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Abstract. Previously known functional encryption (FE) schemes for general cir-
cuits relied on indistinguishability obfuscation, which in turn either relies on an
exponential number of assumptions (basically, one per circuit), or a polynomial
set of assumptions, but with an exponential loss in the security reduction. Addi-
tionally most of these schemes are proved in the weaker selective security model,
where the adversary is forced to specify its target before seeing the public param-
eters. For these constructions, full security can be obtained but at the cost of an
exponential loss in the security reduction.
In this work, we overcome the above limitations and realize an adaptively se-
cure functional encryption scheme without using indistinguishability obfuscation.
Specifically the security of our scheme relies only on the polynomial hardness of
simple assumptions on composite order multilinear maps. Though we do not cur-
rently have secure instantiations for these assumptions, we expect that multilinear
maps supporting these assumptions will discovered in the future. Alternatively,
follow up results may yield constructions which can be securely instantiated.
As a separate technical contribution of independent interest, we show how to add
to existing graded encoding schemes a new extension function, that can be thought
of as dynamically introducing new encoding levels.

1 Introduction

In traditional encryption schemes, decryption control is all or nothing: the sender
encrypts its message under a particular key, and anyone with the corresponding se-
cret key can recover the message. In contrast, functional encryption (FE) schemes
[BSW11, O’N10] allow the sender to embed sophisticated functions into secret keys.
More specifically, an FE scheme includes an authority, which holds a master secret
key and publishes public system parameters. The sender uses the public parameters to
encrypt its messagem to obtain a ciphertext ct. A user may obtain a secret key skf for
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the function f from the authority (if the authority deems that the user is entitled). This
key skf can be used to decrypt ct to recover f(m); and nothing more. In a recent result,
Garg et al. constructed the first FE scheme for general circuits using indistinguishability
obfuscation (iO) [GGH+13b].

While tremendous progress has been made on justifying the security of iO [BR14,
BGK+14, PST14, GLW14, GLSW14], ultimately the security of the resulting construc-
tions still either relies on an exponential number of assumptions [BR14, BGK+14,
PST14] (basically, one per circuit), or a polynomial set of assumptions, but with an ex-
ponential loss in the security reduction [GLW14, GLSW14]. For example, the recent iO
scheme based on the MSE assumption [GLSW14] crucially uses complexity leveraging
in its proof — specifically, the number of hybrids in the proof is proportional to 2|x|

where x is the input, and each hybrid “examines" a particular input x and implicitly “ver-
ifies" that the circuitsC0, C1 in question satisfy C0(x) = C1(x). Garg et al. [GGSW13]
provide an intuitive argument suggesting that either of these shortcoming might be
inherent when realizing indistinguishability obfuscation,4, though this argument is not
applicable to FE schemes. In this work we ask the following fundamental question:

Can we construct a functional encryption scheme for general circuits assuming only
polynomial hardness of simple computational assumptions?

Another limitation of the Garg et al. [GGH+13b] scheme is that it is only selectively
secure – that is, they have been proved secure only in a weaker model in which the
adversary is required to specify the message m for its challenge ciphertext before it
sees the public parameters of the FE scheme. We would like FE for circuits that is
fully secure — i.e., that allows the adversary to choose m∗ adaptively after seeing the
public parameters and even responses to some of its private key queries. In general,
one can trivially reduce full security to selectively security via complexity leveraging
– essentially the reduction tries to guess the adversary’s chosen m, and succeeds with
probability 2−|m| – but complexity leveraging loses a 2|m| factor in the reduction to the
underlying hard problem that we would like to avoid.

Can we construct a fully secure functional encryption scheme for general circuits
without an exponential loss in the security reduction?

Achieving full security without the lossiness of complexity leveraging is just as
important for FE for circuits as it was for identity-based encryption (IBE) ten years ago
[Wat05, Gen06, Wat09], for both efficiency and conceptual reasons.

1.1 Our Results

In this work, we give positive answers to both questions above. Specifically we construct
the first fully secure FE scheme for circuits without using indistinguishability obfusca-
tion or any exponential loss in security reductions. Our scheme uses composite order
multilinear maps in the asymmetric settings [BS02, GGH13a, CLT13, CLT15a] and

4 Garg et al. [GGSW13] only provide the intuition for witness encryption but it extends to iO.



security is based on polynomial hardness of fixed, relatively simple assumptions on a
variant of the new CLT [CLT15a] maps.

We extend the existing graded encoding schemes [GGH13a, CLT13, CLT15a] with
a new extension function that serves as a crucial ingredient in our construction. This ex-
tension function serves a role similar to that of the straddling set systems of [BGK+14],
binding various encodings so that only certain subsets can be paired together. The
important difference is that the extension function allows the binding to happen dynam-
ically and publicly. This allows, for example, an encrypter to bind ciphertext encodings
together so that encodings from different ciphertexts cannot be “mixed and matched.”
We believe that this new technique will be useful in other contexts as well. We provide
details on this in the full version [GGHZ14b].

Theorem 1 (informal). Assuming (1) simple polynomial assumptions on extendable
composite order graded encodings and (2) the existence of PRFs that are both punc-
turable (in the sense of [BW13, BGI14, KPTZ13]) and can be evaluated in NC1, then
fully secure functional encryption for all polynomial-sized circuits exists.

An immediate consequence of our scheme is a traitor tracing scheme where cipher-
texts, secret keys, and public keys are short, namely logarithmic in the number of users.
Previous such schemes [GGH+13b, BZ14] all relied on iO. Our scheme is therefore the
first traitor tracing scheme with small parameters whose security does not rely on iO or
an exponential loss in the security reductions.

As an important intermediate step in our construction, we introduce the notion of
slotted functional encryption, which allows for multiple independent execution paths,
or slots, in functional encryption. We believe slotted FE may be of independent interest;
in particular, several recent works [BS15, ABSV14] implicitly construct variations of
slotted FE as an intermediate step.

1.2 Overview of Our Techniques

In this section we describe the high-level ideas behind our construction. We start by
providing general intuition on howwe avoid obfuscation. Subsequently, wewill elaborate
on our methodology and the intermediate abstraction of slotted FE that we use.

Though the final aim of this work is to avoid the use of obfuscation in realizing
functional encryption, we build upon techniques that have previously been used to
realize indistinguishability obfuscation. We start by recalling some of these tools. An
indistinguishability obfuscator iO guarantees that given two functionally equivalent
circuits C1 and C2, i.e. for every input x we require that C1(x) = C2(x), the two
distributions of obfuscations iO(C1) and iO(C2) are computationally indistinguishable.
Known constructions of obfuscation build on the information theoretic argument of
Kilian [Kil88] which provides security only when evaluation on a single input is allowed.
Inmore detail, consider a circuitC that takesn bits as input. Kilian provides amechanism
for garbling C into garbled components {C̃i,b}i∈[n],b∈{0,1}, such that access to the
components {C̃i,xi

}i∈[n] allow computation of C(x) while simultaneously preserving
perfect secrecy of the circuit C. Note that here for each i ∈ [n] only one of the
two values C̃i,0 and C̃i,1 is disclosed. This is similar to Yao’s [Yao82] garbled circuits



construction except that Kilian’s construction is limited to log depth circuits but achieves
a stronger information theoretic security. However, obfuscation schemes need to enable
secure evaluation on potentially any input and not just on one pre-specified input. All
known constructions of obfuscation achieve this additional functionality as follows: the
obfuscation of a circuitC consists of the terms {Ĉi,b}i∈[n],b∈{0,1} where all these values
are simultaneous disclosed. Just like Kilian, terms {Ĉi,xi

}i∈[n] allow for evaluation of
C(x). This new garbling method, denoted by notation Ĉ, has the additional property
that it hides the circuit C in the sense of indistinguishability obfuscation.

Intuition behind previous constructions of Functional Encryption. Typical obfuscation
based functional encryption schemes are constructed as follows. The setup procedure of
the functional encryption scheme generates a public-secret key pair (pk, sk) of a public
key encryption scheme and sets the public parameters for the functional encryption
scheme to be pk. A messagem is encrypted under the functional encryption scheme by
just encrypting it to pk. Finally a private key for a function f is set to be the obfuscation
of a circuit that outputs the evaluation of the function f on the message obtained by
decrypting the ciphertext provided to it as input. The secret key sk is embedded inside
this circuit for enabling decryption.

Our Starting Idea. Our starting idea in trying to avoid the use of obfuscation in realizing
functional encryption is that even though a private key (which is an obfuscation) should
work for arbitrary ciphertexts, the security requirement is much weaker — specifically,
security is required only for the challenge ciphertext. We build on this observation;
isolating the specific input forwhich security is desired and using theKilian’s information
theoretic argument just for this input. Doing this isolation and enabling the Kilian’s
information theoretic argument is technically quiet challenging and requires us to build
new techniques. We elaborate on this next.

As described earlier obfuscation of a circuit C consists of {Ĉi,b}i∈[n],b∈{0,1} and
knowledge of {Ĉi,xi}i∈[n] allow for evaluation of C(x). The starting point for our new
functional encryption scheme is to split these components of garbled C being generated
as part of the obfuscation between the ciphertext and the private key. In other words the
ciphertext and secret key provide parts of the obfuscation, that when put together allow
for computation.

We interpret the input x to consist of two partsm and f and the circuit C to be uni-
versal circuit that evaluates and outputs f(m). Here m is the message being encrypted
and the encrypter is expected to provide the components corresponding to these parts.
The components for the private key are provided by the trusted authority. More con-
cretely, denoting Im = {0, 1, . . . , |m|−1} and If = {m,m+1, . . . , |m|+ |f |−1}, the
public key consists of {Ĉi,b}i∈Im,b∈{0,1}. In order to encrypt a messagem the encrypter
chooses the components {Ĉi,mi}i∈Im and further randomizes and bundles them (using
an extension function that is explained later) to obtain the ciphertext {Ci,mi}i∈Im . The
trusted authority generates the private keys analogously by randomizing and bundling
together appropriate components, namely {Ĉi,fi}i∈If and obtaining {Ci,fi}i∈If as the
secret key. Additional private keys can be generated in an analogous manner. Note that



{Ci,mi
}i∈Im and {Ci,fi}i∈If together form a whole program that is executable on one

input alone, bringing us closer to Kilian for arguing security.
Making this idea work involves a careful hybrid argument, isolating one secret key

and a ciphertext at a time in order to apply Kilian’s information theoretic argument. We
specifically achieve this via a primitive that we call slotted FE:

Slotted FE. In a slotted FE scheme, ciphertexts and secret keys contain multiple slots,
and each slot i can either be “active” (i.e., contain an actual message or function) or
“inactive” (empty). Decryption is defined by taking all slots that are active in both the
ciphertext and secret key, and computing fi(mi) for those slots. If all slots agree on
the result, that result is the output of decryption. If the slots do not agree, the output is
unspecified. Ciphertexts and secret keys are generated by the following procedures:

– Slotted encryption is a procedure requiring the master secret, and it can produce
an arbitrary ciphertext, containing any number of active slots with any messages in
those slots.

– Unslotted encryption is a public procedure that can produce a ciphertext where a
special slot 0 contains an arbitrary message, and the rest of the slots are inactive.

– Slotted key generation is a procedure requiring themaster secret, and it can produce
an arbitrary secret key containing any number of active slots with any functions in
those slots.

– Unslotted key generation is a convenient shorthand for the special case of slotted
key generation, producing a secret key with active slot 0 and the rest of the slots
inactive.

Clearly, slotted FE is a strict generalization of standard FE, we can recover the standard
notion by only using slot 0 and the unslotted procedures. However the new primitive lets
us consider more refined security properties. Specifically, we define a small set of “local
security properties” that can bemapped to simple assumptions on the underlying graded-
encoding scheme, and prove that they imply our desired security notion for the induced
FE scheme. Importantly, these properties should be strong enough to yield adaptive
security, but not too strong so as to imply function-hiding (and thus obfuscation). This
is somewhat similar on a high level to the approach from [GLW14, GLSW14] (e.g., the
notion of “tribes schemes”), but the technical details are very different.

Our security properties for slotted FE are defined in Sections 4.1 and 4.2. They all
follow the standard indistinguishability game between the FE adversary and a challenger,
but limit the types of queries that the adversary can use. For example, one such notion
requires indistinguishability only when each key-pair-query that the adversary makes
contains two identical sets of slots, the two challenge plaintexts only differ in a single
pair of slots in which one plaintext has (x∗,⊥) and the other has (⊥, x∗), and moreover
all the secret-key queries have the same function between these two slots. (We call this
property “Ciphertext moving,” see Section 4.1.)

Another advantage of using slotted FE is that it allows us to “bootstrap” the con-
struction from NC1 to all circuits. Our basic slotted FE scheme in Section 5 can only
handle log-depth circuits (NC1), and unfortunately it was previously unknown how to
securely boost FE forNC1 into FE for all circuits in a black-box way without requiring



function hiding (and thus obfuscation)5. However, we show that the “local properties” of
our slotted FE can be used for this “bootstrapping” transformation. In this sense, slotted
FE seems to be “the right level of abstraction” for this construction.

Our Slotted FE for NC1. Our slotted FE for NC1 is related to current constructions
of iO forNC1 [GGH+13b, BR14, BGK+14, PST14, GLSW14]. Roughly, we choose a
universal NC1 circuit U(f,m) = f(m), and convert U into a branching program BP .
We then randomize BP using Kilian randomization, and place the resulting matrices
“in the exponent” of an asymmetric graded encoding roughly as follows:

– In order to implement slots, we use a composite-order graded encoding, where each
slot corresponds to a subgroup.

– The setup procedure generates the public parameters by taking the matrices corre-
sponding to them input, projecting themdown into the first subgroup (corresponding
to slot 0), and publishing encodings of these matrices in the appropriate levels.

– The key generation procedure takes as input a vector (f0, . . . , fn−1), where some of
the fi = ⊥. For all fi 6= ⊥, it selects the matrices corresponding to fi, and projects
them down to the ith subgroup, and encodes these matrices in the appropriate
levels. Then it adds the encodings for different fi together, and outputs the resulting
encodings. By the Chinese Remainder Theorem, the ith subgroup of the resulting
encoding will contain the matrices for function fi. The result is that the secret key
encodes function fi in slot i.

– The slotted encryption procedure is analogous to the slotted key generation proce-
dure, except that it operates on the matrices corresponding to the message input.

– The unslotted encryption procedure on inputm takes the public parameters, selects
the matrices corresponding tom, and re-randomizes and outputs those matrices.

– Finally, the decryption procedure multiplies the matrices for a secret key and cipher-
text together, and then performs a zero test on one entry of the resulting matrix. Each
of the subgroups act independently, and the result of multiplication will be a matrix
where subgroup i contains the matrix corresponding to fi(mi) (or the subgroup is
empty if either ciphertext or secret key are inactive). If all of the fi(mi) = 0, the
zero test gives 0. If all of the fi(mi) = 1, then the zero test gives 1.

Using subgroup-decision assumptions on multilinear graded encodings, we are able
to prove various security properties for our scheme, such as the “ciphertext moving”
property mentioned above. These properties allow us to move messages and secret keys
between slots. However, for the application to (un-slotted) functional encryption, we
actually want the ability to change the values of messages. To accomplish this, we first
use the existing properties to isolate the ciphertext and one secret key in their own slot. At
this point, we can invoke Kilian’s information-theoretic argument in the corresponding
subgroup, since the matrices given out all correspond to a single input. We prove a new

5 We note that Gorbunov, Vaikuntanathan and Wee [GVW12] show a general transformation
from NC1 to poly-size circuits, but the security proof relies on the underlying FE scheme
being simulation secure. Such security is impossible in the setting where the number of secret
key queries in unbounded [AGVW13], which is the setting studied in this work. Subsequent to
our work, Ananth et al. [ABSV14] show that FE for NC1 can be boosted to FE for all circuit.



property called “single-use hiding” which allows us to arbitrarily change the ciphertext
and secret key in this slot, provided decryption is unaffected. By carefully repeating this
process for each secret key, we are ultimately able to change the message encrypted,
thus proving the security of the derived un-slotted functional encryption scheme.

Extending graded encodings. A major issue with the above sketch is that matrices from
different ciphertexts can be “mixed and matched” (in particular, a target matrix can be
mixed with a ciphertext generated from the public parameters) which may allow the
adversary to learn more than he should. Different secret keys can be mixed and matched
as well. Similar problems arose in the obfuscation setting, and one way it was solved
was by using so-called straddling set systems [BGK+14].

In our setting, this would involve assigning a different set of levels to each ciphertext,
and requiring that the levels assigned to two different ciphertext are incompatible.
However, ciphertext generation is a public procedure, meaning the public parameters
must include enough information to encrypt into any possible level that a ciphertext
component will be in. But then the adversary can always generate a ciphertext in
levels matching the target ciphertext, which then allows mixing the ciphertexts together.
Roughly, the problem is that access control to levels is all or nothing: either anyone can
generate encodings in a level, or no one except the master party can.

We solve this problembydeveloping a newextension procedure on graded encodings,
which lets any user extend the graded encoding by generating new levels. The user that
ran the extension procedure will have to ability to map components from existing levels
to the new level, but other users will not. If we apply the procedure to ciphertext
components, the components will effectively be bound together in the new extended
levels, since the adversary cannot move other ciphertexts into these levels.

In order to allow decryption, the new levels need to be mapped back to the original
set of levels. However, the extension procedure publishes just enough information tomap
back to the original levels only after all the ciphertext components have been combined.
Once the ciphertext components are all combined, it is impossible to mix the ciphertext
with another ciphertext.

While the extension procedure falls outside of the traditional graded encoding
abstraction, we point out that most graded encoding candidates [GGH13a, CLT13,
CLT15b] support this procedure. We provide details in the full version [GGHZ14b].

Using our new notion of extendable graded encodings, we prove the following:

Lemma 1 (informal). Assuming simple polynomial assumptions on extendable graded
encodings, then fully secure slotted functional encryption exists for NC1 circuits.

Boosting to FE for all circuits. In order to boost to functional encryption for all circuits,
we proceed in two steps.

– We first build functional encryption for NC1 randomized functionalities from our
slotted functional encryption scheme. This is accomplished by including a secret key
k for a PRF in the ciphertext, and generating the randomness for the functionality by
applying the PRF to a seed s contained in the secret key. In order to prove security,
we will need to puncture the key k at s, so we need puncturable PRFs that can be



evaluated in NC1 [BLMR13]6. The conversion is very similar to the bootstapping
technique of Gorbunov, Vaikuntanathan, andWee [GVW12], but we need the slotted
property of our FE scheme in order to prove security in our setting.

– Next, we boost to FE for all circuits. Basically, a secret key for a function f will
output not f(m), but instead a randomized encoding [IK00] f̂(m), from which
f(m) can be computed, but m itself is hidden. Notably, f̂(m) can be computed in
log-depth, so our randomized functional encryption for NC1 suffices.

Lemma 2 (informal). Assuming fully secure slotted functional encryption for NC1

and PRFs that are both puncturable and can be evaluated in NC1, then fully secure
functional encryption for all polynomial-sized circuits exists.

1.3 Instantiating Our Assumptions

Unfortunately, several recent attacks on multilinear maps [CHL+15, BWZ14, CGH+15,
CHL+15] have broken many assumptions on known multilinear maps; the assumptions
broken include our own, as well as all simple assumptions that have been used to build
obfuscation. Nonetheless, constructing functional encryption from simple assumptions,
without obfuscation, and without complexity leveraging remains an important problem.
Fortunately, our assumptions are generic in the sense that they can be instantiated on
any expressive-enough multilinear maps. It seems plausible that candidates satisfying
these assumptions will be found in the future, either by modifying current candidates or
by completely different means. Our work shows that any multilinear map supporting our
assumptions and functionality requirements yields secure functional encryption, thereby
motivating the search for and study of such maps.

1.4 Independent Work

In a very recent independent work, Waters [Wat14] constructs a fully secure functional
encryption (FE) scheme using indistinguishability obfuscation (iO) [GGH+13b] and
one-way functions. Water’s result has the advantage of being generic: any indistin-
guishability obfuscator or one-way function will suffice for his construction, whereas
we require multilinear maps with specific properties. However, the focus of this work
is to avoid indistinguishability obfuscation altogether and to build fully secure func-
tional encryption using simpler, though less generic tools (multilinear maps and simple
assumptions involving them).

One may try to combine Waters [Wat14] fully secure FE scheme with the indistin-
guishability obfuscator of Gentry et al. [GLSW14], whose security is based on simple
assumptions on multilinear maps. The result would be a fully secure functional en-
cryption scheme whose security is based on simple assumptions on multilinear maps.
However, the reduction in [GLSW14] involves an exponential loss of security, meaning
complexity leveraging is required and the assumptions on multilinear maps must be

6 This observation that [BLMR13] is puncturable appears in the full version of the paper:
http://theory.stanford.edu/~klewi/papers/homprf-full.pdf. It is also folklore
that the Naor-Reingold PRF is puncturable while maintaining NC1 evaluation



assumed secure against sub-exponential time adversaries. In this setting, static security
and full adaptive security are equivalent, and so a fully secure scheme can be obtained
by combining [GLSW14] with any selectively secure FE scheme, such as the original
scheme of Garg et al. [GGH+13b].

In contrast, all reductions for our scheme are polynomial, meaning we only require
polynomial hardness of the underlying multilinear map assumptions. Ours is the first
scheme to obtain security in this setting, even among selectively secure schemes.

1.5 Subsequent Work

Subsequent to our work, there have been several developments regarding functional
encryption. First, a few works [BV15, AJ15] show how to build obfuscation from
sub-exponentially secure functional encryption, thus showing that in some sense ob-
fuscation and functional encryption are equivalent. However, these results require com-
plexity leveraging, and therefore only apply in the setting of sub-exponential hardness
assumptions and exponential reductions. They do not apply to the polynomial security
setting, which is the focus of this work. Moreover, their results require compact FE. Our
construction is not compact, and it is currently still unknown how to obtain compact
functional encryption without using obfuscation.

Second, Ananth et al. [ABSV14] show how to both obtain adaptive security from
selective security for functional encryption, and also “bootstrap” functional encryption
for NC1 to functional encryption to all circuits. Their conversions need only regular
functional encryption, whereas our bootstrapping requires the seemingly stronger notion
of slotted functional encryption. While their techniques are quite different than ours, at
a high level their proof can be seen as (1) implicitly showing how to add slots to regular
(unslotted) functional encryption, and then (2) using slotted functional encryption for
bootstrapping. This shows that our notion of slotted functional encryption serves as a
useful abstraction in the context of functional encryption.

2 Preliminaries: Graded Encoding Schemes

In Section 3, we recall the basic definitions of functional encryption and branching pro-
grams. Here we describe the graded encoding scheme abstraction that will be needed in
our context, mostly following [GGH13a, CLT13, GLW14]. To instantiate the abstraction,
we can useGentry et al.’s variant [GLW14] of the Coron-Lepoint-Tibouchi (CLT) graded
encodings [CLT13]. This variant is designed to emulate multilinear groups of composite
order, and to allow assumptions regarding subgroups of the multilinear groups. One key
difference in our abstraction is a new extension function that we add to the GGH graded
encoding abstraction. This new functionality will be crucial in our scheme. In the full
version [GGHZ14b], we briefly recall the CLT graded encodings and show how they
can be adapted to also support this extension functionality.7

7 We note that the GGH encodings can also be extended to deal with this functionality as well
but here we provide this only for the CLT encodings.



Definition 1 (U-Graded Encoding System). A U-Graded Encoding System consists
of a ring R and a system of sets S = {S(α)

T ⊂ {0, 1}∗ : α ∈ R, T ⊆ U, }, with the
following properties:

1. For every fixed set T , the sets {S(α)
T : α ∈ R} are disjoint (hence they form a

partition of ST
def
=
⋃
α S

(α)
T ).

2. There is an associative binary operation ‘+’ and a self-inverse unary operation ‘−’
(on {0, 1}∗) such that for every α1, α2 ∈ R, every set T ⊆ U, and every u1 ∈ S(α1)

T

and u2 ∈ S(α2)
T , it holds that u1+u2 ∈ S(α1+α2)

T and−u1 ∈ S(−α1)
T whereα1+α2

and −α1 are addition and negation in R.
3. There is an associative binary operation ‘×’ (on {0, 1}∗) such that for every
α1, α2 ∈ R, every T1, T2 with T1∪T2 ⊆ U, and every u1 ∈ S(α1)

T1
and u2 ∈ S(α2)

T2
,

it holds that u1 × u2 ∈ S(α1·α2)
T1∪T2

. Here α1 · α2 is multiplication in R, and T1 ∪ T2
is set union.

CLT (and GGH) encodings do not quite meet the definition of graded encoding
systems above, since the homomorphisms required in the definition eventually fail when
the “noise" in the encodings becomes too large, analogously to how the homomorphisms
may eventually fail in lattice-based homomorphic encryption. However, these noise
issues are relatively straightforward (though tedious) to deal with.

Now, we define some procedures for graded encoding schemes. We start with the
procedures standard in the graded encoding literature [GGH13a, CLT13].

Instance Generation. The randomized InstGen(1λ,U, r) takes as inputs the param-
eters λ,U, r, and outputs params, where params is a description of a U-Graded
Encoding System as above for a ringR = R1 × . . .×Rr. We assumeR is chosen
such that the density of zero divisors in each Ri is negligible.
Note that setting r = 1 corresponds to the prime order setting, while r > 1
corresponds to the composite-order setting.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a ∈
S
(α)
φ for a nearly uniform elementα ∈R R. (Note that we require that the “plaintext”

α ∈ R is nearly uniform, but not that the encoding a is uniform in S(α)
φ .)

Encoding. The (possibly randomized) enc(params, T, a) takes a “level-zero” encoding
a ∈ S(α)

φ for some α ∈ R and index T ⊆ U, and outputs the “level-T ” encoding

u ∈ S(α)
T for the same α.

Re-Randomization. The randomized reRand(params, T, u) re-randomizes encodings
relative to the same index. Specifically, for an index T ⊆ U and encoding u ∈ S(α)

T ,
it outputs another encoding u′ ∈ S

(α)
T . Moreover for any two u1, u2 ∈ S

(α)
T ,

the output distributions of reRand(params, T, u1) and reRand(params, T, u2) are
statistically indistinguishable.

Addition and negation. Given params and two encodings relative to the same index,
u1 ∈ S(α1)

T and u2 ∈ S(α2)
T , we have an addition function add(params, T, u1, u2) =

u1+u2 ∈ S(α1+α2)
T , and a negation function neg(params, T, u1) = −u1 ∈ S(−α1)

T .



Multiplication. For u1 ∈ S(α1)
T1

, u2 ∈ S(α2)
T2

such that T1∪T2 ⊆ U and T1∩T2 = ∅, we
have a multiplication function mul(params, T1, u1, T2, u2) = u1 × u2 ∈ S(α1·α2)

T1∪T2
.

Zero-test. The procedure isZero(params, u) outputs 1 ifu ∈ S(0)
U and 0 otherwise. Note

that in conjunction with the subtraction procedure, this lets us test if u1, u2 ∈ SU
encode the same element α ∈ R.

Next, we define two new extension procedures on graded encodings that we will
use. Informally, these procedures allow the creation of new levels, using only the public
parameters of the graded encoding. In particular, they take as input a subset of levels V
of the universe U, and create a new “clone” V′ of the levels in V that is disjoint from U.
Since the levels lie outside U, they cannot be zero-tested. Instead, the procedures output
a function fV′→V which maps the level V′ back to V, but does not allow mapping levels
corresponding to any subsets of V′. Thus, the entire set V′ must be “filled out” before
zero testing can happen. In particular, it is impossible to multiply an element encoded
at a subset of V′ with an element encoded at a subset of V and still be able to perform
zero-testing. In effect, this binds the encodings in V′ together, similar to how straddling
sets [BGK+14] where used in obfuscation.

Extension. This procedure allows extending the graded encoding system by fresh asym-
metric levels. Specifically, extend(params,V, {ei}i) takes as input a setV ⊆ U and
a sequence of encodings ei each at level vi ⊆ V and outputs a new set V′ where
V′∩U = ∅ and encodings e′i each at level v′i ⊆ V′ alongwith a public transformation
function fV′→V such that:-
– Addition and multiplication procedures from above can be applied to encodings
at these new levels as well. Thus, given u1 ∈ S

(α1)
T and u2 ∈ S

(α2)
T where

T ⊆ (U \ V) ∪ V′, we have add(params, T, u1, u2) = u1 + u2 ∈ S(α1+α2)
T ,

and neg(params, T, u1) = −u1 ∈ S
(−α1)
T . Similarly, given u1 ∈ S

(α1)
T1

and
u2 ∈ S

(α2)
T2

such that T1 ∪ T2 ⊆ (U \ V) ∪ V′ and T1 ∩ T2 = ∅, we have
a multiplication function mul(params, T1, u1, T2, u2) = u1 × u2 ∈ S(α1·α2)

T1∪T2
.

Notice that we do not need to support adding or multiplying elements if the
final level is some W such that both W ∩ V 6= ∅ andW ∩ V′ 6= ∅.

– The new levels v′i are obtained by mapping the old levels vi into the clone V′.
Specifically, let V = {j1, . . . jt} and V′ = {j′1, . . . j′t}. For each i we have that
if vi = {jk1 , . . . jk`} then v′i = {j′k1 , . . . j

′
k`
}

– fV′→V(e
′,W′) takes as input a set W′ such that V′ ⊆ W′ ⊆ (U \ V) ∪ V′

and an element e′ ∈ S(α)
W′ . It outputs an encoding e ∈ S(α)

V∪(W′\V′) obtained by
mapping each element in V′ back to V. Specifically, ifW′ = X∪ {j′k1 , . . . j

′
k`
}

where j′k ∈ V′ as above and X ⊆ U \ V, then the output will be an element
e encoded relative to set W = X ∪ {jk1 , . . . , jk`} ⊆ U, which will be in the
original universe U.

Extension†. This function extend† is the same as the previous function extend(params,
V, {ei}i) except that it also outputs additionally randomizers (encodings of 0) for
each level it outputs an encoding at.



In the full version [GGHZ14b], we demonstrate how to obtain the above extension
procedures from the new CLT encodings. We stress that, except for the new extension
procedures, all the procedures above are exactly the same as an optimized variant
in [CLT15b]. The extension functions are built on top of the underlying graded encoding
without any modifications to the existing procedures — in particular, no extra terms are
needed in the public parameters. The extension functions can also be applied to any
multilinear map that has a similar form to the GGH or CLT maps. For that reason, while
the complexity assumptions we will be making currently do not hold on any multilinear
map candidate, it is very likely that future maps which may support our assumptions
will also support this extension procedure.

In order to simplify notation, we will denote encodings as [α]iT where T denotes the
level of the encoding, and i denotes that only the Ri component of α is preserved and
the Rj components for j 6= i are zeroed out. Similarly, we use [α]i1,i2,i3T to denote that
theRi1 ×Ri2 ×Ri3 component is preserved and all other components are zeroed out.
This notation is due to [GGHZ14a].

Our complexity assumptions. We now describe the complexity assumptions we will be
making in this work. Fix a universe U, a dimension d, and a partition of U into subsets
V,W. For the assumptions below we will assume that randomizers (encodings of zero)
are provided for each index in U.

For our first assumption, the adversary is given elements in every level and in every
subring except subring R0. The adversary is additionally given challenge elements in
every level that either lie in the subringR1, or lie in the subringR0×R1, and is asked to
distinguish the two cases. Using only multilinear operations, distinguishing those cases
is impossible: pairing either challenge element with anything inR1 results in an element
inR1, while pairing either with anything inRi for i > 1 results in 0. Thus, only pairing
with an element in R0 will allow for distinguishing the two cases, and such elements
are not given to the adversary.

Definition 2 (Assumption 1). The following distributions are indistinguishable:( (
[si,j ]

j
{i}

)
i∈U,j>0

,
(
[ti]

1
{i}

)
i∈U

)
and

( (
[si,j ]

j
{i}

)
i∈U,j>0

,
(
[ti]

0,1
{i}

)
i∈U

)
In our second assumption, the universe U is split into two disjoint sets: V and W.

For levels in V, the adversary is given elements encoded in each Ri for i > 1, as well
as elements in R0 × R1. No elements are provided in V that are encoded in R0 but
not R1, or vice versa. For levels in W, the adversary is given elements in all of the
subrings. Additionally, a clone set of levels W′ is created disjoint from U using the
extension function. The adversary is given the function fW′→W, also outputted by the
extension procedure, which allows him to translate elements from the entire W′ into
W. For each level in W′, the adversary is given encodings in Ri for i > 1, as well as
challenge encodings that are either all in R0 or all in R1. The adversary is then asked
to distinguish the two cases. To distinguish the two cases, the adversary has to first “fill
up” the setW′ so that it can be mapped back into the universe U. If he pairs a challenge
element with any non-challenge element in W′, the result will always be an encoding
of zero since the challenge elements and non-challenge elements in W′ lie in different



subrings. Therefore, his only choice it to pair all of the challenge elements together and
map back to U, obtaining an element at levelW encoded in either subringR0 orR1. At
this point, he can only pair with elements in V, and crucially, all the elements in V are
either encoded inR0 ×R1, or are disjoint fromR0 andR1. Therefore, there is no way
to distinguish the two cases using only the multilinear operations.

In the following, let [d] denote the set {0, 1, . . . , d− 1}.

Definition 3 (Assumption 2). The following two distributions are indistinguishable:( (
[si,j ]

j
{i}

)
i∈V,j>1

,
(
[si]

j
{i}

)
i∈W,j∈[d]

,
(
[ti]

0,1
{i}

)
i∈V

,

extend†
(
params,W,

{(
[ui,j ]

j
{i}

)
i∈W,j>1

,
(
[vi]

0
{i}

)
i∈W

} ) )
and

( (
[si,j ]

j
{i}

)
i∈V,j>1

,
(
[si]

j
{i}

)
i∈W,j∈[d]

,
(
[ti]

0,1
{i}

)
i∈V

,

extend†
(
params,W,

{(
[ui,j ]

j
{i}

)
i∈W,j>1

,
(
[vi]

1
{i}

)
i∈W

} ) )

3 Additional Background

In this section, we start by providing the definition of adaptively secure FE for general
circuits. Then we recall the notions of branching programs and develop notation that
will be needed in our context.

3.1 Adaptively Secure FE

A functional encryption system consists of four algorithms: Setup,KeyGen,Encrypt,
and Decrypt.

- Setup(λ): The setup algorithm takes in the security parameter λ as input and outputs
the public parametersMPK and a master secret keyMSK.

- KeyGen(MSK, y): The key generation algorithm takes in the master secret key
MSK, and an attribute string y as input. It outputs a private key SKy for y. y is
included as part of the secret key.

- Encrypt(MPK,x): The encryption algorithm takes the public parametersMPK
and a message x as input. It outputs a ciphertext C.

- Decrypt(SKy, C): The decryption algorithm takes a private key SKy for attribute
string y and a ciphertext C (encrypting say the message x) as input and outputs the
value C(x, y), where C is a fixed universal circuit.

Correctness of the scheme requires that for correctly generated private keys for y
and correctly generated ciphertexts encrypting x, decryption yields C(x, y) except with
negligible probability.

We will now give the security definition for adaptive FE. This is described by a
security game between a challenger and an attacker that proceeds as follows.



- Setup: The challenger runs the Setup algorithm and gives the public parameters
MPK to the attacker.

- Query Phase I: The attacker queries the challenger for private keys corresponding
to attribute strings y1, . . . , yq1 , which the challenger provides.

- Challenge: The attacker declares two messages x0, x1. We require that ∀i ∈ [q1]
we have that C(x1, yi) = C(x0, yi). The challenger flips a random coin β ∈ {0, 1}
and runs C ← Encrypt(MPK,xβ). The challenger gives the ciphertext C to the
adversary.

- Query Phase II: The attacker queries the challenger for private keys corresponding
to the attribute strings yq1+1, . . . , yq , with the added restriction that∀i ∈ {q1, . . . , q}
we have C(x1, yi) = C(x0, yi).

- Guess: The attacker outputs a guess β′ for β.

The advantage of an attacker in this game is defined to be Pr[β = β′]− 1
2 .

3.2 Branching Programs

A branching program consists of a sequence of steps, where each step is defined by a pair
of permutations. In each step the the program examines one input bit, and depending
on its value the program chooses one of the permutations. The program outputs 1 if
and only if the multiplications of the permutations chosen in all steps is the identity
permutation. In our setting, just like in previous work it will be easier to work with
matrix branching programs that we define next.

Definition 4 (Matrix Branching Program). A branching program of width w and
length ` on n-bit inputs is given by two 0/1 permutation matricesM0,M1 ∈ {0, 1}w×w,
M0 6=M1 and by a sequence:

BP =
(
inp(i), Bi,0, Bi,1

)`
i=1

,

where each Bi,b is a permutation matrix in {0, 1}w×w, and inp(i) ∈ [n] is the input bit
position examined in step i. We require that, for all inputs x ∈ {0, 1}n,

∏̀
i=1

Bi,xinp(i)
∈ {M0,M1}

Let (α, β) be a position where M1[α, β] = 1 and M0[α, β] = 0. Call (α, β) a
distinguishing coordinate. The output of the branching program on input x ∈ {0, 1}n is
as follows:

BP (x) =

(∏̀
i=1

Bi,xinp(i)

)
[α, β]

Theorem 2 ([Bar86]). For any depth-d fan-in-2 boolean circuit C, there exists an
oblivious branching program of width 5 and length at most 4d that computes the same
function as the circuit C.



Remark 1. In our functional encryption constructionwe do not require that the branching
program is of constant width. In particular we can use any reductions that result in a
polynomial size branching program.

For simplicity of notation, it will be convenient to consider two-input branching
programs.8 Here, the input x ∈ {0, 1}2n is split into two inputs (x[0], x[1]). We then
split inp into two functions:

– inp′ : [`] → {0, 1} where inp′(i) = dinp(i)/ne − 1. Basically, inp′ chooses which
of the inputs x[0] and x[1] inp points to.

– bit : [`] → [n] where bit(i) = inp(i) mod n. Basically, bit chooses which bit of
x[b] inp points to, where b is the bit chosen by inp′.

Then we can write the branching program evaluation as

BP (x) =

(∏̀
i=1

Bi,x[inp′(i)]bit(i)

)
[α, β]

Remark 2. It is also straightforward to consider two-input branching programs where
x[0] and x[1] have different sizes. We treat them as the same size for convenience.

Kilian Randomization of Branching Programs. Let BP be a branching program as
above. Fix a ring R. Choose random invertible matrices R1, . . . , R`−1, and define a
new branching programBP ′ which is identical toBP , except that the matricesBi,b are
replaced with B̃i,b = Ri−1 ·Bi,b ·R−1i , where we takeR0 = R` = Iw. We observe that

∏̀
i=1

B̃i,xinp(i)
=
∏̀
i=1

Bi,xinp(i)

so that for every x we have that BP ′(x) = BP (x). Moreover, we have the following:

Theorem 3 ([Kil88]). Fix any input x ∈ {0, 1}`, and let b = BP (x) = BP ′(x). Then
the set of matrices multiplied together to evaluate BP ′(x), namely the set{

B̃i,xinp(i)

}
i∈[`]

are distributed as uniform random w × w invertible matrices over R, conditioned on
their product beingMb.

4 Slotted Functional Encryption

In this section, we define the notion of slotted functional encryption. Later we will
show how this scheme can be used to realize a functional encryption scheme for general
circuits. A slotted functional encryption scheme, is roughly a functional encryption with

8 Not to be confused with dual-input branching programs from [BGK+14].



multiple “slots,” where each slot roughly serves as an independent copy of the functional
encryption scheme. For any ciphertext or secret key, each slot is either active or inactive,
and active slots will contain some bit string that potentially varies from slot to slot.
Decryption is well-defined only if all slots that are active in both the ciphertext and the
secret key agree on the output, in which case the result of decryption is the agreed-upon
output. Otherwise, the output is undefined. Slot 0 is a special slot and where the public
parameters rest. This is the slot that anyone can encrypt a message to; all the other slots
require secret parameters.

- Setup(λ, d,C): The setup algorithm takes in the security parameter λ, a number d
of slots, and a fixed universal circuit description C as inputs and outputs the public
parametersMPK and a master secret keyMSK.

- KeyGenS(MSK,y): The slotted key generation algorithm takes in the master
secret keyMSK, and a vector of attribute strings y ∈ {{0, 1}n ∪ ⊥}d as input. It
outputs a private key SK for y.

- KeyGen(MSK, y): The unslotted version of the key generation is just a convenient
shorthand, it runs KeyGen(MSK,y) where y = (y,⊥, . . . ).

- EncryptS(MSK,x): A private slotted encryption algorithm takes in the secret
parameters MSK, and a vector of messages x ∈ {{0, 1}n ∪ ⊥}d as input. It
outputs a ciphertext C.

- Encrypt(MPK,x): a public unslotted encryption algorithm takes in the public pa-
rametersMPK, and a single message x ∈ {0, 1}n as input. It outputs an encryption
of the message vector (x,⊥,⊥, ...)

- Decrypt(SK,C): The decryption algorithm takes a private key SK for attribute
string y and a ciphertext C (encrypting say the messages x). Let S ⊆ [d] be the
set of active indices, namely those i ∈ [d] where x[j] 6= ⊥ and y[j] 6= ⊥. If
C(x[j], y[j]) = b for all active indices i ∈ S, it outputs b. Otherwise, the output is
undefined.

We note that a slotted functional encryption scheme yields in particular a functional
encryption using only the unslotted versions of the KeyGen and Encrypt procedures. Our
goal will be to prove security of the derived (unslotted) functional encryption scheme,
using various security properties of the full slotted scheme.

For security of slotted FE, consider the following general security game, parameter-
ized by a predicate P (which encodes the security property that we want to capture).

- Setup: The challenger runs the Setup algorithm and gives the public parameters
MPK to the attacker. The challenger also flips a random coin β ∈ {0, 1}, which it
keeps secret.

- Query Phase I: The attacker adaptively queries the challenger for private keys
corresponding to attribute vectors pairsy(0)

i ,y
(1)
i ∈ {{0, 1}n∪⊥}d for i = 1, ..., q1.

The challenger responds with the secret keys for y(β)
i .

- Challenge:The attacker declares twomessage s vector x(0),x(1) ∈ {{0, 1}n∪⊥}d.
The challenger responds with the ciphertext C ← EncryptS(MSK,x(β)).

- Query Phase II: The attacker continues to adaptively queries the challenger for
private keys corresponding to attribute vectors pairs y(0)

i ,y
(1)
i ∈ {{0, 1}n ∪ ⊥}d

for i = q1 + 1, ..., q. The challenger responds with the secret keys for y(β)
i .



- Guess: The attacker outputs a guess β′ for β.
- Check: The challenger evaluates a predicate P on the secret-key and challenge
queries: c = P ({y(b)

i }i∈[q],b∈{0,1},x(0),x(1)). If the predicate holds (c = 1) then
the challenger outputs β′′ = β′. Otherwise the challenger outputs a random inde-
pendent bit β′′.

The advantage of an attacker in this game is defined to be Pr[β = β′′]− 1
2 (and note that

if c = 0 then the advantage is 0). The scheme is secure relative to the given predicate if
feasible adversaries can only have a negligible advantage.

The predicate P . The security game varies depending on the predicate P , with more
permissive predicates yielding stronger notions of security. At a minimum, we need P
to exclude queries that let the adversary trivially distinguish the left and right sides by
applying the decryption procedure on the secret keys and ciphertext received. Similarly,
P must also exclude queries that let the adversary distinguish the left and right sides by
generating its own ciphertexts.

However, it is not hard to see that using a permissive predicate P that only excludes
these trivial attacks results in a security notion that is too strong: such permissive
P would allow arbitrary secret-key queries (y, y′) so long as C(x, y) = C(x, y′) for
all x ∈ {0, 1}n, which means that we directly get indistinguishability obfuscation.
Specifically, for a universal circuit U , we obfuscate a function f(x) = U(f, x) by
publishing the FE secret keySKf . This lets anyone evaluate f(x) for anyx by encrypting
x under the scheme, and then using SKf to decrypt f(x), and the security notion would
say that any two functionally equivalent f and f ′ are indistinguishable.

Next, we therefore describe some simple predicates which are more restrictive, and
hence they correspond to weaker notions of security (which are still strong enough for
our purposes). Very roughly speaking, they all require that most of the time we have
y
(0)
i = y

(1)
i and/or x(0) = x(1), and they differ only in a handful of slots and/or a

handful of queries.

4.1 Core Predicates

We begin by describing some simple core predicates that our slotted FE scheme should
satisfy. In the next section we show that the corresponding security properties imply also
stronger properties, including adaptively security of the induced unslotted FE scheme.

0. Slot Symmetry. P checks that there are two distinct non-special slots α 6= β,
α, β 6= 0 such that:
– x(0),x(1) are equal in all the slots other than α, β, and they swap the content
of these two slots. Namely x(0)[j] = x(1)[j] := x[j] for all j /∈ {α, β}, and
x(b)[α] = x(1−b)[β] := x(b∗) for b = 0, 1.

– Similarly for all i y(0)
i ,y

(1)
i are equal in all the slots other than α, β, and they

swap the content of these two slots. Namely y
(0)
i [j] = y

(1)
i [j] := yi[j] for all

j /∈ {α, β}, and y
(b)
i [α] = y

(1−b)
i [β] := y

(b∗)
i for b = 0, 1.



b = 0

x(0)[j] y
(0)
i [j]

j = α x(0∗) y
(0∗)
i

j = β x(1∗) y
(1∗)
i

j 6= α, β x[j] yi[j]

b = 1

x(1)[j] y
(1)
i [j]

j = α x(1∗) y
(1∗)
i

j = β x(0∗) y
(0∗)
i

j 6= α, β x[j] yi[j]
Intuitively, this allows us to permute the contents of different slots without the
adversary’s notice.

1. Single-Use Message and Function Hiding. P checks that there is a non-special
slot α 6= 0 and a secret key query γ ∈ [q] such that:
– All key-queries other than γ contain two identical functions, y(0)

i = y
(1)
i := yi

∀i 6= γ.
– Key-query γ has two keys that differ only in slot α, y(0)

γ [j] = y
(1)
γ [j] := yγ [j]

∀j 6= α.
– The challenge query has two plaintexts that differ only in slot α, x(0)[j] =

x(1)[j] := x[j] ∀j 6= α.
– Wehave either the same functionalityC(x(0)[α],y

(0)
γ [α]) = C(x(1)[α],y(1)[α]),

or the two plaintext slots are inactive x(0)[α] = x(1)[α] = ⊥, or the two key
slots are inactive y(0)

γ [α] = y
(1)
γ [α] = ⊥.

b = 0

x(0)[j]
y
(0)
i [j]

i = γ i 6= γ

j = α x(0∗) y(0∗) yi[α]
j 6= α x[j] yi[j]

b = 1

x(1)[j]
y
(1)
i [j]

i = γ i 6= γ

j = α x(1∗) y(1∗) yi[α]
j 6= α x[j] yi[j]

Requirements:
C(x(0∗), y(0∗)) =

C(x(1∗), y(1∗)) or
x(0∗) = x(1∗) = ⊥ or
y(0∗) = y(1∗) = ⊥

This allows us to argue both message and function hiding for one slot in one query,
as long as that slot is not the special slot that the public parameters can encrypt to.

2. Slot Duplication. P checks that there are distinct slots α 6= β with β 6= 0 such that:
– All the slots other than β are the same between left and right, x(0)[j] =

x(1)[j] := x[j] for all j 6= β, and y
(0)
i [j] = y

(1)
i [j] := yi[j] for all i and all

j 6= β.
– Slots β on the left are inactive, x(0)[β] = ⊥ and y

(0)
i [β] = ⊥ for all i

– Slots β on the right are either inactive or equal to slots α, x(0)[β] ∈ {x[α],⊥}
and y(0)

i [β] ∈ {yi[α],⊥} for all i.
b = 0

x(0)[j] y
(0)
i [j]

j = α x∗ y∗i
j = β ⊥ ⊥
j 6= α, β x[j] yi[j]

b = 1

x(1)[j] y
(1)
i [j]

j = α x∗ y∗i
j = β x∗ or ⊥ y∗i or ⊥
j 6= α, β x[j] yi[j]

We stress that slot duplication can duplicate the slots of the ciphertext and secret keys
simultaneously. We can choose to duplicate the slots of all keys and the ciphertext,
or any subset of them.

3. Ciphertext Moving. P checks that there are two distinct slots α 6= β such that:
– For each secret key, all slots (including α and β) are the same on the left and

right: y(0)
i [j] = y

(1)
i [j] := yi[j] for all i and j.



– For each secret key, slot α is identical to slot β on both the left and right:
yi[α] = yi[β] := y∗i (y∗i is potentially ⊥).

– For the challenge ciphertext, all slots other than α, β are the same between left
and right: x(0)[j] = x(1)[j] := x[j] for all j /∈ {α, β}.

– For the challenge ciphertext, slot β on the left and slotα on the right are inactive:
x(0)[β] = x(1)[α] = ⊥.

– For the challenge ciphertext, slot α on the left is equal to slot β on the right:
x(0)[α] = x(1)[β] = x∗.

b = 0

x(0)[j] y
(0)
i [j]

j = α x∗ y∗i
j = β ⊥ y∗i
j 6= α, β x[j] yi[j]

b = 1

x(1)[j] y
(1)
i [j]

j = α ⊥ y∗i
j = β x∗ y∗i
j 6= α, β x[j] yi[j]

This lets us rearrange the slots of the challenge ciphertext, as long as each secret
keys is identical among the affected slots. We stress that ciphertext moving allows
one of the slots being rearranged to be the special slot.

4. Weak key moving. P checks that there are two distinct non-special slots α 6= β,
α, β 6= 0 and secret-key query γ such that:
– For the challenge ciphertext, all slots (including α and β) are the same between

left and right: x(0)[j] = x(1)[j] := x[j] for all j.
– For the challenge ciphertext, slot α is identical to slot β on both the left and
right: x[α] = x[β] := x∗

– For each secret key query other than γ, all slots (including α and β) are the
same on the left and right: y(0)

i [j] = y
(1)
i [j] := yi[j] for all i 6= γ and all j.

– For secret key query γ, all slots other than α, β are the same on the left and
right: y(0)

γ [j] = y
(1)
γ [j] := yγ [j] for all j /∈ {α, β}.

– For secret key query γ, slot β on the left and slot α on the right are inactive:
y
(0)
γ [β] = y

(1)
γ [α] = ⊥.

– For secret key query γ, slot α on the left is identical to slot β on the right:
y
(0)
γ [α] = y

(1)
γ [β] = y∗γ := y∗.

b = 0

x(0)[j]
y
(0)
i [j]

i = γ i 6= γ
j = α x∗ y∗

yi[j]j = β x∗ ⊥
j 6= α x[j] yγ [j]

b = 1

x(1)[j]
y
(1)
i [j]

i = γ i 6= γ
j = α x∗ ⊥

yi[j]j = β x∗ y∗

j 6= α x[j] yγ [j]
This is the secret key version of ciphertext moving, allowing us to rearrange the slots
of a secret key, as long as the challenge ciphertext is identical among the affected
slots. The main difference from ciphertext moving is that weak key moving does
not allow us to modify the special slot 0.

We observe that the above properties, even in combination, will never allow the
changing of a secret key in slot 0. Thus, we will not be able to obtain any form
of function hiding for the derived unslotted functional encryption scheme just from
the properties above. This serves as a sanity check that the above properties are not



too strong, and might be obtainable from simple assumptions, and indeed we give a
construction meeting these in Section 5.

In the following sections, we present several other more complex predicates, and
show that security relative to the complex predicates is implied by the security relative
only to the predicates above. The proofs “consume” some slots, so extra slots are needed
to obtain security for the more complex predicates.

One of the predicates we prove security for corresponds exactly to regular functional
encryption. The total number of slots consumed in the proof from the basic predicates
is 3. Combining with our slotted FE construction in Section 5 for 4 slots, we obtain
adaptively secure functional encryption for NC1 functionalities.

In the full version [GGHZ14b], we show how to use our predicates, together with
puncturable PRFs and randomized encodings (defined in Section 3) to obtain functional
encryption for all circuits. The total number of slots consumed is 5, meaning we need a
6-slotted FE. In particular, the number of slots is constant, which translates to a constant
number (namely 6) of subgroups in the underlying composite-order multilinear maps.

4.2 Additional Derivable Predicates

Now we describe several additional properties that can be derived from the core prop-
erties above, potentially “using up” several additional slots.

5. New Slot. P checks that there are distinct slots α 6= β with α not being the special
0 slot (but β may be), such that:
– For each secret key, all slots (including α and β) are the same on the left and

right: y(0)
i [j] = y

(1)
i [j] for all i and j.

– For each secret key, slot α is inactive on both the left and the right: y(0)
i [α] =

y
(1)
i [α] = ⊥ for all i

– For the challenge ciphertext, all slots other than slot α are the same on the left
and right: x(0)[j] = x(1)[j] for all j 6= α.

– For the challenge ciphertext, slot β is active on both the left and the right:
x(0)[β] = x(1)[β] 6= ⊥.

– For the challenge ciphertext, slot α is inactive on the left: x(0)[α] = ⊥
b = 0

x(0)[j] y
(0)
i [j]

j = α ⊥ ⊥
j = β x[β] 6= ⊥

yi[j]j 6= α, β x[j]

b = 1

x(1)[j] y
(1)
i [j]

j = α x∗ ⊥
j = β x[β] 6= ⊥

yi[j]j 6= α, β x[j]
Notice that there is no restriction to the value in slot α of the ciphertext on the right.
Thus, the allows us to take a slot that is inactive for all secret keys and the challenge
ciphertext, and place an arbitrary value in the slot for the ciphertext.

6. Strong key moving. P checks that there are distinct non-special slots α 6= β,
α, β 6= 0, and secret key query γ such that:
– For the challenge ciphertext, all slots (including α and β) are the same between

left and right: x(0)[j] = x(1)[j] := x[j] for all j.



– For each secret key query other than γ, all slots (including α and β) are the
same on the left and right: y(0)

i [j] = y
(1)
i [j] := yi[j] for all i 6= γ and all j.

– For secret key query γ, all slots other than α, β are the same on the left and
right: y(0)

γ [j] = y
(1)
γ [j] := yγ [j] for all j /∈ {α, β}.

– For secret key query γ, slot β on the left and slot α on the right are inactive:
y
(0)
γ [β] = y

(1)
γ [α] = ⊥.

– For secret key query γ, slot α on the left is identical to slot β on the right:
y
(0)
γ [α] = y

(1)
γ [β] := y∗γ .

– When decrypting the challenge with secret key γ, slot α on the left and slot β
on the right give the same result. In other words, C(x[α],y∗γ) = C(x[β],y∗γ)

b = 0

x(0)[j]
y
(0)
i [j]

i = γ i 6= γ
j = α x∗0 y∗

yi[j]j = β x∗1 ⊥
j 6= α x[j] yγ [j]

b = 1

x(1)[j]
y
(1)
i [j]

i = γ i 6= γ
j = α x∗0 ⊥

yi[j]j = β x∗1 y∗

j 6= α x[j] yγ [j]

Requirements:
C(x∗0, y

∗) =
C(x∗1, y

∗)

This is a stronger form of secret key moving where we can actually rearrange secret
key slots even if the challenge ciphertext differs in those slots, as long as decryption
is unaffected.

7. Weak ciphertext indistinguishability. P checks that there is a non-special slot
α 6= 0 such that:
– For each secret key, all slots (including slot α) are the same on the left and right:

y
(0)
i [j] = y

(1)
i [j] := yi[j] for all i and j.

– For the challenge ciphertext, all slots except slot α are the same on the left and
right: x(0)

i [j] = x
(1)
i [j] := x[j] for all j 6= α.

– For the challenge ciphertext, slot α decrypts to the same result for each secret
key query: C(x(0)[α],yi[α]) = C(x(1)[α],yi[α]).

b = 0

x(0)[j] y
(0)
i [j]

j = α x∗0 y∗i
j 6= α x[j] yi[j]

b = 0

x(1)[j] y
(1)
i [j]

j = α x∗1 y∗i
j 6= α x[j] yi[j]

Requirements:
C(x∗0, y

∗
i ) = C(x∗1, y

∗
i )∀i

In other words, we can change the value of the ciphertext in any slot other than the
special 0 slot as long as decryption is unaffected. This almost gives us functional
encryption, except for the requirement that the slot is not the special slot.

8. Strong ciphertext indistinguishability. Same as above, except α can be 0.

4.3 Reductions

Now we describe several reductions showing that core properties described above are
sufficient for obtaining the additional derivable properties also described above, at the
cost of “using up” several additional slots. We note that in all of the reductions below,
any existing property, whether core or derived, is preserved in the reduction.

Lemma 3. (1) Single-use hiding and (2) slot duplication imply (5) new slot.



Proof. Use slot duplication to duplicate contents of the β slot into the originally empty
α slot of the ciphertext (don’t duplicate the secret keys), and then use single-use message
and function hiding to change the message to x∗, which is possible since there are no
secret keys components in the α slot.

Lemma 4. (1) Single-use hiding, (2) slot duplication, (3) and weak key moving for d+1
slots implies (6) strong key moving for d slots (all existing properties being preserved).

Proof. We prove for α = 1, β = 2, the other cases being identical. We will move secret
key γ ∈ [q]. Let slot d+ 1 be a “scratch” slot, that is unused by the normal scheme. We
will use slot d + 1 in the security proof. Below is the table of hybrids. For secret keys
i ∈ [q], i 6= γ not included in the table, slot d + 1 is inactive, and the rest of the slots
remain the same throughout all hybrids. Similarly, slots j 6= 1, 2, d+1 remain the same
for the ciphertext and the γth secret key.

Hybrid x[j] yγ [j] comments
j = 1 j = 2 j = d+ 1 j = 1 j = 2 j = d+ 1

H0 x∗0 x∗1 ⊥ y∗ ⊥ ⊥
H1 x∗0 x∗1 x∗0 y∗ ⊥ ⊥ Slot duplication
H2 x∗0 x∗1 x∗0 ⊥ ⊥ y∗ Weak secret key moving
H3 x∗0 x∗1 x∗1 ⊥ ⊥ y∗ Single-use message hiding
H4 x∗0 x∗1 x∗1 ⊥ y∗ ⊥ Weak secret key moving
H5 x∗0 x∗1 ⊥ ⊥ y∗ ⊥ Slot duplication

Lemma 5. (0) Slot symmetry, (5) new slot, and (6) strong key moving for d + 1 slots
implies weak (7) weak ciphertext indistinguishability for d slots (all existing properties
being preserved).

Proof. We prove for α = 1, the other cases being identical. The slot d + 1 will be the
“scratch” slot, that is unused by the normal scheme but used in the security proof. In
the hybrids below we will use the strong key moving property. Note that the strong key
moving only allows for changing one key at a time, while in the hybrids below we will
need to change all the keys. This can be done by changing one key at a time.

Hybrid x[j] ∀γ ∈ [q], yγ [j] comments
j = 1 j = d+ 1 j = 1 j = d+ 1

H0 x∗0 ⊥ y∗ ⊥
H1 x∗0 x∗1 y∗ ⊥ New slot
H2 x∗0 x∗1 ⊥ y∗ Strong key moving (×q)
H3 ⊥ x∗1 ⊥ y∗ New slot
H4 x∗1 ⊥ y∗ ⊥ Slot Symmetry

Lemma 6. (2) Slot duplication, (3) weak ciphertext moving, and (7) weak ciphertext
indistinguishability for d+ 1 slots implies (8) strong ciphertext indistinguishability for
d slots (all existing properties preserved).

Proof. Only need to add the case for slot 0. Just as before, the slot d + 1 will be the
“scratch” slot, that is unused by the normal scheme but used in the security proof.



Hybrid x[j] yi[j] Comments
j = 0 j = d+ 1 j = 0 j = d+ 1

H0 x∗0 ⊥ y∗i ⊥
H1 x∗0 ⊥ y∗i y∗i Slot duplication
H2 ⊥ x∗0 y∗i y∗i Weak ciphertext moving
H3 ⊥ x∗1 y∗i y∗i Weak ciphertext indistinguishability
H4 x∗1 ⊥ y∗i y∗i Weak ciphertext moving
H5 x∗1 ⊥ y∗i ⊥ Slot duplication

5 Slotted Functional Encryption forNC1

We now give our slotted FE scheme for NC1. We will describe our scheme in terms of
matrix branching programs, using Barrington’s Theorem (Theorem 2) to realize slotted
FE for NC1 circuits. We describe our scheme for single bit outputs — it can easily be
extended to multi-bit outputs by running multiple instances of the scheme in parallel.
Setup(λ,BP, d): Given a universal 2-input matrix branching program

BP =
(
bit, inp, (Bi,b)i∈[`],b∈{0,1}

)
run params ← InstGen(1λ, {1, . . . , `}, d). Then, choose random matrices Ri ∈ R for
i ∈ [`−1], as well as randomαi,b for i ∈ [`], b ∈ {0, 1}. Let B̃i,b = αi,b ·Ri−1 ·Bi,b ·R−1i
for i ∈ [2, `− 1], and B̃1,b = α1,b ·B1,b ·R−11 and B̃`,b = α`,b ·R`−1 ·B`,b9. Compute
Aji,b = [B̃i,b]

j
{i} for j ∈ [d]. (Here R0 and R` are set to identity.)

Let V be the subset of [`] that corresponds to the secret key: V = {i ∈ [`] : inp(i) =
0}, and W be the subset of [`] that corresponds to the ciphertext: W = {i ∈ [`] :
inp(i) = 1}. Then the universe U = V ∪W.

The master public key isMPK = (params, (A0
i,b)i∈W,b∈{0,1})

The master secret key consists of the Aji,b for i ∈ V ∪W.
KeyGenS(MSK,y): Given an attribute y ∈ {{0, 1}n ∪ ⊥}d, choose random βi ∈ R
for i ∈ V, b ∈ {0, 1}, and output the secret key

SKy = extend

params,V,

βi ·
 ∑
j:y[j]6=⊥

Aji,y[j]bit(i)


i∈V


9 Using current graded encodings, it is not possible to publicly compute matrix inverses since
users do not have direct access to the underlying ring. However, the setup procedure would
know a trapdoor for the graded encodings that does allow computing the matrix inverse.
Alternatively, we can replace R−1

i with the adjugate matrix Radj
i , encodings of which can be

computed publicly. The adjugate andmatrix inverse only differ by a scalar multiple (namely, the
determinant), and since we multiply everything by a random scalar anyway, the distributions
of encodings obtained are identical in both approaches.



EncryptS(MSK,x): Given an attribute x ∈ {{0, 1}n ∪ ⊥}d, choose random βi ∈ R
for i ∈W, b ∈ {0, 1}, and output the ciphertext

C = extend

params,W,

βi ·
 ∑
j:x[j] 6=⊥

Aji,x[j]bit(i)


i∈W


Encrypt(MPK,m):Given a messagem ∈ {0, 1}n, choose random βi ∈ R for i ∈W,
and output the ciphertext

C = extend

(
params,W,

(
βi ·A0

i,mbit(i)

)
i∈W

)
Remark 3. Note that all the encodings given out in the ciphertext can be re-randomized
(to noise σ′) using the randomizer provided in the public parameters. We do not mention
the re-randomization above explicitly, for the sake of simplicity of notation.

Decrypt(MPK,SK,C): Given a secret key SK = fV′→V, (Ki)i∈V′ and a ciphertext

C = fW′→W, (Ci)i∈W′ , let Di =

{
Ki if i ∈ V′

Ci if i ∈W′
, and compute the product

D = fV′→V

(
fW′→W

(∏
i∈U

Di

))

Then run the zero-test procedure on a distinguishing coordinate of D.

Correctness. Evaluation is carried out slot by slot. In slot j, if either K or C is
inactive, then the corresponding ring will be empty. Therefore, the result of the com-
putation is 0 in slot j. In a slot j where K and C are both active, then write Ki[j] =
[βiαi,y[j]bit(i)B̃i,ybit(i) ]

j
{i′} andCi[j] = [βiαi,mbit(i)

B̃i,mbit(i)
]j{i′} for some index elements

i′ to be the components of K,C in the ring Rj . Let d[j] = (y[j],m[j]) ∈ {0, 1}2n.
Then we can write Di[j] = [βiαi,d[j]inp(i),bit(i)B̃i,d[j]inp(i),bit(i) ]

j
{i}.

Therefore, the product D′[j] =
∏
i∈UDi[j] is equal to

D′[j] =

[∏
i∈U

(
βiαi,d[j]inp(i),bit(i)

)∏
i∈U

B̃i,d[j]inp(i),bit(i)

]j
U′

=

[∏
i∈U

(
βiαi,d[j]inp(i),bit(i)

)∏
i∈U

Bi,d[j]inp(i),bit(i)

]j
U′

Where U′ = V′ ∪W′. Applying fW′→W to this encoding gives an encoding of the
same product, but relative to the setV′∪W, and then applying fV′→V gives the encoding



relative to U. Therefore, D = fV′→V(fW′→W(D′)) satisfies

D[j] =

[∏
i∈U

(
βiαi,d[j]inp(i),bit(i)

)∏
i∈U

Bi,d[j]inp(i),bit(i)

]j
U

=

[∏
i∈U

(
βiαi,d[j]inp(i),bit(i)

)
MBP (d[j])

]j
U

We only care about ciphertexts and secret keys where the branching program evalu-
ates the same in every slot, soBP (d[j]) is the same for all active slots j; call the result b.
Define γ[j] = βiαi,d[j]inp(i),bit(i) projected down to ring Rj , and γ =

∑
j∈S γ[j] where

S is the set of active slots. Note that we only care about secret keys and ciphertext where
there is at least one active slot. Therefore with overwhelming probability γ 6= 0.

We can now writeD = [γMb]U. Then when we zero test a distinguishing coordinate
of D, with overwhelming probability, the result will match b.

5.1 Security Proof

Theorem 4. Assuming Assumptions 1 and 2, the scheme described above satisfies the
core properties of the slotted FE scheme.

Slot Symmetry. Our scheme satisfies perfect slot symmetry, where the advantage of an
even infinitely powerful adversary is 0. This follows from the fact that slots correspond to
sub-rings in our scheme, and our subrings are generated in a totally symmetric manner.

Single-use Message and Function hiding. In our scheme, the matrices are just the
matrices from Kilian-randomized branching programs, where the randomization in
each sub-ring is independent. In the single slot j where changes are made, only the
ciphertext and a single public key are active. Let z = (x0, y0) be the ciphertext and
secret key values active on the left side, and z′ = (x1, y1) be the values on the right
side. Then on the left side, only the matrices B̃i,z[inp(i)]bit(i) are handed out in ring Rj ,
and by Theorem 3, these matrices are uniform random matrices subject to their product
beingMC(x0,y0). Similarly, on the left size, the matrices handed out are uniform random
matrices subject their product being MC(x1,y1). Since C(x0, y0) = C(x1, y1), these
distributions are identical, so our scheme satisfies perfect single use hiding.

Slot duplication. We will prove slot duplication from Assumption 1. Let α ∈ [d]
and β 6= α, 0. Obtain the challenge for assumption 1, and re-order the rings so that
the challenge has the form

(
Si,j = [si,j ]

j
{i}

)
i∈U,j 6=β

, (Ti)i∈U where Ti = [ti]
α
{i} or

Ti = [ti]
α,β
{i} . We now simulate the view of the adversary as follows. Given a 0/1 matrix

B and an encoding e, let e · B be the matrix of encodings, where e · B has e in any
position where B has a 1, and an encoding of 0 in any position where B has a 0 (note
that we will be multipling e ·B by other matrices of encodings, so the encodings of 0 do
not actually have to be computed, but merely serve as placeholders in the computation).



Choose random matrices Ri ∈ R for i ∈ [` − 1], as well as random α′i,b, and set
Aji,b = α′i,b·Ri−1·(Si,j ·Bi,b)·R

−1
i for j 6= β10. This formally setsαi,b = α′i,bsi,j in ring

Rj , which leavesαi,b in ring β undetermined. DefineDj
i,b = α′i,b ·Ri−1 ·(Ti ·Bi,b)·R

−1
i .

Using theAji,b, we can simulate the public paramters as in the scheme. To answer the
challenge ciphertext query, there are two cases. If slot β is empty, then we can answer the
challenge ciphertext query as in the slotted FE scheme with the Aji,b (since β is empty,
we do not needAβi,b). If slot β is not a copy of slot α on either side of the challenge, then
we answer the challenge query by choosing a random β′i ∈ R for i ∈ W, b ∈ {0, 1},
and output the ciphertext

C = extend

params,W,

β′i ·
 ∑
j:x[j] 6=⊥,j /∈{α,β}

Aji,x[j]bit(i) +Dj
i,x[α]bit(i)


i∈W


If the Ti are only encodings in ring Rα, then this correctly simulates the ciphertext

when slot β empty, formally setting βi = βi in rings other that Rα,Rβ , and setting
βi = β′iti in rings Rα,Rβ (the value in Rβ is irrelevant in this case). If the Ti are
encodings inRα×Rβ , then this correctly simulates the ciphertext when slot β is a copy
of slot α, with the same formal settings of variables as before.

We can perform a similar procedure to simulate the secret key queries. In the end, if
Ti are only encodings inRα, then this correctly simulates the left side in slot duplication,
where slot β is empty. If Ti are encodings in Rα × Rβ , then this correctly simulates
the right side of slot duplication, where slot β is sometimes a copy of slot α. Thus, if
Assumption 1 holds, the two cases are indistinguishable.

Ciphertext moving We will prove ciphertext moving from Assumption 2. Let α 6= β,
where α is the slot the ciphertext is in, and β is the slot we wish to move the ciphertext
to. Obtain the challenge for assumption 2, and re-order the rings so that the challenge
has the form(

Si,j = [si,j ]
j
{i}

)
i∈V,j /∈{α,β}

,
(
Si,j = [si,j ]

j
{i}

)
i∈W,j∈[d]

,
(
Ti = [ti]

α,β
{i}

)
i∈V

,

E = extend†
(
params,W,

{(
Ui,j = [ui,j ]

j
{i}

)
i∈W,j>1

,
(
Vi = [vi]

γ
{i}

)
i∈W

} )
where γ = α or γ = β.

We now simulate the view of the adversary. Choose random matrices Ri ∈ R for
i ∈ [`−1], randomα′i,b, and setA

j
i,b = α′i,b·Ri−1·(Si,j ·Bi,b)·R

−1
i for i ∈ V, j /∈ {α, β},

and all i ∈W, j ∈ [d]. This formally sets αi,b = α′i,bsi,j in ringRj , which leaves αi,b in
rings α and β undetermined for i ∈ V. DefineAαi,b+A

β
i,b = α′i,b ·Ri−1 ·(Ti ·Bi,b) ·R

−1
i

for i ∈ V, which formally sets αi,b = α′i,bTi in rings Rα and Rβ .

10 We actually cannot compute the quantitiesR−1
i since we do not have access to the trapdoor for

the encodings. Therefore, we must actually compute Radj
i instead of R−1

i . However, since we
multiply by a random scalar anyway, the distribution of encodings is exactly the same as if we
had computed the matrix inverse.



Now using theAji,b values, we can simulate the public parameters (since we have all
the values for i ∈W, j = 0), as well as all the secret key queries (since all the secret key
queries are identical in slots α and β, meaning we will always haveAαi,b+A

β
i,b together,

neither being used separately). To generate the challenge ciphertext, we use the result
E of extension. Let U ′i,j be the components in E corresponding to the Ui,j , and V ′i the
components corresponding to the Vi. Then the challenge ciphertext is set as

C =fW′→W,βi ·Ri−1 ·
(V ′i ·Bi,x∗bit(i)) +

∑
j:x[j] 6=⊥,j /∈{α,β}

(U ′i,j ·Bi,x[j]bit(i))

 ·R−1i

i∈W

Note that the randomization terms given in E must be used to randomize the
components above.

Where x∗ is the ciphertext term that is either in slot α or slot β. It is straightforward
to show that if the Vi are encodings in Rα, then this simulates the challenge ciphertext
with x∗ in slot α, and similarly if Vi are encodings inRβ , the challenge ciphertext has x∗
in slot β. Therefore, the two cases are indistinguishable and ciphertext moving follows.

Weak key moving. This is basically the same as ciphertext moving, except that we swap
the roles of W and V. The main difference is that, because now the public parameters
lie in V, and we are not given terms in V containing α separate from β, we must have
α, β 6= 0 so that we can still generate the public parameters in R0.

5.2 Adaptively Secure FE for NC1

Our slotted FE scheme easily gives adaptively secure FE for NC1:

Theorem 5. If assumptions 1 and 2 above hold, then adaptively secure FE for NC1

exists.

Proof. Set d = 4 in our slotted FE scheme. Then Lemma 3, 4, 5, and 6 gives a slotted
scheme with d = 1 that satisfies strong ciphertext indistinguishability, which implies
adaptive FE security.
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