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Abstract. We give a definitional framework for point-function obfusca-
tion in which security is parameterized by a class of algorithms we call
target generators. Existing and new notions are captured and explained
as corresponding to different choices of this class. This leads to an elegant
question: Is it possible to provide a generic construction, meaning one
that takes an arbitrary class of target generators and returns a point-
function obfuscator secure for it? We answer this in the affirmative with
three generic constructions, the first based on indistinguishability obfus-
cation, the second on deterministic public-key encryption and the third
on universal computational extractors. By exploiting known construc-
tions of the primitives assumed, we obtain new point-function obfusca-
tors, including many under standard assumptions. We end with a broader
look that relates different known and possible notions of point function
obfuscation to each other and to ours.

1 Introduction

In the theory of point-function obfuscation (PO), there are many different goals
and definitions. It is (at least to us) hard territory to navigate. Meanwhile,
there are few constructions; indeed, there are fewer constructions than there
are definitions. And the ones that exist use strong assumptions. We try to bring
some structure and unity to this area via a parameterized definitional framework,
generic constructions and relations between definitions.

1.1 The state of point-function obfuscation

A point function with target k ∈ {0, 1}∗ is the circuit Ik that on input k′ ∈
{0, 1}|k| returns 1 if k′ = k and 0 otherwise. A point-function obfuscator Obf
takes input Ik and returns another circuit P that is functionally equivalent to
Ik, meaning on input k′ ∈ {0, 1}|k| it also returns 1 if k′ = k and 0 otherwise.
Security requires that P hides k. We now discuss the state of the area with regard
to both definitions and constructions.

Definitions. The theory of PO contains a large number of different goals and
definitions. Sometimes there is auxiliary information [35, 14, 21], other times
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not [23, 27, 39, 47]. Sometimes security pertains to a single target, other times
to many [25]. Sometimes the formalization is a VBB-style simulation based one,
other times indistinguishability based. Within each category, there are variants,
for example, for indistinguishability, whether the necessary unpredictability con-
dition on targets should be for polynomial-time or unbounded adversaries, and
with negligible or sub-exponential advantage. And this list is not complete.

While from one perspective there are too many definitions, from other per-
spectives there are too few. Think of different elements that have been consid-
ered (for example whether or not auxiliary information is present, one target
or many, polynomial-time or unbounded predictability adversaries, ... , in the
context of an indistinguishability-based definition) as dimensions or axes in a
multi-dimensional space. Then definitions in the literature can be seen as cap-
turing some points in this space. But there is no systematic attempt to look
in some unified way at all the points in this space. There is a connection that
does not seem to have been explicitly made and pursued, namely that defini-
tionally, there is little to no difference between PO and deterministic public-key
encryption DPKE [3, 4, 17] or other forms of entropic security [30, 36]. Existing
systematic and in-depth consideration of DPKE definitions and relations be-
tween them [4, 17] can be exploited to obtain semantic-security formalizations of
PO that address issues with current definitions, and also to obtain definitional
relations.

Constructions. Existing constructions use strong assumptions and achieve
only some of the goals. A primary construction is from the AI-DHI (Auxiliary-
Input Diffie-Hellman Inversion) assumption [23, 14]. Calling it a construction is
a bit of a stretch; the security just amounts to the assumption. The latter cannot
co-exist with VGBO (Virtual Grey Box Obfuscation) [10]. That doesn’t mean it
is wrong (perhaps VGBO does not exist) but it would be preferable to base PO
on assumptions not in contention with VGBO. Wee [47] provides a construction
based on a fixed permutation about which a novel, strong uninvertibility assump-
tion is made. He only proves security in the absence of auxiliary information,
and GK [35] show that the construction does not in fact provide security in the
presence of auxiliary information. However BP [14] specify an extension of Wee’s
construction with a family of permutations rather than a fixed one, and show,
under a novel assumption called Assumption 2.1 in their paper, that it achieves
security with targets that are hard to predict given the auxiliary information.
BP [14] explain that Assumption 2.1 asks for (a weak form of) extractability,
making it a strong assumption in light of the impossibility of related extractable
primitives [13]. DKL [29] use a novel assumption they call LSN to give a con-
struction for targets that are exponentially hard to predict given the auxiliary
information. BHK [6] give a construction for statistically hard to predict tar-
gets and no auxiliary information based on a multi-key version of their UCE
assumption. There are simple constructions in the ROM [39].

In summary, there are few (standard-model) constructions and those that
exist all use strong and sometimes novel assumptions. Also, each construction
achieves a different variant of the goal and it is hard to visualize, or say in a
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concise way, what has been done. The framework that we now discuss provides
language to do this.

1.2 Contributions in brief

We pick one, simple indistinguishability-based definitional template. Using this,
we provide a framework parameterized by a class X of objects we call target
generators, giving a definition of what it means for a point-function obfuscator
to be IND[X] secure. This allows us to recover and explain different notions in
the literature as each corresponding to a choice of X, and also obtain many
natural new ones, points in the above-mentioned multi-dimensional space that
had not been explicitly considered.

This taxonomy leads to a compelling and general new question: Is it possible
to find a generic construction, meaning a compiler that given an arbitrary X
returns a point-function obfuscator secure relative to it? We answer this in the
affirmative by providing three such generic constructions. As a consequence we
obtain new constructions for both old and new forms of PO.

We then step back to consider other definitions of PO. These include existing
simulation and indistinguishability style notions, as well as new, semantic secu-
rity style ones emanating from the above-mentioned connection to DPKE. We
formulate these also in a parameterized framework and then provide relations
(implications and separations) between these notions and our IND notion.

We now look at these three contributions in more detail.

1.3 Definitional framework

Recall that a point-function obfuscator Obf takes input Ik and returns another
circuit P that is functionally equivalent to Ik. Security requires that P hides k.
We define a target generator X as a polynomial-time algorithm that on input the
security parameter returns a vector k of target points together with auxiliary
information a. We measure security of a candidate point-function obfuscator
Obf relative to X. To do this, we associate to an adversary A its advantage
Advind

Obf,X,A(·) in guessing the challenge bit b in the following game. We run X

to get (k, a). We let P be the vector obtained by independently obfuscating Ik
for each of the targets k from k (b = 1) or by obfuscating the same number of
random, independent targets (b = 0). The input to A is P and a. Now we let X
be a class (set) of target generators X and say that obfuscator Obf is IND[X]-
secure if Advind

Obf,X,A(·) is negligible for all polynomial time A and all X ∈ X. See
Section 3 for a formal definition.

What we have here is a notion of point-function obfuscation parameterized by
a class of target generators. We view the latter as knobs. By turning these knobs
(defining specific classes) we can capture specific restrictions, and by intersecting
classes we can combine them, allowing us to speak precisely yet concisely about
different variant notions that are unified in this way.

IND[X]-security is not achievable for all X. For example, X could pick k[1]
to be the string of all zeroes, and the adversary could test whether or not P
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returns 1 on input that string. The minimal requirement for security is that the
target points produced by X are unpredictable given a. In Section 3 we formalize
a prediction game and advantage so that we can define the classes Xcup,Xseup

and Xsup of computationally, sub-exponentially and statistically unpredictable
target generators. We let Xq(·) denote the class of target generators outputting
q(·) target points and Xε the class of target generators that produce no auxiliary
information. (Formally it is the empty string.)

Already we can characterize prior work in a precise way. IND[Xcup∩Xε∩X1]
is plain point-function obfuscation [23, 27, 39, 47], where there is just one target
point, no auxiliary information, and unpredictability is computational. IND[Xcup

∩X1] is AIPO [14, 20], where there is again one target point, but auxiliary in-
formation is now present, while unpredictability continues to be computational.
IND[Xcup] is composable AIPO [25], where there are many arbitrarily correlated
target points, auxiliary information is present, and unpredictability is compu-
tational. DKL [29] achieve IND[Xsup ∩X1], where there is a single target that
is statistically hard to predict given the auxiliary information. BHK [6] achieve
IND[Xsup ∩Xε], where there are multiple targets, unpredictability is statistical,
and there is no auxiliary information. Other prior notions can be captured in
similar ways, and many natural new notions emerge as well.

1.4 Generic constructions

As we saw above, constructions so far have been ad hoc, targeting different
security goals and using strong, novel assumptions to achieve them. The above
framework allows us to frame a compelling question, namely whether there are
generic constructions. By this we mean that we are handed an arbitrary class
X of target generators and asked to craft an obfuscator that is IND[X]-secure.
If we can do this, we can, in one unified swoop, obtain constructions for a wide
variety of forms of PO, not only ones considered in the past, but also new ones.

In this paper we provide three such generic constructions. The first is based
on indistinguishability obfuscation, the second on deterministic public-key en-
cryption and the third on (multi-key) UCE.

One natural objection at this point is that we know that IND[X] is not
achievable for some choices of X. For example, assuming iO, this is true for
X = Xcup, meaning composable PO. (This follows by combining [20, 24].) So
how can our constructions achieve IND[X] for any given X? In fact, they do,
and this, interestingly, yields new negative results, ruling out the primitives we
start from for those particular values of X. We will explain further below.

PO from iO. The emergence of candidate constructions for iO (indistinguisha-
bility obfuscation) [33, 43, 12, 34] raised a natural hope, namely that one could
obtain PO from iO. But this has not happened. Despite the many powerful ap-
plications of iO, constructing point-function obfuscation from it has surprisingly
evaded effort.

We show that iO plus a OWF yields PO. More precisely, we show iO +
OWF[X]⇒ IND[X]: Given iO and a family of functions that is one-way relative
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to X as defined in Section 5.1 we can construct an obfuscator that is IND[X]-
secure. The construction, result and proof are in Section 5.1. The idea is that
to obfuscate Ik we pick at random a key fk for the OWF F (formally, the latter
is a family of functions) and let y = F(fk, k). We consider the circuit C that
hardwires fk, y and on input k′ returns 1 if F(fk, k′) = y and 0 otherwise. We
then apply an indistinguishability obfuscator to C to produce the obfuscated
point function. The security proof is a sequence of hybrids. Although we assume
only iO, we exploit diO [2, 16, 1] in the proof in a manner similar to [9]. We will
need it for circuits that differ only on one input, and in this case the result of
BCP [16] says that an iO-secure obfuscator is also diO-secure, so the assumption
remains iO. As part of the proof we state and prove a lemma reducing (d)iO
on polynomially-many, related circuits to the usual single-circuit case. We note
that to guarantee the usual (perfect) correctness condition of a PO, we require
the OWF to be injective.

We highlight the simplest case of this result as still being novel and of interest.
Namely, given iO and an ordinary injective OWF, we achieve plain point-function
obfuscation, IND[Xcup ∩Xε ∩X1] in our notation. Previous constructions have
been under assumptions that at this point seem less accepted than iO, and
Wee [47] gives various arguments as to why this goal is hard under standard
assumptions. Also on the negative side, combining our result with [20, 24] allows
us, under iO, to rule out OWF[Xcup] (one-way functions secure for polynomially-
many, computationally unpredictable correlated inputs), at least in the injective
case.

PO from DPKE. Deterministic public key encryption (DPKE) [3] was moti-
vated by applications to efficient searchable encryption [3]. It cannot provide
IND-CPA security. Instead, BBO [3] provide a definition of a goal called PRIV
which captures the best-possible security that encryption can provide subject to
being deterministic. At this point many constructions of DPKE are known for
various variant goals [3, 15, 4, 17, 32, 5, 48, 50, 45, 42, 38].

We show how to leverage these for point-function obfuscation via our second
generic construction. We show that PRIV1[X] ⇒ IND[X]. That is, given a de-
terministic public-key encryption scheme that is PRIV1 secure relative to X we
can build a point-function obfuscator secure relative to the same class in a simple
and natural way. Namely to obfuscate Ik we pick at random a public key pk and
the associated secret key sk for the DPKE scheme and let c be the encryption of
k under pk. The point-function obfuscation is the circuit C that hardwires pk, c
and on input k′, returns 1 if the encryption of k′ under pk equals c, and 0 oth-
erwise. The fact that the encryption is deterministic is used crucially to define
the circuit. (The latter must be deterministic.) The secret key sk is discarded
and not used in the construction. We note that we only require security of the
DPKE scheme for a single message (PRIV1) so the negative result of Wichs [49]
does not apply. The construction, result and proof are in Section 5.2.

From the LTDF-based DPKE scheme of BFO [15] and LTDFs from [44,
31, 48, 37, 51] we now get IND[Xsup ∩Xε ∩X1]-secure obfuscators under a large
number of standard assumptions. We also get IND[Xseup∩X1]-secure obfuscators
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under the DLIN, Subgroup Indistinguishability and LWE assumptions via [17,
50, 48]. On the negative side we can rule out PRIV1[Xcup]-secure DPKE under
iO via [20, 24].

PO from UCE. UCE [6] is a class of assumptions on function families crafted
to allow instantiation of random oracles in certain settings. UCE security is
parameterized so that we have UCE[S] security of a family of functions for
different choices of classes S of algorithms called sources. The parameterization
is necessary because security is not achievable for the class of all sources. Different
applications rely on UCE relative to different classes of sources [6, 18, 21, 41, 5,
28].

In this work we use the multi-key version of UCE, abbreviated mUCE [6].
We show how to associate to any given class X of target generators a class SX of
sources such that mUCE[SX]⇒ IND[X], meaning we can build a point-function
obfuscator secure for X given a family of functions that is mUCE[SX]-secure.
The definition of SX is given in Section 5.3. But what is most relevant here is
that the strength of UCE-framework assumptions is very sensitive to the choice
of class of sources that parameterizes the particular assumption, and SX has
good properties in this regard. The sources are what are called “split” in [6], and
they inherit the unpredictability attributes of the target generators. mUCE[SX]-
security is not achievable for all choices of X but the assumption is valid as far
as we know for many choices of X, yielding new constructions.

1.5 Alternative notions and relations between notions

Above, we fixed one, basic definitional template, which we called IND, and then
parameterized it by classes X of target generators to get notions IND[X]. How-
ever, there are other possible choices for the basic template, some emanating from
the literature, and others from the definitional similarity of PO with DPKE. We
consider parameterized versions of some of these and relate them to each other
and to IND. Specifically we define and consider the following (see Section 6 for
formal definitions):

• SIM[X]: (Simulation) The first definitions for PO simply restricted VBB
security [2] to the class of point functions [39, 47, 35, 25]. With SSS[X] we
give an X-parameterized version of this.

• SIND[X]: (Strong Indistinguishability) Recall that in IND[X], the adversary
decision bit is produced as a function of the vector P of obfuscated point
functions and the auxiliary information a. In SIND[X], this bit is not the
final decision, but is passed to another adversary who produces the final
decision based on it and the target vector itself. This is a parameterized
version of the definition of [23].

• CSS[X]: (Comparison-based semantic security) This is an analogue of com-
parision based semantic security for boolean functions for DPKE [4] in which
the adversary needs to compute some predicate on the target vector and aux-
iliary information.
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• SSS[X]: (Simulation-based semantic security) This is an analogue of simula-
tion based semantic security for boolean functions for DPKE [4] in which a
simulator with an oracle for the point functions must compute a predicate
on the target vectors and auxiliary information.

Fig. 8 shows the relations between five parameterized notions of PO, namely the
four above and our original IND[X].

1.6 Discussion and further related work

In concurrent and independent work, BM3 [22] take first steps towards a pa-
rameterized definition for point-function obfuscation, with separate definitions
for the basic and composable cases. They also show that injective mUCE-secure
function families for strongly unpredictable sources making one oracle query per
key implies composable AIPO (both for computational and statistical unpre-
dictability), which is a special case of our mUCE result.

Multi-bit auxiliary-input point-function obfuscation (MB-AIPO) [25, 11, 40]
allows one to obfuscate the circuit Ik,m that on input k′ returns m if k = k′

and ⊥ otherwise, where k,m are strings. CD [25] show that composable AIPO
implies MB-AIPO. MB-AIPO was subsequently used in BP [14] and MH [40].
BM1 [20] show that if iO is possible then MB-AIPO is not. MB-AIPO seems to
be quite a bit stronger than AIPO itself and in particular this result does not
rule out AIPO.

In Section 5.1 we define OWF[X], one-wayness of a function family relative
to a class of target generators, the targets here being the inputs to the OWF.
We note that OWF[Xsup ∩Xε] (inputs are statistically unpredictable and there
is no auxiliary information) is the notion of a one-way correlation intractable
hash (CIH) function family as per GOR [36].

Our parameterized PRIV1[X] notions of security for DPKE schemes apply
equally to function families and thus recover, via particular choices of X, some
of the security notions for CIH function families from GOR [36]. In these cases,
since our DPKE-based constructions of PO do not require that decryption in
the DPKE scheme is polynomial-time, CIH function families meeting the corre-
sponding notions suffice as well.

Seeing that prior work can be characterized in terms of intersections of certain
basic classes in our framework makes apparent that so far the literature has
considered only a few points from the larger space of all possible intersections. A
systematic consideration of the full space (which is lacking) would surface other
notions of interest and give a coherent picture of the area.

2 Notation and standard definitions

Notation. We denote by λ ∈ N the security parameter and by 1λ its unary
representation. We let ε denote the empty string. If s is an integer then Pads(C)
denotes circuit C padded to have size s. We say that circuits C0,C1 are equiv-
alent, written C0 ≡ C1, if they agree on all inputs. If x is a vector then |x|
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denotes the number of its coordinates and x[i] denotes its i-th coordinate. We
write x ∈ x as shorthand for x ∈ {x[1], . . . ,x[|x|]}. If X is a finite set, we let
x←$X denote picking an element of X uniformly at random and assigning it
to x. Algorithms may be randomized unless otherwise indicated. Running time
is worst case. “PT” stands for “polynomial-time,” whether for randomized al-
gorithms or deterministic ones. If A is an algorithm, we let y ← A(x1, . . . ; r)
denote running A with random coins r on inputs x1, . . . and assigning the out-
put to y. We let y←$A(x1, . . .) be the result of picking r at random and letting
y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all possible outputs of
A when invoked with inputs x1, . . .. We say that f : N → R is negligible if for
every positive polynomial p, there exists λp ∈ N such that f(λ) < 1/p(λ) for all
λ > λp. We use the code based game playing framework of [7]. (See Fig. 3 for
an example.) By GA(λ) we denote the event that the execution of game G with
adversary A and security parameter λ results in the game returning true.

Obfuscators. An obfuscator is a PT algorithm Obf that on input 1λ and a
circuit C returns a circuit C. If C is an n-vector of circuits then Obf(1λ,C)
denotes the vector (Obf(1λ,C[1]), . . . , Obf(1λ,C[n])) formed by applying Obf
independently to each coordinate of C. The correctness condition of obfuscator
Obf requires that for every circuit C, every λ ∈ N and every C ∈ [Obf(1λ,C)]
we have C ≡ C (meaning C(x) = C(x) for all x). We also call the latter a
perfect correctness condition and we require that it holds for all obfuscators. We
consider various notions of security for obfuscators, namely indistinguishability
obfuscation and variants of point-function obfuscation, including AIPO.

Indistinguishability obfuscation. Although our results need only iO, we
use diO [2, 16, 1] in the proof, applying BCP [16] to then reduce the assumption
to iO. To give the definitions compactly, we use the definitional framework of
BST [9] which allows us to capture iO variants (including diO) via classes of
circuit samplers. Let Obf be an obfuscator. A sampler in this context is a PT
algorithm S that on input 1λ returns a triple (C0,C1, aux ) where C0,C1 are
circuits of the same size, number of inputs and number of outputs, and aux is a
string. If O is an adversary and λ ∈ N we let Advio

Obf,S,O(λ) = 2 Pr[IOOObf,S(λ)]−1

where game IOOObf,S(λ) is defined in Fig. 1. Now let S be a class (set) of circuit

samplers. We say that Obf is S -secure if Advio
Obf,S,O(·) is negligible for every

PT adversary O and every circuit sampler S ∈ S . We say that circuit sampler
S produces equivalent circuits if there exists a negligible function ν such that
Pr[C0 ≡ C1 : (C0,C1, aux )←$ S(1λ)] ≥ 1 − ν(λ) for all λ ∈ N. Let Seq be the
class of all circuit samplers that produce equivalent circuits. We say that Obf is
an indistinguishability obfuscator if it is Seq-secure [2, 33, 46].

We say that a circuit sampler S is difference secure if Advdiff
S,D(·) is negligible for

every PT adversary D, where Advdiff
S,D(λ) = Pr[DIFFDS (λ)] and game DIFFDS (λ)

is defined in Fig. 1. Difference security of S means that given C0,C1, aux it is
hard to find an input on which the circuits differ [2, 16, 1]. Let Sdiff be the class of
all difference-secure circuit samplers. We say that circuit sampler S produces d-
differing circuits, where d: N→ N, if for all λ ∈ N circuits C0 and C1 differ on at
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Game DIFFD
S (λ)

(C0,C1, aux )←$ S(1λ)

x←$D(C0,C1, aux )

Return (C0(x) 6= C1(x))

Game IOO
Obf,S(λ)

b←$ {0, 1} ; (C0,C1, aux )←$ S(1λ)

C←$ Obf(1λ,Cb) ; b′←$O(1λ,C, aux )

Return (b = b′)

Fig. 1. Games defining difference-security of circuit sampler S and iO-security of ob-
fuscator Obf relative to circuit sampler S.

most d(λ) inputs with an overwhelming probability over (C0,C1, aux )←$ S(1λ).
Let Sdiff(d) be the class of all difference-secure circuit samplers that produce
d-differing circuits, so that Seq ⊆ Sdiff(d) ⊆ Sdiff . The interest of this definition
is the following result of BCP [16] that we use:

Proposition 1. If d is a polynomial then any Seq-secure circuit obfuscator is
also an Sdiff(d)-secure circuit obfuscator.

Function families. A family of functions F specifies the following. PT key
generation algorithm F.Kg takes 1λ to return a key fk ∈ {0, 1}F.kl(λ), where
F.kl: N→ N is the key length function associated to F. Deterministic, PT evalu-
ation algorithm F.Ev takes 1λ, key fk ∈ [F.Kg(1λ)] and an input x ∈ {0, 1}F.il(λ)

to return an output F.Ev(1λ, fk, x) ∈ {0, 1}F.ol(λ), where F.il,F.ol: N→ N are the
input and output length functions associated to F, respectively. We say that F is
injective if the function F.Ev(1λ, fk, ·): {0, 1}F.il(λ) → {0, 1}F.ol(λ) is injective for
every λ ∈ N and every fk ∈ [F.Kg(1λ)]. Notions of security for function families
that we use are mUCE and OWF, the latter defined in Section 5.1.

UCE framework. We recall the Universal Computational Extractor (UCE)
framework of BHK [6]. We will use what BHK call the multi-key version of UCE
(mUCE). It is an extension of the more commonly used UCE notion for a single
key, meaning that it implies the latter. Meanwhile, no implications in the other
direction (from single-key to multi-key) are known.

Let H be a family of functions. Let S be an adversary called the source and
D an adversary called the distinguisher. Consider game mUCES,DH (λ) in the left
panel of Fig. 2. Associated to S is a polynomial S.nk that indicates how many
keys S uses. The source has access to an oracle HASH. A query to HASH
consists of an index i of a key and the actual input x, which is a string required
to have length H.il(λ). When the challenge bit b is 1 (the “real” case) the oracle
responds via H.Ev under a key hk[i] that is chosen by the game and not given
to the source. When b = 0 (the “random” case) it responds as a random oracle.
The source then leaks a string L to its accomplice distinguisher. The latter does
get the key vector hk as input and must now return its guess b′ ∈ {0, 1} for b.
The game returns true iff b′ = b. The advantage of (S,D) against the mUCE

security of H is defined for λ ∈ N via Advm-uce
H,S,D(λ) = 2 Pr[mUCES,DH (λ)] − 1. If

S is a class (set) of sources, we say that H is mUCE[S]-secure if Advm-uce
H,S,D(·) is

negligible for all sources S ∈ S and all PT distinguishers D.
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mUCES,D
H (λ)

For i = 1, . . . ,S.nk(λ) do hk[i]←$ H.Kg(1λ)

b←$ {0, 1} ; L←$ SHASH(1λ)

b′←$D(1λ,hk, L)

Return (b = b′)

HASH(i, x)

If not (1 ≤ i ≤ S.nk(λ)) then return ⊥
If T [i, x] = ⊥ then

If b = 0 then T [i, x]←$ {0, 1}H.ol(λ)

Else T [i, x]← H.Ev(1λ,hk[i], x)

Return T [i, x]

mSPREDP
S (λ)

X ← ∅ ; L←$ SHASH(1λ)

x←$ P(1λ, L)

Return (x ∈ X)

HASH(i, x)

If not (1 ≤ i ≤ S.nk(λ)) then

Return ⊥
If T [i, x] = ⊥ then

T [i, x]←$ {0, 1}H.ol(λ)

X ← X ∪ {x}
Return T [i, x]

Fig. 2. Games defining mUCE security of function family H and unpredictability of
source S.

It is easy to see that mUCE[S]-security is not achievable if S is the class of
all PT sources [6]. To obtain meaningful notions of security, BHK [6] impose
restrictions on the source. A central restriction is unpredictability. A source is
unpredictable if it is hard to guess the source’s HASH queries even given the
leakage, in the random case of the mUCE game. Formally, let S be a source and
P an adversary called a predictor and consider game mSPREDPS (λ) in Fig. 2.

For λ ∈ N we let Advm-spred
S,P (λ) = Pr[mSPREDPS (λ)]. We say that S is com-

putationally unpredictable if Advm-spred
S,P (·) is negligible for all PT predictors P,

and let Scup be the class of all PT computationally unpredictable sources. We
say that S is statistically unpredictable if Advm-spred

S,P (·) is negligible for all (not
necessarily PT) predictors P, and let Ssup ⊆ Scup be the class of all PT statis-
tically unpredictable sources. We say that S is sub-exponentially unpredictable
if there is an ε > 0 such that for any PT predictor P there is a λP such that
Advm-spred

S,P (λ) ≤ 2−λ
ε

for all λ ≥ λP , and let Sseup ⊆ Scup be the class of all PT
sub-exponentially unpredictable sources.

BFM [18] show that UCE-framework security notions (both single-key and
multi-key) are not achievable for Scup assuming that indistinguishability obfus-
cation exists. This has lead applications to impose further restrictions on the
source by using either Ssup or subsets of Scup. Assumptions based on Ssup, in-
troduced in [6, 18], at this point seem to be a viable. In order to restrict the
computational case, one can consider split sources as defined in BHK [6]. Such
sources can leak information about oracle queries and answers separately, but
not together. We let Ssplt denote the class of split sources. Another way to re-
strict a source is by limiting the number of queries it can make. Let Sn,q be the
class of sources S such that S.nk(·) ≤ n(·) and S makes at most q(·) queries
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Game INDA
Obf,X(λ)

b←$ {0, 1}
(k1, a1)←$ X.Ev(1λ)

For i = 1, . . . ,X.vl(λ) do

k0[i]←$ {0, 1}X.tl(λ)

P←$ Obf(1λ, Ikb)

b′←$A(1λ,P, a1)

Return (b = b′)

Game PREDQ
X (λ)

(k, a)←$ X.Ev(1λ)

k←$Q(1λ, a)

Return (∃i : k[i] = k)

Game TRIVA
X (λ)

b←$ {0, 1}
(k1, a1)←$ X.Ev(1λ)

For i = 1, . . . ,X.vl(λ) do

k0[i]←$ {0, 1}X.tl(λ)

b′←$A(1λ,kb, a1)

Return (b = b′)

Fig. 3. Games defining IND security of point-function obfuscator Obf relative to target
generator X, unpredictabilty of target generator X and triviality of target generator X.

to each key. In particular S1,1 is the class of sources that use only one key and
make only one query to it.

3 Point-function obfuscation framework

The literature considers many different variants of point function obfuscation.
Here we provide a definitional framework that unifies these concepts and allows
us to obtain not just known but also new variants of point function obfuscation
as special cases. The framework parameterizes the security of a point-obfuscator
by a class of algorithms we call target generators. Different notions of point
obfuscation then correspond to different choices of this class. We start by defining
target generators.

Target generators. A target generator X specifies a PT algorithm X.Ev that
takes 1λ to return a target vector k and auxiliary information a ∈ {0, 1}∗. The
entries of k are the targets, each of length X.tl(λ), and the vector itself has length
X.vl(λ), where X.tl,X.vl : N → N are the target length and target-vector length
functions associated to X, respectively.

Point-function obfuscation. If k is a bit-string then Ik: {0, 1}|k| → {0, 1}
denotes a canonical representation of the circuit that on input k′ ∈ {0, 1}|k|
returns 1 if k = k′ and 0 otherwise. It is assumed that given Ik, one can compute
k in time linear in |k|. A circuit C is called a point circuit if there is a k, called
the circuit target, such that C ≡ Ik. If k is an n-vector of strings then we let
Ik = (Ik[1], . . . , Ik[n]).

Let Obf be an obfuscator, as defined in Section 2. Its correctness condition
guarantees that on input 1λ, Ik, it returns a point circuit with target k, which
is the condition for calling it a point-function obfuscator. We say that Obf has
target length Obf.tl: N→ N if its correctness condition is only required on inputs
Ik with k ∈ {0, 1}Obf.tl(λ).

Security of point-function obfuscation. We now define security of point-
function obfuscator relative to a class of target generators. We will then consider
various choices of these classes.
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Consider game IND of Fig. 3 associated to a point-function obfuscator Obf,
a target generator X and an adversary A, such that Obf.tl = X.tl. For λ ∈ N let
Advind

Obf,X,A(λ) = 2 Pr[INDAObf,X(λ)]−1. The game generates a target vector k1 and
corresponding auxiliary information a1 via X. It also samples a target vector k0

uniformly at random, containing X.vl(λ) elements each of length X.tl(λ). It then
obfuscates the targets in the challenge vector kb via Obf to produce P which,
as per our notation, will be the vector (Obf(1λ, Ikb[1]), . . . ,Obf(1

λ, Ikb[X.vl(λ)]))
formed by independently obfuscating the targets in the target vector. Given
P and a1, adversary A outputs a bit b′, and wins the game if this equals b,
meaning it guesses whether the target vector that was obfuscated was the one
corresponding to auxiliary information a1 or one independent of it.

Let X be a class (set) of target generators. We say that Obf is IND[X]-
secure if Advind

Obf,X,A(·) is negligible for every PT A and every X ∈ X. We now
capture different notions in the literature, as well as new ones, by considering
particular classes X. At the end of this section we will present what we call the
triviality theorem, showing how the definition is vacuous for some classes, and
discuss its implications. We will further discuss alternative security definitions
for point-function obfuscation in Section 6.

Classes of target generators. One important (and necessary) condition
on a target generator is unpredictability. To define this, consider game PRED of
Fig. 3 associated to X and a predictor adversary Q. For λ ∈ N let Advpred

X,Q(λ) =

Pr[PREDQX (λ)]. The game generates a target vector k and associated auxiliary
information a. The adversary Q gets a and wins if it can predict any entry of
the vector k.

The first dimension along which point-function obfuscators are classified is
the type of unpredictability, encompassing two sub-dimensions: the success prob-
ability of predictors (may be required to be negligible or sub-exponential) and
their computational power (PT and computationally unbounded are the popular
choices, but one could also consider sub-exponential time). Some relevant classes
are the following:

— Xcup — Class of computationally unpredictable target generators — X ∈
Xcup if Advpred

X,Q(·) is negligible for all PT predictor adversaries Q.

— Xseup — Class of sub-exponentially unpredictable target generators — X ∈
Xseup if there exists 0 < ε < 1 such that for every PT predictor adversary
Q there is a λQ such that Advpred

X,Q(λ) ≤ 2−λ
ε

for all λ ≥ λQ.

— Xsup — Class of statistically unpredictable target generators — X ∈ Xsup if
Advpred

X,Q(·) is negligible for all (even computationally unbounded) predictor
adversaries Q.

Another dimension is the number of target points in the target vector, to capture
which, for any polynomial q: N→ N, we let

— Xq(·) — Class of generators producing q(·) target points — X ∈ Xq(·) if
X.vl = q. An important special case is q(·) = 1.
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Another important dimension is auxiliary information, which may be present or
absent (the latter, formally means it is the empty string), to capture which we
let

— Xε — Class of generators with no auxiliary information — X ∈ Xε if a = ε
for all (k, a) ∈ [X.Ev(1λ)] and all λ ∈ N.

We can recover notions from the literature as follows:

— IND[Xcup ∩ Xε ∩ X1] — This is basic point-function obfuscation, secure
for a single computationally unpredictable target point, and no auxiliary
information is allowed. It is achieved in [23, 27, 39, 47].

— IND[Xcup ∩X1] — This is AIPO [35, 14], secure for a single computation-
ally unpredictable target point in the presence of auxiliary information. It
is achieved under the AI-DHI assumption by Canetti [23], and using the
extended construction of Wee [47] by BP [14].

— IND[Xcup] — This is composable AIPO [25], meaning that it is secure for
arbitrarily many correlated target points that are computationally unpre-
dictable in the presence of auxiliary information. BM1 [20] showed that this
notion cannot co-exit with iO in the presence of OWFs.

— IND[Xsup∩Xε] — This is composable point-function obfuscation, secure for
arbitrarily many correlated target points that are statistically unpredictable,
and no auxiliary information is allowed. It is achieved from mUCE[Ssup] in
BHK [6].

Furthermore, DKL [29] achieve IND[Xsup ∩ X1] from the LSN (i.e. auxiliary-
input LPN) assumption and BM3 [22] build IND[Xsup] from mUCE[Ss-sup ∩
X1]. Here Ss-sup denotes a subclass of Ssup ∩Ssplt that is used to denote sources
with “strong statistical unpredictability”, as defined in BM2 [21]. We note that
some of the above results achieve notions that are stronger than IND. Such
notions are discussed and defined in Section 6.

Triviality theorem. The IND[X] definition has the peculiar property of triv-
ializing for some choices of X. For example, let X be a target generator that
returns a vector of random, independent targets and auxiliary information a = ε
the empty string. Then any point-function obfuscator Obf is IND[{X}]-secure.
This is true because game IND in this case samples k0,k1 from the same dis-
tribution and the information provided to the adversary A is thus independent
of the challenge bit. Before discussing and assessing what this means for the
definition, we provide a general triviality theorem that characterizes for what
choices of X this phenomenon happens.

Consider game TRIV of Fig. 3 associated to a target generator X and an
adversary A. For λ ∈ N let Advtriv

X,A(λ) = 2 Pr[TRIVAX (λ)] − 1. We say that X

is trivial if Advtriv
X,A(·) is negligible for every PT A. An example of trivial X is

the one given above. Let Xtriv be the class of all trivial target generators, and
say that a class X is trivial if X ⊆ Xtriv. The proof of the following triviality
theorem follows directly from the definitions of games IND and TRIV and is
omitted.
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Game MDIFFD
S (λ)

(C0,C1, aux )←$ S(1λ)

x←$D(C0,C1, aux )

Return (∃i : C0[i](x) 6= C1[i](x))

Game MIOO
Obf,S(λ)

b←$ {0, 1} ; (C0,C1, aux )←$ S(1λ)

C←$ Obf(1λ,Cb) ; b′←$O(1λ,C, aux )

Return (b = b′)

Fig. 4. Games defining difference-security of multi-circuit sampler S and iO-security of
obfuscator Obf relative to multi-circuit sampler S.

Theorem 2. Let X ⊆ Xtriv be a class of target generators. Let Obf be any
point-function obfuscator. Then Obf is IND[X]-secure.

This can be viewed as a defect of the IND definition, but whether or not this is
true is debatable. The IND definition has been successfully employed in applica-
tions [14, 21]. In these cases, X = Xcup∩X1, a class to which Theorem 2 does not
apply. This indicates that the classes of target generators arising in applications
are naturally not trivial. And the constructions we give in Section 5 cover such
non-trivial classes. Thus we are on the whole unsure whether or not Theorem 2
should be viewed as a definitional weakness. In Section 6 we will provide alter-
native security definitions for PO that avoid this type of triviality theorem and
are meaningful for all choices of target generators. But if an application can be
obtained via IND, then it seems preferable, since this definition is simpler and
easier to use and, from Section 5, we have more constructions for it.

4 (d)iO for multi-circuit samplers

We state and prove a lemma we will use that may be of independent interest. We
extend the standard definition of circuit samplers from Section 2 to get multi-
circuit samplers, which are samplers that may produce a vector of circuit pairs
(but still only a single auxiliary information string). We also extend the security
definition of differing-inputs obfuscation to work with respect to multi-circuit
samplers. We then use a hybrid argument to show that the security of the latter
is implied by the standard definition of differing-inputs obfuscation for circuit
samplers that produce only a single pair of circuits. This result will be used for
our iO-based construction of a point-function obfuscator, BCP [16] being applied
to move from diO to iO. (We stress that diO is used as a tool but not as an
assumption in our results.)

iO for multi-circuit samplers. A multi-circuit sampler is a PT algorithm
S with an associated circuit-vector length function S.vl : N → N. Algorithm S
on input 1λ returns a triple (C0,C1, aux ) where aux is a string and C0,C1 are
circuit vectors of length S.vl(λ), such that circuits C0[i] and C1[i] are of the same
size, number of inputs and number of outputs for every i ∈ {1, . . . ,S.vl(λ)}.

Consider game MIO of Fig. 4 associated to an obfuscator Obf, a multi-circuit
sampler S and an adversaryO. For λ ∈ N let Advm-io

Obf,S,O(λ) = 2 Pr[MIOOObf,S(λ)]−
1. Let S be a class of multi-circuit samplers. We say that Obf is S -secure if
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Game OWFF
F,X(λ)

(k, a)←$ X.Ev(1λ)

For i = 1, . . . ,X.vl(λ) do

fk[i]←$ F.Kg(1λ)

y[i]← F.Ev(1λ, fk[i],k[i])

k←$ F(1λ, fk,y, a)

Return (∃i : F.Ev(1λ, fk[i], k) = y[i])

Game PRIV1A
DPKE,X(λ)

b←$ {0, 1} ; (k1, a)←$ X.Ev(1λ)

For i = 1, . . . ,X.vl(λ) do

k0[i]←$ {0, 1}DPKE.ml(λ)

(pk[i], sk[i])←$ DPKE.Kg(1λ)

c[i]← DPKE.Enc(1λ,pk[i],kb[i])

b′←$A(1λ,pk, c, a) ; Return (b = b′)

Fig. 5. Games defining one-wayness of function family F relative to target generator
X and PRIV1-security of deterministic public-key encryption scheme DPKE relative to
target generator X.

Advm-io
Obf,S,O(·) is negligible for every multi-circuit sampler S ∈ S and every PT

adversary O.
Consider game MDIFF of Fig. 4 associated to a multi-circuit sampler S and

an adversary D. For λ ∈ N let Advm-diff
S,D (λ) = Pr[MDIFFDS (λ)]. We say that a

multi-circuit sampler S is difference secure if Advm-diff
S,D (·) is negligible for every

PT adversary D. Let Sm-diff be the class of all difference-secure multi-circuit
samplers and let d: N → N. We say that multi-circuit sampler S produces d-
differing circuits if circuits C0[i] and C1[i] differ on at most d(λ) inputs with
an overwhelming probability over (C0,C1, aux ) ∈ [S(1λ)], for all λ ∈ N and
all i ∈ {1, . . . ,S.vl(λ)}. Let Sm-diff(d) be the class of all difference-secure multi-
circuit samplers that produce d-differing circuits. The proof of the following
lemma is provided in [8].

Lemma 3. Let d : N → N. Let Obf be an Sdiff(d)-secure obfuscator. Then Obf
is also an Sm-diff(d)-secure obfuscator.

5 Generic constructions of PO

Prior constructions have targeted IND[X] for specific choices of X in ad hoc ways
and used non-standard assumptions. In this section we provide constructions
that are generic. This means they take an arbitrary, given class X of target
generators and return a point-function obfuscator that is IND[X]-secure.

5.1 PO from iO

OWFs. Consider game OWF of Fig. 5 associated to a function family F, a target
generator X with X.tl = F.il, and an adversary F . For λ ∈ N let Advowf

F,X,F (λ) =

Pr[OWFFF,X(λ)]. Let X be a class of target generators with target length F.il.

Let X1ur be the target generator with X1ur.vl(·) = 1 and X1ur.tl = F.il, where the
target is sampled from a uniform distribution and the auxiliary information is
always empty, meaning a = ε. We say that F is OWF[X]-secure if Advowf

F,X,F (·) is
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Games G0, G1

b←$ {0, 1} ; (k1, a1)←$ X.Ev(1λ)
For i = 1, . . . ,X.vl(λ) do

k0[i]←$ {0, 1}X.tl(λ) ; fk[i]←$ F.Kg(1λ) ; y[i]← F.Ev(1λ, fk[i],kb[i])

P[i]←$ Obf io(C1
1λ,fk[i],y[i]) // G0

P[i]←$ Obf io(Pads(λ)(C
2)) // G1

b′←$A(1λ,P, a1) ; Return (b = b′)

Circuit C1
1λ,fk,y(k)

If (y = F.Ev(1λ, fk, k)) then return 1
Else return 0

Circuit C2(k)

Return 0

Fig. 6. Games for proof of Theorem 4.

negligible for all PT adversaries F and all X ∈ X ∪ {X1ur}. Relevant classes X
are the same as for PO. The standard notion of a OWF is recovered as X = ∅,
meaning that F is secure only with respect to X1ur.

The definition of CD [24] is the special case of ours with vectors of length one.
That of FOR [32], like ours, considers evaluations of the function on multiple
inputs, but in their case the key for the evaluations is the same and there is
no auxiliary input, while in our case the key is independently chosen for each
evaluation and auxiliary inputs may be present. We stress that we require only
one-wayness; we do not require extractability. The latter is a much stronger
assumption [13].

We now show that indistinguishability obfuscation can be used to build a
IND[X]-secure point-function obfuscator for an arbitrary target generator class
X from any OWF[X]-secure function family.

Construction. Let F be a family of functions. Let Obf io be an obfuscator. We
construct a point-function obfuscator Obf with Obf.tl = F.il as follows:

Algorithm Obf(1λ, Ik)

fk←$ F.Kg(1λ) ; y ← F.Ev(1λ, fk, k)
P←$ Obf io(C1λ,fk,y) ; Return P

Circuit C1λ,fk,y(k′)

If (y = F.Ev(1λ, fk, k′)) then return 1
Else return 0

Theorem 4. Let F be an injective family of functions. Let X be a class of target
generators with target length F.il. Assume that F is OWF[X]-secure. Let Obf io be
an indistinguishability obfuscator. Then Obf constructed above from F and Obf io

is a IND[X]-secure point-function obfuscator.

Proof (Theorem 4). The injectivity of F implies that Obf satisfies the correctness
condition of a point-function obfuscator. We now prove security.

Let X ∈ X be a target generator. Let A be a PT adversary. Consider the
games and the associated circuits of Fig. 6, where s is defined as follows. For any λ
let s(λ) be a polynomial upper bound on max(|C1

1λ,fk,y|), where the maximum is
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over all fk ∈ [F.Kg(1λ)] and y ∈ {0, 1}F.ol(λ). Lines not annotated with comments
are common to all games.

Game G0 is equivalent to INDAObf,X(λ). The inputs to adversary A in game
G1 do not depend on the challenge bit b, so we have Pr[G1] = 1/2. It follows
that

Advind
Obf,X,A(λ) = 2 · Pr[G0]− 1 = 2 · (Pr[G0]− Pr[G1]).

The first equality holds by the definition of IND, and the second equality holds
because of Pr[G1] = 1/2. We now show that Pr[G0]−Pr[G1] is negligible, meaning
that Advind

Obf,X,A(·) is also negligible. This proves the the theorem.

We construct a multi-circuit sampler S and a PT iO-adversary O as follows:

Multi-circuit Sampler S(1λ)

d←$ {0, 1} ; (k1, a1)←$ X.Ev(1λ)
For i = 1, . . . ,X.vl(λ) do

k0[i]←$ {0, 1}X.tl(λ)

fk[i]←$ F.Kg(1λ) ; y[i]← F.Ev(1λ, fk[i],kd[i])
C1[i]← C1

1λ,fk[i],y[i] ; C0[i]← Pads(λ)(C
2)

aux ← (d, a1) ; Return (C0,C1, aux )

Adversary O(1λ,C, aux )

(d, a1)← aux
d′←$A(1λ,C, a1)
If (d = d′) then return 1
Else return 0

We have Pr[G0]− Pr[G1] = Advm-io
Obf io,S,O(λ) by construction. Next, we show that

S ∈ Sm-diff(1). According to Proposition 1 (the result of BCP [16]), any indis-
tinguishability obfuscator is also an Sdiff(1)-secure obfuscator. And according
to Lemma 3, any Sdiff(1)-secure obfuscator is an Sm-diff(1)-secure obfuscator. It

follows that Advm-io
Obf io,S,O(·) is negligible by the iO-security of Obf io.

Let Xur be the target generator with Xur.vl = X.vl and Xur.tl = F.il, where the
targets are sampled independently, from a uniform distribution and auxiliary
information is always a = ε. Given any PT difference adversary D against multi-
circuit sampler S, we build PT adversaries F0 and F1 against the OWF-security
of F relative to target generators Xur and X, respectively. The constructions are
as follows:

Adversary F0(1λ, fk,y, a)

d← 0 ; (k1, a1)←$ X.Ev(1λ)
For i = 1, . . . , |y| do

C1[i]← C1
1λ,fk[i],y[i]

C0[i]← Pads(λ)(C
2)

aux ← (d, a1) ; x←$D(C1,C0, aux )
Return x

Adversary F1(1λ, fk,y, a)

d← 1
For i = 1, . . . , |y| do

C1[i]← C1
1λ,fk[i],y[i]

C0[i]← Pads(λ)(C
2)

aux ← (d, a) ; x←$D(C1,C0, aux )
Return x

Let d denote the value sampled by multi-circuit sampler S in game MDIFFDS (λ).
Then we have

Pr[ MDIFFDS (λ) | d = 0 ] = Pr[OWFF0

F,Xur (λ)],

Pr[ MDIFFDS (λ) | d = 1 ] = Pr[OWFF1

F,X(λ)].
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and Advm-diff
S,D (λ) = 1

2 (Advowf
F,Xur,F0

(λ) +Advowf
F,X,F1

(λ)). Note that OWF[X]-security

of F requires that Advowf
F,X1ur,F (λ) is negligible for all PT adversaries F . One can use

the latter with a standard hybrid argument to further prove that Advowf
F,Xur,F0

(λ) is
also negligible for all PT adversaries F0. It follows that the multi-circuit sampler
S is difference-secure. The injectivity of F also implies that S produces 1-differing
circuits. Therefore, S ∈ Sm-diff(1).

5.2 PO from DPKE

Our next generic construction is based on deterministic public-key encryption [3].
As before we aim to provide point-function obfuscation secure for any given class
of target generators. We are able to do this assuming the existence of a determin-
istic public-key encryption scheme that is secure relative to the same class viewed
as a class of message generators. We can then exploit known constructions of
deterministic public-key encryption to get a slew of point-function obfuscators
based on standard assumptions. We begin with a parameterized definition of
security for deterministic public-key encryption.

DPKE. A deterministic public-key encryption scheme DPKE [3] specifies the
following. PT key generation algorithm DPKE.Kg takes 1λ to return a public
encryption key pk and a secret decryption key sk. Deterministic PT encryption
algorithm DPKE.Enc takes 1λ, pk and a plaintext message k ∈ {0, 1}DPKE.ml(λ)

to return a ciphertext c, where DPKE.ml: N → N is the message length func-
tion associated to DPKE. Deterministic decryption algorithm DPKE.Dec takes
1λ, sk, c to return plaintext message k. We do not require the decryption al-
gorithm to be PT but we do require decryption correctness, namely that for
all λ ∈ N, all (pk, sk) ∈ [DPKE.Kg(1λ)] and all k ∈ {0, 1}DPKE.ml(λ) we have
DPKE.Dec(1λ, sk,DPKE.Enc(1λ,pk, k)) = k.

Now consider game PRIV1 of Fig. 5 associated to a deterministic public-key
encryption scheme DPKE, a target generator X satisfying X.tl = DPKE.ml, and
an adversary A. For λ ∈ N let Advpriv1

DPKE,X,A(λ) = 2 Pr[PRIV1ADPKE,X(λ)] − 1. If
X is a class of target generators then we say that DPKE is PRIV1[X]-secure if

Advpriv1
DPKE,X,A(·) is negligible for all PT adversaries A and all X ∈ X.
This definition reflects what BBO [3] call the multi-user setting where there

are many, independent public keys. However, in our case, only a single message
is encrypted under each key. The single-key version of this is called PRIV1 in
the literature, so we retained the name in moving to the multi-user setting. The
definition is in the indistinguishability style of [4, 15] rather than the semantic
security style of [3]. These definitions however did not allow auxiliary inputs.
We are allowing those following BS [17]. Finally, while prior definitions require
unpredictability of the message distribution, ours is simply parameterized by
the latter. Prior definitions are captured as special cases, meaning they can be
recovered as PRIV1[X] for some choice of X.

Construction. Let DPKE be a deterministic public-key encryption scheme.
We construct an obfuscator Obf with Obf.tl = DPKE.ml as follows:
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Algorithm Obf(1λ, Ik)

(pk, sk)←$ DPKE.Kg(1λ)
c← DPKE.Enc(1λ,pk, k) ; Return C1λ,pk,c

Circuit C1λ,pk,c(k)

If (DPKE.Enc(1λ,pk, k) = c)
Then return 1 else return 0

The construction is simple. To obfuscate Ik we pick a new key pair for the
deterministic public-key encryption scheme and return a circuit that embeds the
public key pk as well as the encryption c of the target point k. The circuit, given
a candidate target point k′, re-encrypts it under the embedded public key pk and
checks that the ciphertext so obtained matches the embedded ciphertext c. Note
that the determinism of DPKE.Enc is used crucially to ensure that the circuit
is deterministic. For randomized encryption, one cannot check that a message
corresponds to a ciphertext by re-encryption. The secret key sk is discarded and
not used in the construction, but its existence will guarantee correctness of the
point-function obfuscator.

Result. We show that this is a generic construction. Namely, a point-function
obfuscator for a given class X of target generators can be obtained if we have a
deterministic public-key encryption scheme secure for the same class.

Theorem 5. Let DPKE be a deterministic public-key encryption scheme and X
a class of target generators such that X.tl = DPKE.ml for all X ∈ X. Assume
DPKE is PRIV1[X]-secure. Let Obf be as defined above. Then Obf is a IND[X]-
secure point-function obfuscator.

Proof (Theorem 5). The correctness of Obf follows from the decryption correct-
ness of DPKE, and it does not require the decryption algorithm DPKE.Dec to be
PT. We now prove that Obf is IND[X]-secure.

Let X ∈ X be a target generator with X.tl = DPKE.ml. LetA be PT adversary
against the IND security of Obf relative to X. We construct a PT adversary B
against the PRIV1 security of DPKE relative to X as follows:

Adversary B(1λ,pk, c, a)

For i = 1, . . . , |c| do P[i]← C1λ,pk[i],c[i]

b′←$A(1λ,P, a) ; Return b′

Circuit C1λ,pk,c(k)

If (DPKE.Enc(1λ,pk, k) = c)
Then return 1 else return 0

We have Advpriv1
DPKE,X,B(λ) = Advind

Obf,X,A(λ) by construction. Hence, for any X ∈ X
the IND-security of Obf relative to X follows from the assumed PRIV1-security
of DPKE relative to X.

In applying Theorem 5 to get point function obfuscators, the first case of interest
is X = Xsup ∩Xε ∩X1. In this case, PRIV1[X]-secure deterministic public-key
encryption is a standard form of the latter for which many constructions are
known. The central construction, due to BFO [15], is from lossy trapdoor func-
tions (LTDFs). But the latter can be built from a wide variety of standard
assumptions [44, 31, 48, 37, 51]. Thus we get IND[Xsup ∩Xε ∩X1]-secure point-
function obfuscators under the same assumptions. The second case of interest
is X = Xseup ∩ X1. Unlike in the first case, there is now auxiliary informa-
tion, but it leaves the targets sub-exponentially unpredictable. Constructions of
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PRIV1[X]-secure deterministic public-key encryption are known under standard
assumptions including DLIN, Subgroup Indistinguishability and LWE [17, 50,
48]. Accordingly we get IND[Xseup ∩X1]-secure point-function obfuscators un-
der the same assumptions. BH [5] obtain PRIV-secure DPKE from UCE[Ssup],
which via Theorem 5 yields IND[Xsup ∩Xε ∩X1] under UCE[Ssup].

Theorem 5 also yields negative results. Assume iO exists. Then we know that
there do not exist point function obfuscators that are IND[Xcup]-secure [20].
Theorem 5 then implies that there also do not exist deterministic public-key
encryption schemes that are PRIV1[Xcup]-secure.

CIH function families as per GOR [36] do not seem to have a unique asso-
ciated security notion. Rather the authors discuss a few choices. Our param-
eterized PRIV definitions above apply to function families as well and can be
viewed as providing more security notions for CIH function families. These func-
tion families can also be used in our PO construction above as long as they are
injective.

5.3 PO from UCE

Our next generic construction is based on UCE, a class of assumptions on func-
tion families from [6]. We use the multi-key version of the UCE assumption,
denoted mUCE. As before we aim to provide point-function obfuscation secure
for any given class of target generators. We are able to do this with mUCE by
associating to the class of target generators a class of sources. The existence
of an mUCE-secure function family relative to the latter suffices to construct a
point-function obfuscator secure relative to the former.

Construction. Let H be a family of functions. Associate to it a point-function
obfuscator Obf defined as follows. Let Obf.tl = H.il, and

Algorithm Obf(1λ, Ik)

hk←$ H.Kg(1λ) ; y ← H.Ev(1λ,hk, k)
Return C1λ,hk,y

Circuit C1λ,hk,y(k′)

y′ ← H.Ev(1λ,hk, k′)
If (y = y′) then return 1 else return 0

The construction is simple and natural. The point-function obfuscation of Ik is
a circuit that embeds the hash y of target k under a freshly-chosen key hk also
embedded in the circuit, and, given a candidate target k′, checks whether its
hash under hk equals the embedded hash value.

Source classes. To state the result, we need a few definitions. Associate to a
target generator X a source SX defined as follows:

Source SX(1λ)

d←$ {0, 1} ; (k1, a1)←$ X.Ev(1λ)
For i = 1, . . . ,X.vl(λ) do k0[i]←$ {0, 1}X.tl(λ)

For i = 1, . . . ,X.vl(λ) do y[i]←$ HASH(i,kd[i])
L← ((d, a1),y) ; Return L
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The number of keys for this source is SX.nk = X.vl, the number of points in the
target vector. Now let X be a class of target generators and let SX = {SX : X ∈
X } be the corresponding class of sources. We will show that the construction
above is IND[X]-secure assuming H is mUCE[SX]-secure. To appreciate what
this provides we now discuss the assumption further.

Assumptions in the UCE framework are very sensitive to the class of sources
for which security is assumed. Accordingly one tries to restrict sources in different
ways. In this regard SX = { SX : X ∈ X } has some good attributes as we now
discuss, referring to definitions of classes of mUCE sources recalled in Section 2.

The first attribute is that the sources in SX are what BHK [6] call “split,”
so that SX ⊆ Ssplt. “Split” means that the leakage is a function of the oracle
queries and answers separately, but not both together. (Above, (d, a1) depends
only on the oracle queries, and y depends only on the answers.) The second
attribute is that the sources make only one query per key. (In particular when
there is only one target point, the source makes only one query overall.) That is,
SX ⊆ Sn,1 if S.nk(·) ≤ n(·) for all S ∈ SX. The third attribute is that the source
class inherits the unpredictability properties of the target generator class. Thus
if X ⊆ Xcup then SX ⊆ Scup consists of computationally unpredictable sources;
if X ⊆ Xsup then SX ⊆ Ssup consists of statistically unpredictable sources; and
if X ⊆ Xseup then SX ⊆ Sseup consists of sources that are sub-exponentially
unpredictable.

We warn that mUCE[SX]-security is not achievable for all choices of X. The
value of our result is that it is entirely general, reducing IND security for a given
X to a question of mUCE security for a related class of sources, and we can then
investigate the latter separately. In this way we get many new constructions.

Result. The following theorem shows that our construction above provides
secure point-function obfuscation in a very general and modular way, namely
the point-function obfuscator is secure relative to a class of target generators if
H is mUCE-secure relative to the corresponding class of sources. After stating
and proving this general result we will look at some special cases of interest.

Theorem 6. Let H be an injective family of functions. Let X be a class of
target generators such that X.tl = H.il for all X ∈ X. Assume H is mUCE[SX]-
secure. Let Obf be as defined above. Then Obf is a IND[X]-secure point-function
obfuscator.

Function family H is assumed to be injective in order to meet the perfect correct-
ness condition of a point-function obfuscator, and it is not important for security.
In [8] we show that non-injective mUCE is sufficient to construct a point-function
obfuscator that satisfies a relaxed correctness condition and achieves the same
security as above.

Proof (Theorem 6). Correctness of the obfuscator follows from the assumed in-
jectivity of H, meaning that the output of Obf(1λ, Ik) is always a point circuit
with target k. We now prove that Obf is IND[X]-secure.
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Let X ∈ X be any target generator with X.tl = H.il. Let SX be the correspond-
ing source as defined above. Let A be a PT adversary against the IND-security
of Obf relative to X. We define a PT distinguisher D as follows:

Distinguisher D(1λ,hk, L)

((d, a1),y)← L
For i = 1, . . . , |y| do P[i]← C1λ,hk[i],y[i]

d′←$A(1λ,P, a1)
If (d = d′) then return 1 else return 0

Circuit C1λ,hk,y(k′)

y′ ← H.Ev(1λ,hk, k′)
If (y = y′) then return 1
Else return 0

Let b denote the challenge bit in game mUCES
X,D

H (λ), and let b′ denote the bit
returned by D in the same game. We claim that

Pr[ b′ = 1 | b = 1 ] = Pr[INDAObf,X(λ)] and Pr[ b′ = 1 | b = 0 ] =
1

2
.

The first equation holds by construction. The second equation is true because D
runs A with inputs that are independent of the challenge bit d. Namely, for b = 0
the entries in y are uniform and independent, since the source S makes only one
query per key index. We have Advm-uce

H,SX,D(λ) = Advind
Obf,X,A(λ)/2. Therefore, for

any X ∈ X the IND security of Obf relative to X follows from the assumed
mUCE[{SX}]-security of H.

Negative results for multi-key UCE. Let n : N→ N be a polynomial such
that n(·) ∈ Ω((·)ε). Theorem 6 allows us to conclude that mUCE[Scup ∩ Ssplt ∩
Sn,1]-secure injective function families do not exist under certain assumptions.
This is a simple corollary of the prior results which show that MB-AIPO can
not co-exist with iO [25, 20]. We now explain our claim in more details.

Theorem 6 shows that the existence of mUCE[Scup∩Ssplt∩Sn,1]-secure injec-
tive function families implies IND[Xcup∩Xn]-secure point-function obfuscation.
Note that the latter is a composable AIPO as per CD [25]. CD [25] show that
composable AIPO can be used to construct MB-AIPO, which is an obfuscation
that is secure for functions that map a target point to a multi-bit output (as
opposed to an output in {0, 1}). Finally, BM1 [20] show that MB-AIPO cannot
co-exist with iO, assuming one-way functions. These results imply the following:

Corollary 7. Let H be an injective function family. Let n : N → N be a poly-
nomial such that n(·) ∈ Ω((·)ε) for some constant ε > 0. Assume the exis-
tence of one-way functions and indistinguishability obfuscation. Then H is not
mUCE[Scup ∩ Ssplt ∩ Sn,1]-secure.

In a concurrent and independent work, BM3 [22] discuss a similar impossibility
result for mUCE[Ss-cup ∩ Sn,1]-security. Here Ss-cup is a class of UCE sources
introduced in (BM2) [21] who also show that Scup∩Ssplt ( Ss-cup. We note that
impossibility of mUCE[Scup ∩ Ssplt ∩ Sn,1]-secure function families is a stronger
result because it concerns a smaller class of sources.

No other impossibility results are known for mUCE exclusively, but any nega-
tive results for (single-key) UCE also apply to mUCE. Specifically, BFM [18] give
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an iO-based attack on UCE[Scup]. And BST [10] show that UCE[Scup ∩ Ssplt]-
secure function families do not exist assuming the existence of OWFs and iO,
which is a strictly stronger impossibility result than the latter. The result by
BST [10] implies that mUCE[Scup ∩ Ssplt ∩ S1,p]-secure function families do not
exist for a polynomial p(·) ∈ Ω((·)ε), but we currently do not know whether this
notion is comparable to mUCE[Scup ∩ Ssplt ∩ Sn,1].

Related work. One special case of Theorem 6 is when X = Xcup ∩ X1, so
that IND[X] is AIPO. The theorem and the remarks preceding it imply that we
get this assuming mUCE[Scup ∩ Ssplt ∩ S1,1]-security. This special case of our
result was independently and concurrently obtained in [22]. Note that BM2 [21]
showed that mUCE[Scup ∩ Ssplt ∩ S1,1]-security is achievable assuming iO and
AIPO. It follows from our result that mUCE[Scup ∩ Ssplt ∩ S1,1] and AIPO are
equivalent, assuming iO.

6 Alternative security notions for PO

In Section 3 we defined IND security of point-function obfuscation. It extends se-
curity notions that were used for variants of AIPO in BP [14], MH [40], MB1 [20]
and MB3 [22]. The main difference is that IND is parameterized with a class of
target generators, allowing us to unify the treatment of AIPO from the literature.

In this section we provide several alternative security notions for point-
function obfuscation, and show relations between them and IND. Specifically,
we extend the security notion introduced by Canetti [23] as well as the notions
of average-case [29, 26] and worst-case [2, 39, 47, 35, 25] simulation-based secu-
rity for point-function obfuscation. Similar to IND, our extended notions are
parameterized with classes of target generators. We also define a novel security
notion, called computational semantic security, by adapting the corresponding
definition that was used for DPKE in [4] to the setting of point-function obfus-
cation and parameterizing it in the same way as above. Finally, we discuss the
security achieved by our PO constructions from Section 5 with respect to the
new notions.

Strong indistinguishability. Consider game SIND of Fig. 7 associated to
a point-function obfuscator Obf, a target generator X, an adversary A and a
distinguisher D, such that A returns an output in {0, 1} and Obf.tl = X.tl. For

λ ∈ N let Advsind
Obf,X,A,D(λ) = 2 Pr[SINDA,DObf,X(λ)] − 1. Let X be a class of target

generators. We say that Obf is SIND[X]-secure if Advsind
Obf,X,A,D(·) is negligible

for every X ∈ X, every PT A and every PT D. The difference between our
definitions of IND and SIND is that the latter also runs a distinguisher in the
last stage of the game, which makes this definition meaningful even for trivial
target generators (as defined in Section 3). Our definition of SIND extends the
security notion used for oracle hashing by Canetti [23], parameterizing it with
classes of target generators. Another difference is that SIND samples target
vectors k0,k1 from distributions that are potentially different, whereas [23] used
the same distribution for both. Note that adversary A cannot be allowed to
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Game SINDA,D
Obf,X(λ)

b←$ {0, 1}
(k1, a1)←$ X.Ev(1λ)

For i = 1, . . . ,X.vl(λ) do

k0[i]←$ {0, 1}X.tl(λ)

P←$ Obf(1λ, Ikb)

d←$A(1λ,P, a1)

b′←$D(1λ,k1, a1, d)

Return (b = b′)

Game CSSA
Obf,X(λ)

b←$ {0, 1}
(k1, a1)←$ X.Ev(1λ)

For i = 1, . . . ,X.vl(λ) do

k0[i]←$ {0, 1}X.tl(λ)

P←$ Obf(1λ, Ikb)

t←$A1(1λ,k1, a1)

t′←$A2(1λ,P, a1)

If (t = t′) then b′ ← 1

Else b′ ← 0

Return (b = b′)

Game SSSA,S,P
Obf,X (λ)

b←$ {0, 1}
(k, a)←$ X.Ev(1λ)

P←$ Obf(1λ, Ik)

p←$ P(1λ,k, a)

If (b = 1) then

p′←$A(1λ,P, a)

Else p′←$ SIk(1λ, a)

If (p = p′) then b′ ← 1

Else b′ ← 0

Return (b = b′)

Fig. 7. Games defining SIND security, CSS security and SSS security of point-function
obfuscator Obf relative to target generator X.

return an output of an arbitrary length because then it would be able to return
P, hence making the security trivially unachievable.

Computational semantic security. Consider game CSS of Fig. 7 associ-
ated to a point-function obfuscator Obf, a target generator X and an adver-
sary A = (A1,A2) such that algorithms A1,A2 return outputs in {0, 1} and
Obf.tl = X.tl. For λ ∈ N let Advcss

Obf,X,A(λ) = 2 Pr[CSSAObf,X(λ)] − 1. Let X be a
class of target generators. We say that Obf is CSS[X]-secure if Advcss

Obf,X,A(·) is
negligible for every X ∈ X and every PT A. This is an adaptation of the defi-
nition of computational semantic security for DPKE from [4], which we further
parameterize with classes of target generators. It asks that adversary A can not
use an obfuscation P of k1 to compute any partial information about the latter,
even in the presence of auxiliary information a1. This provides us with a better
intuition about the desired security of point-function obfuscation, as opposed to
the less intuitive definition of SIND.

Simulation-based semantic security. We consider two different definitions
of simulation-based semantic security. Informally, both definitions require that
for every PT adversary A that receives as input an obfuscation of some point-
function Ik, there exists a PT simulator with only an oracle access to Ik, such
that the output distribution of the former is indistinguishable from that of the
latter. The two definitions differ in the way how Ik is chosen. One option is to
quantify over all possible point-functions that can be produced by a particu-
lar target generator. For this purpose, we extend the definitions of worst-case
security [2, 39, 47, 35, 25] for point-function obfuscation. We use SIM to denote
our new security notion. An alternative approach is to use target generator X
in order to sample point-functions. This follows the definitions of average-case
security [29, 26] for point function obfuscation, and we use SSS to denote our
extended security notion.
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Fig. 8. Relations between security notions for point-function obfuscation.

Consider game SSS of Fig. 7 associated to a point-function obfuscator Obf,
a target generator X, an adversary A, a simulator S and a predicate algorithm
P, such that algorithms A,S,P return outputs in {0, 1} and Obf.tl = X.tl. For

λ ∈ N let Advsss
Obf,X,A,S,P(λ) = 2 Pr[SSSA,S,PObf,X (λ)]− 1. Let X be a class of target

generators. We say that Obf is SSS[X]-secure if for every target generator X ∈ X
and every PT A there exists PT S such that Advsss

Obf,X,A,S,P(·) is negligible for
every PT P. Informally, this security notion requires that for every adversary A
there exists a simulator S such that if A can use obfuscations Ik to compute any
property (function) P of k, then S can do the same using only an oracle access to
Ik (meaning that S has oracle access to each of Ik[1], . . . , Ik[n] for n = |k|). This
is required to hold even when A,S,P receive as input some auxiliary information
a about k.

SIM security. Next, we define the SIM-security of PO. Let X be a class of
target generators. Let Obf be a point-function obfuscator. We say that Obf is
SIM[X]-secure if for every target generator X ∈ X and every PT adversary A
there exists a PT simulator S and a negligible function µ : N→ N such that∣∣Pr[A(1λ,Obf(1λ, Ik), a) = P(k, a)]− Pr[SIk(1λ, a) = P(k, a)]

∣∣ ≤ µ(λ)

for every λ ∈ N, every (k, a) ∈ [X.Ev(1λ)] and every PT predicate algorithm P
that returns an output in {0, 1}.

In the above definition of SIM-security, predicate P can be substituted with
a constant function, resulting in an equivalent definition (as noted in [2, 47,
35]). In contrast, this is not true for the definition of SSS-security. Replacing P
with a constant function will allow S to run X in order to generate fresh (k, a),
obfuscate Ik to get P, and simulate A on P, a. As a result, every obfuscator
would be vaciously SSS-secure for any class of target generators X.

Relations between security notions. Fig. 8 shows relations between the
security notions for point-function obfuscation that are discussed in this paper.
Consider any two security notions A and B. An arrow from A to B means that
any A[X]-secure point-function obfuscator is also B[X]-secure, for every class
of target generators X. A crossed arrow going from A to B means that there
exists an obfuscator Obf and a class of target generators X such that Obf is
A[X]-secure but not B[X]-secure.

Implications SIM → SSS and SIND → IND trivially follow from our defini-
tions of the corresponding security notions. The proofs for all other implications
and separations shown in Fig. 8 are provided in [8]. The only relations that are
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missing in the figure (and can not be deduced using transitivity) are those be-
tween SIM and both of SSS,CSS. We leave it as an open question to show the
remaining relations between these security notions.

Security of our PO constructions. Let X be a class of target generators.
In Section 5 we showed how to build a point-function obfuscator that is IND[X]-
secure, based on any of the following: a OWF[X]-secure function family and an
iO, or a PRIV1[X]-secure DPKE, or an mUCE[SX]-secure function family for
SX as defined in Section 5.3. We do not know how to adapt our constructions to
achieve SIM[X]-security. But each of our construction achieves CSS[X]-security,
requiring only minimal changes in the used assumptions.

We now provide some intuition about our claim. Recall that game CSS com-
putes t ∈ {0, 1} by running A1(1λ,k1, a1), and subsequently compares it to the
output of A2(1λ,P, a1). This is different from game IND where the adversary
consists only of an algorithm A(1λ,P, a1). The difficulty of adapting proofs of
IND[X]-security to achieve CSS[X]-security is that in the latter k1 (required
to run A1) and P (required to run A2) are usually available in different stages
of the security proof, meaning that one has to find a way to pass around the
value of t (which depends on k1) across the stages. We resolve this by pushing t
into the auxiliary information of target generators that parametrize our security
notions.

Let X be a class of target generators. Let P be the set of all PT predicate
algorithms P such that P(1λ, ·, ·) : {0, 1}∗ × {0, 1}∗ → {0, 1} for all λ ∈ N. For
any λ ∈ N, X ∈ X and P ∈ P let XP be defined as follows:

Source XP(1λ)

(k, a)←$ X(1λ) ; β←$ P(1λ,k, a) ; Return (k, (a, β))

where XP .vl = X.vl and XP .tl = X.tl. We define a new class of target generators
X′ = { XP : X ∈ X,P ∈ P }. Then each of our constructions from Section 5
achieves CSS[X]-security, based on either of the following: a OWF[X′]-secure
function family and an iO, or a PRIV1[X′]-secure DPKE, or an mUCE[SX′

]-
secure function family.

Note that for any X ∈ X and P ∈ P, the construction of XP expands the
auxiliary information of X only by a single bit. This means that XP inherits the
unpredictability properties of X. Namely, for any λ ∈ N, X ∈ X, P ∈ P and any
PT adversary R we can construct a PT adversary Q such that Pr[PREDQX (λ)] ≥
1
2 Pr[PREDRXP (λ)] for all λ ∈ N. Adversary Q would attempt to guess the extra
bit of information and then simulate R. The same approach can be used to
show that any OWF[X]-secure function family is also OWF[X′]-secure, recoving
the construction of CSS[X]-secure PO directly from a OWF[X]-secure function
family and an iO.

Definitional choices. All of our security notions for point-function obfusca-
tion require that adversaries return single-bit outputs. This is consistent with
the prior work. Specifically, simulation-based definitions in the prior literature
always compare the outputs of adversary and simulator to either a predicate [27,
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35] or a constant [2, 39, 47, 25, 29, 26]. However, it would be more intuitive to not
restrict the size of outputs returned by adversaries in games CSS, SSS and SIM.
The goal of these adversaries can be thought as to compute some “property” of
the target vector, and there is no reason to limit it to a single bit.

The initial work on obfuscation [2] discusses various definitional choices and
chooses to use the weakest of them to achieve stronger impossibility results.
Subsequent work continues to use definitions of the same style even for positive
results. We are not aware of any follow-up discussion on alternative definitions.

Some of our implications from Fig. 8 might change if adversaries in games
CSS, SSS and SIM are allowed to return multiple-bit outputs. In particular,
note that our definitions of CSS and SSS are similar to those that were used for
DPKE schemes in BFOR [4], who showed them to be equivalent for multiple-bit
outputs in their setting. We leave it as an open problem to extend our definitions
to allow outputs of an arbitrary size.
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