strings from {0, 1}n asked by the adversary. For i ∈ [q], let Gi = M(xi).
Since the xi’s are uniformly distributed, the hypergraph H :=

⋃q
i=1Gi is a

(n1−β , 0)-random (n,m, d)-hypergraph with m = qn/(d log n) < ndβ
2/4. Hence,

by Lemma 2 (with imperfectness parameter t = 0), H is (n1−β , (1 − β)d)-
expanding except with probability εexp = n−Ω(logn). (The condition 4/β2 ≤
d ≤ nβ/4 required for Lemma 2 holds since β is constant and d = Θ(log n).)
The theorem follows by noting that conditioned on H being (n1−β , (1 − β)d)-
expanding, the EPRG(P, n · q, β, t, ε) assumption implies that the random vari-
able V = (F1(k, xi))

q
i=1, induced by a uniformly chosen k ∈ {0, 1}n, is (t, ε)-

pseudorandom. ut

Remark 1. We note that the theorem extends to the case where logn q + 1 <
β2d/4.

Corollary 2. Suppose that EOWF(XOR-MAJ) holds. Then, there exists a weak

PRF F1 : {0, 1}n × {0, 1}n → {0, 1}n/ log2 n which is computable in linear time
of O(n) on a RAM machine with O(log n) word size, or by a boolean circuit of
size Õ(n). Moreover, for every fixed key k, the function F1(k, ·) can be computed
by a depth-3 AC0 circuit.

Proof. By Corollary 1, EOWF(XOR-MAJ) implies EPRG(XOR-MAJ), which in
turn, implies, by Theorem 2, that F1 is a weak PRF.

Observe that the computation of F1 consists of two steps. (1) Access the key k
in the n/ log n addresses specified by the input x and retrieve the corresponding
content. Namely, for 1 ≤ i ≤ ` where ` = n/ log n, output the bits zi = k[x[(i−
1) log n + 1 : i log n]] where x[i : i + j] denotes the address represented by the
substring (x[i] · · ·x[i+j]) under the standard binary representation. (2) Partition
the bits z1, . . . , z` to d-size `/d blocks, and compute for each block 1 ≤ i ≤ `/d
the bit yi = XOR-MAJd(z(i−1)d+1, . . . , zid).

Time. On a RAM machine with log n word size, the first step is implemented
in time O(n) (these are just accesses to an array) and the second step takes
O(n/ log n) time.

Size. In Appendix A we show that the first step can be implemented by a
circuit of quasilinear size O(n log2 n log log n). In the second part, each compu-
tation of zi consists of computing two symmetric functions (XOR and Majority)
over d/2-long inputs. The classical result of [MP75] (see also [Weg87]) shows
that every d-ary symmetric predicate can computed by a linear-size circuit (of
size O(d)) and so the overall complexity of the second step is linear in n.

Depth. Fix some key k. Observe that both the first part and the second part
of the computation have logarithmic locality (each bit zi depends on at most
O(log n) bits of x and each yi depends on at most O(log n) bits of the zi’s).
Observe that any such function can be computed by a polynomial size DNF
(OR of AND’s) and a polynomial size CNF (AND of OR’s). Hence, the overall
computation can be naively computed by a depth-4 circuit. In fact, by using
DNF for the first part and CNF for the second part we can collapse the two
middle layers of OR gates and implement F1 by a depth-3 AC0 circuit. ut

We note that, under strong EOWF(XOR-MAJ), F1 achieves security against
adversaries of almost-exponential size (exp(n1−β) for every β > 0) who make
polynomially many queries (or even slightly super-polynomial number of queries
q) with quasipolynomial distinguishing advantage of ε = n−Ω(logn). As men-
tioned in the introduction, the quasipolynomial value of ε is inherent for AC0

constructions.

We also remark that one can extend the output length of F1 to {0, 1}n
by stretching the output using a pseudorandom generator G : {0, 1}n/ logn →
{0, 1}n. Using fast constructions of PRGs (e.g., [App13]) one can do this while
keeping the efficiency guarantees stated in the theorem.

4.2 Instantiation F2

The second instantiation F2 is a modification of F1, where an extractor is ap-
plied in the end. As explained in the introduction, this allows us to reduce the
distinguishing advantage ε.

Figure 4: Instantiation F2

– Parameters: Let K = Kf × Ke = {0, 1}n × {0, 1}O(n) be the key space,
X = {0, 1}n be the input space, and Y = {0, 1}n/(2d logn) be the output
space of F2. Let P ∈ P be a d-ary predicate.

– Mapper M : As in F1, M(x) parses x as (n, n/(d log n), d)-hypergraph.
– Extractor: Let Ext : Ke × {0, 1}n/(d logn) → {0, 1}n/(2d logn) be a strong

(`, εExt)-extractor where ` = 0.9 · n/(d log n) and εExt = 2−Ω(n)).
– Code of F2: The function F2 : K × X → Y is defined as F2((k, s), x) :=

Exts(fM2(x),P (k)), where (k, s) ∈ Kf ×Ke.

Our goal is to provide a tight security reduction from breaking F2 to the EPRG
assumption. For this, we will have to rely on the security of EPRG over a predicate
family Pβ containing all predicates which can be obtained by selecting some d-
ary predicate P ∈ P and arbitrarily fixing at most βd of its inputs. Although
the security of EOWF with respect to Pβ may seem like a strong assumption, we
will later show that natural candidates for EOWF already satisfy it.

Theorem 3. Let n be the security parameter. Let β be a constant in (0, 1),

q = q(n) and d = d(n) such that 4/β2 ≤ d ≤ nβ/4 and q ≤ ndβ
2/4−1. Let

t = t(n), ε = ε(n) be arbitrary functions. Then, the function F2 is a (q, t, ε +

n−Ω(dn1−β) + q · 2−Ω(n)) weak PRF, under assumption EPRG(Pβ , n · q, β, t, ε).

Proof. Let x1, . . . , xq be q random strings from {0, 1}n asked by the adversary.
For i ∈ [q], let Gi = M2(xi). Consider the (n,m, d)-hypergraph H :=

⋃q
i=1Gi

where m = nq/(d log n) < ndβ
2/4. Since the Gi’s are random, the hypergraph H

is (2r, 0)-random for r = n1−β . By applying Lemma 2 with t = r = n1−β and d-
uniform hypergraphs, we conclude that, except with probability εexp = n−Ω(dr),
the hypergraph H is r-imperfect (r, (1− β)d)-expander.

From now on we fix a sequence of queries (x1, . . . , xq) which leads to such an
imperfect expander H. It suffices to prove that, for a uniformly chosen (k, s) ∈ K,
the random variable V := (F2((k, s), xi))

q
i=1 is (t, ε+ q · εExt)-pseudorandom for

εExt = 2−Ω(n).
By construction, V can be rewritten as Exts(fH,P (k)) where Exts(y1, . . . , yq) :=

(Exts(y1), . . . ,Exts(yq)). First, we show that the distribution of fH,P (k) is com-
putationally indistinguishable from a generalized bit-fixing source (the proof is
deferred to the full version [AR16]).

Lemma 4. Let G be a [n,m, d]-hypergraph which is n1−β-imperfect (n1−β , (1−
β)d)-expander for some constant β ∈ (0, 1). Then, given that the assumption
EPRG(Pβ ,m, β, t, ε) holds, the random variable fG,P (Un) is (t, ε)-computationally
indistinguishable from a generalized (m− n1−β) bit-fixing source.

It follows that fH,P (k) is (t, ε)-computationally indistinguishable from some
generalized (qn

d logn − r) bit-fixing source Y . We therefore conclude that V =

Exts(fH,P (k)) is (t, ε)-indistinguishable from Exts(Y). By Lemma 1 (Section 2),
the latter distribution is (q · εExt)-statistically indistinguishable from uniform.

Hence, conditioned on H being an almost expander, V must be (t, ε + qεExt)-
indistinguishable from uniform. Overall, we conclude that for q random queries,
V is (t, ε+ qεExt + εexp)-pseudorandom, as required. ut

Corollary 3. Suppose that strong EPRG(XOR-TH) holds. Then, there exists a

weak PRF F2 : {0, 1}O(n)×{0, 1}n → {0, 1}n/2 log2 n which is (q, t = exp(n1−β), ε =
exp(−n1−β)) for every polynomial q and every constant β, and can be computed
in linear time of O(n) on a RAM machine with O(log n) word size, and by a
boolean circuit of size Õ(n). Moreover, for every fixed key k, the function F2(k, ·)
can be computed by an MOD2 ◦AC0 circuit.

Proof. Instantiate F2 with P = XOR-MAJ and observe that Pβ = XOR-TH for
sufficiently small β (e.g., every β < 1/6). By Theorem 3, the strong EPRG(XOR-TH)
assumption implies that, for every polynomial q and constant β > 0, F2 is
(q, t = exp(n1−β), ε = exp(−n1−β)) weak PRF.

The efficiency analysis is identical to the analysis of F1 except that we need
to add the complexity of the extractor. Ishai et al. [IKOS08, Theorem 3.3] con-
structed a strong (0.9 · N, 2−Ω(N))-extractor for N -bit sources outputting an
(N/2)-bit string using a seed of length O(N) that can be computed by a lin-
ear function (over the binary field) whose circuit is of size O(N). By employ-
ing this extractor we get a linear-time implementation in the RAM model and
quasilinear-size circuit implementation. Furthermore, since the extractor is a lin-
ear function it can be implemented by a single layer of XOR gates and so the
overall computation is in MOD2 ◦AC0. ut

4.3 Instantiation F3

The third instantiation, F3, is a modification of F2, where the input x is mapped
to a hypergraph using an (n, 2−Ω(n))-bitwise independent generator M : Km ×
X → X . An efficient construction of such a (n, 2−Ω(n))-bias generator (with
Km = {0, 1}2n) is presented in Theorem 5.

Figure 5: Instantiation F3

– Parameters: Let K = Kf ×Km×Ke = {0, 1}n×{0, 1}2n×{0, 1}n be the
key space, X = {0, 1}n be the input space, and Y = {0, 1}n/(2d logn) be
the output space of F3. Let P be some d-ary predicate chosen from P.

– Mapper M : Let M : Km × X → X be a (n, 2−Ω(n))-biased generator

and let σ
R← Km be its key. We parse the n-bit output of M as an

(n, n/(d log n), d)-hypergraph.
– Extractor: Let Ext : Ke × {0, 1}n/(d logn) → {0, 1}n/(2d logn) be a strong

(0.9 · n/(d log n), 2−Ω(n))-extractor.
– Code of F3: The function F3 : K×X → Y is defined as F3((k, σ, s)), x) :=

Exts(fMσ(x),P (k)).

Theorem 4. Let n be the security parameter. Let β be a constant in (0, 1),

q = q(n) and d = d(n) such that 4/β2 ≤ d ≤ nβ/4 and q ≤ ndβ
2/4−1. Let

t = t(n), ε = ε(n) be arbitrary functions. Then, the function F3 is a non-adaptive

(q, t, ε+n−Ω(dn1−β) + q ·2−Ω(n))-PRF, under assumption EPRG(Pβ , n · q, β, t, ε).

Proof. Fix a sequence of q distinct non-adaptive queries x1, . . . , xq. For i ∈ [q],
let Gi := Mσ(xi). Since M is (n, 2−Ω(n))-biased, the hypergraph H :=

⋃q
i=1Gi

is (`, 2−Ω(n))-random hypergraph for ` = n/(d log n) ≥ 2n1−β . Recall also that

H has at most n · q ≤ ndβ
2/4 hyperedges and d is chosen such that 4/β2 ≤ d ≤

nβ/4. By applying Lemma 2 with t = r = n1−β and d-uniform hypergraphs,
we conclude that, except with probability εexp = n−Ω(dr), the hypergraph H is

r-imperfect (r, (1−β)d)-expander (where the probability is taken over σ
R← Km).

From now on we fix a good σ which leads to such an imperfect expander
H. It suffices to prove that, for a uniformly chosen (k, s), the random variable
V := (F3((k, σ, s), xi))

q
i=1 is (t, ε+ q · εExt)-pseudorandom for εExt = 2−Ω(n). By

construction, V can be rewritten as Exts(fH,P (k)) where Exts(y1, . . . , yq) stands
for (Exts(y1), . . . ,Exts(yq)). Lemma 4 shows that the random variable fH,P (k)
is (t, ε)-computationally close to some generalized (qn/(d log n) − r) bit-fixing
source Y , and Lemma 1 shows that Exts(Y) is q · εExt-close to uniform. The
theorem follows. ut

In Theorem 5 we show that there exists a (n, 2−Ω(n))-bias generator M :
{0, 1}2n × {0, 1}n → {0, 1}n which can be computed in quasilinear time Õ(n)
or by a TC0 circuit (i.e., a constant-depth circuit with unbounded fan-in AND,
OR and Majority gates). The following corollary follows.

Corollary 4. Suppose that EOWF(XOR-MAJ) holds. Then, there exists a non-

adaptive PRF F3 : {0, 1}3n × {0, 1}n → {0, 1}n/ log2 n which is computable by a
boolean circuit of size Õ(n). Moreover, for every fixed key k, the function F3(k, ·)
can be computed by a TC0 circuit.

Proof. Let P = XOR-MAJ and observe that Pβ = XOR-TH for sufficiently small
β (e.g., every β < 1/6). By Corollary 1, EOWF(XOR-TH) implies EPRG(XOR-TH),
which in turn, implies, by Theorem 4, that F3 is a non-adaptive PRF.

The efficiency analysis is identical to the analysis of F2 except that we need
to add the complexity of M which can be computed in quasilinear time Õ(n) or
by a TC0 circuit. (See Theorem 5). ut

Under the strong EPRG(XOR-TH) assumption, a logarithmic d implies that F3

is (q, t = exp(n1−β), ε = exp(−n1−β)) secure for every polynomial q and every
constant β. For polynomial locality d = nδ, for some constant δ > 0, we get
q = exp(nΩ(δ)), t = exp(n1−Ω(δ)) and ε = exp(−n1−Ω(β)).

A Bitwise Independent Generator Construction We now construct an
efficient generator that is (t, ε)-bitwise independent in the regime of t = n and
negligible ε.

Theorem 5. Let k0, k1 be two keys chosen uniformly from GF(2n). For x ∈
GF(2n), define the generator Vk0,k1(x) := k1

k0+x
. Then, V is (d, d · 2d/2+1−n)-

bitwise independent for any d ≤ 2n. Furthermore, the generator V can be com-
puted by a circuit of quasilinear size O(n log2 n log logn) and by a TC0 circuit.

Proof. We observe that in order to prove that V is (d, d · 2d/2+1−n)-bitwise inde-
pendent, it is sufficient to prove that V is (d, d

2n−1)-linear-fooling over GF(2n).
Indeed, we know that (t, ε)-linear-fooling over GF(2n) implies (t, ε)-bias over
GF(2) [Tzu09, Theorem 4.5], which in turn implies (t, 2t/2 · ε)-bitwise indepen-
dence [NN93, Corollary 2.1].

We now turn to showing that V is (d, d
2n−1)-linear-fooling over GF(2n) for any

d ≤ 2n. The proof is based on the work of [MV12, Theorem 3.5]. We prove that V
is (d, d

2n−1)-linear-fooling over GF(2n), i.e., for any distinct a1, . . . , ad ∈ GF(2n),
any d constants b1, . . . , bt from GF(2n) (that are not all equal to zero), we have
that

∆

(
d∑
i=1

biVk0,k1(ai) ; UGF(2n)

)
≤ d

2n−1
.

After letting p(x) denote the polynomial
∑d
i=1

bi
x+ai

=
∑d
i=1 bi(x + ai)

2n−2, we

get that
∑d
i=1 biVk0,k1(ai) can be rewritten as k1·p(k0). Observe that conditioned

on p(k0) 6= 0, we have that k1 ·p(k0) is uniformly distributed over GF(2n). Hence,
it suffices to show that p(x) has at most 2d− 1 distinct roots. First, we define
auxiliary polynomials:

p(x) := p(x) ·
d∏
j=1

(aj + x) =

d∑
i=1

bi(x+ ai)
2n−1

∏
j 6=i

(aj + x)

 ,
and

p∗(x) :=

d∑
i=1

bi
∏
j 6=i

(aj + x).

Observe that any root y of p(x) is also a root of p(x). Moreover, note that for any
y 6∈ {a1, . . . , ad} we have that p(y) = p∗(y) (since y2

n−1 = 1 for any non-zero y).
Hence, the only possible roots of p(x) are the roots of p∗(x) and {a1, . . . , ad}.
This means that in order to show that p(x) has at most 2d− 1 distinct roots, it
is sufficient to show that p∗(x) has at most d− 1 distinct roots. Because p∗(x) is
a degree d− 1 polynomial, this will always be the case unless p∗(x) is identically
zero. This is ruled out by observing that p∗(ai) 6= 0, where i is chosen such that
bi 6= 0. Indeed, p∗(ai) = bi

∏
j 6=i(aj + ai) which is non-zero because a1, . . . , ad

are distinct.
(Complexity of V) Finally, we turn to the analysis of the circuit complexity of
V. The complexity of V equals to the complexity of the division and summation
circuits (dividing k1 by k0 + x). As stated in [MV12] this can be done by a
TC0 circuit or by a circuit of size O(n log2 n log log n) using the techniques
of [GvzGPS00]. ut

References

[ABG+14] A. Akavia, A. Bogdanov, S. Guo, A. Kamath, and A. Rosen. Candidate
weak pseudorandom functions in AC0 MOD2. In M. Naor, editor, Inno-
vations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA,
January 12-14, 2014, pages 251–260. ACM, 2014.

[ABR12] B. Applebaum, A. Bogdanov, and A. Rosen. A dichotomy for local small-
bias generators. In R. Cramer, editor, Theory of Cryptography - 9th Theory
of Cryptography Conference, TCC 2012, Taormina, Sicily, Italy, March
19-21, 2012. Proceedings, volume 7194 of Lecture Notes in Computer Sci-
ence, pages 600–617. Springer, 2012.

[ABW10] B. Applebaum, B. Barak, and A. Wigderson. Public-key cryptography
from different assumptions. In L. J. Schulman, editor, Proceedings of the
42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010, pages 171–180. ACM, 2010.

[AHI05] M. Alekhnovich, E. A. Hirsch, and D. Itsykson. Exponential lower bounds
for the running time of DPLL algorithms on satisfiable formulas. J. Au-
tom. Reasoning, 35(1-3):51–72, 2005.

[AKS83] M. Ajtai, J. Komlós, and E. Szemerédi. An o(n log n) sorting network.
In D. S. Johnson, R. Fagin, M. L. Fredman, D. Harel, R. M. Karp, N. A.
Lynch, C. H. Papadimitriou, R. L. Rivest, W. L. Ruzzo, and J. I. Seiferas,
editors, Proceedings of the 15th Annual ACM Symposium on Theory of
Computing, 25-27 April, 1983, Boston, Massachusetts, USA, pages 1–9.
ACM, 1983.

[AL15] B. Applebaum and S. Lovett. Algebraic attacks against random local func-
tions and their countermeasures. Electronic Colloquium on Computational
Complexity (ECCC), 22:172, 2015. To appear in STOC 2016.

[Ale03] M. Alekhnovich. More on average case vs approximation complexity.
In 44th Symposium on Foundations of Computer Science (FOCS 2003),
11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 298–307.
IEEE Computer Society, 2003.

[App13] B. Applebaum. Pseudorandom generators with long stretch and low local-
ity from random local one-way functions. SIAM J. Comput., 42(5):2008–
2037, 2013. Preliminary version in STOC 2012.

[App14] B. Applebaum. Bootstrapping obfuscators via fast pseudorandom func-
tions. In P. Sarkar and T. Iwata, editors, Advances in Cryptology -
ASIACRYPT 2014 - 20th International Conference on the Theory and
Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014, Proceedings, Part II, volume 8874 of Lec-
ture Notes in Computer Science, pages 162–172. Springer, 2014.

[App15] B. Applebaum. Cryptographic hardness of random local functions - sur-
vey. Electronic Colloquium on Computational Complexity (ECCC), 22:27,
2015.

[AR16] B. Applebaum and P. Raykov. Fast pseudorandom functions based on
expander graphs. Electronic Colloquium on Computational Complexity
(ECCC), 23:82, 2016. Full version of this paper.

[BFKL93] A. Blum, M. L. Furst, M. J. Kearns, and R. J. Lipton. Cryptographic
primitives based on hard learning problems. In D. R. Stinson, editor,
Advances in Cryptology - CRYPTO ’93, 13th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 22-26, 1993,

Proceedings, volume 773 of Lecture Notes in Computer Science, pages 278–
291. Springer, 1993.

[BH08] A. Brodsky and S. Hoory. Simple permutations mix even better. Random
Struct. Algorithms, 32(3):274–289, 2008.

[BH15] I. Berman and I. Haitner. From non-adaptive to adaptive pseudorandom
functions. J. Cryptology, 28(2):297–311, 2015.

[BMR10] D. Boneh, H. W. Montgomery, and A. Raghunathan. Algebraic pseudo-
random functions with improved efficiency from the augmented cascade.
In E. Al-Shaer, A. D. Keromytis, and V. Shmatikov, editors, Proceedings
of the 17th ACM Conference on Computer and Communications Secu-
rity, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010, pages 131–140.
ACM, 2010.

[BPR12] A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lat-
tices. In D. Pointcheval and T. Johansson, editors, Advances in Cryptology
- EUROCRYPT 2012 - 31st Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Cambridge, UK, April
15-19, 2012. Proceedings, volume 7237 of Lecture Notes in Computer Sci-
ence, pages 719–737. Springer, 2012.

[BQ12] A. Bogdanov and Y. Qiao. On the security of goldreich’s one-way function.
Computational Complexity, 21(1):83–127, 2012.

[BR13] A. Bogdanov and A. Rosen. Input locality and hardness amplification. J.
Cryptology, 26(1):144–171, 2013.

[CEMT14] J. Cook, O. Etesami, R. Miller, and L. Trevisan. On the one-way func-
tion candidate proposed by Goldreich. ACM Trans. Comput. Theory,
6(3):14:1–14:35, July 2014.

[CGH+85] B. Chor, O. Goldreich, J. H̊astad, J. Friedman, S. Rudich, and R. Smolen-
sky. The bit extraction problem of t-resilient functions (preliminary ver-
sion). In 26th Annual Symposium on Foundations of Computer Science,
Portland, Oregon, USA, 21-23 October 1985, pages 396–407. IEEE Com-
puter Society, 1985.

[DI05] I. Damg̊ard and Y. Ishai. Constant-round multiparty computation using
a black-box pseudorandom generator. In V. Shoup, editor, Advances in
Cryptology - CRYPTO 2005: 25th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 14-18, 2005, Proceed-
ings, volume 3621 of Lecture Notes in Computer Science, pages 378–394.
Springer, 2005.

[DLS14] A. Daniely, N. Linial, and S. Shalev-Shwartz. From average case complex-
ity to improper learning complexity. In D. B. Shmoys, editor, Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 -
June 03, 2014, pages 441–448. ACM, 2014.

[FPV15] V. Feldman, W. Perkins, and S. Vempala. On the complexity of ran-
dom satisfiability problems with planted solutions. In R. A. Servedio and
R. Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC 2015, Portland, OR, USA,
June 14-17, 2015, pages 77–86. ACM, 2015.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

[GL89] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way
functions. In D. S. Johnson, editor, Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washig-
ton, USA, pages 25–32. ACM, 1989.

[Gol00] O. Goldreich. Candidate one-way functions based on expander graphs.
Electronic Colloquium on Computational Complexity (ECCC), 7(90),
2000.

[Gow96] W. T. Gowers. An almost m-wise independent random permutation of
the cube. Combinatorics, Probability and Computing, 5(2):119–130, 1996.

[GVW12] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption
with bounded collusions via multi-party computation. In R. Safavi-Naini
and R. Canetti, editors, Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings, volume 7417 of Lecture Notes in Computer Science,
pages 162–179. Springer, 2012.

[GvzGPS00] S. Gao, J. von zur Gathen, D. Panario, and V. Shoup. Algorithms for
exponentiation in finite fields. J. Symb. Comput., 29(6):879–889, 2000.

[HILL99] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999. Preliminary versions in STOC’89 and STOC’90.

[HMMR05] S. Hoory, A. Magen, S. Myers, and C. Rackoff. Simple permutations mix
well. Theor. Comput. Sci., 348(2-3):251–261, 2005.

[IKOS08] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography with
constant computational overhead. In C. Dwork, editor, Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 433–442. ACM, 2008.

[Kha93] M. Kharitonov. Cryptographic hardness of distribution-specific learning.
In S. R. Kosaraju, D. S. Johnson, and A. Aggarwal, editors, Proceedings
of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,
May 16-18, 1993, San Diego, CA, USA, pages 372–381. ACM, 1993.

[KS09] A. R. Klivans and A. A. Sherstov. Cryptographic hardness for learning
intersections of halfspaces. J. Comput. Syst. Sci., 75(1):2–12, 2009.

[LF80] R. E. Ladner and M. J. Fischer. Parallel prefix computation. J. ACM,
27(4):831–838, 1980.

[LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, fourier
transform, and learnability. J. ACM, 40(3):607–620, 1993.

[LW09] A. B. Lewko and B. Waters. Efficient pseudorandom functions from the
decisional linear assumption and weaker variants. In E. Al-Shaer, S. Jha,
and A. D. Keromytis, editors, Proceedings of the 2009 ACM Conference
on Computer and Communications Security, CCS 2009, Chicago, Illinois,
USA, November 9-13, 2009, pages 112–120. ACM, 2009.

[MP75] D. E. Muller and F. P. Preparata. Bounds to complexities of networks for
sorting and for switching. J. ACM, 22(2):195–201, 1975.

[MST03] E. Mossel, A. Shpilka, and L. Trevisan. On e-biased generators in NC0.
In 44th Symposium on Foundations of Computer Science (FOCS 2003),
11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 136–145.
IEEE Computer Society, 2003.

[MV12] E. Miles and E. Viola. Substitution-permutation networks, pseudorandom
functions, and natural proofs. In R. Safavi-Naini and R. Canetti, editors,
Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, vol-
ume 7417 of Lecture Notes in Computer Science, pages 68–85. Springer,
2012.

[NN93] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions
and applications. SIAM J. Comput., 22(4):838–856, 1993.

[NR95] M. Naor and O. Reingold. Synthesizers and their application to the paral-
lel construction of psuedo-random functions. In 36th Annual Symposium
on Foundations of Computer Science, Milwaukee, Wisconsin, 23-25 Oc-
tober 1995, pages 170–181. IEEE Computer Society, 1995.

[NR97] M. Naor and O. Reingold. Number-theoretic constructions of efficient
pseudo-random functions. In 38th Annual Symposium on Foundations
of Computer Science, FOCS ’97, Miami Beach, Florida, USA, October
19-22, 1997, pages 458–467. IEEE Computer Society, 1997.

[NRR00] M. Naor, O. Reingold, and A. Rosen. Pseudo-random functions and factor-
ing (extended abstract). In F. F. Yao and E. M. Luks, editors, Proceedings
of the Thirty-Second Annual ACM Symposium on Theory of Computing,
May 21-23, 2000, Portland, OR, USA, pages 11–20. ACM, 2000.

[OW14] R. O’Donnell and D. Witmer. Goldreich’s PRG: evidence for near-optimal
polynomial stretch. In IEEE 29th Conference on Computational Complex-
ity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages 1–12.
IEEE, 2014.

[PF79] N. Pippenger and M. J. Fischer. Relations among complexity measures.
J. ACM, 26(2):361–381, 1979.

[PW88] L. Pitt and M. K. Warmuth. Reductions among prediction problems: on
the difficulty of predicting automata. In Proceedings: Third Annual Struc-
ture in Complexity Theory Conference, Georgetown University, Washing-
ton, D. C., USA, June 14-17, 1988, pages 60–69. IEEE Computer Society,
1988.

[RR97] A. A. Razborov and S. Rudich. Natural proofs. J. Comput. Syst. Sci.,
55(1):24–35, 1997.

[Tzu09] Y. Tzur. Notions of weak pseudorandomness and GF(2n)-polynomials.
Master’s thesis, Weizmann Institute of Science, 2009.

[Val84] L. G. Valiant. A theory of the learnable. In R. A. DeMillo, editor, Pro-
ceedings of the 16th Annual ACM Symposium on Theory of Computing,
April 30 - May 2, 1984, Washington, DC, USA, pages 436–445. ACM,
1984.

[Weg87] I. Wegener. The Complexity of Boolean Functions. Teubner / Wiley, 1987.
[Yao82] A. C. Yao. Theory and applications of trapdoor functions (extended ab-

stract). In 23rd Annual Symposium on Foundations of Computer Science,
Chicago, Illinois, USA, 3-5 November 1982, pages 80–91. IEEE Computer
Society, 1982.

A Array Multi-Access in Quasilinear time

We consider the following functionality. Given ` = n/ log n indices of length log n
each I[1], . . . , I[`] and a data vector K ∈ {0, 1}n output K[I[1]], . . . ,K[I[`]]. We
will show that this can done by O(n log2 n log log n)-size circuit. We assume that
the input indices are sorted which is without loss of generality since t elements
of bit-length b = log n can be sorted by a circuit of size O(b` log `) = O(n log n)
(e.g., using a sorting network [AKS83] where comparison is implemented via Par-
allel Prefix Computation [LF80]). Instead of describing an O(n log2 n log log n)-
size circuit, we describe a Turing Machine M that solves the problem in time
T = O(n log n) using a constant number of tapes. The latter can be simulated

by a circuit of size O(T log T) (e.g., by turning the computation M into an obliv-
ious Turing machine M ′ of complexity O(T log T) [PF79] and then moving to
a circuit of size O(T log T)). We sketch the description of the machine M . The
machine M places the indices I on one tape, the data K on another tape and
places the output on a special output tape. During its run, M maintains two
counters i and j which are initialized to 1. At each step, M checks if the index
I[i] equals to j if this is the case then K[j] is written to the current position in
the output tape. Also, the head of the output tape is moved one step and the
head of the index tape is moved to the next index. In case of inequality, the head
of the data tape is moved forward by one step, and the counter j is increased
by one. Since each step costs O(log n) operations and there are at most n steps,
the overall complexity is O(n log n).

