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Abstract. Secret sharing is a mechanism by which a trusted dealer
holding a secret “splits” the secret into many “shares” and distributes
the shares to a collection of parties. Associated with the sharing is a
monotone access structure, that specifies which parties are “qualified”
and which are not: any qualified subset of parties can (efficiently) recon-
struct the secret, but no unqualified subset can learn anything about the
secret. In the most general form of secret sharing, the access structure
can be any monotone NP language.

In this work, we consider two very natural extensions of secret sharing.
In the first, which we call distributed secret sharing, there is no trusted
dealer at all, and instead the role of the dealer is distributed amongst
the parties themselves. Distributed secret sharing can be thought of as
combining the features of multiparty non-interactive key exchange and
standard secret sharing, and may be useful in settings where the secret is
so sensitive that no one individual dealer can be trusted with the secret.
Our second notion is called functional secret sharing, which incorporates
some of the features of functional encryption into secret sharing by pro-
viding more fine-grained access to the secret. Qualified subsets of parties
do not learn the secret, but instead learn some function applied to the
secret, with each set of parties potentially learning a different function.

Our main result is that both of the extensions above are equivalent
to several recent cutting-edge primitives. In particular, general-purpose
distributed secret sharing is equivalent to witness PRFs, and general-
purpose functional secret sharing is equivalent to indistinguishability
obfuscation. Thus, our work shows that it is possible to view some of
the recent developments in cryptography through a secret sharing lens,
yielding new insights about both these cutting-edge primitives and secret
sharing.
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1 Introduction

Secret sharing is a mechanism by which a trusted dealer holding a secret “splits”
the secret into many “shares” and distributes the shares to a collections of par-
ties. Associated with the sharing is a monotone access structure, that specifies
which parties are “qualified” and which are not: any qualified subset of parties
can (efficiently) reconstruct the secret, but no unqualified subset can learn any-
thing about the secret.3 The first secret sharing schemes, due to Shamir [33]
and Blakley [7], were for the threshold access structure, where the subsets that
can reconstruct the secret are all the sets whose cardinality is at least a certain
threshold. Such secret sharing schemes provide a digital analog of the “two-man
rule”, and are useful for splitting a sensitive key among several individuals so
that no single individual knows the key. Secret sharing schemes, even for the sim-
ple threshold access structure, have found numerous applications in computer
science (see [4] for a thorough survey).4

Since their introduction, it has been a major open problem to determine
which access structures can secret sharing be realized for. Benaloh and Leichter
[6] constructed a secret sharing scheme for any access structure that can be
computed by a monotone formula. This result was generalized and improved by
Karchmer and Wigderson [23] for access structures that can be computed by a
monotone span program. In an unpublished work, Andrew Yao constructed a
secret sharing scheme for any access structure that can be computed by a mono-
tone circuit (see [4, 28]), assuming any one-way function. Recently, Komargodski,
Naor and Yogev [25] constructed secret sharing schemes for all of monotone NP
(denoted mNP),5 assuming one-way functions and a recent new primitive called
witness encryption [18].6 Monotone NP is essentially the largest class of access
structures that we can hope for: if we cannot even efficiently identify a qualified
set, we cannot hope to have qualified sets reconstruct the secret.

In this work we take secret sharing even further, by pursuing two very natural
directions. First, we ask if the trusted dealer is required, or whether it is possible
to distribute the role of the dealer amongst the parties themselves. Second, we
ask if we can provide more fine-grained access mechanism to the shared secret,
whereby qualified sets of parties only learn some function of the secret, each set
of parties learning a possibly different function. Surprisingly, in both cases we

3 In secret sharing, we always restrict our attention to monotone access structures,
where a superset of a qualified set must be qualified. This is necessary because, if a
set of parties contains a qualified subset, they can always “pretend” to be the smaller
subset, discard the shares outside that subset, and reconstruct the secret

4 Most of the literature on secret sharing treats it as an information-theoretic primitive
and insists on perfect security. In this work we consider the computational analog
in which we only require security against computationally bounded adversaries. The
survey of Beimel [4] discusses extensively both notions.

5 For access structures in mNP, a qualified set of parties needs to know an NP witness
that they are qualified.

6 We note that the schemes of [6, 23] are unconditionally secure, while the schemes of
Yao and [25] are only secure against adversaries that run in polynomial-time.



show equivalences between these natural extensions of secret sharing and several
cutting-edge cryptographic primitives that have recently been developed.

Distributed secret sharing. The usefulness of secret sharing schemes, as de-
fined above, is limited to settings in which there exists a trusted dealer who
knows the secret. What if we do not want any one individual to know the secret
outright? What if our secret is so sensitive that we cannot afford anybody to
know it? In this paper, we study the necessity of the trusted dealer in the setting
of secret sharing and ask the question:

Is it possible to secret share a secret without anybody knowing it?

To address this question, we introduce the concept of distributed secret sharing
schemes. Specifically, given an access structure, each party can generate for itself
a public share (which is published) and a secret share (which is kept private).
Then, there is a string S such that every qualified subset of parties can compute
S (using their private shares and all public shares), whereas for every unqualified
subset the secret S remains hidden.7 Similarly to standard secret sharing schemes
for mNP, for an access structure M in mNP, a qualified subset X should also
provide a witness for the statementsX ∈M . Intuitively, one can view distributed
secret sharing schemes as a hybrid of secret sharing schemes and non-interactive
key-exchange: Indeed, non-interactive key-exchange is exactly the special case
where M is set to be the threshold access structure with threshold t = 1.

In this paper we construct and explore distributed secret sharing schemes.
Our main result is that distributed secret sharing schemes for access structures
in mNP are equivalent to witness pseudorandom functions (witness PRFs) for
NP. A witness PRF for a language L ∈ NP is a function F such that anyone with
a valid witness that x ∈ L can compute F (x) without the secret key, but for
all x /∈ L, F (x) is computationally hidden to anybody that does not know the
secret key. Witness PRFs were recently introduced by Zhandry [34] and shown
to be very useful in constructing several important cryptographic primitives
(including non-interactive multi-party key exchange without setup) that were
previously only known to exist assuming seemingly much stronger assumptions.

In addition, we explore the possibility of distributed secret sharing for re-
stricted classes of access structures based on weaker assumptions. To start, we
consider the possibility of information-theoretic security for distributed secret
sharing scheme (that is, security against unbounded adversaries). We show that
such information-theoretic security is typically impossible: we prove that a dis-
tributed secret sharing scheme for any non-trivial access structure implies the
existence of one-way functions.8

7 We note that we do not assume secure point-to-point channels, a standard PKI
or additional rounds of interaction (beyond publishing a public key) between the
parties. With any of these assumptions the problem can be reduced to standard
secret sharing.

8 We call an access structure M trivial if M is empty or if there exists a subset of
parties X ∈M which is contained in any qualified set. For trivial access structures,
we show that there is a simple perfectly-secure distributed secret sharing scheme.



Next, we present a distributed secret sharing scheme for the threshold ac-
cess structure, and prove its security based on the multilinear decisional Diffie-
Hellman (MDDH) assumption. As an interesting application, we show that dis-
tributed secret sharing schemes for threshold access structures imply constrained
PRFs that can be constrained to a Hamming ball around an arbitrary point and
are secure for adversaries that obtain a single constrained key. Even though it
is known that the MDDH assumption implies constrained PRFs for all circuits
which are secure with respect to arbitrary collusions [10], our transformation is
generic and applies to any threshold distributed secret sharing scheme, which
perhaps can be based on simpler assumptions than multilinear maps.

Functional secret sharing. Traditional secret sharing schemes offer an all-or-
nothing guarantee when reconstructing a shared secret — a qualified subset of
parties can learn the entire secret, while unqualified subsets learn nothing about
the secret. For many applications, especially in a distributed setting common
to secret sharing, this notion is insufficient. Concretely, standard secret sharing
schemes will not help in scenarios in which a dealer wants to share a secret
such that every qualified subset of parties will learn a specific function of the
secret (and nothing else). For example, a dealer holding a secret S, may want
to distribute it such that any qualified subset X will be able to learn only the
inner product of X and S, while making sure S remains computationally hidden
for unqualified subsets.

A related issue has appeared in the context of encryption schemes, giving
rise to the concept of functional encryption and a very fruitful line of work (see
e.g., [30, 8]). We study whether secret sharing schemes can be extended in an
analogous way to support such functionalities: Given an efficiently computable
two-input function F (that can be thought of as a family of functions indexed
by the first input), we ask the question:

Is it possible to secret share a secret S such that any qualified subset of parties
X can compute only F (X,S), but for unqualified subsets, S will be

computationally hidden?

To study this question, we introduce the concept of functional secret sharing
schemes. Informally, such a scheme allows to secret share a secret S with respect
to a function F and an access structure M , such that any qualified subset of
parties X can pool their shares together and compute F (X,S). Security is for-
malized by requiring that for any function F , any subset of parties X and any
two secrets S0 and S1, as long as either M(X) = 0 or F (X ′, S0) = F (X ′, S1) for
any X ′ ⊆ X, secret shares corresponding to F,X and S0 cannot be distinguished
from secret shares corresponding to F,X and S1. Notice that the condition that
F (X ′, S0) = F (X ′, S1) for any X ′ ⊆ X in the case that M(X) = 1 is necessary,
as otherwise, by evaluating F (X ′, Sb) an adversary can distinguish between the
case that b = 0 and b = 1.

Our main result is that functional secret sharing schemes for access struc-
tures in mNP and functions in P are equivalent to indistinguishability obfusca-



tion (iO) for P.9 An indistinguishability obfuscator [3, 17] guarantees that if two
circuits compute the same function, then their obfuscated version are computa-
tionally indistinguishable. This primitive was introduced by Barak et al. [3] and
later proven to be extremely useful for construction of cryptographic primitives
some of which were unknown before (see e.g., [17, 31, 11]). To complement this,
several candidate constructions of indistinguishability obfuscators were recently
proposed [17, 13, 2, 29, 19, 1].

Note that when the function F is defined to be the identity function over
its second input parameter (i.e., F (·, S) = S) we get the standard definition of
secret sharing for mNP of [25]. Moreover, when the access structure is the set
of all subsets, the secret S is a description of a function and F is the universal
circuit (i.e., F (X,S) = S(X)), we obtain a definition of a function secret sharing
scheme. In such a scheme, the goal is to split a function (and not a secret) into
shares that hide the function under some conditions. Our construction gives a
way to split a function F into shares such that any subset of parties X can
compute F (X ′) for every X ′ ⊆ X and “nothing” else. We note that other forms
of function secret sharing have been studied in the literature (cf. [15, 32, 5, 12]).
However, our notion is quite different from (and incomparable to) these other
notions. In particular, our notion is the first to allow for fine-grained access
control to the secret by guaranteeing that any qualified set learns a possibly
different function of the secret. Moreover, previous notions were mostly studied
in the context of threshold access structures, only with very specific function
classes or insisted on schemes with additional properties.10

Conclusions. Recent advances in cryptography, including the first constructions
of multilinear maps [16] and obfuscation [17], have lead to the development of
many incredible new cryptographic objects. Applications include functional en-
cryption, witness encryption, witness PRFs, deniable encryption, multi-party
computation in very few rounds, traitor-tracing schemes with very short mes-
sages, and many more. Our work can thus be seen as establishing a close connec-
tion between several of these advanced cryptographic capabilities and types of
secret sharing, which at first appear totally unrelated. The known relationships,
including our work, are depicted and summarized in Figure 1. Our hope is that
the connections we develop can help shed light on the relationships between ad-
vanced primitives, or between types of secret sharing: which are equivalent, why
do some tasks appear difficult, and so on.

For example, our results indicate why witness PRFs, which are closely related
to witness encryption, may be the “right” primitive for building non-interactive

9 To show that iO implies functional secret sharing schemes, we also assume the ex-
istence of one-way functions. By a result of [25] we can actually only assume iO
and NP 6⊆ io-BPP. Moreover, we note that in this paper we assume functions are
represented as circuits, so we actually work with functions in P/poly (and not P).

10 For example, the functional secret sharing notion of [12] is similar to ours but requires
an additional homomorphic property for the reconstruction procedure. Our scheme
does not have this extra property, however, our construction relies on iO while their
construction relies on subexponentially-secure iO.



key exchange, and why witness encryption may be insufficient. Indeed, dis-
tributed secret sharing essentially combines the features of secret sharing for
mNP (which is equivalent to witness encryption [25]) with non-interactive key
exchange. If these non-interactive key exchange features could be obtained from
witness encryption, then perhaps witness encryption could also imply witness
PRFs. In addition, at first it may not be obvious what is the relationship between
functional secret sharing and distributed secret sharing. Our results and the sim-
ple observation that indistinguishability obfuscation implies witness PRFs, show
that functional secret sharing implies distributed secret sharing (assuming one-
way functions).

Indistinguishability 

obfuscation for P 

One-way functions 
Secret sharing for 

monotone P 

Secret sharing for 
monotone NP 

Witness encryption 
for NP 

Secret sharing for 
monotone circuits  
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Fig. 1: The secret sharing zoo. (1) Holds assuming that NP 6⊆ io-BPP [24]. (2) Holds
assuming one-way functions. (3) [34]. (4) Holds assuming the existence of a hard-on-
average NP-problem [24]. (5) Yao’s unpublished work. (6) By definition. (7) This work;
the left-to-right arrow assumes one-way functions. (8) This work. (9) [25]; the left-to-
right arrow assumes one-way functions. (10) By definition. (11) By definition.

1.1 Overview of Our Techniques

Distributed secret sharing and witness PRFs. Here, we provide a high-
level overview of our technique for transforming distributed secret sharing schemes
into witness PRFs. At first, this seems like a difficult task. Indeed, distributed
secret sharing only specifies a single secret: the shared secret for the groups of
qualified parties. In contrast, in a witness PRF each instance corresponds to a
secret, namely the output of the PRF on this instance. How can we obtain many
secrets out of one?

Our main observation is that distributed secret sharing schemes are reusable.
Suppose a set P1 of n parties runs the distributed secret sharing protocol, each



party in P1 generating a secret/public share pair, and publishing the public
share. Now, suppose a second set of n parties P2 wishes to run the distributed
secret sharing protocol, and that there is some party i that is in both P1 and
P2. Distributed secret sharing is reusable in the sense that party i does not
need to generate a fresh secret/public share pair for the second invocation of the
protocol, but can instead reuse the shares he already has. Thus, party i does
not need to publish any additional material to take part in the second sharing.
Taking this a step further, N � n parties can each generate secret/public shares
and publish the public shares. Then, various sets of n of them can engage in the
distributed secret sharing protocol without any additional setup or interaction.
This observation can be seen as a generalization of the fact that non-interactive
key exchange (both in the two-party and multi-party setting) is reusable.

Since distributed secret sharing schemes are reusable, there are really many
implicit secrets, one for every possible subset of the N parties of size n. This will
be the source of our many secrets for our witness PRFs. To show how we use this
idea of reusability, we sketch our approach for a simpler task: using threshold
distributed secret sharing to build Hamming ball constrained PRFs.

Threshold distributed sharing schemes to Hamming ball constrained
PRFs. Recall that a constrained PRF (as defined by Boneh and Waters [10]) is
a normal PRF with some additional requirements: First, given the secret key k,
and a subset T ⊂ X where X is the domain of the PRF, it is possible to constrain
the key k to the set T , producing a constrained key kT . Next, given kT and a
point x ∈ T , it is possible to compute PRFk(x). For security, we require that,
even given kT , for all x /∈ T , PRFk(x) is pseudorandom. For this exposition, we
will consider Hamming ball constraints, where X = {0, 1}n, and the possible
sets T consist of all points withing Hamming distance r of some center point c.

Suppose that r is fixed a priori (this is assumed here for simplicity – our
actual scheme handles the case in which r is not fixed a priori). Our Hamming
ball constrained PRF is defined as follows. Let N = 2n be the total number of
parties, and label each party by a pair (i, b) ∈ [n]×{0, 1}. Generate secret/public
shares (Πi,b, Pi,b) for each of the N parties for the threshold distributed secret
sharing scheme on n parties and threshold n − r. The secret key consists of all
the public and secret shares. For every input x ∈ {0, 1}n, let Px be the subset of
n parties labeled by (i, xi) for i ∈ [n]. PRF(x) is defined to be the shared secret
S for the set of parties Px defined by x. Since the secret key consists of n ≥ n−r
of the secret shares for Px, the secret key allows for computing PRF(x).

The constrained key kT for the Hamming ball T of radius r around center
c consists of all of the public shares, as well as the secret shares for the set Pc.
For any input x with Hamming distance at most r from c, kT contains at least
n − r of the secret shares for Px, and so PRF(x) can be computed. For x at
distance more than r away, kT contains fewer than n − r secret shares for Px,
so the security of the threshold distributed secret sharing scheme implies that
PRF(x) is hidden.

For the general distributed secret sharing to witness PRF construction, we
will make use of a similar strategy, defining the output of the PRF to be the



shared secret S corresponding to a subset of parties. However, the construction
becomes somewhat more complicated. For starters, the class of Hamming balls
is very simple, and moreover has a lot of symmetry. In contrast, the general NP
languages are much more complex and have no simple structural properties we
can use. Additionally, we will need to allow the parties to be able to input a
witness. We refer to Section 3.4 for the full details.

Functional secret sharing and iO. The fact that general-purpose functional
secret sharing implies iO is rather straight-forward. Indeed, as we mentioned,
function secret sharing is a special case of functional secret sharing, and thus, an
obfuscation of a circuit is just the shares generated by the function secret sharing.
Security of the obfuscator follows directly from the security of the function secret
sharing scheme.

The other direction (namely, from iO to functional secret sharing) is more
complicated. To this end, we rely on ideas developed by [25] in order to show that
witness encryption implies (standard) secret sharing for mNP. Specifically, when
sharing the secret S with respect to a function F and an access structure M , the
share of party i will be an opening of a commitment and the iO of a circuit that
given as input the secret openings of a subset of parties X verifies the openings,
verifies the validity of the instance (together with a witness) with respect to M ,
and if all tests pass, it outputs the value F (X,S). The security of this scheme
relies on the perfect binding of the commitments and the indistinguishability
guarantee of the obfuscator.

We note that multi-input functional encryption (MIFE) [20] provides another
natural path to functional secret sharing. In an MIFE scheme, a secret key SKG
corresponds to an k-input function G, and message can be encrypted to any one
of the k inputs to G. Denote the encryption of a message m to the ith input as
Enci(m). With the secret key and ciphertexts Enci(mi) for i = 1, . . . , k, it is pos-
sible to compute f(m1, . . . ,mk), but impossible to learn anything else the plain-
texts. For simplicity, we will sketch the construction of functional secret sharing
where both access structure M and function F are in P, the case of more gen-
eral access structures being a straightforward extension. Let G(x1, . . . , xn, S) =
M(x1, . . . , xn) ∧ F (x1, . . . , xn, S). The secret share for party i ∈ [n] consists
of SKG,Enc1(0), · · · ,Encn(0),Encn+1(S),Enci(1). Then, any subset X of parties
can use SKG together with ciphertexts {Enci(Xi)}i∈[n],Encn+1(S) to compute
M(X) ∧ F (X,S). If X is qualified, this will give F (X,S), whereas if X is un-
qualified, this will give 0. Since iO and MIFE are equivalent for general-purpose
functionalities (assuming one-way functions), this construction gives an alterna-
tive way to build functional secret sharing from iO.11

2 Preliminaries

In this section we present the notation and basic definitions that are used in this
work. For a distribution X we denote by x← X the process of sampling a value

11 We thank a reviewer for pointing out this alternative solution.



x from the distribution X. Similarly, for a set X we denote by x← X the process
of sampling a value x from the uniform distribution over X . For a randomized
function f and an input x ∈ X , we denote by y ← f(x) the process of sampling
a value y from the distribution f(x). For an integer n ∈ N we denote by [n] the
set {1, . . . , n}. A function neg : N → R is negligible if for every constant c > 0
there exists an integer Nc such that neg(λ) < λ−c for all λ > Nc. Throughout
this paper we denote by λ the security parameter.

Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are
computationally indistinguishable if for any probabilistic polynomial-time algo-
rithm A there exists a negligible function neg(·) such that for all λ ∈ N it holds
that

∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]
∣∣ ≤ neg(λ).

2.1 Monotone-NP and Access Structures

A function f : 2[n] → {0, 1} is said to be monotone if for every X ⊆ [n] such
that f(X) = 1 it also holds that ∀Y ⊆ [n] such that X ⊆ Y it holds that
f(Y ) = 1. Given a potentially non-monotone function f : 2[n] → {0, 1}, we
define the monotone closure of f , denoted f , such that f(Y ) = 1 if and only if
there is some X ⊂ Y such that f(X) = 1.

A monotone Boolean circuits is a Boolean circuit with AND and OR gates
(without negations). A non-deterministic circuit is a Boolean circuit whose in-
puts are divided into two parts: standard inputs and non-deterministic inputs.
A non-deterministic circuit accepts a standard input if and only if there is some
setting of the non-deterministic input that causes the circuit to evaluate to 1. A
monotone non-deterministic circuit is a non-deterministic circuit where the mono-
tonicity requirement applies only to the standard inputs, that is, every path from
a standard input wire to the output wire does not have a negation gate.

Definition 1 ([21]). A function L is in mNP if there exists a uniform family
of polynomial-size monotone non-deterministic circuit that computes L.

Lemma 1 ([21, Theorem 2.2]). mNP = NP∩mono, where mono is the set of
all monotone functions.

A computational secret-sharing scheme involves a dealer who has a secret,
a set of n parties, and a collection A of qualified subsets of parties called the
access structure. A computational secret-sharing scheme for A is a method by
which the dealer efficiently distributes shares to the parties such that (1) any
subset in A can efficiently reconstruct the secret from its shares, and (2) any
subset not in A cannot efficiently reveal any partial information on the secret.
For more information on secret-sharing schemes we refer to [4] and references
therein.

Throughout this paper we deal with secret-sharing schemes for access struc-
tures over n parties P = Pn = {p1, . . . , pn}.

Definition 2 (Access structure). An access structure M on P is a monotone
set of subsets of P. That is, for all X ∈ M it holds that X ⊆ P and for all
X ∈M and X ′ such that X ⊆ X ′ ⊆ P it holds that X ′ ∈M .



2.2 Commitment Schemes

In some of our constructions we need a non-interactive commitment scheme such
that commitments of different strings has disjoint support. Jumping ahead, since
the dealer in the setup phase of a secret-sharing scheme is not controlled by an
adversary (i.e., it is honest), we can relax the foregoing requirement and use
non-interactive commitment schemes that work in the CRS (common random
string) model (for ease of notation, we usually ignore the CRS).

Definition 3 (Commitment scheme in the CRS model). Let λ ≥ 0 be a
parameter. Let Com : {0, 1} × {0, 1}λ × {0, 1}λ → {0, 1}q(λ) be polynomial-time
computable function. We say that Com is a (non-interactive perfectly binding)
commitment scheme in the CRS model if the following two conditions hold:

1. Computational Hiding: Let CRS ← {0, 1}λ be chosen uniformly at ran-
dom. The random variables Com(0,Uλ,CRS) and Com(1,Uλ,CRS) are com-
putationally indistinguishable (given CRS).

2. Perfect Binding: With all but negligible fraction of the CRSs, the supports
of the above random variables are disjoint.

As usual, the above definition can be generalized to commitments of strings
of polynomial size (rather than bits) by commiting to each bit separately.

Commitment schemes that satisfy the above definition, in the CRS model,
can be constructed based on any pseudorandom generator [27] (which can be
based on any one-way functions [22]). For simplicity, throghout the paper we
ignore the CRS and simply write Com(·, ·). We say that Com(x, r) is the com-
mitment to the value x with the opening r.

2.3 Multilinear Maps

Definition 4 (Multilinear maps). We say that a map e : Gn1 → G2 is an
n-multilinear map if it is satisfies the following:

1. G1 and G2 are groups of the same prime order.
2. If a1, . . . ,∈ Z and x1, . . . , xn ∈ G1, then

e(xa11 , . . . , x
an
n ) = e(x1, . . . , xn)

∏n
i=1 ai .

3. The map e is non-degenerate in the following sense: if g ∈ G1 is a generator
of G1, then e(g, . . . , g) is a generator of G2.

We say that e is an efficient n-multilinear map if it is effiently computable,
namely, there exists a polynomial-time algorithm that computes e(xa11 , . . . , x

an
n )

for any a1, . . . , an ∈ Z and x1, . . . , xn ∈ G1.
An efficient mulilinear map generator MMap.Gen(1λ, n) is a probabilistic

polynomial-time algorithms that gets as input two inputs 1λ and n, and out-
puts a tuple (Γ, g, `), where Γ is the description of an efficient n-multlilinear
map e : Gn1 → G2, g is a generator of G1, and ` is the order of the groups G1

and G2.



Next, we define the multilinear Diffie-Hellman assumption. Roughly, the as-
sumption is that given g, ga1 , . . . , gan , it is hard to compute e(g, . . . , g)

∏n
i=1 ai ,

or even distinguish it from a random value.

Definition 5 (Multilinear decisional Diffie-Hellman assumption [9]).
We say that an efficient n-multilinear map generator MMap.Gen satisfies the
multilinear decisional Diffie-Hellman (MDDH) assumption if for every polyno-
mial time algorithm A there exists a negligible function neg(·) such that for λ ∈ N
it holds that

AdvmDH
MMap.Gen,A,n,λ =

∣∣∣Pr
[
A
(
g, ga0 , . . . , gan , e(g, . . . , g)

∏n
i=0 ai

)
= 1
]
−

Pr [A (g, ga0 , . . . , gan ,K)] = 1]
∣∣∣ ≤ neg(λ),

where the probability is over the execution of (Γ, g, `) ← MMap.Gen(1λ, n), the
choice of a0, . . . , an ← (Z/`Z)n+1, K ← G2, and the internal randomness of A.

We note that we do not know of any “ideal” multilinear maps as described
above that plausibly support the MDDH assumption. Instead, current candidates
are “noisy” [16, 14]. In particular, the group elements have some noise, and only
a certain number of group operations are allowed before the multilinear identity
fails. Moreover, each group element actually has many representations, and a
special extraction procedure is required to obtain a unique “canonical” repre-
sentation for a particular element. The extraction is only allowed in G2. Despite
this departure from the ideal notion described above, it is usually straightfor-
ward (though often tedious) to use current candidate maps in place of the ideal
maps. Therefore, for ease of exposition, we will describe our applications of mul-
tilinear maps in terms of the ideal abstraction, noting that the applications can
be adapted to use the noisy candidate multilinear maps from the literature.

2.4 Witness Pseudorandom Functions

Witness pseudorandom functions (witness-PRFs) were recently introduced by
Zhandry [34]. He showed that several important primitives, that were previously
only known from iO (see Definition 7), follow from this seemingly weaker as-
sumption. We note that witness-PRFs are related to witness encryption [18],
but seem to be stronger.

Definition 6 (Witness-PRFs [34]). A witness pseudorandom function is a
tuple (Gen,PRF,Eval) where:

1. Gen(1λ, R) is a polynomial-time randomized procedure that takes as input a
security parameter and a relation R : {0, 1}n × {0, 1}m → {0, 1} represented
as a circuit, and outputs a private function key fk and a public evaluation
key ek. The relation R defines an NP language L.

2. PRF(fk, x) is a polynomial-time deterministic procedure that takes as input
the function key fk and an instance x ∈ {0, 1}n.



3. Eval(ek, x, w) is a polynomial-time deterministic procedure that takes as input
the evaluation key ek, an instance x ∈ {0, 1}n, and a witness w ∈ {0, 1}m.

4. Correctness: If x ∈ L, and moreover w is a valid witness for x (that is,
R(x,w) = 1), then

Pr[Eval(ek, x, w) = PRF(fk, x)] = 1,

where (fk, ek)← Gen(1λ, R) and the probability is taken over the randomness
Gen.

5. Security: For any relation R and any probabilistic polynomial-time algo-
rithm D, there exists a negligible function neg(·) such that for any λ ∈ N
and any x /∈ L, it holds that

|Pr[D(ek,PRF(fk, x)) = 1]− Pr[D(ek, y) = 1]| < neg(λ),

where (fk, ek) ← Gen(1λ, R), y is chosen uniformly over the codomain of
PRF, and the probabilities are taken over the randomness of Gen, D, and the
choice of y.

2.5 Indistinguishability Obfuscation

We say that two circuits C and C ′ are equivalent and denote it by C ≡ C ′ if
they compute the same function (i.e., ∀x : C(x) = C ′(x)).

Definition 7 (Indistinguishability obfuscation [3]). Let C = {Cn}n∈N be a
class of polynomial-size circuits, where Cn is a set of circuits operating on inputs
of length n. A uniform polynomial-time algorithm iO is called an indistinguisha-
bility obfuscator for the class C if it takes as input a security parameter and a
circuit in C and outputs a new circuit so that following properties are satisfied:

1. Preserving functionality: There exists a negligible function α such that
for any input length n ∈ N, any λ and any C ∈ Cn it holds that

Pr
iO

[
C ≡ iO(1λ, C)

]
= 1,

where the probability is over the internal randomness of iO.
2. Polynomial slowdown: There exists a polynomial p(·) such that: For any

input length n ∈ N, any λ and any circuit C ∈ Cn it holds that
∣∣iO(1λ, C)

∣∣ ≤
p(|C|).

3. Indistinguishable obfuscation: For any probabilistic polynomial-time al-
gorithm D and any polynomial p(·), there exists a negligible function neg(·),
such that for any λ, n ∈ N, any two equivalent circuits C1, C2 ∈ Cn of size
p(λ), it holds that∣∣Pr

[
D
(
iO
(
1λ, C1

))
= 1
]
− Pr

[
D
(
iO
(
1λ, C2

))
= 1
]∣∣ ≤ neg(λ),

where the probabilities are over the internal randomness of iO and D.



3 Distributed Secret Sharing

In this section we define the notion of distributed secret sharing schemes.

Definition 8 (Distributed secret sharing). A distributed secret sharing (DSS)
scheme consists of a probabilistic setup procedure SETUP, a probabilistic shar-
ing procedure SHARE and a deterministic reconstruction procedure RECON that
satisfy the following requirements:

– SETUP(1λ, 1n, VM ) takes as input a security parameter λ (in unary repre-
sentation) the number n of parties (also in unary), the verification procedure
VM for an mNP access structure M on n parties. SETUP outputs a common
reference string CRS.

– SHARE(1λ, 1n,CRS, VM , i) takes as input λ, n, the common reference string
CRS, the verification procedure VM for an mNP language M , and a party
index i ∈ [n]. It outputs a public share P (i) and a secret share Π(i). For
X ⊆ Pn we denote by Π(X) the random variable that corresponds to the set
of secret shares of parties in X. We denote by P the random variable that
corresponds to the set of public shares of parties in Pn.

– RECON(1λ, 1n,CRS, VM , P,Π(X), w) gets as input λ, n,CRS, VM , the public
shares P of all n parties, the secret shares Π(X) of a subset of parties X ⊆
Pn, and a witness w, and outputs a shared secret. We will sometimes abuse
notation, and also write X ⊆ [n] to refer to the subset of the party indices
appearing in X.

– Correctness: For every set of parties Pn with corresponding public shares
P , there is a string S such that any set of qualified parties X ⊆ Pn with
valid witness w (i.e., VM (X,w) = 1) can recover S. That is,

Pr[RECON(1λ, 1n,CRS, VM , P,Π(X), w) = S] = 1,

where the probability is taken over the generation of the shares — namely,
over (P (i), Π(i))← SHARE(1λ, 1n,CRS, VM , i) for i ∈ [n] — and the choice
of S (which will typically be information-theoretically determined by P ). We
will sometimes refer to S as the shared secret.

– Pseudorandomness of the secret: For any language M ∈ mNP and any
probabilistic polynomial-time algorithm D, there exists a negligible function
neg(·) such that for any λ ∈ N and any unqualified set X ⊆ Pn (that is,
X /∈M), it holds that

|Pr[D(P,Π(X), S) = 1]− Pr[D(P,Π(X),K) = 1]| ≤ neg(λ),

where the probability is taken over the generation of the shares, namely,
over (P (i), Π(i)) ← SHARE(1λ, 1n,CRS, VM , i) for i ∈ [n], K is sampled
uniformly at random, and S is the shared secret defined above.

The shared secret S. Suppose M is non-empty, which is true for any interest-
ing access structureM . In this case, by the monotonicity ofM , Pn ∈M and there



exists a witness w attesting to this fact. Then, the shared secret S is well defined
and information-theoretically determined, as we can use the correctness require-
ment for the set Pn as the definition of S: S = RECON(1λ, 1n,CRS, VM , P,Π,w).12

In the case where M is empty, correctness is trivially satisfied for any defi-
nition of S. We can therefore take S to be a uniformly random variable that is
completely independent of the scheme, and unconditional security will be triv-
ially satisfied as well. Interestingly, this means that, when analyzing schemes,
it is only necessary to analyze correctness and security for non-empty access
structures M , as any scheme will automatically be correct and secure for empty
M .

In Section 3.2, we show how to obtain unconditional security for a slightly
wider class of access structures, which we call trivial access structures.

Reusability. In this work, it will be useful to distinguish between party and
index. A party is an entity that has run SHARE, and obtained a secret and
public share. That party’s index is the input i that was fed into SHARE. Multiple
parties may share the same index. We will say a set X of parties is complete if,
for every index i, there is exactly one party. Complete sets of parties are those for
which RECON can be run, and therefore there is a shared secret SX associated
with every complete set of parties. In this sense, a DSS scheme is reuseable:
an individual party with index i can take part in multiple sharings as part of
different complete sets of parties, while only running SHARE once and publishing
a single public share. This observation generalizes the fact that non-interactive
key exchange (in the 2-party or multi-party setting) is reusable. This reusability
property will be crucial for building witness PRFs from DSS.

Restricted access structures. The above definition requires that the DSS
algorithms work for any access structure M recognized by a polynomial-sized
verification circuit VM . It is also possible to consider weaker versions where M
is required to have a specific structure. For example, it is possible to consider M
that are recognized by polynomial-size circuits (that is, M ∈ P). In Section 3.3,
we consider an even more restricted setting where M is just a threshold function:
X ∈ M if and only if |X| ≥ t for some threshold t. We call these restrictions
DSS for P or DSS for threshold, respectively. When distinguishing DSS for these
limited classes from the standard definition above, we call the standard definition
DSS for mNP. Finally, one can consider DSS for a specific, fixed access structure
M , which we call DSS for M . For example, if M consists of all non-empty subsets
(a special case of threshold where t = 1), then DSS for M is exactly multiparty
non-interactive key exchange with trusted setup [9].

3.1 Alternative Definitions

We introduce several alternative definitions for distributed secret sharing. We
first give a strong variant in which the sharing procedure is independent of

12 We note that to compute S we need to know w which may be computationally hard
for some languages.



the access structure VM and of the party index i. Our second alternative is a
witnessless version in which qualified sets are defined by an arbitrary circuit
(possibly a non-monotone one). Our last variant is a definition of distributed
secret sharing that has no setup (also known as no common reference string).

Definition 9 (Strong distributed secret sharing). A strong distributed se-
cret sharing scheme is a special case of a regular distributed secret sharing scheme
(as in Definition 8) with the following differences:

– SETUP(1λ, 1n, VM ) = SETUP(1λ, 1n, 1|VM |). That is, SETUP does not de-
pend on VM , except through the size of the circuit for VM , but is otherwise
independent of VM or the language M .

– SHARE(1λ, 1n,CRS, VM , i) = SHARE(1λ, 1n,CRS, 1|VM |). That is, SHARE
does not depend on VM except for its size, and also does not depend on
the party index i.

– RECON(1λ, 1n,CRS, VM , P,Π(X), w) now interprets P as a being ordered,
and uses the order to determine the party index corresponding to each public
share. From this information and Π(X), RECON can determine the subset
X ⊆ [n] of indices for which secret shares are provided.

– For each verification circuit VM and set of n parties Pn, correctness is defined
using an associated secret SVM ,Pn

that potentially varies for different VM and
Pn pairs. Notice that since a party is not assigned an index at sharing time,
the only restriction we place on Pn is its size (i.e., |Pn| = n), but we do not
need Pn to be a complete set.

The advantage of a strong DSS scheme is that the access structure does
not need to be specified at sharing time. This allows parties to play multiple
roles in different sharing executions without having to generate new shares, and
allows a single sharing to be used for many different access structures. This
will result in significant communication savings if many sharings with different
access structures are being executed. When differentiating between the strong
and regular variants, we will call the regular distributed secret sharing variant a
weak scheme.

Definition 10 (Witnessless distributed secret sharing). A witnessless dis-
tributed secret sharing is the following modification to (weak) distributed secret
sharing, where the access structure M is set to be the monotone closure C of
some (potentially non-monotone) function C.13 In addition, we make the fol-
lowing modifications to the algorithms of the scheme:

– SETUP(1λ, 1n, C), instead of taking as input the verification circuit VM ,
now takes as input a circuit for the function C, which is potentially non-
monotone. For the strong variant, SETUP takes as input |C| instead of |VM |.

– SHARE(1λ, 1n,CRS, C, i) also takes as input C instead of VM . For the strong
variant, SHARE takes as input |C| instead of |VM |, and does not take i as
input.

13 Recall that the monotone closure C of a function C includes all sets X such that
some subset X ′ ⊆ X satisfies C(X ′) = 1 (see Section 2.1).



– RECON(1λ, 1n,CRS, C, P,Π(X)) similarly takes as input C instead of VM .
Also, RECON does not take as input a witnesses, hence the term witnessless.

– Correctness is modified so that Pr[RECON(1λ, 1n,CRS, C, P,Π(X)) = S] = 1
for any X ⊆ Pn such that C(X) = 1.

A set X of qualified parties in M = C cannot simply feed in all of the secret
shares Π(X) into RECON to obtain the secret, as C(X) may not be 1. Instead,
if they know a subset X ′ ⊆ X such that C(X ′) = 1 (which must exist since X is
qualified), they may simply feed the subset of their secret shares corresponding
to X ′, namely Π(X ′), into RECON, and correctness guarantees that they will
learn the secret. Thus, even though the algorithms in a witnessless distributed
secret sharing scheme do not take a witness as input, reconstructing the secret
still requires knowing a witness, namely the subset X ′.

We note that the access structure M is monotone, and is clearly in NP.
Therefore, Lemma 1 shows that M is recognized by a monotone nondeterministic
verification procedure VM . Thus, the above formulation of distributed secret
sharing is equivalent to regular DSS (with witnesses) where we restrict to access
structures of this form. Therefore, this notion is no stronger than regular DSS.

We note that many NP languages naturally are represented using a circuit
C, such as Hamiltonian Cycle (where C checks that the set of edges forms a
Hamiltonian cycle) and Subset Sum (where C checks that the subset of integers
sums to 0).

Definition 11 (Distributed secret sharing without setup). In a distributed
secret sharing scheme without setup, there is no SETUP algorithm, and SHARE
and RECON do not take CRS as input. When distinguishing between schemes
with and without setup, we call the standard notion (Definition 8) distributed
secret sharing with trusted setup.

Immediate relations between definitions. All of the above variations are
orthogonal, giving us 8 variants of distributed secret sharing. We make the fol-
lowing observation:

– Any of the 4 variants of strong distributed secret sharing imply the corre-
sponding variant of weak distributed secret sharing. This is because being a
strong scheme just imposes constraints on the form of the algorithms.

– Any of the 4 variants of distributed secret sharing with witnesses imply the
corresponding witnessless variant, since the witnessless condition imposes a
restriction on the languages allowed.

– Any of the 4 variants of distributed secret sharing without trusted setup
imply the corresponding variant with trusted setup, where SETUP outputs
an empty string.

In Section 3.4, we will show that all of the above notions are equivalent, and
moreover that they are equivalent to witness PRFs.



3.2 Distributed Secret Sharing Implies One-Way Functions

Witness PRFs trivially imply one-way functions, and therefore by our equiva-
lence in Section 3.4, information-theoretic distributed secret sharing is impossible
for general access structures.

In this section, we consider DSS for specific access structures, and ask: for
what access structures M is information-theoretic DSS possible? To answer this
question we first define trivial access structures, and then in Theorem 1 we
show that a DSS scheme for any non-trivial access structures implies one-way
functions. DSS for trivial access structures, on the other hand, are shown to have
a very simple information-theoretically secure construction.

Definition 12 (Trivial access structures). We say that an access structure
M for a set of parties P is trivial if either M is empty, or there exists a subset
X ⊆ P such that Y ∈M if and only if X ⊆ Y .

We call such access structures trivial due to the following reasons:

– Parties outside of X are irrelevant to the access structure, as they can be
added or removed from a set of parties without changing the set’s qualified
status. Therefore, such a protocol is morally equivalent to the case where
X = P.

– When X = P, all parties must get together to reconstruct the shared secret.
In this case, there appears to be no reason to engage in the protocol in the
first place, as the parties can just choose the group secret when they all
coordinate at reconstruction time.

Note that trivial access structures are in P, so there is no distinction between
standard DSS and witnessless DSS.

Theorem 1. For an access structure M , the following hold:

– If M is trivial, then there exists a perfectly-secure DSS for M in the strongest
possible sense (that is, strong DSS without setup)

– If M is non-trivial, then the existence of any DSS for M in the weakest
possible sense (that is, weak DSS with trusted setup) implies the existence of
one-way functions.

Proof. Let M be trivial, with subset X such that Y ∈M if and only if X ⊆ Y .
We then get the following strong DSS scheme for M without setup that has
single-bit shared secrets:

– SHARE(): sample a random Π(i) ← {0, 1}, and publish an empty string as
the public share P (i) = ∅.

– RECON(P,Π(Y )): if X ⊂ Y , simply XOR and output the shares for parties
in X, namely S ← XORi∈XΠ(i). If X is not a subset of Y , abort.

The correctness of the protocol is trivial. For security, note that for any set Y
that does not contain X, there is some party i ∈ X \Y such that the set of shares



for Y does not contain the secret share Π(i). Therefore, Π(i) is independent of
the shares Π(Y ). Thus, S is independent of Π(Y ). Perfect security follows.

The proof of the other case (in which M is a non-trivial access structure) can
be found in the full version [26].

3.3 Distributed Secret Sharing for Threshold

In this section we present a distributed secret sharing scheme for the threshold
access structure. The proof of security relies on the multilinear decisional Diffie-
Hellman assumption (see Definition 5). This construction works in the trusted
setup model (which is used for the setup of the multilinear map). Assume there
are n parties and the threshold condition says that any t of them should be able
to reconstruct the secret.

Lemma 2. Assuming an (n − t)-multilinear map that satisfied the MDDH as-
sumption, there is a t-out-of-n (weak) distributed secret sharing scheme (with
trusted setup).14

Proof. We start with the description of the scheme. The trusted setup will
consists of an n−t multilinear map. For the sharing, party pi generates a random
si and published hi = gsi . The shared secret key is S = e(g, . . . , g)

∏n
i=1 si . With

t of the si’s one can easily compute S by pairing the other hi’s, and then raising
the result by each of the si’s. Security in the case of fewer than t shares follows
from the security of the multilinear DH assumption.

More precisely, in the trusted setup we run MMap.Gen(1λ, n) to get (Γ, g, `)
which we set as the public parameters. The sharing procedure of party pi samples
a random si ← Z (which is kept secret) and outputs hi = gsi . The shared
secret key is S = e(g, . . . , g)

∏n
i=1 si . For correctness, we observe that given the

secret shares of any subset of the t parties one can compute S. Indeed, given
hi1 , . . . , hin−t

one can compute

e(hi1 , . . . , hin−t) = e(g, . . . , g)
∏n−t

j=1 sij

and then, by raising the right-hand side to the powers sin−t+1 , . . . , sin , compute(
e(g, . . . , g)

∏n−t
j=1 sij

)∏n
j=n−t+1 sij

= S

The proof of security can be found in the full version [26].

Hamming Ball Constrained PRFs

We show that any distributed secret sharing scheme for threshold implies con-
strained PRFs that can be constrained to a Hamming ball around an arbitrary

14 Since threshold is in P, there are no witnessness, so there is no distinction between
the standard and witnessless notions of DSS.



point. One limitation of our construction is that the PRF only allows a single
collusion: an adversary that sees the PRF constrained to two Hamming balls
can potentially recover the entire secret key.

Of course, our construction of DSS for threshold relies on the multilinear
Diffie-Hellman assumption, which already implies constrained PRFs for all cir-
cuits with arbitrary collusions [10]. However, our conversion here is generic and
applies to any threshold DSS scheme, which perhaps can be based on simpler
assumptions than multilinear maps. Perhaps more importantly, the ideas pre-
sented here will be used in Section 3.4 to show the equivalence of general DSS
and witness PRFs. Thus, this construction can be viewed as a warm-up to The-
orem 3.

Definition 13 (One-time constrained PRFs for Hamming balls). A con-
strained PRFs for Hamming balls is a tuple of algorithms (Gen,PRF,Constrain,
Eval) where:

– Gen(1λ, 1n) is a polynomial-time randomized procedure that takes as input a
security parameter λ and a bit length n, and outputs a function key fk.

– PRF(fk, x) is a polynomial-time deterministic procedure that takes as input
the function key fk and a bit string x ∈ {0, 1}n.

– Constrain(fk, c, r) is a polynomial-time (potentially randomized) procedure
that takes as input the function key fk, a point c ∈ {0, 1}n, and a radius
r ∈ [0, n], and outputs the constrained evaluation key ek corresponding to the
Hamming ball of radius r centered at c.

– Eval(ek, x) is a polynomial-time deterministic procedure that takes as input
the evaluation key ek and a bit string x ∈ {0, 1}n.

– Correctness: If x and c differ on at most r bits, then

Pr[Eval(ek, x) = PRF(fk, x)] = 1,

where fk ← Gen(1λ, 1n), ek ← Constrain(fk, c, r) and the probability is taken
over the randomness of Gen,Constrain.

– One-time security: For any probabilistic polynomial time algorithm D,
there exists a negligible function neg(·) such that for any λ ∈ N and any
r ∈ [0, n], x ∈ {0, 1}n and c ∈ {0, 1}n such that x and c differ in strictly
more than r points, it holds that

|Pr[D(ek,PRF(fk, x)) = 1]− Pr[D(ek, y) = 1]| < neg(λ),

where the probabilities are taken over the choice of fk ← Gen(1λ, 1n), ek
← Constrain(fk, c, r), and y which is chosen uniformly at random over the
co-domain of PRF.

Theorem 2. If secure distributed secret sharing for threshold access structures
exists, then secure one-time constrained PRFs for Hamming balls exists.

At first glance, building a Hamming ball constrained PRFs from threshold
DSS appears to be a difficult task. Indeed, the natural approach to constructing



witness PRFs would be have the public evaluation key be the set of public shares
P , and perhaps some subset of secret shares Π(X) for X ⊆ P; the secret function
key would naturally be the complete set of secret shares Π(P). However, it is
unclear how to define the PRF PRF(·). One possibility is to try to set the outputs
of the PRF to be the shared secret S. However, our threshold DSS only explicitly
has a single S. Yet, we need many secret outputs, one for each possible input.

To get around these limitations, we make use of the fact that distributed
secret sharing is reusable, as discussed in the beginning of Section 3. For example,
suppose two distinct sets of parties P0 6= P1 wish to carry out the protocol, and
there is some party i that is a member of both sets. Then, party i could reuse his
public share for both runs of the protocol. More generally, for a large collection
C of parties with |C| � n, all parties can run SHARE exactly once, and then any
subset P ⊆ C of n parties can then run the distributed secret sharing protocol
without any interaction (assuming that P is complete, meaning every party index
is present exactly once).

Our idea, then, is to have the PRF value be the shared secret for a subset of
C, and the input to the PRF selects which subset to use. We need to be careful,
though, as we need to ensure that the subset is complete and contains every
party index exactly once. We show that such valid subsets can still be used to
construct witness PRFs.

Proof of Theorem 2. Let (SETUP,SHARE,RECON) be a distributed secret
sharing scheme for threshold. We start with the construction of the constrained
PRF.

– Gen(1λ, 1n): First, run CRS ← SETUP(1λ, 12n, thr = n). That is, initial-
ize the setup procedure for the threshold DSS scheme with 2n parties and
threshold n. Next, we will define a set P = {(i, b)}i∈[n]∪ [n+1, 2n] of parties,
where party (i, b) for i ∈ [n] has index i, and party i for i ∈ [n + 1, 2n] has
index i. Now run SHARE for each party. That is, run

(Pi,b, Πi,b)← SHARE(1λ, 12n,CRS, thr = n, i) for i ∈ [n],

(Pi, Πi)← SHARE(1λ, 12n,CRS, thr = n, i) for i ∈ [n+ 1, 2n].

Let Π = {Πi,b}i∈[n] ∪ {Πi}i∈[n+1,2n] be the set of secret shares, and P the
corresponding set of public shares. Output the function key fk = (CRS, Π, P ).

– PRF(fk, x): Define Px to be the collection of parties (i, xi) for i ∈ [n],
together with parties i for i ∈ [n+ 1, 2n]. Define

P (Px) = {Pi,xi
}i∈[n]∪{Pi}i∈[n+1,2n] and Π(Px) = {Πi,xi

}i∈[n]∪{Πi}i∈[n+1,2n].

Notice that Px is complete, in that each party index is present. Now, use the
secret shares to reconstruct the shared secret for Px:

S ← RECON(1λ, 12n,CRS, thr = n, P (Px), Π(Px))

and output S.



– Constrain(fk, c, r): Let

ek = (c, r, P, {Πi,ci}i∈[n] ∪ {Πi}i∈[n+1,n+r])

be the set of secret shares Πi,ci for parties (i, ci), i ∈ [n], as well as r of the
secret shares Πi for for parties i ∈ [n+ 1, 2n]. Output ek.

– Eval(ek, x): Check that x and c differ in at most r points, and otherwise
abort. Let T ⊆ [n] be the set of indices where x and c agree. Then, the set
of parties X = {(i, xi)}i∈T ∪ [n+ 1, n+ r] forms a subset of Px. Moreover, X
consists of |T |+r ≥ n = t parties (since x and c agree on at least n−r points),
and ek contains the secret shares Π(X) for all of these parties. Therefore,
run

K ← RECON(1λ, 12n,CRS, thr = n, P (Px), Π(X))

and output K.

An example of our construction for the case n = 5 is given in Figure 2.
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Fig. 2: Example instantiation for n = 5. The underlying threshold DSS scheme is
instantiated with 10 indices and threshold t = 5. For indices 1 through 5, SHARE is run
twice, returning two sets of secret/public pairs for each index 1 through 5. For indices
6 through 10, SHARE is run once. The secret key fk consists of all public shares and
secret shares. The shares highlighted in green correspond to the evaluation key ek for
the Hamming ball centered at c = 00101 with radius r = 3. The public shares outlined
in bold purple indicate the public shares whose shared secret S is PRF(fk, x = 10001).
Notice that x and c have a Hamming distance 2 ≤ r, so S should be computable from
ek. Indeed ek contains 6 ≥ t of the corresponding secret shares (also outlined in bold
purple), meaning that it is possible to construct S = PRF(fk, x) from ek.

Correctness follows immediately from the observations above. Indeed, given
x and r that differ on at most r coordinates, one can generate the secret shares
for the set of parties X defined above. Now, the correctness of the distributed
secret sharing scheme implies that K must be equal to S, where K and S are
as defined in the scheme above. For security, we have the following claim whose
proof can be found in the full version [26]:

Claim. If (SETUP,SHARE,RECON) is a secure distributed secret sharing scheme
for threshold, then (Gen,PRF,Constrain,Eval) is a one-time secure constrained
PRF for Hamming balls.



This completes the proof of the theorem.

3.4 Distributed Secret Sharing is Equivalent to Witness
PRFs

In this section, we prove that all variants of distributed secret sharing are actually
equivalent to witness PRFs. Together with Zhandry’s construction of witness
PRFs [34], this gives a construction of distributed secret sharing from simple
assumptions on multilinear maps.

Theorem 3. The existence of the following are equivalent:

– Witness PRFs for NP.
– Any of the 8 variants of distributed secret sharing for mNP.

Proof. To prove the theorem, it suffices to prove the following:

1. Weak distributed secret sharing without witnesses and with trusted setup
implies witness PRFs.

2. Witness PRFs imply strong distributed secret sharing with witnesses and
without trusted setup.

Distributed secret sharing implies witness PRFs. We first give the con-
struction of witness PRFs from weak witnessless DSS with a trusted setup. Our
construction and proof leverage the reusability of distributed secret sharing, and
is based on the threshold DSS to Hamming ball PRF conversion presented in
Section 3.3.

Let (SETUP,SHARE,RECON) be a witnessless weak distributed secret shar-
ing scheme with trusted setup. We build the following witness PRF (Gen,PRF,
Eval):

– Gen(R): Let n be the instance size and m the witness size. We will use
a DSS scheme over a set of parties P with 2n + m party indices. We will
generally think of the index set as containing 2n pairs (i, b) ∈ [n] × {0, 1},
as well as m integers j ∈ [m]. The set of pairs [n] × {0, 1} we will call the
“instance set”, and the set of integers [m] we will call the “witness set”.
Define a circuit C : 2P → {0, 1} that operates, given an input S ⊆ P, as
follows. If S = P, output 1. For any i, if either both (i, 0), (i, 1) from the
instance set are in S or neither are in S, then C outputs 0. Otherwise if
(i, b) ∈ S (and therefore (i, 1 − b) /∈ S), set xi = b. Let x be the bit string
x1x2 . . . xn. Let wj be 1 if j ∈ S and let w be the bit string w1w2 . . . wn.
Then, C outputs R(x,w). Recall that the monotone closure of C, M = C,
satisfies X ∈M if some subset X ′ ⊆ X causes C to accept.

First, we generate the CRS by running

CRS← SETUP(1λ, 12n+m, C).



Now, we define the set P to consist of the following parties: for each index
(i, b) in the instance set, we will associate two parties {(i, b, c)}c∈{0,1}, and
for each index j ∈ [m] in the witness set, we will associate a party j. Next, we
run SHARE for each party. That is, for each i ∈ [n], b ∈ {0, 1} and c ∈ {0, 1},
run

(Pi,b,c, Πi,b,c)← SHARE(1λ, 12n+m,CRS, C, (i, b))

and for each j ∈ [m], run

(Pj , Πj)← SHARE(1λ, 12n+m,CRS, C, j).

Let P = {Pi,b,c}i∈[n],b,c∈{0,1} ∪ {Pj}j∈[m] and Π = {Πi,b,c}i∈[n],b,c∈{0,1} ∪
{Πj}j∈[m] be the set of public and secret shares, respectively. Output the
function key

fk = (CRS, P,Π)

and the evaluation key

ek = (CRS, P, {Πi,b,b}i∈[n],b∈{0,1}, {Πj}j∈[m]).

That is, the evaluation key consists of all of the public shares, all of the
secret shares for indices in the witness set, and one of the secret shares for
each index (i, b) in the instance set (recall that for each index in the instance
set, we have two parties).

– PRF(fk, x): Let

Px = {(i, b, xi)}i∈[n],b∈{0,1} ∪ [m]

so that P (Px) = {Pi,b,xi}i∈[n],b∈{0,1} ∪ {Pj}j∈[m] and
Π(Px) = {Πi,b,xi

}i∈[n],b∈{0,1} ∪ {Πj}j∈[m].
Notice that Px is complete, in the sense that each index is represented exactly
once. Therefore, run

K ← RECON(1λ, 12n+m,CRS, C, P (Px), Π(Px))

and output K.
That is, out of the entire collection of 4n + m parties, use the input x to
select the appropriate set of parties Px of size 2n + m. Then, compute the
shared key for that set of parties.

– Eval(ek, x, w): Let Px and P (Px) be as above. Let Sx,w = {(i, xi, xi)}i∈[n]∪
{j}j:wj=1 and Π(Sx,w) = {Πi,xi,xi}i∈[n] ∪ {Πj}j:wj=1. Run

K ← RECON(1λ, 12n+m,CRS, C, P (Px), Π(Sx,w))

and output K.



To show correctness, we need to argue that Eval(ek, x, w) = PRF(fk, x) for all
w such that R(x,w) = 1. Indeed, Eval(ek, x, w) attempts to compute the shared
secret for the set of parties Px. Notice that the set Sx,w is a subset of the set Px,
and consists of the parties in Px with indices in Tx,w = {(i, xi)}i∈[n] ∪{j}j:wj=1.
Now notice that C(Tx,w) computes exactly R(x,w) = 1. Thus, the set of secret
shares Π(Sx,w) is sufficient to reconstruct the shares secret S for Px. Notice that
S is also the value outputted by PRF(fk, x). Therefore, Eval(ek, x, w) = PRF(fk, x)
as desired. An example instantiation is given in Figure 3.
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Fig. 3: Example instantiation for instance size n = 3 and witness size m = 4. The
underlying threshold DSS scheme is instantiated with 10 indices, 6 for the instance
set having the form (i, b), and 4 for the witness set having the form j. For each in-
stance set index (i, b), SHARE is run twice, returning two sets of secret/public pairs
for parties (i, b, 0), (i, b, 1). For witness set indices, SHARE is run once. The secret key
fk consists of all public keys and secret shares, and the evaluation key consists of the
green highlighted shares. An example evaluation on x = 100 is given. The instance x
selects the subset Px, whose public shares are bolded in purple. For these shares, there
is a shared secret S, and the value of PRF on x is defined to be S. Suppose w = 1010
is a valid witness for x. Then, the secret shares for parties in Sx,w are boxed in bold
purple and represent the set of secret shares inside ek that can be fed into RECON to
yield S. Notice that, among the instance set of indices, ek only contains secret shares
for the parties in Px that have indices (i, xi).

It remains to prove that the scheme is secure. The proof of the following
claim can be found in the full version [26].

Claim. If (SETUP,SHARE,RECON) is a secure weak distributed secret sharing
scheme without witnesses and with trusted setup, then (Gen,PRF,Eval) is a
secure witness PRF.

Witness PRFs imply distributed secret sharing. Given a Witness PRF
(Gen,PRF,Eval), we can easily obtain a one-way function, and from this we
can obtain a pseudorandom generator f [22]. We construct the following strong
distributed secret sharing scheme (SHARE,RECON) without trusted setup.

– SHARE(1λ, 1n, 1k): Run (fk, ek) ← Gen(R) where R is the following NP
circuit. R takes as input an instance (VM , {yi}i∈Pn

), where VM is the de-
scription of an mNP circuit of size at most k, and witness w′ = (w, {si}i∈X)



for some subset X ⊆ Pn. It outputs 1 if (1) VM (X,w) = 1 and (2) yi = f(si)
for each i ∈ X. Otherwise, R outputs 0.
Let s ← S where S is the domain of f , and y = f(s). Output public share
P (i) = (ek, y) and secret share Π(i) = s.

– RECON(1λ, 1n, VM , P,Π(X), w): Write Π(X) = {si}i∈X and P = {(eki,
yi)}i∈P . Let x be the instance (VM , {yi}i∈P), and let w′ = (w, {si}i∈X) be
a witness. For each i, compute

Si = Eval(eki, x, w
′),

and then compute S = S1 ⊕ S2 ⊕ · · · ⊕ Sn. Output S.

The correctness of the scheme follows immediately from the correctness of the
underlying witness PRF. The security of the scheme follows from the following
claim whose proof can be found in the full version [26].

Claim. If (Gen,PRF,Eval) is a secure witness PRF and f is a secure PRG, then
(SHARE,RECON) is a secure strong distributed secret sharing scheme with wit-
nesses and without trusted setup.

We have shown that the weakest variant of distributed secret sharing implies
witness PRFs, which in turn imply the strongest variant of distributed secret
sharing. Thus, all variants of DSS and witness PRFs are equivalent, completing
the proof.

4 Functional Secret Sharing

We start this section with a definition of functional secret sharing. Later, in
Theorem 4, we show that general-purpose functional secret sharing is equivalent
to indistinguishability obfuscation for polynomial-size circuits.

Definition 14 (Functional secret sharing). Let F = {F : 2Pn → {0, 1}∗} be
a class of functions. Let M : 2Pn → {0, 1} be an access structure corresponding
to a language L ∈ mNP and let VM be a verifier for L. A functional secret sharing
scheme for M and F consists of a setup procedure SETUP and a reconstruction
procedure RECON that satisfy the following requirements:

1. SETUP(1λ, F, S) gets as input an efficiently computable function F : 2Pn ×
{0, 1}∗ → {0, 1}∗ and a secret S ∈ {0, 1}∗, and distributes a share for each
party. For i ∈ [n] denote by Π(F, S, i) the random variable that corresponds
to the share of party pi. Furthermore, for X ⊆ Pn we denote by Π(F, S,X)
the random variable that corresponds to the set of shares of parties in X.

2. Completeness: If RECON(1λ, Π(F, S,X), w) gets as input the shares of a
“qualified” subset of parties and a valid witness, and outputs the value of F
on X and the shared secret. Namely, for X ⊆ Pn such that M(X) = 1 and
any valid witness w such that VM (X,w) = 1, it holds that:

Pr
[
RECON(1λ, Π(F, S,X), w) = F (X,S)

]
= 1,



where the probability is over the internal randomness of the scheme and of
RECON.

3. Indistinguishability of the Secret: For every probabilistic polynomial-
time algorithm D, every function F ∈ F , every subset of parties X ⊆ Pn
and every pair of secrets S0, S1, as long as either M(X) = 0 or F (X ′, S0) =
F (X ′, S1) for every X ′ ⊆ X, there exists a negligible function neg(·) such
that for λ ∈ N it holds that∣∣∣∣Pr

[
D(1λ, Π(F, Sb, X)) = b

]
− 1

2

∣∣∣∣ ≤ neg(λ),

where the probability is over the internal randomness of the scheme, the
internal randomness of D and b← {0, 1} chosen uniformly at random.

A remark on the condition in the security definition. We note that in
Definition 14, given a set of shares Π(F, S,X), it is possible to derive for any
X ′ ⊆ X the set of shares Π(F, S,X ′) simply by removing the shares for parties
not in X ′. Feeding Π(F, S,X ′) into RECON then gives F (X ′, S) for any X ′ ⊆ X.
Thus, in the security definition above, the condition that F (X ′, S0) = F (X ′, S1)
for all X ′ ⊆ X is required to have a satisfiable assumption. Our definition states
that this is the only requirement.

Two relaxations of Definition 14. We remark that when the function F is
defined to be the identity function over its second input parameter (i.e., F (·, S) =
S) we get the definition of Rudich secret sharing for NP of [25].15 Moreover, when
M = 2Pn (i.e., the access structure includes all subsets of parties), the secret S is
a description of a function and F is the universal circuit (i.e., F (X,S) = S(X)),
then Definition 14 boils down to the definition of function secret sharing which
we formalize next.

Definition 15 (Function secret sharing). Let F = {F : 2Pn → {0, 1}∗} be
a class of functions. A functional secret sharing scheme for F consists of a
setup procedure SETUP and a reconstruction procedure RECON that satisfy the
following requirements:

1. SETUP(1λ, F ) gets as input a function F ∈ F , and distributes a share for
each party. For i ∈ [n] denote by Π(F, i) the random variable that corre-
sponds to the share of party pi. Furthermore, for X ⊆ Pn, we denote by
Π(F,X) the random variable that corresponds to the set of shares of parties
in X.

2. Completeness: RECON(1λ, Π(F,X)) gets as input the shares of some sub-
set X of parties, and outputs F (X). More precisely,

Pr[RECON(1λ, Π(F,X)) = F (X)] = 1,

15 [25] considered a uniform version of the above definition. We remark that our defini-
tions from above can also be given in a uniform version and our results also apply to
them (using ideas from [25]). For simplicity, we focus on the non-uniform versions.



where the probability is over the internal randomness of the scheme and of
RECON.

3. Indistinguishability of the function: For every probabilistic polynomial-
time algorithm D, every equal size F0, F1 ∈ F and X ⊆ 2Pn such that
F0(X ′) = F1(X ′) for all X ′ ⊆ X, there exists a negligible function neg(·)
such that for λ ∈ N it holds that∣∣∣∣Pr[D

(
1λ, Π(Fb, X)

)
= b]− 1

2

∣∣∣∣ ≤ neg(λ),

where the probability is over the internal randomness of the scheme, the
internal randomness of D and b← {0, 1} chosen uniformly at random.

4.1 Functional Secret Sharing is Equivalent to iO

In this section we state and prove our main result.

Theorem 4. The following holds:

1. Function secret sharing (Definition 15) for polynomial-size circuits implies
iO for polynomial-size circuits.

2. iO for polynomial-size circuits and one-way functions imply functional secret
sharing (Definition 14) for access structures in mNP and functions computed
by polynomial-size circuits.

Recall that Definition 14 is a generalization of Definition 15. Thus, Theorem 4
implies that functional secret sharing is equivalent to function secret sharing and
is equivalent to iO.16

Next, we provide a proof for each of the items in Theorem 4 separately.

Proof of Item 1 in Theorem 4. Given a circuit C with n inputs the indis-
tinguishability obfuscator works as follows. We first run the SETUP(1λ, C) proce-
dure with the circuit C as input and get back a list of n sharesΠ(C, 1), . . . ,Π(C, n).
The obfuscation consists of these n shares.

To evaluate an obfuscated circuit at a point x ∈ {0, 1}n, we run RECON(1λ,
Π(C, x)) and get a value y that we output. By the correctness of the functional
secret sharing scheme, we have that y = C(x), as required.

To prove security consider two equal size functionally equivalent circuits C1

and C2 and an adversary A that can distinguish their obfuscations with no-
ticeable probability. Hence, A can distinguish secret shares corresponding to
SETUP(1λ, C1) from secret shares corresponding to SETUP(1λ, C2). Since the
circuits are equal size and functionally equivalent, this is a contradiction to the
security guarantee of the function secret sharing scheme.

16 One of the directions requires one-way functions which can be relaxed to require a
worst-case hardness assumption by [24].



Proof of Item 2 in Theorem 4. We start with the description of the func-
tional secret sharing scheme. For every i ∈ [n], the share of party pi is composed
of 2 components: (1) ri ∈ {0, 1}λ, an opening of a commitment to the value
i, and (2) an obfuscated circuit iO(C). The circuit C to be obfuscated has the
following hardwired: the function F , the secret S and the commitments of all
parties (i.e., ci = Com(i, ri) for i ∈ [n]). We stress that the openings r1, . . . , rn
of the commitments are not hardwired into the circuit. The input to the circuit
C consists of alleged k openings r′i1 , . . . , r

′
ik

corresponding to a set of parties

X ∈ 2Pn denoted pi1 , . . . , pik where k, i1, . . . , ik ∈ [n] and an alleged witness w.
The circuit C first checks that the openings are valid, i.e., verifies that for every
j ∈ [k] : cij = Com(ij , r

′
ij

). Then, it verifies that the given w is a valid witness,

i.e., that VM (X,w) = 1. If all the tests pass, C outputs F (X,S); otherwise, if
any of the tests fail, the circuit C outputs NUL. The secret sharing scheme is
formally described next.

Let iO be an efficient indistinguishability obfuscator (see Definition 7). Let
Com : [2n]× {0, 1}λ → {0, 1}q(λ) be a string commitment scheme where q(·) is a
polynomial (see Definition 3). Let M ∈ NP be an access structure.

The SETUP(1λ, F, S) procedure. Gets as input a function F represented as a
polynomial-size circuits, a secret S and does the following:

1. For i ∈ [n]:
(a) Sample uniformly at random an opening ri ∈ {0, 1}λ.
(b) Compute the commitment ci = Com(i, ri).

2. Compute the circuit C from Figure 1, where C = CF,S,c1,...,cn has the func-
tion F , the secret S and the list of commitments c1, . . . , cn hardwired.

3. Set the share of party pi to be Π(S, i) = 〈ri, iO(C)〉.

The RECON(X,w) procedure. Gets as input a non-empty subset of parties
X ⊆ Pn together with their shares and a witness w of X for M .

1. Let iO(C) be the obfuscated circuit in the shares of X.
2. Evaluate the circuit iO(C) with the shares of X and w and return its output.

Observe that if iO and Com are both probabilistic polynomial-time algo-
rithms, then the scheme is efficient (i.e., SETUP and RECON are probabilistic
polynomial-time algorithms). SETUP generates n commitments and an obfus-
cated circuit of polynomial-size. RECON only evaluates this polynomial-size ob-
fuscated circuit once.

Security. Fix two secrets S0, S1, a subset of parties X, and a function F such
that F (X ′, S0) = F (X ′, S1) for every X ′ ⊆ X. The proof of security follows by
a sequence of hybrid experiments that can be found in the full version [26].
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The Circuit CF,S,c1,...,cn(r′1, . . . , r
′
n, w)

Hardwired : The function F , the secret S and the commitments of all parties c1, . . . , cn.

Input : Secret shares corresponding to a subset of parties X and an alleged witness w.
The secret shares are a sequence of n values r′1, . . . , r

′
n ∈ {0, 1}λ∪NUL such that for any

i ∈ [n] if pi ∈ X, then r′i is the alleged opening of party pi, and otherwise r′i = NUL.

Algorithm:

1. Execute the following tests:
(a) For every i ∈ [n] such that ri 6= NUL, verify that the opening r′i is valid. That

is, verify that ci = Com(i, r′i).
(b) Verify that the given alleged witness w is a valid one. That is, verify that

VM (X,w) = 1.
2. If any of the above tests fails, output NUL; otherwise, output F (X,S).

Figure 1: The circuit to be obfuscated as part of the secret shares.
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