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Abstract. Rational proofs, introduced by Azar and Micali (STOC 2012) are a
variant of interactive proofs in which the prover is neither honest nor malicious, but
rather rational. The advantage of rational proofs over their classical counterparts
is that they allow for extremely low communication and verification time. In
recent work, Guo et al. (ITCS 2014) demonstrated their relevance to delegation
of computation by showing that, if the rational prover is additionally restricted to
being computationally bounded, then every language in NC1 admits a single-round
delegation scheme that can be verified in sublinear time.
We extend the Guo et al. result by constructing a single-round delegation scheme
with sublinear verification for all languages in P. Our main contribution is the
introduction of rational sumcheck protocols, which are a relaxation of classical
sumchecks, a crucial building block for interactive proofs. Unlike their classical
counterparts, rational sumchecks retain their (rational) soundness properties, even
if the polynomial being verified is of high degree (in particular, they do not rely
on the Schwartz-Zippel lemma). This enables us to bypass the main efficiency
bottleneck in classical delegation schemes, which is a result of sumcheck protocols
being inapplicable to the verification of the computation’s input level.
As an additional contribution we study the possibility of using rational proofs
as efficient blocks within classical interactive proofs. Specifically, we show a
composition theorem for substituting oracle calls in an interactive proof by a
rational protocol.
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1 Introduction

The availability of on-demand computational power and the ubiquitous connectivity of
small devices are some of the main driving forces behind the move to the model of cloud
computing. In this model a client faces a computationally demanding task and relies on
the assistance of an external server with sufficient computational power, e.g. a cluster
of machines. When the weak client asks the powerful server to perform a computation
on its behalf it would like to have some guarantees on the correctness of the provided
result. This scenario is addressed by the model of verifiable delegation of computation.
In this setting, the server provides the client with the result of the computation together
with a proof of its correctness. Since the client must be able to verify the proof despite
its limited computational resources, the verification should be much easier than running
the computation itself, or else there is no point in outsourcing it.

Interactive Proofs and Arguments. A setting where an all-powerful entity aims to
convince a computationally bounded one of the correctness of a computational statement
was studied in the context of interactive proof systems. In this model interaction and
randomization enable the prover to efficiently convince the verifier. The IP = PSPACE
theorem [22,28] showed that it is possible for the prover to convince the verifier about
large classes of languages, in particular any language computable in polynomial time.
However, this result is not efficient enough to be practically applicable to the problem of
verifiable delegation. In this context, one aims to minimize multiple complexity measures
at once, such as communication complexity (both in the number and size of exchanged
messages), running time of the verifier and prover efficiency.

For higher complexity classes, the round-complexity/prover-efficiency of interactive
proofs is a limiting factor to their use in practice. The notion of interactive arguments
considers a setting where the prover is computationally bounded, allowing to circumvent
these efficiency shortcomings. The work of Kilian [20] gave four round interactive
arguments for all languages in NP. Micali [23], relying on random oracles proposed
a non-interactive version of this protocol. More recently, there has been significant
effort to obtain more efficient non-interactive arguments for NP (see e.g. [5,10] and
the references therein). One limitation of all such known constructions is that they are
based on non-standard assumptions (cf. [24]). The problem of constructing efficient
non-interactive arguments for NP under standard assumptions is still open, though there
is some evidence that non-standard assumptions are unavoidable [13].

Unlike in the case of arguments for non-deterministic computation, the situation
for tractable languages (which actually correspond to problems common in real-life
delegation scenarios) is significantly better. The first evidence that one can attain dele-
gation schemes for restricted complexity classes is the work of Goldwasser, Kalai and
Rothblum [14], who gave a single-round argument that allows to verifiably delegate
any bounded depth computation with quasi-linear verification time. Recently, the work
of Kalai, Raz and Rothblum [18] achieved a single-round argument (under standard
assumptions) with quasi-linear verification time for any language in P.

In some scenarios quasi-linear verification time may not be good enough. For in-
stance, if the input x ∈ {0,1}n is a large database and the output f (x) of the outsourced
computation is a concise aggregation of its statistics, then it is desirable if the verifier



does not need to read the whole database to verify correctness. In such cases one would
prefer to have a delegation scheme with verification time sublinear in the input size n,
preferably even as low as polylog(n). As was pointed out in the literature, delegation
schemes with sublinear verification are in general not achievable with respect to the
standard notion of soundness (cf. Rothblum, Vadhan and Wigderson [27]), which led to
introduction of alternative relaxed models that would enable sublinear verification time.

Rational Proofs and Arguments. One recent notion that opens the door for sublinear
verification is that of rational arguments [15]. This model follows the paradigm of
rational proofs introduced by Azar and Micali [2], who relax the prover in interactive
proof systems to be rational. In rational proofs the verifier pays the prover according to
the quality of the provided answer, and the reward is set up so that it is irrational for the
prover to report an incorrect result of the computation. Azar and Micali [2] illustrated the
power of rational proofs by giving a single-round rational proof for any problem in #P
and in general a constant round rational proof for any level of the counting hierarchy. In
subsequent work, Azar and Micali [3] gave a “scaled-down” version of their #P-protocol
that leads to constant round rational interactive proof with sublinear (O(logn) time)
verification for the class of log-time uniform TC0, i.e., the class of constant-depth, log-
time uniform polynomial-size circuits with threshold gates. They also argue that such
efficient rational proofs capture precisely the class of log-time uniform TC0.

More recently, Guo, Hubáček, Rosen and Vald [15] put forward the notion of rational
arguments, by further restricting the rational prover to be computationally bounded. They
then showed how to construct single-round rational arguments with sublinear (polylog(n)
time) verification for the class NC1, of search problems computable by log-time uniform
Boolean circuits of O(logn)-depth.

1.1 Our Results

We extend the results of Guo et al. [15] and give a single-round rational argument with
sublinear (polylog(n) time) verification for any language in P. Our initial observation
is that both the non-interactive arguments for NC of Goldwasser et al. [14] and the
non-interactive arguments for P of Kalai et al. [18] have for the most part sublinear
verification time, with the exception of a single heavy verification step that ultimately
induces quasi-linear running time for the verifier. If we could substitute this step by a
more efficient procedure that does not dominate the rest of the protocol then we would
achieve sublinear verification time.

Our proposal is to use a rational proof with sublinear verification for the heavy step
and get a rational version of the original protocol which enjoys sublinear verification
time. There are two main issues that we will need to address: 1) construct sublinear
rational proofs for the heavy step; 2) argue how the rationality can be preserved under
composition.

Our main contribution is the introduction of rational sumcheck protocols, which
are a relaxation of classical sumchecks, a crucial building block for interactive proofs.
To show that our approach yields the desired result, we pin down sufficient conditions
for our transformation to work and prove that the protocol of Goldwasser et al. [14]
(respectively Kalai et al. [18]), with the rational sumcheck replacing the heavy step,
yields the sought after rational argument for NC (respectively for P).



It should be noted that our main efficiency gains are not due to the fact that rational
sumcheck protocols are more efficient than their classical counterparts (though we do
gain some efficiency by making sumcheck protocols non-interactive). Indeed, one of
the key observations behind the works on efficient delegation [14,18] is that one could
verify correctness of computation via very efficient sumcheck protocols. The one place
where rational sumcheck protocols turn out to be more useful than classical ones is at
the input layer, where usage of the latter would entail a total break-down of soundness.

We show that a rational version of sumcheck protocols is in fact sufficient to carry
out verification, even without reading the entire input. This is something that was not
possible to achieve using classical sumcheck protocols, since the input layer does not
satisfy the structural properties (low-degree) that would guarantee soundness when
verifying via classical sumchecks. Our (equally efficient) rational sumcheck protocols,
on the other hand, give a meaningful soundness guarantee even when such structural
properties are absent.

Sumcheck Protocols. At a high level, a classical sumcheck protocol allows the verifier
to check a sum of evaluations of a given low-degree polynomial h : Fm

q → Fq on a certain
subset S ⊂ Fm

q of its domain (e.g. S = {0,1}m). The source of the protocol’s power is
that it makes it sufficient for the verifier to evaluate h on a single randomly chosen point
p ∈ Fm

q , rather than on the entire subset S. This results in significant efficiency gains,
since instead of requiring the evaluation of h on |S| points it reduces the problem of
verification to the evaluation on a single point (at the cost of m = log(|S|) rounds of
communication).

Previous works on delegation [14,18] make extensive use of sumcheck protocols
in order to efficiently verify the low degree extensions W̃ of intermediate levels of
computation.5 Specifically, it is possible to write W̃ (z) = ∑p∈S βz(p)W (p), where βz(p)
is a low-degree function and W (p) is an appropriate encoding of the corresponding level.
This reduces the task of verifying the correctness of evaluating W̃ on z to the problem
of performing a sumcheck on individual inner summands βz(p)W (p). In intermediate
levels of the computation, we are guaranteed that W is of low degree, and hence so
is βz(p)W (p). However, at the input level the function W (p) =Wx(p) corresponds to
a straightforward bit-wise representation of the input x ∈ {0,1}n. The problem is that
this representation might result in a high-degree polynomial. Not being of low degree,
βz(p)Wx(p) cannot be verified by a classical sumcheck protocol. This means that the
input x needs to be read in its entirety, or else the protocol is not sound.

Rational Sumcheck Protocols. To circumvent the above issue, we leverage the power
of rational proofs, in which soundness relies on rationality of the prover. We give a
rational sumcheck protocol that allows to efficiently verify summation of any function
over a fixed set, as long as evaluating the function on a single point can be performed
efficiently (see Section 3 for details). Not only that our rational sumcheck protocol
preserves the efficiency of classical sumchecks, but it can also be performed without
any communication overhead (it is in fact non-interactive). The main feature of rational

5 In Goldwasser et al. [14] this is performed layer by layer over the circuit computing the function,
whereas in Kalai et al. [18] the reduction to sumchecks is done via a global encoding of the
transcript of the computation.



sumchecks, however, is that they give a meaningful (rational) soundness guarantee
even if the degree of the polynomial is high, which implies that unlike their classical
counterparts they are also applicable at the input layer.

Technically speaking, the reason for which the new rational protocols work regardless
of the polynomial’s degree is because the soundness analysis does not necessitate
invoking the Schwartz-Zippel lemma. Instead, we rely on a specially-tailored reward
function that is designed to translate sums of finite field elements to numerical values
that are used to determine the reward. The challenge in designing the reward function
originates from the fact that modular sums lose information about the summands, whereas
the reward is required to reflect this information in its entirety.

Composition of Classical and Rational Interactive Proofs. To make the above fit
into a general purpose protocol, we need to carefully show how to plug a rational
subprotocol into a larger one while retaining rational soundness. To this end, we show a
composition theorem for substituting oracle calls in an interactive proof by a rational
protocol. This allows us to use the classical interactive proofs almost as a black-box.
This approach may turn out to be useful elsewhere.

Putting the Pieces Together. At a high level, the structure of our construction of single-
round rational arguments for P follows the delegation scheme of Kalai et al. [18]. In
particular, we define and construct δ -no-signaling rational multi-prover proofs (RMIPs)
by using our composition theorem and relying on rational sumchecks as a subprotocol.
We then show a general efficient transformation that uses any sub-exponentially secure
Fully Homomorphic Encryption (FHE) scheme to transform no-signaling RMIPs into
single-round rational arguments (in a manner similar to Kalai et al. [18]). Crucial to
our transformation is the reward gap of the underlying rational protocol, which roughly
captures the utility loss of the prover as a result of misreporting the function’s value.
Unlike early rational proofs of Azar and Micali [2] and akin to Guo et al. [15], both
our sumchecks and the overall composed protocol enjoy noticeable reward gap. This
is sufficient for the overall transformation to go through (enabling a reduction from
the security of the FHE scheme), and results in the sought-after single-round rational
argument for P with sublinear verification time.

Beyond being of importance in the transformation from rational proofs to non-
interactive rational arguments, noticeable reward gap is also crucial for incentivizing the
prover to report the correct value of the computation, as otherwise he might be tempted
to avoid performing the work while risking very little penalty (see Section 2 and Guo et
al. [15] for an extended discussion of the subject).

1.2 Comparison to Alternative Delegation Schemes

The classical interactive proof for NC of Goldwasser et al. [14] has quasi-linear veri-
fication time. The running time of the verifier in their protocol appears to be optimal
in the standard model, in the sense that achieving sublinear verification time with stan-
dard soundness guarantee seems unlikely without reading the whole input (even for a
simple function such as parity). To circumvent this limitation Rothblum, Vadhan and
Wigderson [27] considered interactive proofs of proximity, a relaxation of interactive
proofs motivated by property testing, and show that it is possible to achieve sublinear



verification for NC in this new model (since the protocol does not need to provide
soundness guarantee for all instances).

An alternative relaxation was studied by Azar and Micali [3] and Guo et al.[15].
These works considered delegation in the setting of rational proofs and proposed schemes
whith both sublinear verification (as small as polylogarithmic) and (rational) soundness
guarantees, which in contrast to proofs of proximity hold for all instances.Whereas their
protocols work only for NC1, our new rational proof, which is a combination of classical
and rational proofs, works for the entirety of NC while preserving the desired properties
of sublinear verification and rational soundness (see Table 1 for a detailed comparison).
By composing classical and rational proofs, we obtain a rational multi-prover proof
(secure against no-signaling provers) with sublinear verification for any deterministic
computation akin to the classical proof of Kalai et al. [18] (see Table 2 for a detailed
comparison). We remark it is possible to transform the above classical proofs and rational
proofs into one-round classical and rational arguments.

Table 1. efficiency comparison of results for NC

Queries6 Rounds Communication Verification time Depth
Goldwasser et al. [14]

(interactive proofs)
n Õ(d) Õ(d) Õ(n) d=polylog(n)

Rothblum et al. [27]
(proofs of D-proximity)

( n
D
)1+o(1) Õ(d) D

( n
D
)o(1)·Õ(d)

( n
D+D

)1+o(1)Õ(d) d=polylog(n)

Azar and Micali [3]
(rational proofs)

1 d Õ(d) Õ(d) d = O(logn)

Guo et al. [15]
(rational proofs)

1 d d Õ(d) d = O(logn)

This work
(rational proofs)

1 Õ(d) Õ(d) Õ(d) d=polylog(n)

Table 2. efficiency comparison of results for P

Queries Number of provers Communication Verification time Remarks
Kalai et al. [18]

(MIP)
n polylog(t) polylog(t) n ·polylog(t) DTIME(t)

This work
(rational MIP)

polylog(t) polylog(t) polylog(t) polylog(t) DTIME(t)

1.3 Other Related Work

To give a complete overview of works on verifiable delegation of computation is out of
the scope of this paper, an interested reader can find many related results in the recent
survey by Blumberg and Walfish [6].

6 By queries we denote the number of input bits read by the verifier.



An alternative approach for interactive proofs with sublinear verification was given
in Rothblum, Vadhan and Wigderson [27] who introduced interactive proofs of proximity
and Gur and Rothblum [16] who considered their non-interactive analogues. Since both
works studied a protocol analogue of property testing, their protocols provide guarantees
only for instances that are either in the language or far from being in the language.
Independently an in parallel to our work, Kalai and Rothblum [19] studied proofs of
proximity with computationally bounded provers and introduced arguments of proximity.

Besides the mentioned works in the context of rational proofs, Zheng and Blan-
ton [29] study the specific problem of delegating matrix multiplication and give also a
rational argument for this task. The work of Chen, McCauley and Singh [9] introduces
the model of rational interactive proofs with multiple provers.

Alternative approaches for incentivizing correct computation can be found in the
work of Bentov and Kumaresan [21] who consider a model for incentivizing computation
over Bitcoin. Alternatively, Belenkiy et al. [4] or Pham, Khouzani and Cid [25] study
a model where the verifier infrequently performs the whole computation to verify the
correctness of prover’s output.

The treatise of general composition of rational protocols in scientific literature is
limited. The work of Garay, Katz, Maurer, Tackman and Zikas [12] provides some
insights on composition of protocols secure in the presence of a single central rational
adversary. The framework of Canetti and Vald [8] studies a notion sufficient for preserv-
ing rationality under composition by imposing strong restrictions on the information
available to distinct adversarial entities.

2 Preliminaries

Throughout the rest of the paper we use the following notation and definitions. For n∈N,
let [n] denote the set {1, . . . ,n}. A function g : N→R+ is negligible if it tends to 0 faster
than any inverse polynomial, i.e., for all c ∈ N there exists kc ∈ N such that for every
k > kc it holds that g(k)< k−c. We use negl(·) to talk about negligible function if we do
not need to specify its name.

Rational Proofs In a rational proof, Arthur pays Merlin a randomized reward accord-
ing to the transcript of the communication, and the communication constitutes a rational
Merlin Arthur game if the correct evaluation y = f (x) can be derived from a transcript
that maximizes the expected reward.

For a pair of interactive Turing machines, P and V , we denote by (P,V )(x) the random
variable representing the transcript between P and V when interacting on common input
x. Let reward(·) denote a randomized function computed by V that given a transcript
calculates a reward for P, and by output((P,V )(x)) the output of V after interacting with
P on common input x. In this setting, the goal of a rational P is to maximize the expected
value of reward(·), while the goal of V is to learn (and output) the true evaluation of the
desired function f on x. We consider the setting where a rational prover first declares his
answer to f (x), and only then tries to prove the correctness of the reported value.



Definition 1. [Functional Rational Merlin Arthur] Let C,T : N→ R be some functions.
A function f : {0,1}∗→ {0,1}∗ is in FRMA [r,C,T ] if there exists an r-round public-
coin protocol (P,V ), referred as rational proof, and a randomized reward function
reward : {0,1}∗→ R≥0 such that for all inputs x ∈ {0,1}∗:

(a) Pr[output((P,V )(x)) = f (x)] = 1.

(b) For every round i and for any prover P∗ that misreports f (x) and behaves as P up
to round i and differs on round i’th message it holds that: E[reward((P,V )(x))]>
E[reward((P∗,V )(x))], where the expectation is taken over the random coins of the
verifier and the prover.

(c) The communication complexity of P is C (|x|).
(d) The running time of V is T (|x|).

No-signaling provers. In this work we use the heuristic suggested by Aiello et al. [1]
for transforming a multi-prover proof into a single round argument using an efficient
Private Information Retrieval (PIR) scheme (or alternatively a Fully Homomorpic En-
cryption scheme), though in the rational setting. As pointed out in the work of Dwork et
al. [11], the bottleneck when proving soundness of the resulting argument is the possi-
bility for the prover to correlate the answers in an undetectable way. Such no-signaling
strategies (introduced as “spooky interactions” in the work of Dwork et al. [11]) need to
be accounted for in the proof of soundness, as shown in Kalai, Raz and Rothblum [17].

Thus, we extend Definition 1 to the setting with multiple provers restricted to δ -no-
signaling strategies. In contrast to the classical multi-prover setting, where each prover
strategy is completely independent of other provers’ queries, δ -no-signaling strategies
can be correlated as long as for any subset of provers their answers do not contain
information about the queries of provers outside the subset.

Definition 2 (Statistically No-Signaling Distributions). Let D be a query alphabet
and let Σ be an answer alphabet. For every q= (q1, . . . ,qk)∈Dk, letAq be a distribution
over Σ k. We think of Aq as the distribution of the answers for queries q. We say that
the family of distributions {Aq}q∈Dk is δ -no-signaling if for every subset S ⊂ [k] and
every two sequences of queries q,q′ ∈ Dk, such that qS = q′S, the following two random
variables are δ -close: {aS : a←Aq} and {a′S : a′←Aq′}.

The rational no-signaling multi-prover proof consists of only one round. Given an
input, the verifier generates queries, one for each prover, and sends them to the k provers.
Each prover responds with an answer that might depend on all the queries, as long as the
provers’ strategies are no-signaling. Finally, the verifier computes the reward based on
the received answers (as well as the input and the randomness used).

Definition 3 (One-Round Rational Multi-Prover Interactive Proof). Let C,T : N→
R be some functions. A function f : {0,1}∗→ {0,1}∗ is in FRMIP [k,δ ,C,T ] if there
exists a one-round public-coin protocol (

−→
P ,V )= (P1, . . . ,Pk,V ), referred as multi-prover

rational proof, and a randomized reward function reward : {0,1}∗→ R≥0 such that for
all inputs x ∈ {0,1}∗:

(a) Pr[output((
−→
P ,V )(x)) = f (x)] = 1.



(b) For every set of provers P∗1 , . . . ,P
∗
k with δ -no-signaling distributions that misreport

f (x) it holds that: E[reward((P1, . . . ,Pk,V )(x))] > E[reward((P∗1 , . . . ,P
∗
k ,V )(x))],

where the expectation is taken over the random coins of the verifier and the provers.

(c) The communication complexity from any of the provers to V is at most is C (|x|).
(d) The running time of V is T (|x|).

Reward gap. We note that once computation incurs some cost to the prover the
Definitions 1 and 3 of rational proofs do not rule out a “lazy behavior” of the prover
corresponding to outputting a fixed default value. Having this in mind, Guo et al. [15]
proposes the notion of reward gap that measures how big is the loss of a prover that
always reports f (x) incorrectly. A noticeable gap in expectation between such a prover
and the prescribed behavior then assures that it is beneficial for the prover to perform the
computation to significantly increase its expectation.

Definition 4 (Reward Gap). Let f ∈ FRMA [r,C,T ] be some function and let (P,V )
and reward(·) be the guaranteed protocol and reward function. The reward gap of
reward(·) is a function ∆reward : N→ R, such that for every n ∈ N,

∆reward(n) = min
x∈{0,1}n

min
P∗∈S

(
E[reward((P,V )(x))] −E[reward((P∗,V )(x))]

)
,

where the expectation is taken over the random coins of the verifier and the prover, and
S is the set of all P∗ such that Pr[output((P∗,V )(x)) 6= f (x)] = 1.

We emphasize that scaling the reward does not imply a real improvement in the
reward gap. In order to have a robust notion we always work with a normalized reward
gap, i.e., reward gap divided by the maximal value of the reward function. An alternative
approach (taken for example in Azar and Micali [3]) that prevents the use of scaling to
improve the reward gap might be to assume that the verifier has a fixed budget. We use
the natural extension of reward gap to rational multi-prover interactive proofs.

Rational Arguments. Rational arguments were defined by Guo et al. [15] to capture
the behavior of a rational prover that is computationally bounded. The definition of
rational arguments allows negligible gains over the reward guaranteed by the prescribed
behavior (but not more), since the rational prover might not follow the prescribed strategy,
and it would try to solve the underlying hard problems (see item (b) in Definition 5).

Another important issue needed to be addressed in the computational setting is
the cost of computing f (x). As in the unbounded setting, it must rule out a prover
that always gives some default (possibly incorrect) output, without performing any
computation, while getting just slightly less than the expectation of the prescribed
behavior. To address this shortcoming the definition of rational arguments “pins down”
the profitability of deviation explicitly by appropriately adapting the notion of reward
gap to the computationally bounded setting (see item (c) in Definition 5).

Definition 5 (Rational Argument). A function f : {0,1}∗→{0,1}∗ admits a rational
argument with security parameter κ : N→ N if there exists a protocol (P,V ) and a
randomized reward function reward : {0,1}∗→ R≥0 such that for any input x ∈ {0,1}∗
and any prover P∗ of size ≤ poly(2κ(|x|)) the following hold:



(a) Pr[output((P,V )(x)) = f (x)] = 1.

(b) There exists a negligible function ε(·) such that E[reward((P,V )(x))] + ε (|x|) ≥
E[reward((P∗,V )(x))].

(c) If there exists a polynomial p(·) such that Pr[output((P∗,V )(x)) 6= f (x)]≥ p(|x|)−1

then there exists a polynomial q(·) such that E[reward((P∗,V )(x))] + q(|x|)−1 ≤
E[reward((P,V )(x))].

The expectations and the probabilities are taken over the random coins of the respective
prover and verifier. We say that the rational argument is efficient if the running time of V
is o(|x|) for every x ∈ {0,1}∗.

3 Rational Sumcheck Protocols

Sumcheck protocols are an important building block in many classical interactive proofs.
In particular, they play a crucial role in the IP = PSPACE theorem [22,28]. Informally, a
sumcheck protocol allows a verifier to efficiently check that a summation of evaluations
of a polynomial of low degree on a given set of points is equal to a certain value (e.g.
zero). In this section we show how to construct a rational sumcheck protocol that is
sound (against a rational prover) even when applied on a polynomial of high degree. An
important property of rational proofs is the reward gap, that captures the minimal loss in
reward of the prover that always misreports the value of the function (formal definitions
of rational proofs and reward gap are provided in Section 2). All of our rational proofs
achieve noticeable reward gap.

Before describing our rational sumchecks, we show how to solve a simpler related
problem: the verifier is given a bound M and n integers x1, . . . ,xn ∈ {0, . . . ,M−1}, the
verifier’s goal is to learn the sum of x1, . . . ,xn. In the even more restricted case when
x1, . . . ,xn are bits (i.e., M = 2), one could solve this binary counting problem using an
analogue of the rational proof of Azar and Micali [2]. In particular, the verifier can use
a strictly proper scoring rule (e.g. the Brier’s score [7]) to reward the quality of the
prover’s answer y = ∑

n
i=1 xi as a prediction of the binary random variable b defined by

outputting a uniformly random xi. The intuition behind such protocol is that the Boolean
random variable b encodes the information about the number of ones within x1, . . . ,xn;
specifically, the probability of b = 1 is exactly the number of ones divided by n. Since
the reward is defined according to a strictly proper scoring rule, a rational prover will
uniquely maximize its expected reward by reporting the correct y = ∑

n
i=1 xi (it describes

the true distribution of b) as long as it is possible to efficiently sample b.
When M > 2, the mean of the random variable defined by outputting a uniformly

random xi still encodes the sum of x1, . . . ,xn. However, b is not necessarily Boolean
and, unlike in the case when x1 . . . ,xn are bits, the problem can no longer be solved by
the protocol of Azar and Micali [2]. In order to use the Brier’s score, it is necessary to
appropriately modify the procedure of sampling b. Our more general protocol is given in
Figure 1. The verifier picks a random i from {1, . . . ,n}, and sets b = 1 with probability
xi/M and otherwise sets b = 0. After this normalization the probability of b = 1 is
∑

n
i=1 xi/(nM) which still encodes the sum of x1, . . . ,xn, and since b is a Boolean variable

it is possible to use the same reward function to incentivize any rational prover to report



On common input x1, . . . ,xn ∈ {0, . . . ,M−1}:

1. The prover sends integer y = ∑
n
i=1 xi to the verifier.

2. The verifier samples i from {1, . . . ,n}, it sets b = 1 with probability xi
M (otherwise it sets

b = 0) and outputs the reward for the prover in the following way

R(y) =


2
( y

nM
)
−
( y

nM
)2−

(
1− y

nM
)2

+1, if b = 1,

2
(
1− y

nM
)
−
( y

nM
)2−

(
1− y

nM
)2

+1, if b = 0.

Fig. 1. Rational proof for summation of n non-negative integers.

correct description of b. Therefore, the protocol in Figure 1 is a non-interactive rational
proof for the simplified problem of summation of n bounded non-negative values.

Lemma 1 (Rational Proof for Summation). For any integer M≥ 2, let f (x1, . . . ,xn) =

∑
n
i=1 xi be the function that computes the sum of any n-tuple of integers x1, . . . ,xn ∈
{0, . . . ,M−1}. Then f ∈ FRMA [1, log(nM),O(polylog(nM))] with reward gap at least

1
(nM)2 .

Proof. Consider the protocol in Figure 1. The expected reward when prover sends y is

E[R(y)] =−2
(

y
nM
− ∑

n
i=1 xi

nM

)2

+2
(

∑
n
i=1 xi

nM

)2

−2
(

∑
n
i=1 xi

nM

)
+2 ,

therefore the expected reward of the prover is uniquely maximized when y = ∑
n
i=1 xi.

For any integer y∗ 6= ∑
n
i=1 xi,

E [R(∑n
i=1 xi)]−E[R(y∗)] = 2

(
y∗

nM
− ∑

n
i=1 xi

nM

)2

≥ 2

(nM)2 ,

where the equality holds when y∗ = ∑
n
i=1 xi ± 1. The reward function has maximal

value 2, hence the (normalized) reward gap is 1
(nM)2 . Because y = ∑

n
i=1 xi ≤ nM, y can

be represented using log(nM) bits which upper bounds the total communication. The
verifier only needs to access a single xi where i is chosen uniformly and randomly
from {1, . . . ,n}. After accessing to xi, the computation of the reward can be done in
O(polylog(nM)) time.

Note that for any polynomially bounded M, the protocol in Figure 1 achieves sublin-
ear verification (the verifier only needs to access a single value) and noticeable reward
gap. Moreover, based on the protocol in Figure 1, we can construct an efficient rational
proof for any problem which can be reduced to summation of several bounded values.
For example, we immediately obtain a rational proof for addition of n elements over a
finite field Zp of prime characteristic p. Given x1, . . . ,xn ∈ Zp:

1. The prover sends to the verifier the sum s = ∑
n
i=1 xi over Z (i.e., without performing

the modulo operation) together with y = (s mod p), where s serves as the proof of
correctness of y.



On common input x1, . . . ,xn ∈ Fpm :

1. The prover sends to the verifier a vector (y1, . . . ,ym) ∈ Zm
p corresponding to y = ∑

n
i=1 xi ∈

Fpm and a vector s = (s1, . . . ,sm) such that s j = ∑
n
i=1 x j

i for all j ∈ {1, . . . ,m}.
2. The verifier checks if y j = (s j mod p) for all j ∈ {1, . . . ,m}. If not the verifier pays 0,

and otherwise the verifier samples j ∈ {1, . . . ,m} and i ∈ {1, . . . ,n}, it sets b = 1 with

probability x j
i
p and computes the reward for the prover as

R(s j) =


2
(

s j

np

)
−
(

s j

np

)2
−
(

1− s j

np

)2
+1, if b = 1,

2
(

1− s j

np

)
−
(

s j

np

)2
−
(

1− s j

np

)2
+1, if b = 0.

Fig. 2. Rational proof for summation of n elements over a finite field.

2. If y 6= (s mod p) then the verifier pays reward 0, and otherwise the verifier computes
the reward for s as in the rational proof for summation of x1, . . . ,xn with M = p (as
described in Figure 1).

To deal with general summation over a finite field Fq of prime power character-
istic q = pm, we leverage the fact that the additive group of Fpm is isomorphic to
(Zp,+ mod p)

m, where + mod p denotes addition over Zp. Thus, we can work with the
representation of elements in Fpm as vectors over Zm

p , i.e., we represent any x ∈ Fpm

as (x1, . . . ,xm) ∈ Zm
p . This allows us to get a rational proof for the function ∑

n
i=1 xi that

computes the sum of any n-tuple of elements x1, . . . ,xn ∈ Fpm over Fpm simply by ap-
plying the rational protocol for summation over Zp on a randomly chosen coordinate of
the vector representation (y1, . . . ,ym) ∈ Zm

p of the output y ∈ Fpm declared by the prover.
The protocol is given in Figure 2.

Corollary 1 (Rational Proof for Addition over Finite Fields). For any integer m ≥
1 and any prime p ∈ N. Let f (x1, . . . ,xn) = ∑

n
i=1 xi be the function that computes

the sum of any n-tuple of elements x1, . . . ,xn ∈ Fpm over the field Fpm . Then f ∈
FRMA [1, log(npm),O(m ·polylog(np))] with reward gap at least 1

m(np)2 .

Proof. Consider the protocol in Figure 2. Let y and s denote the vectors sent by the
prover when he tells the truth. It is easy to check the expected reward of the prover is
maximized at y,s. When prover answers ỹ 6= y and s̃, if ỹ 6= (s̃ mod pm) then the prover
gets reward 0, otherwise s and s̃ must differ in at least one entry and the expected reward
of the prover is

E j[R(s̃ j)] = E j

[
−2
(

s̃ j

np
− s j

np

)2

+2
(

s j

np

)2

−2
(

s j

np

)
+2

]

≤ E j

[
2
(

s j

np

)2

−2
(

s j

np

)
+2

]
− 2

m(np)2 .

Note the reward function has maximal value 2 therefore the reward gap is at least
1

m(np)2 .



Note that a sumcheck protocol is used to verify a sum of evaluations of a polynomial
on a given set of points. Corollary 1 immediatelly gives rise to a non-interactive rational
sumcheck protocol, where the verifier needs to evaluate the polynomial on a single point
from the subset.

Corollary 2 (Rational Sumcheck Protocol). For any finite field F and integer m≥ 1.
Let S ⊆ Fm be a non-empty subset of Fm. Let ∑z∈S f (z) be the function that sums
evaluations of a given polynomial f : Fm → F (of arbitrary degree) on S. Then f ∈
FRMA[1, log(|S||F|),O(t +polylog(|S||F|))], where t is the time it takes to evaluate f
on any z ∈ Fm. The rational proof has reward gap at least 1/(log(|F|) · (|S||F|)2).

Proof. Using the protocol in Figure 2 with field F and setting n = |S|, we obtain a
rational proof for ∑z∈S f (z) with reward gap 1

log(|F|)·(|S||F|)2 , verification time O(t +

polylog(|S||F|)), and communication log(|S||F|) bits.

4 Composition of Classical and Rational Interactive Proofs

In this section we investigate on the possibility of composition of classical interactive
proofs with rational interactive proofs. In particular, we show a composition theorem for
replacing oracle calls in a certain type of classical interactive proofs by a rational proof
implementing the oracle. The composition is presented for both interactive proofs and
δ -no-signaling multi-prover interactive proofs (for formal definition see Definition 3 in
Section 2) resulting in their respective rational counterparts. The obtained rational proof
has minimal loss in the reward gap that is proportional to the soundness of the classical
interactive proof.

4.1 Substituting Oracle by Rational Proof in Interactive Proof

Let f : {0,1}∗ → {0,1}∗ be a function implicitly defining language L f = {(x,y)|y =
f (x)}. Let πg = (Pπ ,V

g
π ) be an interactive proof for L f where the verifier has oracle

access to function g : {0,1}∗→{0,1}∗. Let ϕ = (Pϕ ,Vϕ) be a rational interactive proof
for g with reward function rewardϕ . We denote by πϕ = (P,V ) with a reward function R
the protocol between the prover P and verifier V given in Figure 3. We define the reward
in the resulting protocol as the average of the rewards obtained for each rational proof
implementing an oracle query, though we note that this is not crucial for our results. The
new reward function can be defined in other natural ways depending on the application.

We concentrate on a class of query independent interactive proofs in which the
queries to the oracle can depend only on the input and the randomness of the verifier.
Aditionally, once a query is submitted to the oracle the prover also recives the query.

Definition 6 (Query Independent Interactive Proofs). Let f : {0,1}∗→{0,1}∗ be a
function and let πg = (Pπ ,V

g
π ) be an interactive proof for L f = {(x,y)|y = f (x)} with V g

π

having oracle access to some function g : {0,1}∗→{0,1}∗. We say that πg is a query
independent interactive proof if for any input x the following holds:

1. Only one query is issued by V g
π to g and it depends only on the input x and on the

randomness of V g
π .



On common input x:

1. The prover P sends y = f (x) to the verifier.
2. The prover and the verifier initiate the interactive protocol πg with Pπ proving that

(x,y) ∈ L f .
3. Whenever V g

π would issue a query q to g, the verifier V sends q to the prover P and they
run ϕ on input q. P answers the query of V g

π using the output of Pϕ and continues with
simulating πg.

4. After V g
π terminates, V outputs (y,R(τ)), where τ is the transcript of communication

between P and V and R is computed as:

R(τ) =


R(τφ ) if V g

π on τ accepts

0 otherwise.

where τφ is the transcript corresponding to executions of ϕ in πϕ and R(τφ ) is the
average of rewards computed by applying rewardϕ to the transcript of each execution of
ϕ separately.

Fig. 3. Rational proof πϕ = (P,V ) resulting from interactive proof πg = (Pπ ,V
g
π ) with oracle calls

to g substituted by a rational proof ϕ = (Pϕ ,Vϕ ).

2. The query issued by V g
π is send to Pπ in the next round.

Theorem 1 (Oracle Substitution in IP). Let f : {0,1}∗→ {0,1}∗ be a function and
let πg = (Pπ ,V

g
π ) be a query independent interactive proof for L f = {(x,y)|y = f (x)}

with V g
π having oracle access to some function g : {0,1}∗→ {0,1}∗. If πg has perfect

completeness and soundness s then for any rational interactive proof ϕ = (Pϕ ,Vϕ) for
g with reward gap ∆ , the composed protocol πϕ = (P,V ) is a rational proof for f with
reward gap ∆(1− s).

Proof. The reward in the rational protocol πϕ (defined in Figure 3) is equal to the reward
in the rational proof ϕ for evaluating the oracle query if the verifier accepts and zero
otherwise. In order to show that πϕ is a rational proof with the claimed reward gap, we
show that for every x the expectation of any prover P∗ that reports y′ 6= f (x) (i.e., (x,y′)
is not in L f ) can be bound. To simplify the notation, we define three events that might
happen during the execution of the protocol πϕ :

– E0 corresponds to the event when V g
π (simulated by V ) accepts and P∗ supplies a

correct answer to the oracle query q (i.e., (P∗,V g
π )(x) = 1∧ output(P∗,Vϕ)(q) =

g(q)).
– E1 corresponds to the event when V g

π (simulated by V ) accepts and P∗ supplies an
incorrect answer to the oracle query q (i.e., (P∗,V g

π )(x) = 1∧output(P∗,Vϕ)(q) 6=
g(q)).

– E2 corresponds to the event when V g
π (simulated by V ) rejects.

We can express the expectation of P∗ as

E[reward(P∗,V )(x)] = Pr[E0] ·E[reward(P∗,V )(x)|E0]

+Pr[E1] ·E[reward(P∗,V )(x)|E1]+Pr[E2] ·E[reward(P∗,V )(x)|E2] .



Since the expected reward is zero in case of event E2 (the verifier V g
π rejects), the above

is equal to

Pr[E0] ·E[reward(P∗,V )(x)|E0]+Pr[E1] ·E[reward(P∗,V )(x)|E1] .

We can bound Pr[E1] by 1−Pr[E0], so

E[reward(P∗,V )(x)]≤ Pr[E0]·E[reward(P∗,V )(x)|E0]

+ (1−Pr[E0]) ·E[reward(P∗,V )(x)|E1] .

We use the following two claims to conclude the proof.

Claim 1. Pr[E0]≤ s.

Proof (of Claim 1). The interactive protocol with oracle access (Pπ ,V
g
π ) is query inde-

pendent in the sense of Definition 6, hence the prover in the composed protocol πϕ

does not gain any additional information from the verifier’s query to the oracle for g.
It follows that in the case when the prover P∗ supplies a correct answer to the oracle
query the verifier accepts at most with the same probability as in the interactive proof
with an oracle access, and the claim follows from the soundness of the interactive proof
(Pπ ,V

g
π ). �

Claim 2. E[reward(P∗,V )(x)|E1]≤ Eq[reward(Pϕ ,Vϕ)(q)]−∆ .

Proof (of Claim 2). Assume that the claim does not hold, then the prover P∗ achieves
for some q a higher reward than E[reward(Pϕ ,Vϕ)(q)]−∆ . P∗ can be used in the ra-
tional proof (Pϕ ,Vϕ) for evaluating the oracle in order to achieve a higher reward than
what is guaranteed by the reward gap of (Pϕ ,Vϕ), since the oracle query is completely
independent of the transcript. �

We use Claim 2 to bound the expectation as:

E[reward(P∗,V )(x)]≤ Pr[E0]·E[reward(P∗,V )(x)|E0]

+ (1−Pr[E0]) · (Eq[reward(Pϕ ,Vφ )(q)]−∆) .

Notice that the expectation when event E0 materializes is equal to Eq[reward(Pϕ ,Vφ )(q)],
and hence we can rewrite the right side of the above inequality:

E[reward(P∗,V )(x)]≤ Pr[E0]·Eq[reward(Pϕ ,Vφ )(q)]

+(1−Pr[E0]) · (Eq[reward(Pϕ ,Vφ )(q)]−∆) .

The distribution of oracle queries q is independent of the communication between
the prover and the verifier and we can merge the expressions on the right side of the
inequality.

E[reward(P∗,V )(x)]≤ Eq[reward(Pϕ ,Vϕ)(q)]− (1−Pr[E0]) ·∆ ,

Finally, by Claim 1:

E[reward(P∗,V )(x)]≤ Eq[reward(Pϕ ,Vϕ)(q)]− (1− s) ·∆ .

By observing that for all x it holds that Eq[reward(Pϕ ,Vϕ)(q)] = E[reward(P,V )(x)]
(since the distribution of queries produced by V is independent of x), we get the sought
after bound on the reward gap of the resulting rational proof.



On common input x:

1. The prover P1 sends y = f (x) to the verifier V .
2. The verifier V simulates the verifier V g

π on input (x,y) to obtain k queries q for
−→
Pπ and

sends them to k provers in
−→
P (one query to each prover). The k provers answer their

queries q using the corresponding outputs of
−→
Pπ .

3. For every query q∗ that V g
π issues to g, the verifier V simulates the verifier Vϕ on input

q∗ to obtain k′ queries ω(q∗) for
−→
Pϕ and sends them to a new set of k′ provers in

−→
P (one

query to each prover). The k′ provers answer their queries ω(q∗) using the corresponding
outputs of

−→
Pϕ .

4. After V receives answers to all the queries from
−→
P , the verifier V outputs (y,R(τ)), where

τ is the transcript of communication between
−→
P and V and R is computed as:

R(τ) =


R(τϕ ) if V g

π on τ accepts

0 otherwise.

where τϕ is the transcript corresponding to executions of ϕ within πϕ and R(τϕ ) is the
average of rewards computed by applying the reward function rewardϕ to the transcript
of each execution of ϕ separately.

Fig. 4. Rational multi-prover proof πϕ = (
−→
P ,V ) resulting from multi-prover proof πg = (

−→
Pπ ,V

g
π )

with oracle calls to g substituted by a (multi-prover) rational proof ϕ = (
−→
Pϕ ,Vϕ ) for evaluating g.

4.2 Substituting Oracle by Rational Multi-Prover Proof in Multi-Prover Proof

The composition theorem holds for oracle substitution also in the setting of δ -no-
signaling multi-prover proofs. Given a k-prover interactive proof πg = (

−→
Pπ ,V

g
π ) for

function f with an oracle access to a function g and a “rational” k′-prover implementation
ϕ = (

−→
Pϕ ,Vϕ) of the function g, a new rational protocol πϕ = (

−→
P ,V ) with (k+k′) provers

can be obtained by executing the rational protocol ϕ instead of the oracle call with a new
set of k′ provers, as defined in Figure 4. We define the reward in the resulting protocol
analogously to the single prover setting and take the average of the rewards.

Similarly to the previous setting we require the oracle queries to depend only on
the input and the randomness of the verifier and the queries to the provers to be in-
dependent of the answers of the oracle. Definition 6 of query independent interactive
proofs naturally extends to multi-prover interactive proofs and we refer to multi-prover
interactive proofs with this analogous property as query independent. Note that item 1
in Definition 6 is no longer required since we only deal with no-signaling strategies. In
order to enable submission of all queries at once in the composed protocol, we must
require independence of the queries to the provers from the oracle answers.

Definition 7 (Query Independent Multi-Prover Proofs). Let f : {0,1}∗→{0,1}∗ be
a function and let πg = (

−→
Pπ ,V

g
π ) be a multi-prover proof for L f = {(x,y)|y = f (x)} with

V g
π having oracle access to some function g : {0,1}∗→{0,1}∗. We say that πg is a query

independent multi-prover proof if for any input x the following holds:

1. Only a single query q is issued by V g
π to g and it depends only on the input x and on

the randomness of V g
π .



2. The queries of V g
π to
−→
Pπ are independent of the oracle answer to the query q.

We show that the composition theorem holds also for oracle substitution in the setting
of query independent multi-prover proofs. Note that our composition theorem shows
that when dealing with δ -no-signaling strategies, a loss in the reward gap proportional
to δ is incurred in the resulting composed protocol.

Theorem 2 (Oracle Substitution in MIP). Let f : {0,1}∗ → {0,1}∗ be a function
and let πg = (

−→
Pπ ,V

g
π ) be a query independent k-prover MIP for L f = {(x,y)|y = f (x)}

with V g
π having oracle access to some function g : {0,1}∗→ {0,1}∗. If πg has perfect

completeness and soundness s against δ -statistically no-signaling strategies then for any
rational k′-prover RMIP ϕ = (

−→
Pϕ ,Vϕ) for evaluating g with reward gap ∆ in presence of

δ ′-statistically no-signaling strategies, the composed protocol πϕ = (
−→
P ,V ) is a (k+k′)-

prover RMIP for evaluating f with reward gap ∆(1− s−δ ′′) against δ ′′-no-signaling
strategies, where δ ′′ = min{δ ,δ ′}.

Proof. The reward in the rational protocol πϕ (defined in Figure 4) is equal to the reward
in the rational proof ϕ for evaluating the oracle query if the verifier accepts and zero
otherwise. In order to show that πϕ is a multi-prover rational proof for evaluating f with
the claimed reward gap, we show that for every x the expectation of any set of provers

−→
P∗

that report y′ 6= f (x) (i.e., (x,y′) is not in L f ) can be bounded. To simplify the notation,
we define three events that might happen during the course of the protocol πϕ :

– E0 corresponds to the event when V g
π (simulated by V ) accepts and

−→
P∗ supply a

correct answer to the oracle query q∗ (i.e., (
−→
P∗,V g

π )(x) = 1∧output(
−→
P∗,Vϕ)(q∗) =

g(q∗)).
– E1 corresponds to the event when V g

π (simulated by V ) accepts and
−→
P∗ supply an

incorrect answer to the oracle query q∗ (i.e., (
−→
P∗,V g

π )(x) = 1∧output(
−→
P∗,Vϕ)(q∗) 6=

g(q∗)).
– E2 corresponds to the event when V g

π (simulated by V ) rejects.

We can express the expectation of
−→
P∗,

E[reward(
−→
P∗,V )(x)] = Pr[E0] ·E[reward(

−→
P∗,V )(x)|E0]

+Pr[E1] ·E[reward(
−→
P∗,V )(x)|E1]+Pr[E2] ·E[reward(

−→
P∗,V )(x)|E2] .

Since the expected reward in case of event E2 is zero, the above is equal to

Pr[E0] ·E[reward(
−→
P∗,V )(x)|E0]+Pr[E1] ·E[reward(

−→
P∗,V )(x)|E1] .

We can bound the Pr[E1] by 1−Pr[E0], so

E[reward(
−→
P∗,V )(x)]≤ Pr[E0]·E[reward(

−→
P∗,V )(x)|E0]

+ (1−Pr[E0]) ·E[reward(
−→
P∗,V )(x)|E1] .

We use the two following claims to complete the proof.



Claim 3. Pr[E0]≤ s+δ ′′.

Proof (of Claim 3). For any q∗, an oracle query of V g
π , define ω(q∗) to be the queries to

−→
Pϕ generated by Vϕ on input q∗. Let A= {Aq,ω(q∗)} denote the δ ′′-no-signaling family of

distributions, where Aq,ω(q∗) is the distribution of answers of
−→
P∗ given queries (q,ω(q∗)).

We fix an arbitrary set of queries w of Vϕ to
−→
Pϕ and consider the family of distributions

B= {Bq}, where Bq is defined by sampling uniformly and randomly (a,z)← Aq,w and
outputting a.

First, we show that B is δ -no-signaling. Let S be an arbitrary subset of [k] and q,q′
be two arbitrary queries such that qS = q′S. Since the projections of Aq,w and Aq′,w on
the coordinates in S are δ ′′-close (by the fact that A is δ ′′-no-signaling), the statistical
distance between Bq and Bq′ when projected on S is

1
2 ∑

β

∣∣∣∣∣ Pr
a←Bq

[aS = β ]− Pr
a′←Bq′

[a′S = β ]

∣∣∣∣∣= 1
2 ∑

β

∣∣∣∣∣ Pr
a←Aq,w

[aS = β ]− Pr
a′←Aq′,w

[a′S = β ]

∣∣∣∣∣
≤ δ

′′

≤ δ ,

where the last inequality follows from δ ′′ being defined as min{δ ,δ ′}. Hence, B is
δ -no-signaling.

Let
−→
P∗π be the set of provers in πg that follow the δ -no-signaling strategies B. By the

soundness of πg in the presence of δ -no-signaling strategies, Pr[(
−→
P∗π ,V

g
π )(x) = 1] ≤ s.

Assume that the claim does not hold, then

δ
′′ < Pr[E0]−Pr[(

−→
P∗π ,V

g
π )(x) = 1]

= Pr
(a,z)←Aq,ω(q∗)

[V g
π (x,a,z1) = 1∧ z1 = g(q∗)]− Pr

(a,z)←Aq,w
[V g

π (x,a,g(q∗)) = 1]

A contradiction to A being δ ′′-no-signaling. �

Claim 4. For all x it holds that E[reward(
−→
P∗,V )(x)|E1]≤ Eq∗ [reward(

−→
Pϕ ,Vϕ)(q∗)]−∆ .

Proof (of Claim 4). Assume that the claim does not hold. By an averaging argument
over the randomness of the verifier V for generating queries to the provers

−→
P , there

exists an x and a fixed choice of randomness for generating the queries such that

E[reward(
−→
P∗,V )(x)|E1,(q,ω(q∗))]> E[reward(

−→
Pϕ ,Vϕ)(q∗)]−∆ ,

where q and q∗ are fixed. Let Aq,ω(q∗) denote the δ ′′-no-signaling distribution of answers

of
−→
P∗ to the queries (q,ω(q∗)). Consider the family of distributions B= {Bω(q∗)}, where

Bω(q∗) is defined by sampling uniformly and randomly (a,z)← Aq,ω(q∗) and outputting
z.

First, we show that B is δ ′-no-signaling. Let S be an arbitrary subset of [k′] and w,w′
be two sets of queries such that wS = w′S. Since the projections of Aq,w and Aq,w′ on the



coordinates S′ = {k+ i : i ∈ S} are δ ′′-close, the statistical distance between Bw and Bw′

is

1
2 ∑

β

∣∣∣∣ Pr
z←Bw

[zS = β ]− Pr
z′←Bw′

[z′S = β ]

∣∣∣∣= 1
2 ∑

β

∣∣∣∣∣ Pr
z←Aq,w

[zS = β ]− Pr
z′←Aq,w′

[z′S = β ]

∣∣∣∣∣
≤ δ

′′

≤ δ
′ .

Where the last inequality follows from δ ′′ being defined as min{δ ,δ ′}, and hence B is
δ ′-no-signaling.

Let
−→
P∗ϕ behave according to B, then on input q∗,

E[reward(
−→
P∗ϕ ,Vϕ)(q∗)] = E[reward(

−→
P∗,V )(x)|E1,(q,ω(q∗))]

> E[reward(
−→
Pϕ ,Vϕ)(q∗)]−∆ .

Therefore,
−→
P∗ϕ is a set of δ ′-no-signaling provers that break the reward gap guarantee of

ϕ , a contradiction. �

We use Claim 4 to bound the expectation as:

E[reward(
−→
P∗,V )(x)]≤ Pr[E0]·E[reward(

−→
P∗,V )(x)|E0]

+ (1−Pr[E0]) · (Eq∗ [reward(
−→
Pϕ ,Vϕ)(q∗)]−∆) .

Notice that due to the query independence of the protocol πg the expectation when event
E0 materializes is equal to Eq∗ [reward(

−→
Pϕ ,Vϕ)(q∗)]. Hence, we can rewrite the right side

of the above inequality as

Pr[E0] ·Eq∗ [reward(
−→
Pϕ ,Vϕ)(q∗)]+(1−Pr[E0]) · (Eq∗ [reward(

−→
Pϕ ,Vϕ)(q∗)]−∆)

= Eq∗ [reward(
−→
Pϕ ,Vϕ)(q∗)]− (1−Pr[E0]) ·∆ .

Finally, by Claim 3:

Eq∗ [reward(
−→
P∗,V )(q∗)]≤ Eq∗ [reward(

−→
Pϕ ,Vϕ)(q∗)]− (1− s−δ

′′) ·∆ .

Therefore, we get the sought after bound on the reward gap of the multi-prover rational
proof πϕ resulting from the composition of πg and ϕ .

5 Rational Delegation for NC

The work of Guo et al. [15] showed how to efficiently delegate computation performed
by low-depth circuits in the rational setting, and in particular constructed a rational proof
with noticeable reward gap for any language in NC1. However, the reward gap in their
construction is proportional to the depth of the evaluated circuit (the reward is scaled
proportionally to the depth) and this prevents to use their rational proof with meaningful
(noticeable) reward gap beyond the class NC1. In this section we give a rational proof
with sublinear verification time for any function computable by log-space uniform NC
by composing the rational sumcheck protocol from Section 3 with the classical protocol
of Goldwasser et al. [14].



5.1 The Protocol of Goldwasser, Kalai and Rothblum [14]

In their work Goldwasser, Kalai and Rothblum [14] gave a protocol that allows to
delegate computation of any function computable by log-space uniform circuits via an
interactive proof with a polynomial prover and a quasi-linear verifier. In particular, they
showed the following theorem:

Theorem 3 (Theorem 1.1.1. in [26]). Let L be a language computable by a family of
O(log(S(n)))-space uniform boolean circuits of size S(n) and depth d(n). L has an
interactive proof where:

1. The prover runs in time poly(S(n)). The verifier runs in time n ·poly(d(n), log(S(n)))
and space O(log(S(n))). Moreover, if the verifier is given oracle access to the low
degree extension of its input, then its running time is only poly(d(n), log(S(n))).

2. The protocol has perfect completeness and soundness 1/2.
3. The protocol is public-coin, with communication complexity d(n) ·polylog(S(n)).
4. Each message of the prover depends only on O(log(n)) random bits sent by the

verifier.

Their interactive proof builds on arithmetization techniques and employs efficient
sumcheck protocols in order to establish correctness of the output. The sumcheck is
run on multivariate polynomials of low degree that encode the values of intermediate
layers of computation to allow the verifier to efficiently check consistency of the prover’s
answers.

Let w = (w1, . . . ,wk) be k bits. The vector w defines a function W : {1, . . . ,k} →
{0,1} such that W (i) = wi for all i ∈ {1, . . . ,n}. Let H be an extension field of GF[2], m
be an integer such that k ≤ |H|m, and let F be an extension field of H. The low degree
extension of w is the unique m-variate polynomial W̃ : Fm→ F of degree at most |H|−1
in each variable that agrees with W on Hm. It is a useful fact that the low degree extension
can be expressed as sum over Hm, where each term is efficiently computable (for the
details see Appendix A).

Here we provide a high-level overview of the protocol (for the full exposition see
e.g. [26]):

1. The prover P evaluates the circuit C on input x received from the verifier V , and
computes a low degree extension W̃i for every layer i of the circuit C.

2. For 1≤ i≤ d, in each phase i the prover initiates an interactive sumcheck protocol
to convince the verifier that W̃i−1(zi−1) = ri−1. In the first phase z0 = (0, . . . ,0) and
r0 = (C(x),0, . . . ,0). To complete the i-th sumcheck protocol the verifier would
need to evaluate W̃i on two random points ω1,ω2, but to avoid the related computa-
tional burden this task is reduced to another sumcheck performed in phase i+1. In
particular, the prover and the verifier run an interactive procedure using ω1,ω2, the
verifier picks a random zi and the prover reports a corresponding value ri = W̃i(zi).
The protocol proceeds to phase i+1.

3. In phase d +1 the verifier evaluates the low degree extension W̃d (of the input x) on
the random point zd and checks that it is equal to rd reported by the prover. This
is the final phase and the only point at which the verifier evaluates a low degree
extension.



The running time of the verifier in the first d phases is poly(d(n), log(S(n))), and it is
the evaluation of the low degree extension of the input in the last step that induces the
overall quasi-linear overhead of n ·poly(d(n), log(S(n))) for the verifier. Hence, given
oracle access to the low degree extension of the input the verification can be performed
in sublinear time. Moreover, the protocol of Goldwasser et al. [14] is query independent
in the sense of Definition 6, i.e., after receiving the answer to its query the verifier can
send the query (the random point zd) to the prover and the soundness is preserved. This
allows us to use our composition framework from Section 4 in order to substitute the
oracle call with our rational sumcheck protocol.

Substituting the Low Degree Extension Oracle with a Rational Proof First, we
show that our rational sumcheck protocol from Section 3 can evaluate an arbitrary low
degree extension.

Proposition 1 (Rational Protocol for Evaluating Low Degree Extension). The low
degree extension W̃ : Fm → F of (w1, . . . ,wk) ∈ {0,1}k admits a rational proof with
verification time poly(|H|,m), assuming oracle access to (w1, . . . ,wk), with reward gap
1/4(log |F|)|Hm|2.

Proof. By Proposition 2 (given in Appendix A), for any z ∈ Fm, W̃ (z) is a summation
of |H|m terms of the form ∑p∈Hm β̃ (z, p) ·W (p), where the addition is over F and F
is a extension field of GF[2]. Moreover, for every (z, p), β̃ (z, p) can be computed
in time poly(|H|,m), therefore β̃ (z, p) ·W (p) can be computed in time poly(|H|,m).
By Corollary 2, W̃ (z) admits rational proof with reward gap 1/(log |F|)(2|Hm|)2 =
1/4(log |F|)|Hm|2 and verification time poly(|H|,m).

Finally, we use the above efficient rational proof in the protocol of Goldwasser et
al. [14] to allow the verifier to avoid reading the whole input when evaluating the low
degree extension of the input.

Theorem 4 (Rational Interactive Proof for NC). For any function f : {0,1}∗→{0,1},
if L f = {(x,y)|y = f (x)} is computable by a family of O(log(S(n)))-space uniform
Boolean circuits of size S(n) and depth d(n) = O(polylog(n)) then f ∈ FRMA[d(n) ·
polylog(n),d(n) · polylog(S(n)),poly(d(n), log(S(n)))] with a public-coin rational in-
teractive proof with a noticeable reward gap, where the prover runs in time poly(S(n))
and the verifier runs in space O(log(S(n))).

Proof. For f ∈ NC, we let πg = (Pπ ,V
g
π ) be the interactive proof for L f = {(x,y)|y =

f (x)} defined in Theorem 3 where g is the low degree extension of x with |F| =
poly(n,d) and |Hm| = poly(n), the soundness is 1/2 and the completeness is 1. Let
ϕ = (Pϕ ,Vϕ) be the rational proof for g as defined in Proposition 1 with reward gap
∆ = 1/(4log |F |)(|H|2m). Note that V g

π only issues a single query and for all x the
communication between Pπ and V g

π is independent of (q,g(q)). By Theorem 1, πϕ is a
rational proof for f with regard gap ∆(1− s) = ∆/2 = 1/poly(n).

The running time of the prover or verifier is at most the sum of the running time
of Pπ in Theorem 3 and the running time of Pϕ . The total running time is poly(S(n)).
The verifier runs in at most V g

π and the running time of Vϕ . Therefore the running
time of verifier is upper bounded by poly(d(n), log(S(n))). The total communication



is the communication of ϕ and the communication of π which is upper bounded by
d(n) ·poly(S(n)).

5.2 Single-Round Rational Arguments for NC

Guo et al. [15] gave an efficient transformation from any rational proof with noticeable
reward gap to single-round rational argument. The transformation uses an efficient
Private Information Retrieval (PIR) scheme (for formal definition see the full version) in
order to submit all the round queries to the prover at once.

Theorem 5 (Theorem 6 in [15]). Let f : {0,1}n→{0,1} be a function in FRMA [r,C,T ].
Assume the existence of a PIR scheme with communication complexity poly(κ) and re-
ceiver work poly(κ), where κ ≥ max{C(n), logn} is the security parameter. If f has
an admissible rational proof with noticeable reward gap ∆ , then f admits single-round
rational argument which has the following properties:

(a) The verifier runs in time C(n) ·poly(κ)+O(T (n)).
(b) The communication complexity is r ·poly(κ,λ ) where λ is the longest message sent

by the prover.

By applying the above transformation of Guo et al. [15] on the rational interactive
proofs in Theorem 4, we obtain single-round rational arguments for NC with sublinear
verification.

Corollary 3 (Rational Argument for NC). Let f : {0,1}n→{0,1} be a function com-
putable by log-space uniform NC of size S(n)= poly(n) and depth d(n)=O(polylog(n)).
Assume the existence of a PIR scheme with communication complexity poly(κ) and re-
ceiver work poly(κ), where κ ≥ d(n) ·polylog(S(n)) is the security parameter. Then f
admits single-round efficient rational argument which has the following properties:

1. The verifier runs in poly(κ,d(n), log(S(n))) and the prover runs in poly(κ,S(n)).

2. The length of the prover’s message and the verifier’s challenge is d(n)·poly(κ, log(S(n))).
The verifier’s challenge depends only on his random coins and is independent of the
input x.

6 Rational Delegation for P

Recently, Kalai, Raz and Rothblum [18] gave a single-round delegation scheme for
every language computable in time t(n), where the running time of the verifier is
n · polylog(t(n)). For languages in P where t(n) = poly(n), the verification time is
O(n ·polylog(n)). The efficiency bottleneck for achieving sublinear verification for P in
Kalai et al. [18] (similarly to the protocol for NC of Goldwasser et al. [14]) is that the
verifier needs to evaluate a low degree extension of the input which takes quasi-linear
time. We show that it is possible to improve the verification time to be sublinear in the
rational setting.



6.1 The Protocol of Kalai, Raz and Rothblum [18]

Recently, Kalai et al. [18] gave an MIP secure against no-signaling provers for any
deterministic computation.

Theorem 6 (Theorem 4 in [18]). Suppose that L ∈ DTIME(t(n)), where t = t(n) sat-
isfies poly(n) ≤ t ≤ exp(n). Then, for any integer (log t)c ≤ k ≤ poly(n), where c is
some (sufficiently large) universal constant, there exists an MIP for L with k ·polylog(t)
provers where:

1. The verifier runs in time n · k2 · polylog(t) and the provers run in time poly(t,k).
Moreover, if the verifier is given oracle access to the low degree extension of its
input, then its running time is only t ′ ·k2 ·polylog(t), where t ′ is the cost of the oracle
access.

2. The protocol has perfect completeness and soundness 2−k against 2−k·polylog(t)-no-
signaling strategies.

3. Each query and answer is of length k ·polylog(t).

Here we give a high level overview of the MIP construction of Kalai et al. [18]. It is
obtained in three steps:

1. No-signaling PCP with Oracle. They first construct a Probabilisticaly Checkable
Proof (PCP) with oracle access to a function which makes at most k queries and
is secure against no-signaling provers. The construction of the PCP is the most
technical part of their work and we refer to Kalai et al. [18] for the construction and
analysis of this PCP. The total number of oracle queries is at most k ·polylog(t) and
the running time of the verifier is k ·polylog(n).

2. No-signaling MIP with Oracle. Based on the PCP, they construct in a straightforward
way an MIP with kmax ≤ k ·polylog(t) provers secure against no-signaling strategies
given oracle access to the same function as for the PCP. In this MIP, the verifier
simulates the PCP verifier, and the i-th prover prepares the PCP proof and answers the
i-th query according to the PCP. The running time of the verifier is O(k ·polylog(t)).

3. No-signaling MIP without Oracle. In order to remove the oracle, they employ an
MIP for the oracle which is secure against no-signaling provers. They replace the
number of queries to the oracle one by one, each time reducing one query to the
oracle by letting the verifier run the MIP for the oracle with additional provers. At the
end, they obtain an MIP without oracle access which is secure against no-signaling
provers. To construct the MIP for the oracle, they observe that any interactive
proof gives rise to an MIP secure against no-signaling provers by sending the first
i messages to the i-th prover and letting the i-th prover answer the message in the
i-th round. Observed that the oracle is computable by linear space, we have IP for
this oracle so that we can obtain an MIP against no-signaling provers. The running
time of the verifier is k ·polylog(t)+n · k2 ·polylog(t). Moreover, if the verifier can
compute the low degree extension of the input in time t ′, then the running time can
be further improved into k ·polylog(n)+ t ′ · k2 ·polylog(t).

Note that for languages in P where t = poly(n), we can let k = polylog(t) so that
the verifier runs in time n · polylog(n). Moreover, the running time can be improved



to t ′ · polylog(n) when the verifier is given oracle access to evaluate the low degree
extension and t ′ is the cost of the oracle access. Therefore, the task of constructing
delegation scheme for P with sublinear verification can be reduced to constructing a
delegation scheme for low degree extension with sublinear verification.

6.2 No-Signaling Rational Multi-Prover Proofs for Deterministic Computations

In this section, we present our RMIPs for deterministic computations which are secure
against no-signaling provers. Recall from the previous section that the efficiency bot-
tleneck for achieving sublinear verification for P is that the evaluation of low degree
extension runs in quasi-linear time. To overcome the efficiency bottleneck we combine
the no-signaling MIP of Kalai et al. [18] with our sublinear rational proofs for evaluating
the low degree extension of the input (Proposition 1). Unlike the oracle simulation
mentioned in the third step of the work of Kalai et al. [18], we reduce all queries to the
low degree extension oracle at once and only increase the number of provers by 1. To
do this, we view the queries to the oracle as a single query consisting of many points
to a larger oracle that evaluates the low degree extension of inputs on all the points and
returns the answers at once.

For a function g : Fn→ F, we let gl : (Fn)l→ (F)l be the function that on any l-tuple
(x1, . . . ,xl) ∈ (Fn)l outputs (g(x1), . . . ,g(xl)). For a rational proof ϕ = (Vϕ ,Pϕ) for g
with input x ∈ Fn, we define another rational proof ϕ l = (V

ϕ l ,Pϕ l ) for gl with input
(x1, . . . ,xl) ∈ (Fn)l , where the verifier V

ϕ l simulates Vϕ on xi for all i ∈ {1, . . . , l} and
pays the average reward outputted by Vφ on the l inputs and P

ϕ l simulates Pϕ on xi for
all i ∈ {1, . . . , l}. It is easy to see that if g admits rational proof ϕ with reward gap ∆ ,
then gl admits a rational proof ϕ l with reward gap ∆/l.

Theorem 7. Suppose that f : {0,1}n→{0,1} is a function computable by deterministic
Turing machine in time t(n), where t = t(n) satisfies poly(n)≤ t ≤ exp(n). Then, for any
integer (log t)c ≤ k ≤ poly(n), where c is some (sufficiently large) universal constant,
there exists an RMIP for f with k ·polylog(t)+1 provers where:
1. The provers run in time poly(t,k) and the verifier runs in time k2 ·polylog(t).
2. The protocol has reward gap 1/k ·poly(log(t),n) against 2−k·polylog(t)-no-signaling

strategies.
3. Each query and answer is of length k ·polylog(t).

Proof. Let πg = (
−→
Pπ ,V

g
π ) be the MIP for L f = {(x,y)|y = f (x)} from Theorem 6, which

has soundness s = 2−k against δ = 2−k·polylog(t)-no-signaling strategies and perfect
completeness, where g : Fm→ F is the low degree extension of inputs with parameters
F,H,m such that |H| ≤ |F| ≤ polylog(t), |Hm| = poly(n). As noted in [18], the total

number of the queries to g is l ≤ k ·polylog(t). We consider πgl
= (
−→
Pπ ,V

gl

π ) where V gl

π

behaves exactly as V g except that V gl
only makes a single query which consists all the

queries of V g to the oracle for g. Because the queries made by V g
π are independent of

each other, it is possible to query them at once and conclude that πgl
is also an MIP for

L f with the same guarantee.
By Proposition 1, g admits a rational proof ϕ = (Pϕ ,Vϕ) with reward gap ∆ =

1/(4log |F|)(|Hm|2). Therefore gl admits a rational proof ϕ l with reward gap ∆ ′ = ∆/l.



Note that ϕ l is also an RMIP with reward gap ∆ in presence of δ ′ = 1-no-signaling
strategies.

Note that V gl

π only issues a single query and for all x the communication between
−→
Pπ

and V gl

π is independent of (q,g(q)). By Theorem 2, πϕ l
is an RMIP for f with reward

gap ∆ ′(1− s−min(δ ,δ ′)) = Ω(∆/l) = 1/k ·poly(log(t),n), in presence of δ ′′ = δ -no-
signaling strategies.

The running time of the prover is at most the sum of the running time of
−→
Pπ in

Theorem 6 and the running time of Pϕm which is upper bounded by poly(t,k). The verifier
runs in at most t ′ ·k2 ·polylog(t) where the t ′ is the running time of Vϕ upper bounded by
poly(H,m) ≤ polylog(t). Therefore the running time of verifier is k2 ·polylog(t). The
maximal length of queries and answers in πgl

is k ·polylog(t) by Theorem 6, and the
maximal length of queries and answers in πgl

is (m logF) · l ≤ k ·polylog(t). Therefore
the maximal length of queries and answers in πgl

is bounded by k ·polylog(t).

6.3 Single-Round Rational Arguments for P.

We show how to transform any RMIP secure against no-signaling provers into a single-
round rational argument using a sub-exponentially secure Fully Homomorphic Encryp-
tion (see Definition 8), and as a result obtain a single-round rational argument with
sublinear verification for any language in P. For that we extend the transformation of
Guo et al. [15] to the multi-prover setting.

Theorem 8. Let f : {0,1}n→{0,1} be a function in FRMIP [k,δ ,C,T ]. Assume f has
a RMIP with noticeable reward gap ∆ and negligible no-signaling parameter δ , and let
λ denote the length of the longest message sent by the verifier. If there exists a secure
FHE scheme, where κ ≥max{polylog(n), λ ,C} is the security parameter, then f admits
single-round rational argument which has the following properties:
1. The verifier runs in time poly(κ)+O(T (n)).
2. The prover runs in time poly

(
κ, n, T−−→PMIP

)
, where T−−→PMIP

is the sum of the running
times of the provers in the RMIP.

3. The length of prover’s message and the verifier’s challenge is ` ·poly(κ).

The proof of Theorem 8 follows by the following lemma (due to space restrictions,
we provide the proof of Lemma 2 in the full version).

Lemma 2. Let (
−−→
PMIP,VMIP) be a δ -no signaling RMIP protocol for a function f with

` provers. Let λ be the longest query size and C be the answer size. Let reward(·) and
∆ be the reward function and the corresponding reward gap. Assume the existence of a
(Z,δ ′)-secure FHE with correctness 1− γ (where γ is some negligible function), and let
γ0 = γ · `. If δ ′ ≤ δ/` and the security parameter κ = κ (n)≥max{poly log(n), λ ,C}
and Z = Z(κ)≥ κ such that Z ≥max

{
n, 2`·C

}
, then there exists a one-round protocol

(PA,VA) with the following properties:

(a) Pr[output((PA,VA)(x)) = f (x)] = 1.

(b) E[reward((PA,VA)(x))]≥E[reward((
−−→
PMIP,VMIP)(x))] · (1− γ0)).



(c) The length of PA’s message and the VA’s challenge is ` ·poly(κ).

(d) The verifier VA runs in time poly(κ)+O(TVMIP), where TVMIP is the running time of
VMIP.

(e) The prover PA runs in time poly
(

κ, n, T−−→PMIP

)
, where T−−→PMIP

is the sum of the running

times of the provers in
−−→
PMIP.

(f) For any prover P∗ of size ≤ poly(Z(κ)) that achieves

E[reward((P∗,VA)(x))] = E[reward((PA,VA)(x))]+δ
∗ ,

let µ = Pr[output((P∗,VA)(x)) 6= f (x)]. It holds that
(a) (Utility gain) δ ∗ ≤ γ0, and

(b) (Utility loss) (−δ ∗)≥ µ∆ − γ0.

From interactive rational proofs to rational arguments. Let (
−−→
PMIP,VMIP) be a δ -

no-signaling rational MIP with ` provers P1
MIP, . . . ,P

`
MIP for evaluating some function f ,

as in the statement of the Lemma 2. Recall that λ denotes length of the longest message
sent by VMIP in (

−−→
PMIP,VMIP). For simplicity of exposition (and without loss of generality)

we assume that the first prover P1
MIP sends f (x), and all queries are of size exactly λ .

Fix any security parameter κ ≥max{polylog(n),λ ,C} and let (Gen,Enc,Eval,Dec)
be a (Z,δ ′)-secure FHE scheme, with respect to security parameter κ . The one-round
rational argument (PA,VA) is constructed as follows:

1. On common input x ∈ {0,1}n, the verifier VA proceeds as follows:
(a) Emulate the verifier VMIP and obtain queries m1, . . . ,m` ∈ {0,1}λ to be sent by

VMIP.7

(b) Compute key-pairs (pki,ski)← Gen(1κ) and encryptions qi← Enc(pki,mi) for
1≤ i≤ `.
Send pk = (pk1, . . . , pk`) and q = (q1, . . . ,q`) to PA.

2. Upon receiving keys pk = (pk1, . . . , pk`) and queries q = (q1, . . . ,q`) from VA, the
prover PA operates as follows:

(a) Emulate provers
−−→
PMIP to obtain f (x).

(b) For each 1 ≤ i ≤ `, compute Px,i, a Boolean circuit that on input query m
computes the function Pi

MIP(x,m).
(c) For each 1 ≤ i ≤ `, compute ai ← Eval(pki,Px,i,qi) and send the message

( f (x),a1, . . . ,a`) to VA.
3. Upon receiving the message ( f (x),a1, . . . ,a`) from PA, the verifier VA operates as

follows:
(a) For every 1≤ i≤ `, compute b′i← Dec(ski,ai).
(b) Emulate VMIP on

(
f (x),b′1, . . . ,b

′
`

)
, as if each b′i is Pi

MIP’s response.
(c) Output whatever VMIP outputs (i.e., f (x) and ’1’ with probability of the com-

puted reward).
7 These queries can be computed in advance since in the protocol (

−−→
PMIP,VMIP) all the messages

sent by VMIP depend only on VMIP’s random coin tosses.



Proof (of Theorem 8). The running time of the verifier, the communication complexity,
and property (a) of Definition 5 of rational arguments are all explicitly provided by
Lemma 2. It remains to show property (b) and property (c) of definition of rational
arguments.

The utility gain is δ ∗ ≤ γ0 ≤ κ · negl(κ) = negl(n). By the definition of δ ∗ we
have, negl(n)+E[reward((PA,VA)(x))]≥ δ ∗+E[reward((PA,VA)(x))] which is equal to
E[reward((P∗,VA)(x))]. Hence, the property (b) of rational arguments holds.

To show property (c) of Definition 5, we assume that µ ≥ p−1(|x|) for some polyno-
mial p(·). Due to the noticeable ∆ , we know that µ∆ ≥ q−1

1 (|x|) for some polynomial
q1(·). From the utility loss bound we obtain that

(−δ
∗)≥ µ∆ − γ0 = µ∆ −negl(n)≥ q−1

1 (|x|)−negl(n)≥ q−1
1 (|x|)/2 .

By defining polynomial q(·) to be q(|x|) = 2q1(|x|) we get

E[reward((PA,VA)(x))] = E[reward((P∗,VA)(x))]−δ
∗

≥ E[reward((P∗,VA)(x))]+q−1(|x|) ,

as desired.

By applying the above transformation on the no-signaling RMIP protocol presented
in Theorem 7, we obtain the following single-round rational arguments for P with
sublinear verification.

Corollary 4 (Rational Argument for P). Let f : {0,1}n→ {0,1} be a function com-
putable by deterministic Turing machine in time poly(n) ≤ T (n) ≤ exp(n) and let
k = polylog(T (n)). Let κ ≥ polylog(T (n)) · k be a security parameter and let Z =
Z(κ) be such that 2(logT (n))c ≤ Z ≤ 2κ for sufficiently large constant c. If there exists
(Z,2−k2·polylog(T (n)))-secure FHE scheme then f admits single-round efficient rational
argument which has the following properties:
1. The verifier runs in time poly(κ, log(T (n))) and the prover runs in poly(κ,T (n)).
2. The length of prover’s message and the verifier’s challenge is k ·poly(κ, log(T (n))).

The verifier’s challenge depends only on his random coins and is independent of the
input x.

Proof. Suppose that f ∈ DTIME(T ), where T = T (n) satisfies poly(n) ≤ T ≤ exp(n)
and set k = polylog(T ). Let κ = κ(n) be a security parameter such that k ·polylog(T )≤
κ . Let Z = Z(κ) such that 2(logT )c ≤ Z ≤ 2κ for sufficiently large universal constant
c satisfying Z ≥ max{n,2k2·polylog(T )}. Let δ ′ = 2−k2polylog(T ) . By applying Theorem
7 (with respect to the parameter k) to the function f , we obtain an RMIP for f with
k · polylog(T ) provers and reward gap 1/k · poly(log(T ),n) against 2−k·polylog(T )-no-
signaling strategies. The verifier of the RMIP runs in time k2 ·polylog(T ) and the provers
run in time poly(T,k). Each query and answer is of length k ·polylog(T ). Assume that
there exists an (Z,δ ′)-secure FHE.

By Theorem 8, we obtain that f has a 1-round rational argument. The running time
of the verifier is poly(κ, log(T ) and the running time of the prover is poly(κ,T ). The
message of the prover and the verifier is of length k ·poly(κ, logT ).



We remark that Corollary 3 could be alternatively obtained using our new transfor-
mation presented in Theorem 8. This is done by first transforming the rational interactive
proof for NC to RMIP (with only negligible loss in the reward gap) and then applying
Theorem 8 on the resulted RMIP.
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A Building Blocks

Here we provide only the main claim about efficiency of evaluation of a low degree
extension. For an in-depth exposition see e.g. Rothblum [26].



Proposition 2 ([26]). There exists a Turing machine that takes as input an extension
field H of GF[2], an extension field F of H, an integer m, and w = (w0, . . . ,wm−1) ∈Hm.
The machine runs in time poly(|H|,m) and space O(log |H|+ logm), and it outputs
the unique 2m-variate polynomial β̃ : Fm×Fm→ F of degree at most |H|−1 in each
variable (represented as an arithmetic circuit of degree at most |H|−1 in each variable),
such that for every z ∈ Fm, it holds for the unique low degree extension W̃ : Fm→ F of
w that W̃ (z) = ∑p∈Hm β̃ (z, p) ·W (p), where W : Hm→ F is the function corresponding
to (w0, . . . ,wn−1) defined using the lexicographic ordering α of Hm as W (p) = wα(p) if
α(p)≤ n−1 and otherwise 0. Moreover, β̃ can be evaluated in time poly(|H|,m) and
space O(log |H|+ logm). Namely, there exists a Turing machine with above time and
space bounds, that takes an input parameters H,F,m and a pair (z, p) ∈ Fm×Fm and
outputs β̃ (z, p).

Fully homomorphic encryption. A public-key fully homomorphic encryption scheme
consists of four probabilistic polynomial-time algorithms (Gen,Enc,Eval,Dec). The key
generation algorithm Gen, when given as input a security parameter 1κ , outputs a pair
(pk,sk) of public and secret keys. The encryption algorithm, Enc, on input a public key
pk and a message m ∈ {0,1}poly(κ), outputs a ciphertext q, The homomorphic evalua-
tion algorithm, Eval, on input the public-key pk, a circuit C : {0,1}a→{0,1}b, where
a,b≤ poly(κ), and a ciphertext q that is an encryption of a message m ∈ {0,1}a with
respect to pk, outputs a ciphertext q̃ of length poly(κ,a,b) that is an evaluation of C
over q. The decryption algorithm, Dec, when given a ciphertext q and the secret key sk,
outputs the original message m. We allow the decryption process to fail with negligible
probability (over the randomness of all algorithms).

Definition 8 (Fully homomorphic encryption). A public-key fully homomorphic en-
cryption scheme (Gen,Enc,Eval,Dec), satisfies the following properties.

Completeness For every security parameter κ , for every message m ∈ {0,1}poly(κ) and
for every circuit C taking inputs of length |m|,

Pr
(pk,sk)←Gen(1κ )

[
C(m) = Dec(sk, q̃)

∣∣∣∣∣ q← Enc(pk,m)

q̃← Eval(pk,C,q)

]
= 1−negl(κ).

Security For every polynomial p(·) and every polynomial size distinguisher D, there
exists a negligible function negl(·) such that for every sufficiently large security
parameter κ and every pair of messages m0,m1 ∈ {0,1}p(κ)∣∣∣∣∣∣∣ Pr

(pk,sk)←Gen(1κ )
b←{0,1}

[D(pk,Enc(pk,mb)) = b] − 1
2

∣∣∣∣∣∣∣< negl(κ)

where the probability is also over the random coin tosses of Enc.

We say that the encryption scheme is (S,δ )-secure, for a function S : N→ N and a
negligible function δ : N→ [0,1], if the security property holds for every adversary of
size poly(S(κ)), with distinguishing gap at most δ (κ).
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