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Abstract. This paper addresses the fundamental question of whether or
not different, exciting primitives now being considered actually exist. We
show that we, unfortunately, cannot have them all. We provide results of
the form ¬A∨¬B, meaning one of the primitives A,B cannot exist. (But
we don’t know which.) Specifically, we show that: (1) VGBO (Virtual
Grey Box Obfuscation) for all circuits, which has been conjectured to
be achieved by candidate constructions, cannot co-exist with Canetti’s
1997 AI-DHI (auxiliary input DH inversion) assumption, which has
been used to achieve many goals including point-function obfuscation
(2) iO (indistinguishability obfuscation) for all circuits cannot co-exist
with KM-LR-SE (key-message leakage-resilient symmetric encryption)
(3) iO cannot co-exist with hash functions that are UCE secure for
computationally unpredictable split sources.

1 Introduction

Cryptographic theory is being increasingly bold with regard to assumptions and
conjectures. This is particularly true in the area of obfuscation, where candidate
constructions have been provided whose claim to achieve a certain form of ob-
fuscation is either itself an assumption [31] or is justified under other, new and
strong assumptions [41, 12, 34]. This is attractive and exciting because we gain
new capabilities and applications. But it behoves us also to be cautious and try
to ascertain, not just whether the assumptions are true, but whether the goals
are even achievable.

But how are we to determine this? The direct route is cryptanalysis, and we
have indeed seen some success [39, 27, 33, 28]. But cryptanalysis can be difficult
and runs into major open complexity-theoretic questions. There is another re-
warding route, that we pursue here. This is to seek and establish relations that
we call contentions. These take the form ¬A∨¬B where A,B are different prim-
itives or assumptions. This shows that A,B are not both achievable, meaning
they cannot co-exist. We may not know which of the two fails, but at least one
of the two must, which is valuable and sometimes surprising information. Indeed,
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many intriguing contentions of this form have been provided in recent work [14,
32, 20, 22, 11, 21, 5, 36]. For example, we know that the following cannot co-exist:
“Special-purpose obfuscation” and diO [32]; Multi-bit point function obfuscation
and iO [22]; extractable one-way functions and iO [14].

In this paper we begin by addressing the question of whether VGBO (Virtual
Grey Box Obfuscation) for all circuits is possible, as conjectured by BCKP [13,
Section 1.1]. We show that this is in contention with the AI-DHI assumption
of [25, 15]. We go on to show that iO is in contention with certain forms of
leakage resilient encryption and UCE.

1.1 VGBO and AI-DHI

We show that ¬VGBO ∨ ¬AI-DHI. That is, Virtual Grey Box Obfuscation
(VGBO) of all circuits is in contention with Canetti’s 1997 AI-DHI (Auxiliary-
Input Diffie-Hellman Inversion) assumption [25, 15]. One of the two (or both)
must fail. Let us now back up to provide more information on the objects in-
volved and the proof.

The study of obfuscation began with VBBO (Virtual Black Box Obfusca-
tion) [37, 4], which asks that for any PT adversary A given the obfuscated cir-
cuit, there is a PT simulator S given an oracle for the original circuit, such that
the two have about the same probability of returning 1. The impossibility of
VBBO [4, 35, 16] has lead to efforts to define and achieve weaker forms of ob-
fuscation. VGBO [10] is a natural relaxation of VBBO allowing the simulator
S to be computationally unbounded but restricted to polynomially-many oracle
queries. This bypasses known VBBO impossibility results while still allowing
interesting applications. Furthermore BCKP [12, 13] show that VGBO for NC1

is achievable (under a novel assumption). They then say “existing candidate in-
distinguishability obfuscators for all circuits [31, 19, 3] may also be considered as
candidates for VGB obfuscation, for all circuits” [13, Section 1.1]. This would
mean, in particular, that VGBO for all circuits is achievable. In this paper we
ask if this “VGB conjecture” is true.

The AI-DHI assumption [25, 15] says that there is an ensemble G = {Gλ :
λ ∈ N} of prime-order groups such that, for r, s chosen at random from Gλ,
no polynomial-time adversary can distinguish between (r, rx) and (r, s), even
when given auxiliary information a about x, as long as this information a is
“x-prediction-precluding,” meaning does not allow one to just compute x in
polynomial time. The assumption has been used for oracle hashing [25], AIPO
(auxiliary-input point-function obfuscation) [15] and zero-knowledge proofs [15].

Our result is that ¬VGBO∨¬AI-DHI. That is, either VGBO for all circuits is
impossible or the AI-DHI assumption is false. To prove this, we take any ensemble
G = {Gλ : λ ∈ N} of prime-order groups. For random x, we define a way of
picking the auxiliary information a such that (1) a is x-prediction-precluding, but
(2) there is a polynomial-time adversary that, given a, can distinguish between
(r, rx) and (r, s) for random r, s. Consider the circuit Cx that on input u, v
returns 1 if v = ux and 0 otherwise. The auxiliary information a will be a VGB
obfuscation C of Cx. Now (2) is easy to see: the adversary, given challenge (u, v),
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can win by returning C(u, v). But why is (1) true? We use the assumed VGB
security of the obfuscator to reduce (1) to showing that no, even unbounded,
simulator, given an oracle for Cx, can extract x in a polynomial number of
queries. This is shown through an information-theoretic argument that exploits
the group structure.

The natural question about which one would be curious is, which of VGBO
and AI-DHI is it that fails? This is an intriguing question and we do not know
the answer at this point.

1.2 Key-message leakage resilience

DKL [30] and CKVW [26] provide key leakage resilient symmetric encryption (K-
LR-SE) schemes. This means they retain security even when the adversary has
auxiliary information about the key, as long as this information is key-prediction-
precluding, meaning does not allow one to compute the key. We consider a
generalization that we call key-message leakage resilient symmetric encryption
(KM-LR-SE). Here the auxiliary information is allowed to depend not just on the
key but also on the message, the requirement however still being that it is key-
prediction-precluding, meaning one cannot compute the key from the auxiliary
information. The enhancement would appear to be innocuous, because the strong
semantic-security style formalizations of encryption that we employ in any case
allow the adversary to have a priori information about the message. However,
we show that this goal is impossible to achieve if iO for all circuits is possible.
That is, we show in Theorem 3 that ¬iO ∨ ¬KM-LR-SE. Since iO seems to be
growing to be more broadly accepted, this indicates that KM-LR-SE is not likely
to exist. We think this may be of direct interest from the perspective of leakage
resilience, but its main importance for us is as a tool to establish new negative
results for UCE as discussed in Section 1.3 below. The proof of Theorem 3 is a
minor adaptation of the proof of BM [22] ruling out MB-AIPO under iO.

1.3 UCE for split sources

UCE is a class of assumptions for function families introduced in BHK [6] with
the goal of instantiating random oracles. For a class S of algorithms called
sources, BHK define UCE[S] security of a family of functions. The parameteri-
zation is necessary because security is not achievable for the class of all sources.
BHK and subsequent work [6, 20, 23, 40, 5, 29] have considered several restricted
classes of sources and, based on the assumption of UCE security for these, been
able to instantiate random oracles to obtain secure, efficient instantiations for
primitives including deterministic public-key encryption, message-locked encryp-
tion, encryption secure for key-dependent messages, encryption secure under
related-key attacks, adaptive garbling, hardcore functions and IND-CCA public-
key encryption.

However UCE here has functioned as an assumption. We know little about
its achievability. The basic foundational question in this area is, for which source
classes S is UCE[S] security achievable? The first step towards answering this
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was taken by BFM [20], who showed that ¬iO ∨ ¬UCE[Scup]. That is, iO for
all circuits is in contention with UCE security relative to the class Scup of all
computationally unpredictable sources. (These are sources whose leakage is com-
putationally unpredictable when their queries are answered by a random ora-
cle.) This lead BHK [6] to propose restricting attention to “split” sources. Such
sources can leak information about an oracle query and its answer separately,
but not together. This circumvents the BFM attack. Indeed, UCE[Scup ∩ Ssplt]
appeared plausible even in the presence of iO. However in this paper we show
¬iO ∨ ¬UCE[Scup ∩ Ssplt], meaning iO and UCE[Scup ∩ Ssplt] security cannot
co-exist. The interpretation is that UCE[Scup∩Ssplt]-secure function families are
unlikely to exist. We obtain our ¬iO∨¬UCE[Scup∩Ssplt] result by showing that
UCE[Scup ∩ Ssplt] ⇒ KM-LR-SE, meaning we can build a key-message leakage
resilient symmetric encryption scheme given any UCE[Scup ∩ Ssplt]-secure func-
tion family. But we saw above that ¬iO ∨ ¬KM-LR-SE and can thus conclude
that ¬iO ∨ ¬UCE[Scup ∩ Ssplt].

BM2 [23] show that UCE[Scup ∩Ssplt ∩S1] security —Scup ∩Ssplt ∩Sq is the
class of computationally unpredictable split sources making q oracle queries— is
achievable. (They assume iO and AIPO.) Our ¬iO ∨ ¬UCE[Scup ∩ Ssplt] result
does not contradict this since our source makes a polynomial number of oracle
queries. Indeed our result complements the BM2 one to show that a bound on
the number of source oracle queries is necessary for a positive result. Together
these results give a close to complete picture of the achievability of UCE for split
sources, the remaining open question being achievability of UCE[Scup ∩ Ssplt ∩
Sq] for constant q > 1.

We note that we are not aware of any applications assuming UCE[Scup ∩
Ssplt]. Prior applications have used either UCE[Scup ∩ Ssplt ∩ S1] or quite dif-
ferent classes like UCE[Ssup] —Ssup is the class of statistically unpredictable
sources [6, 20]— and neither of these is at risk from our results. However our
¬iO∨¬UCE[Scup ∩Ssplt] result is of interest towards understanding the achiev-
ability of UCE assumptions and the effectiveness of different kinds of restrictions
(in this case, splitting) on sources. The achievability of UCE[Scup∩Ssplt] security
was an open problem from prior work.

1.4 Discussion and related work

The idea of using an obfuscated circuit as an auxiliary input to obtain contention
results has appeared in many prior works [14, 32, 20, 22, 11, 21, 5, 36]. Some of
the contentions so established are between “Special-purpose obfuscation” and
diO [32], between MB-AIPO and iO [22] and between extractable one-way func-
tions and iO [14]. Our work follows in these footsteps.

KM-LR-SE can be viewed as a symmetric encryption re-formulation of MB-
AIPO following the connection of the latter to symmetric encryption established
by CKVW [26]. The main change is in the correctness condition. We formulate
a weak correctness condition, which is important for our application to UCE. In
its absence, our negative result for split-source UCE would only be for injective
functions, which is much weaker. With this connection in mind, the proof of
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Theorem 3, as we have indicated above, is a minor adaptation of the proof of
BM [22] ruling out MB-AIPO under iO. Our result about KM-LR-SE is thus
not of technical novelty or interest but we think this symmetric encryption re-
formulation of BM [22] is of interest from the leakage resilience perspective and
as a tool to obtain more negative results, as exemplified by our application to
UCE.

In independent and concurrent work, BM3 [24] show ¬iO ∨ ¬UCE[Ss-cup],
where Ss-cup is the class of strongly computationally unpredictable sources as
defined in [22]. But the latter show that Scup ∩ Ssplt is a strict subset of Ss-cup.
This means that our ¬iO∨¬UCE[Scup∩Ssplt] result is strictly stronger than the
¬iO∨¬UCE[Ss-cup] result of [24]. (Under iO, our result rules out UCE security
for a smaller, more restricted class of sources.)

Our results on UCE, as with the prior ones of BFM [20], are for the basic
setting, where there is a single key or single user [6]. BHK [6] also introduce
a multi-key (multi-user) setting. Some negative results about this are provided
in [8].

2 Preliminaries

Notation. We denote by λ ∈ N the security parameter and by 1λ its unary
representation. If x ∈ {0, 1}∗ is a string then |x| denotes its length, x[i] denotes
its i-th bit, and x[i..j] = x[i] . . . x[j] for 1 ≤ i ≤ j ≤ |x|. We let ε denote the
empty string. If s is an integer then Pads(C) denotes circuit C padded to have
size s. We say that circuits C0,C1 are equivalent, written C0 ≡ C1, if they agree
on all inputs. If x is a vector then |x| denotes the number of its coordinates and
x[i] denotes its i-th coordinate. If X is a finite set, we let x←$X denote picking
an element of X uniformly at random and assigning it to x. Algorithms may be
randomized unless otherwise indicated. Running time is worst case. “PT” stands
for “polynomial-time,” whether for randomized algorithms or deterministic ones.
If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A with random
coins r on inputs x1, . . . and assigning the output to y. We let y←$A(x1, . . .) be
the result of picking r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)]
denote the set of all possible outputs of A when invoked with inputs x1, . . .. We
say that f : N → R is negligible if for every positive polynomial p, there exists
λp ∈ N such that f(λ) < 1/p(λ) for all λ > λp. We use the code based game
playing framework of [7]. (See Fig. 1 for an example.) By GA(λ) we denote the
event that the execution of game G with adversary A and security parameter λ
results in the game returning true.

Auxiliary information generators. Many of the notions we consider in-
volve the computational unpredictability of some quantity even given “auxiliary
information” about it. We abstract this out via our definition of an auxiliary
information generator X. The latter specifies a PT algorithm X.Ev that takes 1λ

to return a target k ∈ {0, 1}X.tl(λ), a payload m ∈ {0, 1}X.pl(λ) and an auxiliary
information a, where X.tl,X.pl: N→ N are the target and payload length func-
tions associated to X, respectively. Consider game PRED of Fig. 1 associated
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Game PREDQX (λ)

(k,m, a)←$ X.Ev(1λ)

k′←$Q(1λ, a)

Return (k = k′)

Game PRGRR (λ)

b←$ {0, 1}
m←$ {0, 1}R.sl(λ)

y1 ← R.Ev(1λ,m)

y0←$ {0, 1}2·R.sl(λ)

b′←$R(1λ, yb)

Return (b = b′)

Game IOOObf,S(λ)

b←$ {0, 1}
(C0,C1, aux )←$ S(1λ)

C←$ Obf(1λ,Cb)

b′←$O(1λ,C, aux )

Return (b = b′)

Fig. 1. Games defining unpredictabilty of auxiliary information generator X, PR-
security of pseudorandom generator R and iO-security of obfuscator Obf relative to
circuit sampler S.

to X and a predictor adversary Q. For λ ∈ N let AdvpredX,Q(λ) = Pr[PREDQX (λ)].

We say that X is unpredictable if AdvpredX,Q(·) is negligible for every PT adversary

Q. We say that X is uniform if X.Ev(1λ) picks the target k ∈ {0, 1}X.tl(λ) and
the payload m ∈ {0, 1}X.pl(λ) uniformly and independently. Note that the aux-
iliary information a may depend on both the target k and the payload m, but
unpredictability refers to recovery of the target k alone.

PRGs. A pseudorandom generator R [17, 44] specifies a deterministic PT al-
gorithm R.Ev where R.sl: N → N is the seed length function of R such that
R.Ev(1λ, ·): {0, 1}R.sl(λ) → {0, 1}2·R.sl(λ) for all λ ∈ N. We say that R is PR-
secure if the function AdvprR,R(·) is negligible for every PT adversary R, where

for λ ∈ N we let AdvprR,R(λ) = 2 Pr[PRGRR (λ)]− 1 and game PRG is specified in
Fig. 1.

Obfuscators. An obfuscator is a PT algorithm Obf that on input 1λ and a
circuit C returns a circuit C such that C ≡ C. (That is, C(x) = C(x) for all
x.) We refer to the latter as the correctness condition. We will consider various
notions of security for obfuscators, including VGBO and iO.

Indistinguishability obfuscation. We use the BST [9] definitional frame-
work which parameterizes security via classes of circuit samplers. Let Obf be an
obfuscator. A sampler in this context is a PT algorithm S that on input 1λ re-
turns a triple (C0,C1, aux ) where C0,C1 are circuits of the same size, number of
inputs and number of outputs, and aux is a string. If O is an adversary and λ ∈ N
we let AdvioObf,S,O(λ) = 2 Pr[IOOObf,S(λ)] − 1 where game IOOObf,S(λ) is defined in
Fig. 1. Now let S be a class (set) of circuit samplers. We say that Obf is S -secure
if AdvioObf,S,O(·) is negligible for every PT adversary O and every circuit sampler
S ∈ S . We say that circuit sampler S produces equivalent circuits if there exists a
negligible function ν such that Pr[C0 ≡ C1 : (C0,C1, aux )←$ S(1λ)] ≥ 1− ν(λ)
for all λ ∈ N. Let Seq be the class of all circuit samplers that produce equivalent
circuits. We say that Obf is an indistinguishability obfuscator if it is Seq-secure [4,
31, 42].
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Game UCES,DH (λ)

b←$ {0, 1} ; hk←$ H.Kg(1λ)

L←$ SHASH(1λ)

b′←$D(1λ,hk, L)

Return (b′ = b)

HASH(x)

If T [x] = ⊥ then

If b = 0 then T [x]←$ {0, 1}H.ol(λ)

Else T [x]← H.Ev(1λ,hk, x)

Return T [x]

Game PREDPS (λ)

X ← ∅
L←$ SHASH(1λ)

x′←$ P(1λ, L)

Return (x′ ∈ X)

HASH(x)

If T [x] = ⊥ then

T [x]←$ {0, 1}H.ol(λ)

X ← X ∪ {x}
Return T [x]

Source SHASH(1λ)

(L0,x)←$ S0(1λ)

For i = 1, . . . , |x| do

y[i]←$ HASH(x[i])

L1←$ S1(1λ,y)

L← (L0, L1)

Return L

Fig. 2. Games defining UCE security of function family H, unpredictability of source
S, and the split source S = Splt[S0,S1] associated to S0,S1.

Function families. A family of functions F specifies the following. PT key
generation algorithm F.Kg takes 1λ to return a key fk ∈ {0, 1}F.kl(λ), where
F.kl: N→ N is the key length function associated to F. Deterministic, PT evalu-
ation algorithm F.Ev takes 1λ, key fk ∈ [F.Kg(1λ)] and an input x ∈ {0, 1}F.il(λ)
to return an output F.Ev(1λ, fk, x) ∈ {0, 1}F.ol(λ), where F.il,F.ol: N→ N are the
input and output length functions associated to F, respectively. We say that F
is injective if the function F.Ev(1λ, fk, ·): {0, 1}F.il(λ) → {0, 1}F.ol(λ) is injective
for every λ ∈ N and every fk ∈ [F.Kg(1λ)].

UCE security. Let us recall the Universal Computational Extractor (UCE)
framework of BHK [6]. Let H be a family of functions. Let S be an adversary
called the source and D an adversary called the distinguisher. We associate to
them and H the game UCES,DH (λ) in the left panel of Fig. 2. The source has
access to an oracle HASH and we require that any query x made to this oracle
have length H.il(λ). When the challenge bit b is 1 (the “real” case) the oracle
responds via H.Ev under a key hk that is chosen by the game and not given to
the source. When b = 0 (the “random” case) it responds as a random oracle.
The source then leaks a string L to its accomplice distinguisher. The latter does
get the key hk as input and must now return its guess b′ ∈ {0, 1} for b. The
game returns true iff b′ = b, and the uce-advantage of (S,D) is defined for λ ∈ N
via AdvuceH,S,D(λ) = 2 Pr[UCES,DH (λ)] − 1. If S is a class (set) of sources, we say
that H is UCE[S]-secure if AdvuceH,S,D(·) is negligible for all sources S ∈ S and all
PT distinguishers D.

It is easy to see that UCE[S]-security is not achievable if S is the class of
all PT sources [6]. To obtain meaningful notions of security, BHK [6] impose
restrictions on the source. A central restriction is unpredictability. A source is
unpredictable if it is hard to guess the source’s HASH queries even given the
leakage, in the random case of the UCE game. Formally, let S be a source and
P an adversary called a predictor and consider game PREDPS (λ) in the middle
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panel of Fig. 2. For λ ∈ N we let AdvpredS,P(λ) = Pr[PREDPS (λ)]. We say that S
is computationally unpredictable if AdvpredS,P(·) is negligible for all PT predictors
P, and let Scup be the class of all PT computationally unpredictable sources.
We say that S is statistically unpredictable if AdvpredS,P(·) is negligible for all
(not necessarily PT) predictors P, and let Ssup ⊆ Scup be the class of all PT
statistically unpredictable sources.

BFM [20] show that UCE[Scup]-security is not achievable assuming that in-
distinguishability obfuscation is possible. This has lead applications to either
be based on UCE[Ssup] or on subsets of UCE[Scup], meaning to impose further
restrictions on the source. UCE[Ssup], introduced in [6, 20], seems at this point
to be a viable assumption. In order to restrict the computational case, one can
consider split sources as defined in BHK [6]. Let S0,S1 be algorithms, neither
of which have access to any oracles. The split source S = Splt[S0,S1] associated
to S0,S1 is defined in the right panel of Fig. 2. Algorithm S0 returns a pair
(L0,x). Here x is a vector over {0, 1}H.il(λ) all of whose entries are required to
be distinct. (If the entries are not required to be distinct, collisions can be used
to communicate information between the two components of the source, and the
BFM [20] attack continues to apply, as pointed out in [23].) The first adversary
creates the oracle queries for the source S, the latter making these queries and
passing the replies to the second adversary to get the leakage. In this way, nei-
ther S0 nor S1 have an input-output pair from the oracle, limiting their ability
to create leakage useful to the distinguisher. A source S is said to belong to the
class Ssplt if there exist PT S0,S1 such that S = Splt[S0,S1], meaning is defined
as above. The class of interest is now UCE[Scup ∩ Ssplt], meaning UCE-security
for computationally unpredictable, split sources.

Another way to restrict a UCE source is by limiting the number of queries it
can make. Let Sq be the class of sources making q(·) oracle queries. This allows to
consider Scup ∩Ssplt ∩S1, a class of computationally unpredictable split sources
that make a single query. BM2 [23] show that UCE[Scup ∩Ssplt ∩S1]-security is
achievable assuming iO and AIPO.

3 VGBO and the AI-DHI assumption

BCKP [12, 13] conjecture that existing candidate constructions of iO also achieve
VGBO and thus in particular that VGB obfuscation for all circuits is possible.
Here we explore the plausibility of this “VGB conjecture.” We show that it im-
plies the failure of Canetti’s AI-DHI assumption. Either this assumption is false
or VGBO for all circuits is not possible. (In fact, our result refers to an even
weaker VGBO assumption.) That is, the long-standing AI-DHI assumption and
VGBO are in contention; at most one of these can exist. We start by defining
VGBO and recalling the AI-DHI assumption, and then give our result and its
proof. We then suggest a weakening of AI-DHI that we call AI-DHI2 that is pa-
rameterized by a group generator. We show that our attack on AI-DHI extends
to rule out AI-DHI2 for group generators satisfying a property we call verifiabil-
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Game VGB1AObf,Smp(λ)

C←$ Smp(1λ)

C←$ Obf(1λ,C)

b′←$A(1λ,C)

Return (b′ = 1)

Game VGB0SSmp,q(λ)

C←$ Smp(1λ) ; i← 0

b′←$ SCIRC(1λ)

Return (b′ = 1)

CIRC(x)

i← i+ 1

If i > q(λ) then return ⊥
y ← C(x) ; Return y

Fig. 3. Games defining VGB security of obfuscator Obf.

ity. However there may be group generators that do not appear to be verifiable,
making AI-DHI2 a potential alternative to AI-DHI.

VGBO. Let Obf be an obfuscator as defined in Section 2. We define what it
means for it to be a VGB obfuscator. We will use a weak variant of the notion
used in some of the literature [10, 12], which strengthens our results since they
are negative relations with starting point VGBO.

A sampler Smp in this context is an algorithm that takes 1λ to return a
circuit C. Let q be a polynomial, A an adversary and S a (not necessarily PT)
algorithm called a simulator. For λ ∈ N let

AdvvgbObf,Smp,q,A,S(λ) =
∣∣Pr[VGB1AObf,Smp(λ)]− Pr[VGB0SSmp,q(λ)]

∣∣
where the games are in Fig. 3. Let SAMP be a set of samplers. We say that Obf
is a VGB obfuscator for SAMP if for every PT adversary A there exists a (not

necessarily PT) simulator S and a polynomial q such that AdvvgbObf,Smp,q,A,S(·) is
negligible for all Smp ∈ SAMP.

We note that [12] use a VGB variant stronger than the above where the
advantage measures the difference in probabilities of A and S guessing a pred-
icate π(C), rather than just the probabilities of outputting one, which is all we
need here. Also note that our VGB definition is vacuously achievable whenever
|SAMP| = 1, since S can simulate game VGB1AObf,Smp(λ) for any fixed choice of
A and Smp. Our applications however use a SAMP of size 2.

The AI-DHI assumption. Let G = {Gλ : λ ∈ N} be an ensemble of groups
where for every λ ∈ N the order p(λ) of group Gλ is a prime in the range
2λ−1 < p(λ) < 2λ. We assume that relevant operations are computable in time
polynomial in λ, including computing p(·), testing membership in Gλ and per-
forming operations in Gλ. By G∗λ we denote the non-identity members of the
group, which is the set of generators since the group has prime order. An auxil-
iary information generator X for G is an auxiliary information generator as per
Section 2 with the additional property that the target k returned by X.Ev(1λ) is
in Zp(λ) (i.e. is an exponent) and the payload m is ε (i.e. is effectively absent).
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Game AIDHIAG,X(λ)

b←$ {0, 1} ; (k, ε, a)←$ X.Ev(1λ)

g←$ G∗λ
K1 ← gk ; K0←$ Gλ
b′←$A(1λ, g,Kb, a)

Return (b = b′)

Game AIDHI2AGG,X(λ)

b←$ {0, 1} ; (k, ε, a)←$ X.Ev(1λ)

〈G〉 ←$ GG(1λ) ; g←$ Gen(G)

K1 ← gk ; K0←$ G
b′←$A(1λ, 〈G〉, g,Kb, a)

Return (b = b′)

Fig. 4. Games defining the AI-DHI assumption and the AI-DHI2 assumption.

Now consider game AIDHI of Fig. 4 associated to G,X and an adversary A.
For λ ∈ N let AdvaidhiG,X,A(λ) = 2 Pr[AIDHIAG,X(λ)] − 1. We say that G is AI-DHI-

secure if AdvaidhiG,X,A(·) is negligible for every unpredictable X for G and every PT
adversary A. The AI-DHI assumption [25, 15] is that there exists a family of
groups G that is AI-DHI secure.

¬VGBO ∨ ¬AI-DHI. The following says if VGB obfuscation is possible then the
AI-DHI assumption is false: there exists no family of groups G that is AI-DHI
secure. Our theorem only assumes a very weak form of VGB obfuscation for a
class with two samplers (given in the proof).

Theorem 1. Let G be a family of groups. Then there is a pair Smp,Smp0 of PT
samplers (defined in the proof) such that if there exists a VGB-secure obfuscator
for the class SAMP = {Smp,Smp0}, then G is not AI-DHI-secure.

Proof (Theorem 1). Let Obf be the assumed obfuscator. Let X be the auxiliary
information generator for G defined as follows:

Algorithm X.Ev(1λ)

k←$ Zp(λ)
C←$ Obf(1λ,C1λ,k)
Return (k, ε,C)

Circuit C1λ,k(g,K)

If (g 6∈ G∗λ or K 6∈ Gλ) then return 0
If (gk = K) then return 1
Else return 0

The auxiliary information a = C produced by X is an obfuscation of the circuit
C1λ,k shown on the right above. The circuit has 1λ and the target value k
embedded inside. The circuit takes inputs g,K and checks that the first is a
group element different from the identity —and thus a generator— and the
second is a group element. It then returns 1 if gk equals K, and 0 otherwise.

We first construct a PT adversaryA∗ such that AdvaidhiG,X,A∗(·) is non-negligible.

On input 1λ, g,Kb,C, it simply returns C(g,Kb). That is, it runs the obfuscated
circuit C on g and Kb and returns its outcome. If the challenge bit b in game
AIDHIA

∗

G,X(λ) is 1 then the adversary always outputs b′ = 1. Otherwise, the

adversary outputs b′ = 1 with probability 1/p(λ). We have AdvaidhiG,X,A∗(λ) =

1− 1/p(λ) ≥ 1− 21−λ, which is not negligible.
We now show that the constructed auxiliary information generator X is un-

predictable. In particular, for any PT adversary Q we construct a PT adversary
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A and samplers Smp, Smp0 such that for all simulators S and all polynomials q,

AdvpredX,Q(λ) ≤ AdvvgbObf,Smp,q,A,S(λ) + AdvvgbObf,Smp0,q,A,S
(λ) +

q(λ)

2λ−1
. (1)

Concretely, the adversary A and the samplers Smp,Smp0 operate as follows:

Adversary A(1λ,C)

k′←$Q(1λ,C)
ḡ←$ G∗λ
Return C(ḡ, ḡk

′
)

Algorithm Smp(1λ)

k←$ Zp(λ)
Return C1λ,k

Algorithm Smp0(1λ)

Return C0

In Smp0, the circuit C0 takes as input a pair of group elements g, g′ from Gλ
and always returns 0.

To show Equation (1), we first note that by construction

AdvpredX,Q(λ) = Pr[VGB1AObf,Smp(λ)] , (2)

because an execution of PREDQX (λ) results in the same output distribution as in
VGB1AObf,Smp(λ). The only difference is that in the latter, the check of whether

the guess is correct is done via the obfuscated circuit C. Now, for all simulators
S and polynomials q, we can rewrite Equation (2) as

AdvpredX,Q(λ) = Pr[VGB1AObf,Smp(λ)]− Pr[VGB0SSmp,q(λ)]

+ Pr[VGB0SSmp,q(λ)]− Pr[VGB0SSmp0,q
(λ)]

+ Pr[VGB0SSmp0,q
(λ)]− Pr[VGB1AObf,Smp0

(λ)]

+ Pr[VGB1AObf,Smp0
(λ)] .

To upper bound AdvpredX,Q(λ), we first note that

Pr[VGB1AObf,Smp(λ)]− Pr[VGB0SSmp,q(λ)] ≤ AdvvgbObf,Smp,q,A,S(λ)

and

Pr[VGB0SSmp0,q
(λ)]− Pr[VGB1AObf,Smp0

(λ)] ≤ AdvvgbObf,Smp0,q,A,S
(λ) .

Moreover, we have Pr[VGB1AObf,Smp0
(λ)] = 0 by constructon. Namely, adversary

A never outputs 1 in game VGB1AObf,Smp0
(λ), since it is given an obfuscation of

the constant zero circuit C0.
We are left with upper bounding the difference between Pr[VGB0SSmp,q(λ)]

and Pr[VGB0SSmp0,q
(λ)]. Note that S is allowed to issue at most q(λ) queries to

the given circuit, which is either C1λ,k for a random k←$ Zp(λ) or C0. Denote by

Hit the event that S makes a query (g,K) in VGB0SSmp,q(λ) such that gk = K.
Then, by a standard argument,

Pr[VGB0SSmp,q(λ)]− Pr[VGB0SSmp0,q
(λ)] ≤ Pr[Hit] .

To compute Pr[Hit], we move from VGB0SSmp,q(λ) to the simpler VGB0SSmp0,q
(λ),

where all of S’s queries are answered with 0. We extend the latter game to sample
a random key k←$ Zp(λ), and we define Hit′ as the event in this game that for

one of S’s queries (g,K) we have gk = K. It is not hard to see that Pr[Hit′] and
Pr[Hit] are equal, as both games are identical as long as none of such queries
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occur. Since there are at most q(λ) queries, and exactly one k can produce the
answer 1 for these queries, the union bound yields

Pr[Hit] = Pr[Hit′] ≤ q(λ)

p(λ)
≤ q(λ)

2λ−1
,

which concludes the proof. ut

The AI-DHI2 assumption. We now suggest a relaxation AI-DHI2 of the AI-
DHI assumption given above. The idea is that for each value of λ there is not
one, but many possible groups. Formally, a group generator is a PT algorithm
GG that on input 1λ returns a description 〈G〉 of a cyclic group G whose order
|G| is in the range 2λ−1 < |G| < 2λ. We assume that given 1λ, 〈G〉, relevant
operations are computable in time polynomial in λ, including performing group
operations in G and picking at random from G and from the set Gen(G) of
generators of G. An auxiliary information generator X for GG is an auxiliary
information generator as per Section 2 with the additional property that the
target k returned by X.Ev(1λ) is in Z2λ−1 —this makes it a valid exponent for
any group G such that 〈G〉 ∈ [GG(1λ)]— and the payload m is ε (i.e. is effectively
absent).

Now consider game AIDHI2 of Fig. 4 associated to GG,X and an adversary
A. For λ ∈ N let Advaidhi2GG,X,A(λ) = 2 Pr[AIDHI2AGG,X(λ)] − 1. We say that GG is

AI-DHI2-secure if Advaidhi2GG,X,A(·) is negligible for every unpredictable X for GG
and every PT adversary A. The (new) AI-DHI2 assumption is that there exists
a group generator GG which is AI-DHI2 secure.

BP [15] give a simple construction of AIPO from AI-DHI. It is easy to extend
this to use AI-DHI2.

A verifier for group generator GG is a deterministic, PT algorithm GG.Vf that
can check whether a given string d is a valid description of a group generated
by the generator GG. Formally, GG.Vf on input 1λ, d returns true if d ∈ [GG(1λ)]
and false otherwise, for all d ∈ {0, 1}∗. We say that GG is verifiable if it has a
verifier and additionally, in time polynomial in 1λ, 〈G〉, where 〈G〉 ∈ [GG(1λ)],
one can test membership in G and in the set Gen(G) of generators of G. The
following extends Theorem 1 to say that if VGBO is possible then no verifiable
group generator is AI-DHI2 secure.

Theorem 2. Let GG be a verifiable group generator. Then there is a pair Smp,
Smp0 of PT samplers such that if there exists a VGB-secure obfuscator for the
class SAMP = {Smp,Smp0}, then GG is not AI-DHI2-secure.

We omit a full proof, as it is very similar to the one of Theorem 1. We only note
that to adapt the proof, we require X.Ev(1λ) to output a random k in Z2λ−1

together with the obfuscation of the following circuit C1λ,k. The circuit C1λ,k

takes as input a string d expected to be a group description, together with two
strings g and K. It first runs GG.Vf on input 1λ, d to check whether d ∈ [GG(1λ)],
returning 0 if the check fails. If the check succeeds, so that we can write d = 〈G〉,
it further checks that g ∈ Gen(G) and K ∈ G, returning 0 if this fails. Finally
the circuit returns 1 if and only if gk = K in the group G. The crucial point is
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that for every valid input (d, g,K), there is at most one k ∈ Z2λ−1 which satisfies
gk = K in the group described by d. This uses the assumption that G is cyclic.

Many group generators are cyclic and verifiable. For example, consider a
generator GG that on input 1λ returns a description of G = Z∗p for a safe prime
p = 2q−1. (That is, q is also a prime.) The verifier can extract p, q from 〈G〉 and
check their primality in PT. For such generators, we may prefer not to assume
AI-DHI2-security, due to Theorem 2. However there are group generators that
do not appear to be verifiable and where Theorem 2 thus does not apply. One
must be careful to note that this does not mean that VGBO would not rule
out AI-DHI2 security for these group generators. It just means that our current
proof method may not work. Still at this point, the AI-DHI2 assumption, which
only says there is some group generator that is AI-DHI2-secure, seems plausible.

Discussion. As we indicated, one of the main applications of AI-DHI was
AIPO [15], and furthermore this connection is very direct. If VGB is in con-
tention with AI-DHI, it is thus natural to ask whether it is also in contention
with AIPO. We do not know whether or not this is true. One can also ask whether
VGB is in contention with other, particular AIPO constructions, in particular
the one of BP [15] based on the construction of Wee [43]. Again, we do not know
the answer. We note that alternative constructions of AIPO and other forms of
point-function obfuscation are provided in [8].

4 KM-leakage resilient encryption

We refer to a symmetric encryption scheme as K-leakage-resilient if it retains
security in the presence of any leakage about the key that leaves the key compu-
tationally unpredictable [30]. Such schemes have been designed in [30, 26]. Here,
we extend the model by allowing the leakage to depend not just on the key but
also on the message, still leaving the key computationally unpredictable. The ex-
tension seems innocuous, since the indistinguishability style formalizations used
here already capture the adversary having some information about the message.
But Theorem 3 shows that KM-leakage-resilience is in contention with iO. The
interpretation is KM-leakage-resilience is not achievable.

Theorem 3 is of direct interest with regard to understanding what is and is
not achievable in leakage-resilient cryptography. But for us its main importance
will be as a tool to rule out UCE for computationally unpredictable split sources
assuming iO in Section 5.

We use standard definitions of indistinguishability obfuscation [4, 31, 42, 18,
2] and pseudorandom generators [17, 44], as recalled in Section 2. We now start
by formalizing KM-leakage resilience.

KM-leakage resilient encryption. Let a symmetric encryption scheme SE
specify the following. PT encryption algorithm SE.Enc takes 1λ, a key k ∈
{0, 1}SE.kl(λ) and a message m ∈ {0, 1}SE.ml(λ) to return a ciphertext c, where
SE.kl,SE.ml: N→ N are the key length and message length functions of SE, re-
spectively. Deterministic PT decryption algorithm SE.Dec takes 1λ, k, c to return
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Game INDASE,X(λ)

b←$ {0, 1}
(k,m1, a)←$ X.Ev(1λ)

m0←$ {0, 1}SE.ml(λ)

c←$ SE.Enc(1λ, k,mb)

b′←$A(1λ, a, c)

Return (b = b′)

Game DECSE(λ)

k←$ {0, 1}SE.kl(λ)

m←$ {0, 1}SE.ml(λ)

c←$ SE.Enc(1λ, k,m)

m′ ← SE.Dec(1λ, k, c)

Return (m = m′)

Fig. 5. Games defining X-KM-leakage resilience of symmetric encryption scheme SE
and decryption correctness of symmetric encryption scheme SE.

a plaintext m ∈ {0, 1}SE.ml(λ). Note that there is a key length but no prescribed
key-generation algorithm.

For security, let X be an auxiliary information generator with X.tl = SE.kl
and X.pl = SE.ml. Consider game INDASE,X(λ) of Fig. 5 associated to SE,X and
adversary A. The message m0 is picked uniformly at random. The adversary A
must determine which message has been encrypted, given not just the ciphertext
but auxiliary information a on the key and message m1. For λ ∈ N we let
AdvindSE,X,A(λ) = 2 Pr[INDASE,X(λ)]−1. We say that SE is X-KM-leakage resilient if

the function AdvindSE,X,A(·) is negligible for all PT adversaries A. This is of course
not achievable if a allowed the adversary to compute k, so we restrict attention
to unpredictable X. Furthermore, weakening the definition, we restrict attention
to uniform X, meaning k and m1 are uniformly and independently distributed.
Thus we say that SE is KM-leakage-resilient if it is X-KM-leakage resilient for
all unpredictable, uniform X.

The above requirement is strong in that security is required in the presence
of (unpredictable) leakage on the key and first message. But beyond that, in
other ways, it has been made weak, because this strengthens our negative re-
sults. Namely, we are only requiring security on random messages, not chosen
ones, with the key being uniformly distributed, and the key and the two mes-
sages all being independently distributed. Furthermore, in contrast to a typical
indistinguishability definition, the adversary does not get the messages as input.

The standard correctness condition would ask that SE.Dec(1λ, k, SE.Enc(1λ,
k,m)) = m for all k ∈ {0, 1}SE.kl(λ), all m ∈ {0, 1}SE.ml(λ) and all λ ∈ N. We call
this perfect correctness. We formulate and use a weaker correctness condition
because we can show un-achievability even under this and the weakening is
crucial to our applications building KM-leakage-resilient encryption schemes to
obtain further impossibility results. Specifically, we require correctness only for
random messages and random keys with non-negligible probability. Formally,
consider game DECSE(λ) of Fig. 5 associated to SE, and for λ ∈ N let AdvdecSE (λ) =
Pr[DECSE(λ)] be the decryption correctness function of SE. We require that
AdvdecSE (·) be non-negligible.
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¬iO ∨ ¬KM-LR-SE. The following says that KM-leakage-resilient symmetric
encryption is not achievable if iO and PRGs (which can be obtained from one-
way functions [38]) exist:

Theorem 3. Let SE be a symmetric encryption scheme. Let Obf be an indis-
tinguishability obfuscator. Let R be a PR-secure PRG with R.sl = SE.ml. Assume
that 2−SE.kl(λ) and 2−R.sl(λ) are negligible. Then there exists a uniform auxiliary
information generator X such that the following holds: (1) X is unpredictable,
but (2) SE is not X-KM-leakage resilient.

The proof is a minor adaptation of the proof of BM [22] ruling out MB-AIPO
under iO. Following BM [22], the idea is that the auxiliary information generator
X picks a key k and message m uniformly and independently at random and lets
C be the circuit that embeds k and the result y of the PRG on m. On input
a ciphertext c, circuit C decrypts it under k and then checks that the PRG
applied to the result equals y. The auxiliary information is an obfuscation C of
C. The attack showing claim (2) of Theorem 3 is straightforward but its analysis
is more work and exploits the security of the PRG. Next one shows that iO-
security of the obfuscator coupled with security of the PRG implies claim (1),
namely the unpredictability of X. For completeness we provide a self-contained
proof in Appendix A. A consequence of Theorem 3 is the following.

Corollary 4. Let SE be a symmetric encryption scheme such that SE.ml(·) ∈
Ω((·)ε) for some constant ε > 0. Assume the existence of an indistinguishability
obfuscator and a one-way function. Then SE is not KM-leakage resilient.

Proof (Corollary 4). The assumption on SE.ml implies that there exists a PR-
secure PRG R with R.sl = SE.ml [38]. To conclude we apply Theorem 3. ut

Related work. CKVW [26] show that symmetric encryption with weak keys
satisfying a wrong key detection property is equivalent to MB-AIPO. Wrong
key detection, a form of robustness [1], asks that, if you decrypt, under a certain
key, a ciphertext created under a different key, then the result is ⊥. This is
not a requirement for KM-LR-SE. However, implicit in the proof of Theorem 3
is a connection between KM-LR-SE and a form of MB-AIPO with a relaxed
correctness condition.

5 UCE for split sources

BFM [20] showed that UCE[Scup]-security is not possible if iO exists. We improve
this to show that UCE[Scup∩Ssplt]-security is not possible if iO exists. We obtain
this by giving a construction of a KM-leakage-resilient symmetric encryption
scheme from UCE[Scup ∩ Ssplt] and then invoking our above-mentioned result.
Definitions of UCE-secure function families [6] are recalled in Section 2.

UCE[Scup ∩ Ssplt]⇒ KM-LR-SE. We give a construction of a KM-leakage resilient

symmetric encryption scheme from a UCE[Scup∩Ssplt] family H, which will allow
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us to rule out such families under iO. Assume for simplicity that H.il is odd, and
let ` = (H.il − 1)/2. We call the symmetric encryption scheme SE = H&C[H]
that we associate to H the Hash-and-Check scheme. It is defined as follows. Let
SE.kl(λ) = SE.ml(λ) = `(λ) for all λ ∈ N. Let the encryption and decryption
algorithms be as follows:

Algorithm SE.Enc(1λ, k,m)

hk←$ H.Kg(1λ)
For i = 1, . . . , |m| do

y[i]← H.Ev(1λ,hk, k‖m[i]‖〈i〉`(λ))
Return (hk,y)

Algorithm SE.Dec(1λ, k, (hk,y))

For i = 1, . . . , |y| do
If (H.Ev(1λ,hk, k‖1‖〈i〉`(λ)) = y[i])
Then m[i]← 1 else m[i]← 0

Return m

Here 〈i〉`(λ) = 1i0`(λ)−i denotes a particular, convenient encoding of integer
i ∈ {1, . . . , `(λ)} as a string of `(λ) bits, and m[i] denotes the i-th bit of m.
The ciphertext (hk,y) consists of a key hk for H chosen randomly and anew at
each encryption, together with the vector y whose i-th entry is the hash of the
i-th message bit along with the key and index i. This scheme will have perfect
correctness if H is injective, but we do not want to assume this. The following
theorem says that the scheme is KM-leakage resilient and also has (somewhat
better than) weak correctness under UCE-security of H.

Theorem 5. Let H be a family of functions that is UCE[Scup ∩ Ssplt]-secure.
Assume H.il(·) ∈ Ω((·)ε) for some constant ε > 0 and 2−H.ol(·) is negligible.
Let SE = H&C[H]. Then (1) symmetric encryption scheme SE is KM-leakage
resilient, and (2) 1− AdvdecSE (·) is negligible.

Proof (Theorem 5). Assuming for simplicity as in the construction that H.il is
odd, let `(·) = (H.il(·)−1)/2. We now prove part (1). Let X be an unpredictable,
uniform auxiliary information generator. Let A be a PT adversary. We build a
PT source S ∈ Scup ∩ Ssplt and a PT distinguisher D such that

AdvindSE,X,A(λ) ≤ 2 · AdvuceH,S,D(λ) (3)

for all λ ∈ N. The assumption that H is UCE[Scup ∩ Ssplt]-secure now implies
part (1) of the theorem.

We proceed to build S,D. We let S be the split source S = Splt[S0,S1], where
algorithms S0,S1 are shown below, along with distinguisher D:

Algorithm S0(1λ)

(k,m1, a)←$ X.Ev(1λ)
m0←$ {0, 1}`(λ) ; d←$ {0, 1}
For i = 1, . . . , `(λ) do
x[i]← k‖md[i]‖〈i〉`(λ)

Return ((d, a),x)

Algorithm S1(1λ,y)

Return y

Distinguisher D(1λ,hk, L)

((d, a),y)← L ; c← (hk,y)
d′←$A(1λ, a, c)
If (d = d′) then b′ ← 1
Else b′ ← 0
Return b′

Here S0 calls the auxiliary information generator X to produce a key, a plaintext
message and the corresponding auxiliary input. It then picks another plaintext
message and the challenge bit d at random, and lets x consist of the inputs on
which the hash function would be applied to create the challenge ciphertext. It
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leaks the challenge bit and auxiliary information. Algorithm S1 takes as input the
result y of oracle HASH on x, and leaks the entire vector y. The distinguisher
gets the leakage from both stages, together with the key hk. Using the latter,
it can create the ciphertext c, which it passes to A to get back a decision. Its
output reflects whether A wins its game.

Letting b denote the challenge bit in game UCES,DH (λ), we claim that

Pr[ b′ = 1 | b = 1 ] =
1

2
+

1

2
AdvindSE,X,A(λ) and Pr[ b′ = 1 | b = 0 ] =

1

2
,

from which Equation (3) follows. The first equation above should be clear from
the construction. For the second, when b = 0, we know that HASH is a random
oracle. But the entries of x are all distinct, due to the 〈i〉`(λ) components. So
the entries of y are uniform and independent, and in particular independent of
the challenge bit d.

This however does not end the proof: We still need to show that S ∈ Scup ∩
Ssplt. We have ensured that S ∈ Ssplt by construction. The crucial remainig step
is to show that S ∈ Scup. This will exploit the assumed unpredictability of X.
Let P be a PT predictor. We build PT adversary Q such that

AdvpredS,P(λ) ≤ AdvpredX,Q(λ) (4)

for all λ ∈ N. The assumption that X is unpredictable now implies that S ∈ Scup.
The construction of Q is as follows:

Adversary Q(1λ, a)

For i = 1, . . . , `(λ) do y[i]←$ {0, 1}H.ol(λ)
d←$ {0, 1} ; x′←$ P(1λ, ((d, a),y)) ; k ← x′[1..`(λ)] ; Return k

Adversary Q computes leakage ((d, a),y) distributed exactly as it would be in
game PREDPS (λ), where HASH is a random oracle. It then runs P to get a
prediction x′ of some oracle query of S. If game PREDPS (λ) returns true, then
x′ must have the form k‖md[i]‖〈i〉`(λ) for some i ∈ {1, . . . , `(λ)}, where k, d are
the key and challenge bit, respectively, chosen by S. Adversary Q can then win
its PREDQX (λ) game by simply returning k, which establishes Equation (4).

This completes the proof of part (1) of the theorem. We prove part (2) by
building a PT source S ∈ Ssup ∩ Ssplt and a PT distinguisher D such that

1− AdvdecSE (λ) ≤ AdvuceH,S,D(λ) +
`(λ)

2H.ol(λ)
(5)

for all λ ∈ N. But we have assumed that H is UCE[Scup ∩ Ssplt]-secure, so it
is also UCE[Ssup ∩ Ssplt]-secure. We have also assumed 2−H.ol(·) is negligible.
Part (2) of the theorem follows.

We proceed to build S,D. We let S be the split source S = Splt[S0,S1], where
algorithms S0,S1 are shown below, along with distinguisher D:
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Algorithm S0(1λ)

k←$ {0, 1}`(λ)
For i = 1, . . . , `(λ) do

x[2i− 1]← k‖1‖〈i〉`(λ)
x[2i]← k‖0‖〈i〉`(λ)

Return (ε,x)

Algorithm S1(1λ,y)

Return y

Distinguisher D(1λ,hk, (ε,y))

b′ ← 0
For i = 1, . . . , `(λ) do

If (y[2i− 1] = y[2i])
Then b′ ← 1

Return b′

Letting b denote the challenge bit in game UCES,DH (λ), we claim that

Pr[ b′ = 1 | b = 1 ] ≥ 1− AdvdecSE (λ) and Pr[ b′ = 1 | b = 0 ] ≤ `(λ)

2H.ol(λ)
,

from which Equation (5) follows. The first equation above is true because de-
cryption errors only happen when hash outputs collide for different values of
the message bit. For the second, when b = 0, we know that HASH is a random
oracle. But the entries of x are all distinct. So the entries of y are uniform and
independent. The chance of a collision of two entries is thus 2−H.ol(λ), and the
equation then follows from the union bound.

S is a split source by construction. To conclude the proof we need to show
that S ∈ Ssup. In the case HASH is a random oracle, the distinctness of the
oracle queries of S means that the entries of y are uniformly and independently
distributed. Since there is no leakage beyond y, the leakage gives the predictor P
no extra information about the entries of x. The uniform choice of k by S means
that AdvpredS,P(·) ≤ 2−`(·), even if P is not restricted to PT. But our assumption

on H.il(·) in the theorem statement implies that 2−`(·) is negligible. ut

¬iO ∨ ¬UCE[Scup ∩ Ssplt]. In the BFM [20] iO-based attack on UCE[Scup], the
source builds a circuit which embeds an oracle query x and its answer y, and
outputs an obfuscation of this circuit in the leakage. Splitting is a restriction on
sources introduced in BHK [6] with the aim of preventing such attacks. A split
source cannot build the BFM circuit because the split structure denies it the
ability to leak information that depends both on a query and its answer. Thus,
the BFM attack does not work for UCE[Scup ∩Ssplt]. However, we show that in
fact UCE[Scup ∩Ssplt]-security is still not achievable assuming iO. This is now a
simple corollary of Theorems 3 and 5 that in particular was the motivation for
the latter:

Theorem 6. Let H be a family of functions such that H.il(·) ∈ Ω((·)ε) for some
constant ε > 0 and 2−H.ol(·) is negligible. Assume the existence of an indistin-
guishability obfuscator and a one-way function. Then H is not UCE[Scup∩Ssplt]-
secure.

BM2 [23] show that UCE[Scup ∩ Ssplt ∩ S1]-security is achievable assuming iO
and AIPO. Our negative result of Theorem 6 does not contradict this, and in
fact complements it to give a full picture of the achievability of UCE security
for split sources.



Contention in Cryptoland 19

Acknowledgments

Bellare and Stepanovs were supported in part by NSF grants CNS-1116800,
CNS-1228890 and CNS-1526801. Tessaro was supported in part by NSF grant
CNS-1423566. This work was done in part while Bellare and Tessaro were vis-
iting the Simons Institute for the Theory of Computing, supported by the Si-
mons Foundation and by the DIMACS/Simons Collaboration in Cryptography
through NSF grant CNS-1523467.

We thank Huijia Lin for discussions and insights. We thank the TCC 2016-A
reviewers for extensive and insightful comments.

References

1. M. Abdalla, M. Bellare, and G. Neven. Robust encryption. In D. Micciancio,
editor, TCC 2010, volume 5978 of LNCS, pages 480–497. Springer, Heidelberg,
Feb. 2010.

2. P. Ananth, D. Boneh, S. Garg, A. Sahai, and M. Zhandry. Differing-inputs ob-
fuscation and applications. Cryptology ePrint Archive, Report 2013/689, 2013.
http://eprint.iacr.org/2013/689.

3. B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai. Protecting obfusca-
tion against algebraic attacks. In P. Q. Nguyen and E. Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 221–238. Springer, Heidelberg, May
2014.

4. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In J. Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg, Aug.
2001.

5. M. Bellare and V. T. Hoang. Resisting randomness subversion: Fast determinis-
tic and hedged public-key encryption in the standard model. In E. Oswald and
M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
627–656. Springer, Heidelberg, Apr. 2015.

6. M. Bellare, V. T. Hoang, and S. Keelveedhi. Instantiating random oracles via
UCEs. Cryptology ePrint Archive, Report 2013/424, 2013. Preliminary version in
CRYPTO 2013.

7. M. Bellare and P. Rogaway. The security of triple encryption and a framework
for code-based game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 409–426. Springer, Heidelberg, May / June 2006.

8. M. Bellare and I. Stepanovs. Point-function obfuscation: A framework and generic
constructions. In Theory of Cryptography, TCC 2016-A. Springer, 2016.

9. M. Bellare, I. Stepanovs, and S. Tessaro. Poly-many hardcore bits for any one-
way function and a framework for differing-inputs obfuscation. In P. Sarkar and
T. Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 102–
121. Springer, Heidelberg, Dec. 2014.

10. N. Bitansky and R. Canetti. On strong simulation and composable point obfusca-
tion. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 520–537.
Springer, Heidelberg, Aug. 2010.

11. N. Bitansky, R. Canetti, H. Cohn, S. Goldwasser, Y. T. Kalai, O. Paneth, and
A. Rosen. The impossibility of obfuscation with auxiliary input or a universal



20 Bellare, Stepanovs, Tessaro

simulator. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part II,
volume 8617 of LNCS, pages 71–89. Springer, Heidelberg, Aug. 2014.

12. N. Bitansky, R. Canetti, Y. T. Kalai, and O. Paneth. On virtual grey box obfusca-
tion for general circuits. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 108–125. Springer, Heidelberg, Aug. 2014.

13. N. Bitansky, R. Canetti, Y. T. Kalai, and O. Paneth. On virtual grey box ob-
fuscation for general circuits. Cryptology ePrint Archive, Report 2014/554, 2014.
http://eprint.iacr.org/2014/554.

14. N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. On the existence of extractable
one-way functions. In D. B. Shmoys, editor, 46th ACM STOC, pages 505–514.
ACM Press, May / June 2014.

15. N. Bitansky and O. Paneth. Point obfuscation and 3-round zero-knowledge. In
R. Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 190–208. Springer,
Heidelberg, Mar. 2012.

16. N. Bitansky and O. Paneth. On the impossibility of approximate obfuscation
and applications to resettable cryptography. In D. Boneh, T. Roughgarden, and
J. Feigenbaum, editors, 45th ACM STOC, pages 241–250. ACM Press, June 2013.

17. M. Blum and S. Micali. How to generate cryptographically strong sequences of
pseudorandom bits. SIAM Journal on Computing, 13(4):850–864, 1984.

18. E. Boyle, K.-M. Chung, and R. Pass. On extractability obfuscation. In Y. Lindell,
editor, TCC 2014, volume 8349 of LNCS, pages 52–73. Springer, Heidelberg, Feb.
2014.

19. Z. Brakerski and G. N. Rothblum. Virtual black-box obfuscation for all circuits via
generic graded encoding. In Y. Lindell, editor, TCC 2014, volume 8349 of LNCS,
pages 1–25. Springer, Heidelberg, Feb. 2014.

20. C. Brzuska, P. Farshim, and A. Mittelbach. Indistinguishability obfuscation and
UCEs: The case of computationally unpredictable sources. In J. A. Garay and
R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 188–
205. Springer, Heidelberg, Aug. 2014.

21. C. Brzuska, P. Farshim, and A. Mittelbach. Random-oracle uninstantiability from
indistinguishability obfuscation. In Y. Dodis and J. B. Nielsen, editors, TCC 2015,
Part II, volume 9015 of LNCS, pages 428–455. Springer, Heidelberg, Mar. 2015.

22. C. Brzuska and A. Mittelbach. Indistinguishability obfuscation versus multi-bit
point obfuscation with auxiliary input. In P. Sarkar and T. Iwata, editors, ASI-
ACRYPT 2014, Part II, volume 8874 of LNCS, pages 142–161. Springer, Heidel-
berg, Dec. 2014.

23. C. Brzuska and A. Mittelbach. Using indistinguishability obfuscation via UCEs.
In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of
LNCS, pages 122–141. Springer, Heidelberg, Dec. 2014.

24. C. Brzuska and A. Mittelbach. Universal computational extractors and the super-
fluous padding assumption for indistinguishability obfuscation. Cryptology ePrint
Archive, Report 2015/581, 2015. http://eprint.iacr.org/2015/581.

25. R. Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In B. S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages
455–469. Springer, Heidelberg, Aug. 1997.

26. R. Canetti, Y. T. Kalai, M. Varia, and D. Wichs. On symmetric encryption and
point obfuscation. In D. Micciancio, editor, TCC 2010, volume 5978 of LNCS,
pages 52–71. Springer, Heidelberg, Feb. 2010.

27. J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. Cryptanalysis of the mul-
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A Proof of Theorem 3

The construction and proof follow [22]. We specify uniform auxiliary information
generator X as follows:

Algorithm X.Ev(1λ)

k←$ {0, 1}SE.kl(λ)
m←$ {0, 1}SE.ml(λ) ; y ← R.Ev(1λ,m)
C← Pads(λ)(C1λ,k,y) ; C←$ Obf(1λ,C)
Return (k,m,C)

Circuit C1λ,k,y(c)

m← SE.Dec(1λ, k, c)
y′ ← R.Ev(1λ,m)
If (y = y′) then return 1
Else return 0

The circuit C1λ,k,y takes as input a ciphertext c, decrypts it under the embedded
key k to get back a SE.ml(λ)-bit message m, applies the PRG to m to get a string
y′, and returns 1 iff y′ equals the embedded string y. The auxiliary information
generator creates this circuit as shown and outputs its obfuscation.

We define polynomial s so that s(λ) is an upper bound on max(|C1
1λ,k,y|, |C

2|)
where the circuits are defined in Fig. 6 and the maximum is over all k ∈
{0, 1}SE.kl(λ) and y ∈ {0, 1}2·R.sl(λ). Let us first present an attack proving part (2)
of the theorem. Below we define an adversary A against the X-KM-leakage re-
silience of SE and an adversary R against the PR-security of R:

Adversary A(1λ,C, c)

b′ ← C(c)
Return b′

Adversary R(1λ, y)

k←$ {0, 1}SE.kl(λ) ; m0←$ {0, 1}SE.ml(λ)

c←$ SE.Enc(1λ, k,m0) ; m← SE.Dec(1λ, k, c)
y′ ← R.Ev(1λ,m)
If (y′ = y) then g′ ← 1 else g′ ← 0 ; Return g′

Adversary A has input 1λ, the auxiliary information (leakage) which here is the
obfuscated circuit C, and a ciphertext c. It simply computes and returns the bit
C(c) = C1λ,k,y(c). For the analysis, consider game INDASE,X(λ) of Fig. 5. If the

challenge bit b is 1 and the decryption performed by C is correct then y′ = y, so

Pr[ b′ = 1 | b = 1 ] ≥ AdvdecSE (λ) . (6)

In the case b = 0, the corresponding analysis in [22] for the insecurity of MB-
AIPO relied on the fact that PRGs have low collision probability on random
seeds. This will not suffice for us because of our weak correctness condition. The
latter means that when b = 0, we do not know that SE.Dec(1λ, k, c) equals m0

and indeed have no guarantees on the distribution of decrypted plaintext mes-
sage. Instead, we directly exploit the assumed PR-security of the PRG. Thus,
consider game PRGRR (λ) with adversary R as above. Letting g denote the chal-
lenge bit in the game, we have

AdvprR,R(λ) = Pr[ g′ = 1 | g = 1 ]− Pr[ g′ = 1 | g = 0 ]

≥ Pr[ b′ = 1 | b = 0 ]− 2−2·R.sl(λ) . (7)
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Games G0–G3

k←$ {0, 1}SE.kl(λ) ; m←$ {0, 1}SE.ml(λ)

y ← R.Ev(1λ,m) ; C←$ Obf(1λ,Pads(λ)(C
1
1λ,k,y)) // G0

y←$ {0, 1}2·R.sl(λ) ; C←$ Obf(1λ,Pads(λ)(C
1
1λ,k,y)) // G1

y←$ {0, 1}2·R.sl(λ) ; C←$ Obf(1λ,Pads(λ)(C
2)) // G2

k′←$Q(1λ,C) ; Return (k = k′)

Circuit C1
1λ,k,y(c)

m← SE.Dec(1λ, k, c) ; y′ ← R.Ev(1λ,m)
If (y = y′) then return 1 else return 0

Circuit C2(c)

Return 0

Fig. 6. Games for proof of part (1) of Theorem 3.

From Equation (7) and Equation (6), we have

AdvindSE,X,A(λ) = Pr[ b′ = 1 | b = 1 ]− Pr[ b′ = 1 | b = 0 ]

≥ AdvdecSE (λ)− AdvprR,R(λ)− 2−2·R.sl(λ) . (8)

Our weak correctness condition implies that the first term of Equation (8) is
non-negligible. On the other hand, the second and third terms are negligible.
This means AdvindSE,X,A(·) is not negligible, proving claim (2) of Theorem 3.

We proceed to prove part (1) of the theorem statement. Let Q be a PT
adversary. Consider the games and associated circuits of Fig. 6. Lines not anno-
tated with comments are common to all three games. Game G0 is equivalent to
PREDQX (λ), so

AdvpredX,Q(λ) = Pr[G2] + (Pr[G0]− Pr[G1]) + (Pr[G1]− Pr[G2]) . (9)

We have Pr[G2] = 2−SE.kl(λ), where the latter is assumed to be negligible, because
k is uniformly random and the circuit C that is passed to adversary Q does not
depend on k. We now show that Pr[Gi] − Pr[Gi+1] is negligible for i ∈ {0, 1},
which by Equation (9) implies that AdvpredX,Q(·) is negligible and hence proves the
claim.

First, we construct a PT adversary R against PRG R, as follows:

Adversary R(1λ, y)

k←$ {0, 1}SE.kl(λ) ; C←$ Obf(1λ,Pads(λ)(C
1
1λ,k,y)) ; k′←$Q(1λ,C)

If (k = k′) then return 1 else return 0

We have Pr[G0]−Pr[G1] = AdvprR,R(λ), where the advantage is negligible by the
assumed PR-security of R.

Next, we construct a circuit sampler S and an iO-adversary O, as follows:



24 Bellare, Stepanovs, Tessaro

Circuit Sampler S(1λ)

k←$ {0, 1}SE.kl(λ) ; y←$ {0, 1}2·R.sl(λ)
C1 ← Pads(λ)(C

1
1λ,k,y) ; C0 ← Pads(λ)(C

2)

aux ← k ; return (C0,C1, aux )

Adversary O(1λ,C, aux )

k ← aux ; k′←$Q(1λ,C)
If (k = k′) then return 1
Else return 0

It follows that Pr[G1]−Pr[G2] = AdvioObf,S,O(λ). We now show that S ∈ Seq, and

hence AdvioObf,S,O(λ) is negligible by the assumed iO-security of Obf. Specifically,
note that C1

1λ,k,y and C2 are not equivalent only if y belongs to the range of

R, which contains at most 2R.sl(λ) values. However, y is sampled uniformly at
random from a set of size 22·R.sl(λ). It follows that

Pr[C0 ≡ C1 : (C0,C1, aux )←$ S(1λ)] ≥ 1− 2−R.sl(λ),

where 2−R.sl(λ) is assumed to be negligible, and hence S ∈ Seq.


