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Abstract. The Fiat-Shamir (FS) transform is a popular technique for
obtaining practical zero-knowledge argument systems. The FS transform
uses a hash function to generate, without any further overhead, non-
interactive zero-knowledge (NIZK) argument systems from public-coin
honest-verifier zero-knowledge (public-coin HVZK) proof systems. In the
proof of zero knowledge, the hash function is modeled as a programmable
random oracle (PRO).
In TCC 2015, Lindell embarked on the challenging task of obtaining a
similar transform with improved heuristic security. Lindell showed that,
for several interesting and practical languages, there exists an efficient
transform in the non-programmable random oracle (NPRO) model that
also uses a common reference string (CRS). A major contribution of
Lindell’s transform is that zero knowledge is proved without random
oracles and this is an important step towards achieving efficient NIZK
arguments in the CRS model without random oracles.
In this work, we analyze the efficiency and generality of Lindell’s trans-
form and notice a significant gap when compared with the FS transform.
We then propose a new transform that aims at filling this gap. Indeed
our transform is almost as efficient as the FS transform and can be ap-
plied to a broad class of public-coin HVZK proof systems. Our transform
requires a CRS and an NPRO in the proof of soundness, similarly to Lin-
dell’s transform.

1 Introduction

Non-interactive zero-knowledge (NIZK) proofs1 introduced in [24, 6, 5] are widely
used in Cryptography. Such proofs allow a prover to convince a verifier with just
one message about the membership of an instance x in a language L without
leaking any additional information. NIZK proofs are not possible without a setup
1 When discussing informally we will use the word proof to mean both an uncondi-
tionally sound proof and a computationally sound proof (i.e., an argument). Only
in the more formal part of the paper we will make a distinction between arguments
and proofs.
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assumption and the one proposed initially in [5] is the existence of a Common
Reference String (CRS) received as input both by the prover and the verifier.
The CRS model has been the standard setup for NIZK in the last 25 years.
Another setup that has been proposed in literature is the existence of registered
public keys in [2, 21, 13].

Starting with the breakthrough of [29, 30] we know that NIZK proofs in
the CRS model exist for any NP language with the additional appealing feature
of using just one CRS for any polynomial number of proofs. Moreover NIZK
proofs and their stronger variations [48, 23, 39] have been shown to be not only
interesting for their original goal of being a non-interactive version of classic
zero-knowledge (ZK) proofs [36, 37], but also because they are powerful building
blocks in many applications (e.g., for CCA encryption [45], ZAPs [27, 28]).

Efficient NIZK. Generic constructions of NIZK proofs are rather inefficient since
they require to first compute an NP reduction and then to apply the NIZK proof
for a given NP-complete language to the instance output by the reduction. A sig-
nificant progress in efficiency has been proposed in [40] where several techniques
have been proposed to obtain efficient NIZK proofs that can be used in bilinear
groups.

The most popular use of NIZK proofs in real-world scenarios consists in
taking an efficient interactive public-coin honest-verifier zero-knowledge (HVZK)
proof system and in making it a NIZK argument through the so called Fiat-
Shamir (FS) transform [31]. The FS transform replaces the verifier by calls to
a hash function on input the transcript so far. In the random oracle [3] (RO)
model the hash function can only be evaluated through calls to an oracle that
answers as a random function. The security proof allows the simulator for HVZK
to program the RO (i.e., the simulator decides how to answer to a query) and
this allows to convert the entire transcript of a public-coin HVZK proof into a
single message that is indistinguishable from the single message computed by a
honest NIZK prover. The efficiency of the FS transform led to many practical
applications. The transform is also a method to obtain signatures of knowledge,
as discussed in [14].

The main disadvantage of the FS transform is the fact that the random
oracle methodology has been proved to be unsound both in general [7] and both
for the specific case [35, 4] of turning identification schemes into signatures as
considered in [31]. Nevertheless, the examples of constructions proved secure in
the RO model and insecure for any concrete hash function are seemingly artificial
while no natural construction has been successfully attacked yet. Therefore the
RO methodology remains widely used in practice.

The FS transform applied to 3-round HVZK proofs is one of the major uses
of the RO model for real-world protocols, therefore any progress in this research
direction (either on the security of the transform, or on its efficiency, or on its
generality) is of extreme interest.

In [38] Groth showed an efficient transform for NIZK where soundness is
proved requiring a programmable RO while no random oracle is needed to prove
zero knowledge.
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Efficient NIZK with designated/registered verifiers. A first attempt to get effi-
cient NIZK arguments from some restricted class of 3-round public-coin HVZK
proofs without ROs was done by [21] (the proof of soundness required complex-
ity leveraging) and later on by [13] that achieved a weaker form of soundness
in the registered public-key model. The limitation of this model is that a NIZK
proof can be verified only by a designated verifier (i.e., the proof requires a secret
known to the verifier). Moreover there is an inconvenient preliminary registration
phase where the verifier has to register her public key.

Lindell’s transform. Very recently, in [43], Lindell proposed a very interesting
transform that can be seen as an attempt towards obtaining efficient construc-
tions without random oracles. Starting from a Σ-protocol for a language L (i.e.,
a special type of 3-round public-coin HVZK proof used already in several ef-
ficient constructions of zero knowledge [19, 44, 25, 51, 10, 54, 1, 46, 49]), Lindell
shows how to construct an efficient NIZK2 argument system for L in the CRS
model. Two are the major advantages of Lindell’s transform with respect to the
FS transform. First, in Lindell’s transform the proof of ZK does not need the
existence of a random oracle and this allows to avoid some issues due to protocol
composition [52]. We remark that the proof of ZK for Lindell’s transform needs
a CRS but this is unavoidable as one-round ZK in the plain model is possible
only for trivial languages. Second, the soundness of Lindell’s transform can be
proved by relying on a non-programmable random oracle (NPRO). An NPRO
is a RO that in the protocol and in the security proofs can be used only as a
black box and can not be programmed by a simulator or by the adversary of a
reduction. This is a considerable advantage compared to the FS transform since
replacing a RO by an NPRO is a step towards removing completely the need of
ROs in a cryptographic construction. Indeed the work of Lindell goes precisely
in the direction of solving a major open problem in Cryptography: obtaining an
efficient RO-free transform for NIZK arguments to be used in place of the FS
transform.

The main drawback of Lindell’s transform is that it requires extra compu-
tation on top of the one needed to run the Σ-protocol for the language L. In
contrast, the FS transform does not incur into any overhead on top of a 3-round
public-coin HVZK proof for L. In addition, since 3-round public-coin HVZK
proofs are potentially less demanding than Σ-protocols, we have that requiring
a Σ-protocol as starting protocol for a transform instead of a public-coin HVZK
proof may already result in an efficiency loss.

Lindell’s transform is based on a primitive named dual-mode (DM) commit-
ment scheme (DMCS). A DMCS is based on a membership-hard language Λ
and each specific commitment takes as input an instance ρ of Λ and has the
following property: if ρ 6∈ Λ, the DM commitment is perfectly binding; on the
other hand, if ρ ∈ Λ, the DM commitment can be arbitrarily equivocated if a

2 Lindell’s NIZK argument is a not an argument of knowledge in contrast to the NIZK
argument obtained through an FS transform.
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witness for ρ ∈ Λ is known. Moreover, the two modes are indistinguishable3.
Lindell showed that DMCSs can be constructed efficiently from Σ-protocols for
membership-hard languages and also provided a concrete example based on the
language of Diffie-Hellman tuples (DH). Then, Lindell’s transform shows how
to combine DM commitments and Σ-protocols along with a hash function4 to
obtain an efficient NIZK argument.

1.1 Our Results

In this paper, we continue the study of generic and efficient transforms from
3-round public-coin HVZK proofs to NIZK arguments.

We start by studying the generality and efficiency of Lindell’s transform in
terms of the Σ-protocol used for instantiating the DMCS (and in turn instantiat-
ing the CRS) and the Σ-protocol to which the transform is applied. As a result,
we point out a significant gap in generality and efficiency of Lindell’s transform
compared to the FS transform.

Then we show an improved transform that is based on weaker require-
ments. Specifically, our transform only requires computational HVZK and op-
timal soundness instead of perfect special HVZK5 and special soundness. More
interestingly and surprisingly despite being based on weaker requirements, our
transform is also significantly more efficient than Lindell’s transform and very
close to the efficiency of the FS transform. We next discuss our contributions in
more details.

The classes of Σ-protocols needed in [43]. Lindell defines Σ-protocols as 3-round
public-coin proofs that enjoy perfect special HVZK and special soundness. The
former property means that the simulator on input any valid statement x and
challenge e can compute (a, z) such that the triple (a, e, z) is perfectly indistin-
guishable from an accepting transcript where the verifier sends e as challenge.
Special soundness instead means that from any two accepting transcripts (a, e, z)
and (a, e′, z′) for the same statement x that share the first message but have dif-
ferent challenges e 6= e′, one can efficiently compute a witness w for x ∈ L.
Lindell in [42] shows a construction of a DMCS from any (defined as above)
Σ-protocol for a membership-hard language 6.

The efficiency of Lindell’s transform. Lindell’s transform uses a DMCS derived
from a Σ-protocol ΠΛ = (PΛ,VΛ) for language Λ whose commitment algorithm
com works by running the simulator of ΠΛ. The CRS contains an instance ρ of
Λ along with the description of a hash function h. The argument produced by
3 A similar notion was introduced in [11, 12] and a scheme with similar features was
proposed in [22].

4 In the proof of soundness this function will be modeled as an NPRO.
5 The latest version of Lindell’s transform [42] works by assuming just perfect special
HVZK instead of strong perfect special HVZK needed in [43].

6 The construction in [43] needs an additional property that however is enjoyed by
classic Σ-protocols as we discuss in App. A.
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the NIZK Π = (P,V) for x ∈ L starting from a Σ-protocol ΠL = (PL,VL) for
L is computed as a tuple (a′, e, z, r) where a′ = com(a, r), e = h(x|a′), and z is
the 3rd round of ΠL answering to the challenge e and having a as first round.
The verifier checks that a′ is a commitment of a with randomness r, that e is
the output of h(x|a′) and that (a, e, z) is accepted by VL.

As an example, in [43] Lindell discussed the use of the Σ-protocol for the
language DH for which the transform produces a very efficient NIZK proof;
indeed the additional cost is of only 8 modular exponentiations: 4 to be executed
by the prover and 4 by the verifier.

In this work we notice however that there is a caveat when analyzing the
efficiency of Lindell’s transform. The caveat is due to the message space of the
DMCS. Indeed, once the CRS is fixed the max length of a message that can be
committed to with only one execution of com is limited to the challenge length
lΛ of ΠΛ. Therefore in case the first round a of ΠL is much longer than lΛ, the
transform of Lindell requires multiple executions of com therefore suffering of a
clear efficiency loss.

We show indeed in Tables 2 and 3 that Lindell’s transform can generate in
the resulting NIZK argument a blow up of the computations compared to what
PL and VL actually do, and therefore compared to the FS transform.

Our Transform. In this paper, we present a different transform that is closer
to the FS transform both on generality and on efficiency.

Our transform can be used to obtain a NIZK for any language L with a
3-round HVZK proofs enjoying optimal soundness (i.e., a weaker soundness re-
quirement compared to special soundness). The CRS can be instantiated based
on any membership-hard language Λ with a 3-round HVZK proofs enjoying op-
timal soundness. More specifically, we do not require perfect HVZK nor special
HVZK for the involved Σ-protocols. Moreover, instead of special soundness, we
will just require that, for any false statement and any first round message a,
there is at most one challenge c that can be answered correctly. This is clearly
a weaker requirement than special soundness and was already used by [44].

Essentially we just need that both protocols ΠL and ΠΛ are 3-round public-
coin HVZK proofs with optimal soundness. Our transform produces a NIZK
argument Π = (P,V) that does not require multiple executions of ΠL and ΠΛ

and, therefore, it remains efficient under any scenario without suffering of the
previously discussed issue about challenge spaces in Lindell’s transform.

Techniques. We start by considering the FS transform in the NPRO model and
by noticing that, as already claimed and proved in [53], if the original 3-round
public-coin HVZK proof is witness indistinguishable (WI)7, then the transformed
protocol is still WI, and of course the proof of WI is RO free.

Notice that as in [43], P and V need a common hash function (modeled
as an NPRO in the soundness proof) to run the protocol and this can be en-
forced through a setup (i.e., a non-programmable CRS [47], or a global hash
7 We use WI both to mean witness indistinguishable and witness indistinguishability.
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function [9]). The use of the FS transform in the NPRO model is not sufficient
for our purposes. Indeed we want generality and the HVZK proof might not be
witness indistinguishable. Moreover we should make a witness available to the
simulator. We solve this problem by using the OR composition of 3-round per-
fect HVZK proofs proposed in [18]. We will let the prover P for NIZK to prove
that either x ∈ L ∨ ρ ∈ Λ. We notice that in [18] the proposed OR composi-
tion is proved to guarantee WI only when applied to two instances of the same
language having a public-coin perfect HVZK proof. We can avoid this limitation
using a generalization discussed already in [33, 32] that allows the OR composi-
tion different protocols for different languages relying on computational HVZK
only.

1.2 Comparison

Here we compare the computational effort, both for the prover and the verifier,
required to execute Lindell’s NIZK argument, our NIZK argument and the FS
one. The properties of the three transforms are summarized in Table 1. The cost
for the prover can be found in Table 2, while the one for the verifier can be found
in Table 3. The comparison of the computational effort is performed with respect
to three Σ-protocols8. Roughly speaking, in the comparisons, we consider the
CRS to contain an instance of the the languageDH of Diffie-Hellman triples with
respect to 1024-bit prime pcrs and consider two Σ-protocols: the one to prove
that a triples is Diffie-Hellman9 with respect to a prime p, for which we consider
the cases in which p is 1024-bit and 2048-bit long10, and the Σ-protocol for graph
isomorphism (GI). For the Σ-protocol for graph isomorphism, we count only
the modular exponentiations and do not count other operations (e.g., random
selection of a permutation and generation of the adjacency matrix of permuted
graphs) since they are extremely efficient and clearly dominated by the cost of
modular exponentiations. A detailed description of the Σ-protocols and of the
way we measure the computational effort is found in Section 6.

The tables give evidence of the fact that while Lindell’s transform on some
specific cases can replace the FS transform by paying a small overhead, in other
cases there is a significant loss in performance. Our transform instead remains
very close to the FS transform both when considering the amount of computation
and when considering the generality of the protocols that can be given as input
to the transform.

8 We consider the same Σ-protocol discussed in [43] and in addition we consider the
one for Graph Isomorphism since it has the special property of having a very long
first round that can be computed very efficiently.

9 See Section 6 for a formal definition of the polynomial relation and the respective
Σ-protocols.

10 Clearly, in case p is such that |p| < |pcrs|, then Lindell’s transform has a slightly
smaller number of exponentiations with respect to the number of exponentiations
that we count in the tables.
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Transform HV ZK for Λ HV ZK for L Soundness Model
Lindell [42] special + perfect special + perfect special NPRO+CRS
This paper computational computational optimal NPRO+CRS

FS / computational classic PRO

Table 1: Requirements for the proofs in input to the three transforms.

DH GI
Transform |p| = 1024 |p| = 2048 n vertices
Lindell [42] 2 mod p+ 12 mod pcrs 2 mod p+ 20 mod pcrs 4n2 mod pcrs
This paper 2 mod p+ 4 mod pcrs 2 mod p+ 4 mod pcrs 4 mod pcrs

FS 2 mod p 2 mod p /

Table 2: Efficiency of the three transforms: modular exponentiations for the
prover.

DH GI
Transform |p| = 1024 |p| = 2048 n vertices
Lindell [42] 4 mod p+ 12 mod pcrs 4 mod p+ 20 mod pcrs 4n2 mod pcrs
This paper 4 mod p+ 4 mod pcrs 4 mod p+ 4 mod pcrs 4 mod pcrs

FS 4 mod p 4 mod p /

Table 3: Efficiency of the three transforms: modular exponentiations for the
verifier.

Which protocols can be given in input to the transform? We stress that our
transform allows for additional proof systems to be used for instantiating the
CRS and for obtaining a NIZK argument system. This is not only a theoretical
progress. Indeed there exist efficient constructions such as the one of [51] that is a
variation of the one of [44]. The construction of [51] is an efficient 3-round HVZK
proof system with optimal soundness for a language L and is not a Σ-protocol
for the corresponding relation RL. For further details, see App. B.

2 HVZK Proof Systems and Σ-Protocols

We denote the security parameter by n and use “ |” as concatenation operator
(i.e., if a and b are two strings then by a|b we denote the concatenation of a and
b). For a finite set S, x ← S denotes the algorithm that chooses x from S with
uniform distribution.

A polynomial-time relation R (or polynomial relation, in short) is a subset
of {0, 1}∗ × {0, 1}∗ such that membership of (x,w) in R can be decided in time
polynomial in |x|. For (x,w) ∈ R, we call x the instance and w a witness for
x. For a polynomial-time relation R, we define the NP-language LR as LR =
{x|∃w : (x,w) ∈ R}. We will model a random oracle as a random function
O : {0, 1}∗ → {0, 1}n. Analogously, unless otherwise specified, for an NP-language
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L we denote by RL the corresponding polynomial-time relation (that is, RL is
such that L = LRL

).
We remark that for simplicity we will omit the modulus in modular arithmetic

calculations.
For two interactive machines A and B, we denote by 〈A(α), B(β)〉(γ) the

distribution of B’s output after running on private input β with A using private
input α, both running on common input γ. Typically, one of the two machines
receives the security parameter 1n as input.

Definition 1. A pair of PPT interactive machines (PL,VL) constitutes a proof
system (resp., an argument system) for NP-language L, if the following condi-
tions hold:

– Completeness. For every x ∈ L and w such that (x,w) ∈ RL, it holds:

Prob [ 〈PL(w, 1n),VL〉(x) = 1 ] = 1.

– Soundness. For every interactive (resp., PPT interactive) machine P?L, there
exists a negligible function ν such that for every x /∈ L and every z:

Prob [ 〈P?L(z, 1n),VL〉(x) = 1 ] ≤ ν(n).

An interactive protocol ΠL = (PL,VL) is public coin if, at every round, VL
simply tosses a predetermined number of coins (random challenge) and sends
the outcome to the prover.

In a 3-round public-coin protocol ΠL = (PL,VL) for an NP-language L, PL
and VL receive the common input x and, additionally, PL receives security pa-
rameter 1n in unary and w such that (x,w) ∈ RL as private input. The interac-
tion, with challenge length l, proceeds as follows:

The 3-round public-coin protocol ΠL:

1. PL, on input 1n, x and w, computes message a and sends it to VL.
2. VL chooses a random challenge e← {0, 1}l and sends it to PL.
3. PL, on input x, w, e, and the randomness used to compute a, computes

message z and sends it to VL.
4. VL decides to accept or reject based on its view (i.e., (x, a, e, z)).

A triple (a, e, z) of messages exchanged during the execution of a 3-round
proof (resp., argument) system is called a 3-round transcript. We say that a 3-
round transcript (a, e, z) is an accepting transcript for x if the argument system
ΠL instructs VL to accept based on the values (x, a, e, z). Two accepting 3-rounds
transcripts (a, e, z) and (a′, e′, z′) for an instance x constitute a collision if a = a′

and e 6= e′.

Definition 2. A 3-round proof or argument system ΠL = (PL,VL) for NP-
language L is Honest-Verifier Zero Knowledge (HVZK) if there exists a PPT
simulator algorithm Sim that takes as input security parameter 1n and instance
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x ∈ L and outputs an accepting transcript for x. Moreover, the distribution of
the output of the simulator on input x is computationally indistinguishable from
the distribution of the honest transcript obtained when VL and PL run ΠL on
common input x and any private input w such that (x,w) ∈ RL.

If the transcripts are identically distributed we say that ΠL is perfect HVZK.

Definition 3. A 3-round public-coin proof system ΠL = (PL,VL) for language
L with challenge length l enjoys optimal soundness if for every x 6∈ L and for
every first-round message a there is at most one challenge e ∈ {0, 1}l for which
there exists a third-round message z such that (a, e, z) is accepting for x.

Note that any 3-round public-coin optimally sound proof system with chal-
lenge length l has soundness error 2−l [44].

Definition 4. A 3-round public-coin proof system ΠL = (PL,VL) with challenge
length l is a Σ-protocol for an NP-language L if it enjoys the following properties:

– Completeness. If (x,w) ∈ RL then all honest 3-round transcripts for (x,w)
are accepting.

– Special Soundness. There exists an efficient algorithm Extract that, on input
x and a collision for x, outputs a witness w such that (x,w) ∈ RL.

– Special Honest Verifier Zero Knowledge (special HVZK). There exists a PPT
simulator algorithm Sim that takes as input security parameter 1n, x ∈ L
and e ∈ {0, 1}l and outputs an accepting transcript for x where e is the
challenge. Moreover for all l-bit strings e, the distribution of the output of
the simulator on input (x, e) is perfect indistinguishable from the distribution
of the 3-round honest transcript obtained when VL sends e as challenge and
PL runs on common input x and any private input w such that (x,w) ∈ RL.

Sometimes, we will abuse notion and say that a proof system or Σ-protocol is
for a polynomial relation R instead of referring to NP-language LR.

It is easy to see that Σ-protocols enjoy optimal soundness. The converse,
however, is not true. See Appendix B for an example of an optimal-sound 3-
round public-coin proof system that does not enjoy special soundness (and is
special perfect HVZK).

In order not to overburden the descriptions of protocols and simulators, we
will omit the specification of the security parameter when it is clear from the
context.

2.1 3-Round Public-Coin HVZK Proofs and WI

Following [33], for an NP-language L, we define L̂ to be the input language that
includes both L and all false instances that are well formed and can be used by
an adversarial prover in order to prove a false statement. More formally, L ⊆ L̂
and membership in L̂ can be tested in polynomial time. We implicitly assume
that a verifier executes the protocol only if the common input x ∈ L̂; otherwise,
it rejects immediately.
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Definition 5. A 3-round public-coin proof system Π = (PL,VL) is Witness
Indistinguishable (WI) for polynomial relation R if, for every malicious verifier
V?L, there exists a negligible function ν such that for all x, w, w′ with (x,w) ∈ R
and (x,w′) ∈ R, it holds that:

|Prob [ 〈PL(w, 1n),V?L〉(x) = 1 ]− Prob [ 〈PL(w′, 1n),V?L〉(x) = 1 ]| ≤ ν(n).

The notion of a perfect WI 3-round proof system is obtained by requiring that
ν(n) = 0.

Sometimes we abuse the above definition and say that a proof system is WI for
a NP-language L instead of referring to the associated polynomial relation RL.

We recall the following result.

Theorem 1 ([18]). Every 3-round public-coin proof system with perfect HVZK
for an NP-language L is perfect WI for RL.

2.2 Challenge Lengths of 3-Round HVZK Proofs

Challenge-length amplification. The challenge of a 3-round public-coin proof
system with HVZK and optimal soundness can be extended through parallel
repetition.

Lemma 1. Let ΠL be a 3-round public-coin proof system with optimal sound-
ness for NP-language L that enjoys perfect HVZK and has challenge length l.
The protocol Πk

L consisting of k parallel instances of ΠL is a 3-round public-coin
proof system for relation L that enjoys perfect HVZK, has optimal soundness
and has challenge length k · l.

Proof. The HVZK it is preserved by Πk
L for the same arguments of [18]. About

the optimal soundness of Πk
L, it is simple to see that if the protocol Πk

L in not
optimal sound then also ΠL is not optimal sound.

A similar lemma can be proved for a Σ-protocol (as in [32, 15, 16]) for which
HVZK is not perfect.

Challenge-length reduction. We now show that starting from any 3-round public-
coin proof system that enjoys HVZK and has optimal soundness with challenge
length l, one can construct a 3-round public-coin proof system that still enjoys
HVZK, has optimal soundness but works with a shorter challenge. Moreover
perfect HVZK is preserved. A similar transformation was shown in [20] for the
case of Σ-protocol that are special perfect HVZK.

Lemma 2. Let ΠL be a HVZK 3-round public-coin proof system for L with
optimal soundness and challenge length l. Then for every l′ < l, there exists a 3-
round public-coin proof system Π ′L for L with HVZK and optimal soundness and
challenge length l′. Protocol Π ′L has the same efficiency as ΠL and, moreover,
if ΠL is perfect HVZK so is Π ′L.
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Proof. Following is a description of Π ′L.
Common input: instance x for an NP-language L.
Private input of P ′L: w s.t. (x,w) ∈ RL.
The protocol Π ′L:

1. P ′L computes a← PL(x,w) and sends it to V ′L;
2. V ′L randomly chooses challenge e← {0, 1}l′ and sends it to P ′L;
3. P ′L randomly chooses pad ← {0, 1}(l−l′), sets e′ = e|pad, computes z ←
PL(x,w, a, e′) and sends z′ = (z, pad) to V ′L;

4. V ′L outputs the output of VL(x, a, e|pad, z).

Completeness follows directly from the completeness of Π.

HVZK. We can consider the simulator Sim′, that on input x runs as follows:

1. run (a, e′, z)← Sim(x);
2. set pad equal to the last l − l′ bits of e′, and set e equal to the fist l′ bits of
e′;

3. output (a, e, (z, pad)).

This concludes the proof.

Optimal soundness follows directly from the optimal soundness of Π.
The following theorem follows from Lemma 1 and 2,

Theorem 2. Suppose NP-language L admits a HVZK 3-round public-coin proof
system ΠL that has optimal soundness and challenge length l. Then for any
l′ > 0 there exists HVZK 3-round public-coin proof system Π ′L that has optimal
soundness and challenge length l′. If l′ ≤ l then Π

′

L is as efficient as ΠL. Oth-
erwise the communication and computation complexities of Π

′

L are at most l′/l
times the ones of ΠL. Moreover, perfect HVZK is preserved.

2.3 3-Round Public-Coin HVZK Proofs for OR Composition of
Statements

In this section we recall the construction of [18] that starts from a HVZK 3-round
public-coin proof system ΠL for an NP-language L and constructs a HVZK 3-
round public-coin proof system ΠL∨L for the “OR” language of L; that is the
NP-language L∨L = {(x0, x1) : x0 ∈ L∨x1 ∈ L}. Below we give the descriptions
of the prover PL∨L and of the verifier VL∨L of ΠL∨L. In the description, we let
Sim denote the simulator for ΠL and l denote the challenge length of ΠL. We
also let b ∈ {0, 1} be such that w is a witness for xb ∈ L; that is, (xb, w) ∈ RL.

Common input: instances x0, x1 for an NP-language L.
Private input of PL∨L: w s.t (x0, x1, w) ∈ R̂L∨L.
The protocol ΠL∨L:

1. PL∨L computes ab ← PL(xb, w), (a1−b, e1−b, z1−b) ← Sim(x1−b) and sends
(a0, a1) to VL∨L.
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2. VL∨L chooses at random challenge e← {0, 1}l and sends e to PL∨L.
3. PL∨L sets eb = e ⊕ e1−b, computes zb ← PL(xb, w, ab, eb) and outputs(

(e0, e1), (z0, z1)
)
.

4. VL∨L
(
(x0, x1), (a0, a1), e, ((e0, e1), (z0, z1))

)
. VL∨L accepts if and only if e =

e0 ⊕ e1 and VL(x0, a0, e0, z0) = 1 and VL(x1, a1, e1, z1) = 1.

Theorem 3 ([18, 33]). If ΠL is a HVZK 3-round public-coin proof system with
optimal soundness for NP-language L then ΠL∨L is a HVZK 3-round public-
coin proof system with optimal soundness for NP-language L ∨ L and is WI for
polynomial-time relation

RL∨L =
{
((x0, x1), w) :

(
(x0, w) ∈ RL ∧ x1 ∈ L

)
∨
(
(x1, w) ∈ RL ∧ x0 ∈ L

)}
.

Moreover if ΠL is perfect HVZK then ΠL∨L is perfect WI for polynomial-time
relation

R̂L∨L =
{
((x0, x1), w) :

(
(x0, w) ∈ RL ∧ x1 ∈ L̂

)
∨
(
(x1, w) ∈ RL ∧ x0 ∈ L̂

)}
.

We remark that results of [18, 33] are known to hold for Σ-protocols, but in
the proof of WI they use only HVZK. Therefore their results also hold starting
from a HVZK 3-round public-coin proof system with optimal soundness (and not
necessarily special soundness) that we consider in the above theorem. Indeed we
observe that ΠL∨L has optimal soundness for the following reason. Suppose that
ΠL∨L does not enjoy optimal soundness. This means that for a false instance
and the same first round (a0, a1) there are two accepting conversation, namely:(

(a0, a1), e, ((e0, e1), (z0, z1))
)
,
(
(a0, a1), e

′, ((e′0, e
′
1), (z

′
0, z
′
1))
)

with e 6= e′. Then it must be the case that for some b = 0 or b = 1, eb 6= e′b
and then (ab, eb, zb) (ab, e

′
b, z
′
b) are two accepting transcripts with the same first

round for the protocol ΠL, and thus the optimal soundness of ΠL is violated.
It is possible to extend the above construction to handle two different NP-

languages L0, L1 that admit HVZK 3-round public-coin proof system with opti-
mal soundness. Indeed by Theorem 2, we can assume, without loss of generality,
that L0 and L1 have 3-round public-coin proof systems ΠL0

and ΠL1
with the

same challenge length. Assuming that L0 and L1 have 3-round public-coin proof
systems ΠL0 and ΠL1 that are HVZK and have optimal soundness with the
same challenge length. We can apply the same construction outlined above to
obtain a 3-round public-coin proof system ΠL0∨L1

that enjoys HVZK and has
optimal soundness for relation

R̂L0∨L1
=
{
((x0, x1), w) :

(
(x0, w) ∈ RL0

∧ x1 ∈ L̂1

)
∨
(
(x1, w) ∈ RL1

∧ x0 ∈ L̂0

)}
.

We have the following theorem.
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Theorem 4. If ΠL0
and ΠL1

are HVZK 3-round public-coin proof systems with
optimal soundness for NP-languages L0 and L1 then ΠL0∨L1 is a HVZK 3-round
public-coin proof system with optimal soundness for the for NP-language
L0 ∨L1 = {(x0, x1) : x0 ∈ L0 ∨ x1 ∈ L1} and is WI for polynomial-time relation

RL0∨L1
=
{
((x0, x1), w) :

(
(x0, w) ∈ RL0

∧ x1 ∈ L1

)
∨
(
(x1, w) ∈ RL1

∧ x0 ∈ L0

)}
.

Moreover, if ΠL0
and ΠL1

are perfect then ΠL0∨L1
is perfect WI for polynomial-

time relation R̂L∨L.

3 Non-Interactive Argument Systems

Part of the definitions of this section are taken from [43].

Definition 6. A non-interactive argument system for an NP-language L consists
of three PPT machines (CRS,P,V), that have the following properties:

– Completeness: for all (x,w) ∈ RL, it holds that:

Prob [ σ ← CRS(1n);V(σ, x,P(σ, x, w)) = 1 ] = 1.

– Adaptive Soundness: for every PPT function f : {0, 1}poly(n) → {0, 1}n \ L
for all PPT prover P?, there exists a negligible function ν, such that for all
n:

Prob
[
σ ← CRS(1n);VO(σ, f(σ),P?O(σ)) = 1

]
≤ ν(n)

where O : {0, 1}∗ → {0, 1}n is a random function.

Definition 7. A non-interactive argument system is adaptive unbounded zero
knowledge (NIZK) for an NP-language L if there exists a probabilistic PPT sim-
ulator S such that for every PPT function

f : {0, 1}poly(n) →
(
{0, 1}n × {0, 1}poly(n)

)
∩RL,

for every polynomial p(·) and for every PPT malicious verifier V?, there exists
a negligible function ν such that,∣∣Prob [ V? (Rf (Pf (n, p))) = 1

]
− Prob [ V? (Sf (n, p)) = 1 ]

∣∣ ≤ ν(n)
where f1 and f2 denote the first and second output of f , respectively, and
Rf (Pf (n, p)) and Sf (n, p) denote the output from the following experiments.

Real proofs Rf (Pf (n, p)):

– σ ← CRS(1n) a common reference string is sampled.
– For i = 1, . . . , p(n) (initially x and π are empty):
• xi ← f1(σ,x,π): the next statement xi to be proven is chosen.
• πi ← P(σ, f1(σ,x,π), f2(σ,x,π)): the ith proof is generated.
• set x = x1 . . . xi and π = π1 . . . πi.
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– output (σ,x,π).

Simulation Sf (n, p):

– σ ← S(1n) a common reference string is sampled.
– For i = 1, . . . , p(n) (initially x and π are empty):
• xi ← f1(σ,x,π): the next statement xi to be proven is chosen.
• πi ← S(xi): simulator S generates a simulated proof πi that xi ∈ L.
• set x = x1 . . . xi and π = π1 . . . πi.

– output (σ,x,π).

Definition 8. A non-interactive argument system is adaptive unbounded wit-
ness indistinguishable (NIWI) for an NP-language L if for every PPT adversary
V?, for every PPT function

f : {0, 1}poly(n) →
(
{0, 1}n × {0, 1}poly(n) × {0, 1}poly(n)

)
∩R∧L,

and for every polynomial p(·), there exists a negligible function ν such that∣∣∣Prob [ V?(RP,f0 (n, p)) = 1
]
− Prob

[
V?(RP,f1 (n, p)) = 1

]∣∣∣ ≤ ν(n),
where R∧L = {(x,w0, w1) : (x,w0) ∈ RL ∧ (x,w1) ∈ RL} and RP,fb is the
following experiment. RP,fb (n, p):

– σ ← CRS(1n).
– For i = 1, . . . , p(n) (initially x and π are empty):
• (xi, w

0
i , w

1
i )← f(σ,x,π):

statement xi to be proven and witnesses w0
i , w

1
i for xi are generated.

• πi ← P(σ, xi, wbi ): the ith proof is generated.
• set x = x1 . . . xi and π = π1 . . . πi.

– output (σ,x,π).

4 NIWI Argument Systems from 3-Round HVZK Proofs

In this section we discuss the FS transform in the NPRO model in order to
obtain a NIWI argument system Π = (P,V) for a polynomial relation RL. We
start from a 3-round public-coin WI HVZK proof system with optimal soundness
ΠL = (PL,VL) for L. P and V have access to an NPRO H : {0, 1}∗ → {0, 1}n.
We describe Π below and we assume that the challenge length of ΠL is the
security parameter n.

Common input: instance x for NP-language L.
Private input to P: w s.t. (x,w) ∈ RL.
Common reference string: CRS samples a key s for a hash function family
H and sets σ = s.

1. P → V: The prover P executes the following steps:
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1.1. a← PL(x,w);
1.2. e← Hs(x, a);
1.3. z ← PL(x,w, a, e);
1.4. send π = (a, e, z) to V.

2. V ′s output: V outputs 1 if and only if VL(x, a, e, z) = 1 and e = Hs(x, a).

The following theorem was proved by Yung and Zhao in [53] (see Claim 1,
page 4). For completeness, we provide a proof of the claim below.

Theorem 5 ([53]). Let ΠL be a 3-round public-coin WI proof system for the
polynomial relation RL. Then Π is adaptive WI for RL in the CRS model.

Proof. We show that Π is adaptive WI for RL through the following hybrids.

1. H1 is the experiment RP,f0 (n, p) (Definition 8), where P for j = 1, . . . , p(n)
executesΠ and outputs πj using the first of the two witnesses given in output
by f .

2. Hi (with i > 0) differs fromH1 in the first i interactions, where P executesΠ
using the second witness given in output by f . Namely: P on input (xj , w1

j )

executes Π and outputs πj using w1
j for all j : 1 ≤ j < i. Instead, for the

interactions i ≤ j < p(n) + 1, P on input (xj , w0
j ) executes Π using w0

j as a
witness and outputs πj .

3. Hp(n)+1 is the experimentRP,f1 (n, p) (Definition 8), where P for j = 1, . . . , p(n)
executes Π and outputs πj using the second witness given in output by f .

Hi ≈ Hi+1: Suppose there exists a malicious adversary V? that distinguishes
between the experiments Hi and Hi+1 with 1 ≤ i ≤ p(n), then we can show that
there exists an adversary A that breaks the WI property of ΠL. The reduction
works as follows.

1. For j = 1, . . . , i− 1, A on input (xj , w1
j ) executes Π using w1

j to obtain πj .
2. For j = i, A interacts with the WI challenger of ΠL as follows:

(a) A has on input (xj , w0
j , w

1
j ) and sends it to the challenger of WI;

(b) the challenger computes and sends the first message aj to A;
(c) A computes ej = Hs(aj) and sends it to the challenger of WI;
(d) the challenger computes and sends zj to A;
(e) A sends πj = (aj , ej , zj) to V?;
(f) A adds to x the theorem xj and to π the proof πj .

3. ∀j = i+ 1, . . . , p(n) A on input (xj , w0
j ) executes Π using w0

j to obtain πj .
4. Set x = x1, . . . , xp(n) and π = π1, . . . , πp(n).

A sends x and π to V? and outputs what V? outputs.
We now observe that if the challenger of WI has used the first witness we are

in Hi otherwise we are in Hi+i. It follows that RP,f0 (n, p) ≡ H1 ≈ · · · ≈ Hp(n) ≈
Hp(n)+1 ≡ RP,f1 (n, p) to conclude the proof.
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Adaptive soundness. To prove soundness we follow [43] and use the fact that, for
every function g, with a sufficiently large co-domain, relation R = {(x, g(x))}
is evasive [8] in the NPRO model. A relation R is evasive if, given access to a
random oracle O, it is infeasible to find a string x so that the pair (x,O(x)) ∈ R.

Theorem 6. Let ΠL be a 3-round public-coin proof system with optimal sound-
ness for the NP-language L, and let H be a non programmable random oracle.
Then, Π is a non-interactive argument system with (adaptive) soundness for L
in the NPRO model.

Proof. Completeness of Π follows from the completeness of ΠL. Let O be an
NPRO. In order to prove the soundness ofΠ we use the fact that for any function
g, the relationR = {(x, g(x))} is evasive. We define the function g s.t. g(x, a) = e,
where there exists z such that the transcript (a, e, z) is accepting for the instance
x. If x /∈ L by the optimal soundness property we have that for every a there is
a single e for which there is some z so that (a, e, z) is accepting. Therefore g is
a function, as required and it follows that the relation R = {((x, a), g(x, a))} is
evasive. Suppose that there exist a polynomial function f and a malicious prover
P? such that P? proves a false statement (i.e., VO(σ, f(σ),P?O(σ)) = 1, where
σ ← CRS(1n)) with non-negligible probability, then there is an adversary A that
finds (x, a) s.t. O(x, a) = g(x, a) with non-negligible probability. The adversary
A works as follows. First, it runs σ ← CRS(1n). Then it runs (x, a, e, z)← P?(σ).
Finally it outputs (x,O(x, a)). From the contradicting assumption we know that
VO(σ, f(σ), (a, e, z)) = 1 with non-negligible probability. This implies that the
transcript (a,O(x, a), z) is accepting with non-negligible probability. Since x /∈ L
there exists only one e for which (a,O(x, a), z) is accepting. Therefore we have
that with non-negligible probability it holds that O(x, a) = e (i.e., O(x, a) =
g(x, a)) and this contradicts the fact that any function g is evasive for an NPRO.

5 Our Transform: NIZK from HVZK

From the previous section we know that if we have a 3-round HVZK proof system
with optimal soundness ΠL∨Λ = (PL∨Λ,VL∨Λ) for polynomial relation

R̂L∨Λ = {((x, ρ), w) : ((x,w) ∈ RL ∧ ρ ∈ Λ̂) ∨ ((ρ, ω) ∈ RΛ ∧ x ∈ L̂)}

that is also WI for polynomial relation

RL∨Λ = {((x, ρ), w) : ((x,w) ∈ RL ∧ ρ ∈ Λ) ∨ ((ρ, ω) ∈ RΛ ∧ x ∈ L)}

we can apply the FS transform to make it non-interactive still preserving WI
and soundness. To run the protocol a common hash function is needed and such
a function is modeled as an NPRO in the proof of soundness.

Here we make use of the above result in order to transform a 3-round HVZK
proof system with optimal soundness for an NP-language L into a NIZK argu-
ment for L in the CRS model using an NPRO in the proof of soundness. The
transformed NIZK argument Π = (P,V) is described below.
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Common input: instance x for an NP-language L.
Private input of P: w s.t (x,w) ∈ RL.
Common reference string: CRS on input 1n runs ρ ← SΛ(1, 1

n) where Λ
is an membership-hard language and samples a key s for a hash function
family H. Then it sets σ = (ρ, s).

P → V: P executes the following steps:
1. a← PL∨Λ((x, ρ), w);
2. e← Hs(x, a);
3. z ← PL∨Λ((x, ρ), w, a, e);
4. send π = (a, e, z) to V.

V ′s output: V accepts if and only if VL∨Λ((x, ρ), a, e, z) = 1 and e = Hs(x, a).

In our construction we suppose that the challenge length of ΠΛ is n, where
n denotes the security parameter. Therefore to use the OR composition of [18]
we need to consider a 3-round public-coin proof system with HVZK and optimal
soundness ΠL for RL that has challenge length n and therefore soundness error
2−n). This is not a problem because we can use Theorem 2 to transform every
3-round public-coin proof system with HVZK and optimal soundness with chal-
lenge n′ (where n′ 6= n) to another one with challenge length n. More precisely,
if n′ > n we can use Lemma 2 to reduce n′ to n almost for free. If n′ < n we need
to use Lemma 1, therefore we have to run multiple executions of ΠL to apply the
OR composition of [18]. Notice that this potential computational effort is im-
plicit also for the FS transform and for Lindell’s transform. Indeed if the original
3-round public-coin proof system with HVZK and optimal soundness has just a
one-bit (or in general a short) challenge then clearly the resulting NIZK is not
sound. Therefore the parallel repetition of the 3-round public-coin proof system
with HVZK and optimal soundness is required before applying the transform in
order to reduce the soundness error (see Section 2.2).

Theorem 7. Let ΠL∨Λ be a 3-round public-coin proof system for polynomial re-
lation R̂L∨Λ that is WI for polynomial relation RL∨Λ. Then Π is zero knowledge
for RL in the CRS model.

Proof. The simulator S works as follows:

1. S on input 1n, runs (ρ, ω)← SΛ(0, 1
n); samples a key s for a hash function

and sets σ = {ρ, s} and outputs σ.
2. S on input σ, ω and xi (for every i = 1, . . . , p(n)) computes a← PL∨Λ((xi, ρ), ω),
e← Hs(xi, a) and z ← PL∨Λ((xi, ρ), ω, a, e). It outputs πi = (a, e, z).

We show that the output of S is computationally indistinguishable from a real
transcript given in output by P in a real execution of Π through the following
hybrids games.

1. H0 is the experiment Rf (Pf (n, p)) (Definition 7).
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2. H1 differs from H0 in the way that ρ is generated. Indeed in H1 we have
that σ is computed by running SΛ(0, 1n). The second output ω of SΛ is not
used. Clearly H0 and H1 are indistinguishable otherwise the membership-
hard property of Λ would be contradicted. More details on this reduction
will be given below.

3. H2 differs from H1 just on the witness used by PL∨Λ. Indeed now ω is
used as witness. The WI property of ΠL∨Λ guarantees that H2 can not be
distinguished from H1. More details on this reduction will be given below.
Notice that H2 corresponds to the simulation.

H0 ≈ H1: If there exists a malicious verifier V? that distinguishes between H0

and H1, then there exists an adversary A that breaks the membership-hard
property of Λ. The reduction works as follows.

1. A queries the challenger of SΛ that sends back ρ.
2. A samples a key s for a hash function family H and sets σ = {ρ, s}.
3. A on input (xi, wi) ∈ RL for i = 1, . . . , p(n) computes the following steps:

3.1. compute ai ← PL∨Λ((xi, ρ), wi);
3.2. compute ei ← Hs(xi, ai);
3.3. compute zi ← PL∨Λ((xi, ρ), wi, ai, ei);
3.4. set πi = (ai, ei, zi);
3.5. set x = x1, . . . , xi and π = π1, . . . , πi.

4. A sends σ,x,π to V?.
5. A outputs the output of V?.

We now observe that if the challenger of a sampling algorithm SΛ sends ρ /∈ Λ
we are in H0 otherwise we are in H1. This implies that H0 ≈ H1.

H1 ≈ H2: If there exists a distinguisher V? that distinguishes between H1 and
H2, then there exists an adversary A against the adaptive NIWI property of
ΠL∨Λ, therefore contradicting Theorem 5. The reduction works as follows.

1. A runs (ρ, ω) ← SΛ(0, 1
n), samples a key s for a hash function and sets

σ = {ρ, s}.
2. A has on input a PPT function f = (f1, f2) and defines f ′ = (f ′1, f

′
2) as

follows:
f ′(σ, t,π) on input a CRS σ, a vector of theorems t = (x1, ρ), . . . , (xp(n), ρ)
and a vector of proofs π = π1, . . . , πp(n) returns (f1(σ,x,π), ρ), (f2(σ,x,π), ω).

3. A interacts with the challenger of adaptive NIWI, using f ′, in order to obtain
xi, πi = {ai, ei, zi}, for i = 1, . . . , p(n).

4. A sets x = x1, . . . , xp(n) and π = π1, . . . , πp(n).
5. A sends σ,x,π to V? and outputs the output of V?.

We now observe that if the challenger of NIWI chooses the first witness wi
we are in H1 otherwise we are in H2. This implies that H1 ≈ H2. We can thus
conclude that H0 ≈ H1 ≈ H2 and therefore the output of S is computational
indistinguishable from a real transcript.
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Theorem 8. Let ΠL∨Λ be a 3-round public-coin HVZK proof system with opti-
mal soundness for relation RL∨Λ, and WI for relation R̂L∨Λ, and let H be an
NPRO. Then, Π is a non-interactive argument system with adaptive soundness
for the relation RL in the CRS model using the NPRO model for soundness.

Proof. The completeness of Π follows from the completeness of ΠL∨Λ. In order
to prove adaptive soundness we notice that an adversarial prover proving a false
statement x ∈ L can be directly reduced to an adversarial prover proving a false
statement for ΠL∨Λ in the NPRO model. This contradicts Theorem 6. Indeed
the only subtlety that is worthy to note is that when the adversarial prover runs
the protocol, we have that the statement “ρ ∈ Λ” stored in the CRS is false,
therefore if also the instance “x ∈ L” proved by the prover is false then the OR
composition of the two statements is also false.

6 Details on Some Σ-Protocols

First of all we need to briefly introduce two Σ-protocols, one to prove that a
tuple is a DH tuple (ΠDH [41]), and the other one to prove that two graphs
are isomorphic (ΠGH [34]). Our comparison assumes that the CRS is a DH
tuple ((Gcrs, qcrs, pcrs, gcrs), Acrs, Bcrs, Ccrs) with pcrs and qcrs primes such
that pcrs = 2qcrs + 1 and |pcrs| = 1024. We distinguish two cases. In the first
one the prover wants to prove that a tuple ((G, q, p, g), A,B,C) is a DH tuple,
and in the other one the prover tries to convince the verifier that two graphs G0

and G1 with n vertices each are isomorphic.

A Σ-protocol for Diffie-Hellman tuples. We consider the following polynomial-
time relation RDH = {(((G, q, g), A = gr, B = h,C = hr), r) : Br = C} over
cyclic groups Gq of prime-order q. Typically, G is the subgroup of quadratic
residues of Zp for prime p = 2q+1. We next briefly describe Σ-protocol ΠDH =
(PDH,VDH) for RDH.

Common input: instance x and language DH.
Private input of PDH: r.
The protocol ΠDH:

1. PDH picks t ∈ Zq at random, computes and sends a = gt , b = ht to VDH;
2. VDH chooses a random challenge e ∈ Zq and sends it to PDH;
3. PDH computes and sends z = t+ er to VDH;
4. VDH checks gz = a ·Ae AND hz = b · Ce accepts if and only if it is the case.

We show the special HVZK simulator Sim for ΠDH. Sim, on input x and a
challenge e of length |q| − 1 executes the following steps:

1. randomly chooses z ∈ Zq;
2. computes a = gz ·A−e;
3. computes b = hz · C−e.
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Graph isomorphism. We show a Σ-protocol ΠGH = (PGH,VGH) to prove that
two graphs are isomorphic. Given two graphs G0 and G1, prover PGH wants to
convince verifier VGH that he knows a permutation φ such that φ(G0) = G1.

Common input: theorem x = (G0, G1).
Private input of PGH: φ.
The protocol ΠGH:

1. PGH randomly chooses a permutation ψ and a bit b ∈ {0, 1}, computes and
sends P = ψ(Gb);

2. VGH chooses and sends a random bit b′ ∈ {0, 1} PGH;
3. PGH sends the permutation τ to VGH, where

τ =


ψ if b = b′

ψφ−1 if b = 0, b′ = 1

ψφ if b = 1, b′ = 0

4. VGH accepts if and only if P = τ(Gb′).

Computational effort: two cases. We show a summary of the comparison among
our transform and Lindell’s transform in Tables 2 and 3. The cost is measured
by considering the computations in terms of number of exponentiations made
by P and of V. In our comparison we consider that a CRS contains a DH tuple
((Gcrs, qcrs, pcrs, gcrs), Acrs, Bcrs, Ccrs) with |pcrs| = n = 1024, with security
parameter n (therefore |qcrs| = 1023). We consider two cases. In the first one
we use the NIZK argument to prove that a tuple ((G, q, p, g), A,B,C) is a DH
tuple; in particular we take in account two sub-cases: when p = 1024 and when
p = 2048. In the second case we use the NIZK argument to prove the isomorphism
between two graphs G0 and G1, and we assume that k = n2 bits are needed to
represent a graph with n vertices. We stress that Lindell’s transform needs to
commit the first round of a Σ-protocol (plus the instance to be proved, but for
our comparison we ignore that the instance has to be committed) associated
to the language that we take into account (the language of the DH tuples or
the language of the isomorphic graphs). Therefore, using the described CRS,
to commit to a string of 1023 bit, 4 exponentiations are required. This is a
consequence of the fact that the commitment is made by executing the simulator
associated with ΠDH (with |qcrs| = 1023).

Case 1: proving that a tuple is a DH tuple.

– [43]. When the instance to be proved is ((G, q, p, g), A,B,C) with p = 1024,
the prover P needs to compute a = gt, b = ht (as describe before) and
needs to commit to them. The total size of a and b is 2048 bits, therefore
to commit to 2048 bits we need to execute the DM commitment 3 times.
This implies that the prover needs to compute 3 ·4 exponentiations mod pcrs
and 2 exponentiations mod p. The verifier V needs to checks if open of the
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DM commitments was correct, and also needs to compute gz = a · Aep and
hz = b ·Ce. For this reason the verifier needs to compute 3 ·4 exponentiations
mod pcrs plus 4 exponentiations mod p. With the same arguments we can
count the amount of exponentiations needed to prove that the instance is a
DH tuple with p = 2048.

– Our transform. When |p| = 1024 (resp., |p| = 2048) the prover need to run
the simulator Sim of ΠDH with the instance ((Gcrs, qcrs, pcrs, gcrs), Acrs,
Bcrs, Ccrs) (this costs 4 exponentiations), also we need to compute a = gt ,
b = ht. The total number of exponentiations is 6 (2 exponentiations mod p,
and 4 exponentiations mod pcrs). The verifier needs to perform two times the
verifier’s algorithm for ΠDH, one with the instance ((Gcrs, qcrs, pcrs, gcrs),
Acrs, Bcrs, Ccrs), the other one with the instance
((G, q, p, g), A,B,C), for a total amount of 4 exponentiations mod pcrs, and
4 exponentiations mod p.

Case 2: Graph isomorphism.

– [43]. We consider that the instance to be proved is composed by two graphs
(G0, G1). Also we assume that to represent one graph with n vertices k = n2

bits are necessary. In this case we remark that because the security parameter
is n = 1024 we need to execute n times the protocol ΠGH described before.
For the described assumptions we have that the first round of ΠGH is P =
σ(Gb) and |P | = n2. Therefore the prover needs to run n executions of
the DM commitment function to commit to P , where each of them costs 4
exponentiations. Also we need to execute n iteration of this process, for a
total amount of 4n2 exponentiations mod pcrs. Even in this case the verifier
needs to checks if all opens with respect to the n commitments are correctly
computed for a total amount of 4n2 exponentiations mod pcrs.

– Our transform. In this case the prover P computes only 2 exponentiations
mod p to compute the first round of ΠDH. The verifier runs the verifier’s
algorithm of ΠDH that costs 4 exponentiations mod p.
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A Dual Mode Commitments and the Need for Strong
Σ-protocols

The following definition of a dual-mode commitment scheme (DMCS, in short)
is from [43].
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Definition 9 ([43]). A dual-mode commitment scheme (DMCS) is a tuple of
PPT algorithms (GenCRS,Com,Scom) such that:

– GenCRS(1n) outputs a common reference string, denoted by ρ.
– (GenCRS,Com): when ρ← GenCRS(1n) andm ∈ {0, 1}n, algorithm Comρ(m; r)

with randomness r is a non-interactive perfectly-binding commitment scheme.
– (Com,Scom): For every PPT adversary A and every polynomial p(·), the

output of the following two experiments is computationally indistinguishable:

RealCom,A(1n) SimulationScom(1
n)

– ρ← GenCRS(1n)
– For i = 1, . . . , p(n):

1. mi ← A(ρ, c, r)
2. ri ← {0, 1}poly(n)
3. ci = Comρ(mi; ri)
4. Set c = c1, . . . , ci and

r = r1, . . . , ri
– Output
A(ρ,m1, r1, . . . ,mp(n), rp(n))

– ρ← Scom(1n)
– For i = 1, . . . , p(n):

1. ci ← Scom
2. mi ← A(ρ, c, r)
3. ri ← Scom(mi)
4. Set c = c1, . . . , ci and

r = r1, . . . , ri
– Output
A(ρ,m1, r1, . . . ,mp(n), rp(n))

Membership-hard languages with efficient sampling. Lindell defines a membership-
hard language Λ as a language such that one can efficiently sample both instances
that belong to the language and instances that do not belong to the language.
Still distinguishing among these two types of instances is hard. This is formal-
ized through a sampling algorithm SΛ that on input a bit b outputs an instance
ρ ∈ Λ along with a witness ω when b = 0, and outputs an instance ρ 6∈ Λ other-
wise. No polynomial-time distinguisher on input ρ can guess b with probability
non-negligibly better than 1/2. Let SρΛ denote the instance part of the output
(i.e., without the witness when b is 0).

Definition 10 ([43]). Let Λ be a language. We say that Λ is membership-hard
with efficient sampling if there exists a PPT sampler SΛ such that for every PPT
distinguisher D there exists a negligible function µ such that:

|Prob [ D(SρΛ(0, 1
n), 1n) = 1 ]− Prob [ D(SΛ(1, 1n), 1n) = 1 ] | ≤ µ(n).

There are several popular membership-hard languages in literature. We will
in particular consider the one considered by Lindell in [43]: the language DH of
Diffie-Hellman triples.
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Lindell’s construction of a DMCS from Σ-protocols. Let us describe Lindell’s
construction of a DMCS from any membership-hard language Λ admitting a
Σ-protocol ΠΛ = (PΛ,VΛ) with simulator SimΛ for perfect special HVZK.

Regular ρ generation: Run sampler SΛ for Λ with input (1, 1n) and receive
back ρ (recall that ρ /∈ Λ).

Commitment: To commit to a valuem ∈ {0, 1}n with randomness r, Com sets
e = m, runs SimΛ(ρ, e) with randomness r and obtains (a, z). The output of
Com is the commitment c = a and the decommitment information (e, r).

Decommitment: To decommit, provide e, z and the receiver checks that
VΛ(ρ, a, e, z) = 1.

Simulator Scom:
– On input 1n, Scom runs the sampler SΛ with input (0, 1n), and receives

back (ρ, ω) (recall that ρ ∈ Λ and ω is a witness to this fact). Then,
Scom computes a = PΛ(ρ, ω), sets c = a and outputs (c, ρ).

– On input m ∈ {0, 1}n, Scom sets e = m and outputs z = PΛ(ρ, ω, a, e).

A.1 A Subtlety in Lindell’s Construction: the Need of Strong
Σ-protocols

We now discuss a subtlety in the construction of a DMCS from any Σ-protocol
for a membership-hard language given in [43]. We stress that the content of this
section does not apply when considering [42].

We observe that the construction of a DMCS from any Σ-protocol for a
membership-hard language given in [43] works when the Σ-protocol is equipped
with a simulator such that when the simulator gets as randomness the 3rd round
of the prover, then the simulator is able to output the same first round of the
prover. This special property has been investigated in [26] where it was called
strong perfect special HVZK. In more details, a Σ-protocol is strong perfect
special HVZK if it admits a simulator Sim that on input any challenge e outputs
a transcript (a, e, z) that is perfectly indistinguishable from the distribution of
the transcript generated by the prover when the challenge is e, but in addition it
is required that the transcript is computed by sampling the 3rd round uniformly
at random. The strong perfect special HVZK property is formalized below.

Definition 11 ([26]). The special perfect HVZK property is strong if there ex-
ists a PPT simulator Sim for the special perfect HVZK property that on input
x ∈ LR and a challenge “e” works by sampling the 3rd round “z” uniformly at
random and then computing the 1st round “a” deterministically from “x, e” and
“z”.

Lindell’s construction of a DMCS showed in [43] requires a simulator for
strong perfect special HVZK.

A Σ-protocol ΠDH for DH. Now we show an artificial but useful example that
shows a Σ-protocol with a simulator Sim for perfect special HVZK that however
does not works if strong perfect special HVZK is desired.
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The most widely used Σ-protocol ΠDH = (PDH ,VDH) for the language DH
consists in running in parallel two instances of a Σ-protocol for DLog each
proving knowledge a discrete logarithm. The two instances are linked together
by having the verifier send the same challenge and expecting to receive the same
third-round message. Schnorr’s protocol [50] constitutes a natural choice for a
Σ-protocol for DLog.

Consider instead instantiating the Σ-protocol for DH with the following
Σ-protocol ΠDLog = (PDLog,VDLog) for proving knowledge of the discrete log-
arithm w of x with base g. PDLog first selects another random group element x′
along with its discrete logarithm w′ to the base g and then sends x′ to VDLog.
Then PDLog and VDLog run two instances of Schnorr’s Σ-protocol using the
same challenge so that PDLog proves to VDLog knowledge of both w and w′.
Clearly, ΠDLog is a Σ-protocol for DLog (this comes from the fact that the
AND of two Σ-protocols is still a Σ-protocol and from the fact that knowledge
of a pair (w,w′) implies knowledge of w) and, consequently, ΠDH instantiated
with ΠDLog is a Σ-protocol for DH. Moreover notice that ΠDLog admits a simu-
lator Sim?

DLog for perfect HVZK that uses the simulator of Schnorr’s protocol to
compute the transcript of the first instance, while it uses the prover of Schnorr’s
protocol for producing the transcript associated to x′, after having selected x′

along with a witness w′ when the protocol starts. We now provide a formal
description of this Σ-protocol.

More precisely we show a Σ-protocol ΠDLog = (PDLog,VDLog) for relation
RDLog = {((G, g, q, x), w) : x = gw} that is special perfect HVZK and such
that there exists a simulator for special perfect HVZK that does not satisfy the
requirement of strong perfect special HVZK of ΠDLog (see Def. 11).

Common Input: (G, g, q, x) and relation RDLog.
Input of PDLog: w t.c ((G, g, q, x), w) ∈ RDLog.
The protocol ΠDLog:

1. PDLog chooses r0, r1, w1 at random from Zq, and g1 at random from G. Then
it computes (a0, a1) = (gr0 , gr11 ), and x1 = gw1

1 . PDLog sends (a0, g1, x1, a1)
to VDLog.

2. VDLog chooses a random challenge e ← {0, 1}l (where 2l < q) and sends e
to PDLog.

3. PDLog computes z0 = r0 + ew and z1 = r1 + ew1 it sends (z0, z1) to VDLog.
4. VDLog checks gz0 = a0x

e and gz11 = a1x
e
1 accepts if and only if it is the case.

Special HVZK The simulator Sim of ΠDLog on input the theorem (G, g, q, x) and
challenge e works as follows:

1. pick z0, r1, w1 at random from Zq and g1 at random from G.
2. compute a0 = gz0x−e and a1 = gr11 .
3. compute x1 = gw1

1 and z1 = r1 + ew1.
4. return (a0, g1, x1, a1, z0, z1).
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Completeness. In order to see that completeness holds, observe that when PDLog
runs the protocol honestly we have:

gz0 = gr0+we = gr0 · gwe = a0 · xe and gz11 = gr1+w1e
1 = gr11 · g

w1e
1 = a1 · xe1.

Special soundness. Let (a0, g1, x1, a1, e, z0, z1) (a0, g1, x1, a1, e′, z′0, z′1) be a colli-
sion. We have that gz0 = a0x

e and gz
′
0 = a0x

e′ , and thus we have gz0−z
′
0 = xe−e

′

that implies that x = g
z0−z′0
e−e′ , therefore w =

z0−z′0
e−e′ .

Special perfect HVZK. We now check that the transcript returned by Sim, on
input the theorem (G, g, q, x) and challenge e, is identically distributed w.r.t. the
transcript obtained from the interaction between PDLog and VDLog, when the
challenge is e. The transcript differs only in the computation of a0 and z0. In
the case of the PDLog a0 = gr0 where r0 is chosen uniformly at random and
z0 = r0 + ew. Instead, Sim chooses z0 uniformly at random and r0 = z0 − ew,
therefore clearly Sim and PDLog produce a0 and z0 with the same distribution.

ΠDH does not produce a DMCS. We observe that Lindell’s construction of a
DMCS from any Σ-protocol for a membership-hard language [43] does not seem
to work when ΠDH is used as Σ-protocol. Indeed consider the steps of ex-
periments RealCom,A(1n) and SimulationScom(1

n) in which A obtains as input
(ρ, c, r) and consider iteration with i = 2 of the loop.

In RealCom,A(1n), A’s view includes (m1, r1, c1) and thus A can check that in-
deed c1 is the output of Com(m1; r1). This means that in the above construction,
c1 is the first component of the pair given in output by SimΛ(ρ, e) when running
with randomness r1, and this is precisely the way in which c1 was produced in
Step 3 when i = 1. Therefore the check of A succeeds in RealCom,A(1n).

In SimulationScom(1
n), A’s view includes (m1, r1, c1) and thus A can still

perform the check that c1 is the output of Com(m1; r1) by running SimΛ(ρ, e)
with randomness r1. However, in this case it is not true that c1 is computed
by running Com(m1; r1). Indeed, in the execution of SimulationScom(1

n), c1
is computed by running c1 ← Scom and then r1 is computed by running r1 ←
Scom(m1). In the above construction Scom computes c1 and r1 as the 1st and 3rd
messages that are computed by PΛ when the challenge ism1. Therefore whenever
the 3rd round r1 computed by PΛ does not correspond to a randomness that
can be given as input to SimΛ(ρ,m1) to get the same c1 computed by PΛ, we
have that the check of A fails.

By noticing that the 3rd round r1 of PDH in ΠDH does not give any infor-
mation about the random instance x′ of DLog that P ′DH would compute and
that would be part of c1, we have that there exists a simulator for DH, using
internally Sim?

DLog, that on input (ρ,m1) and running with randomness r1 com-
putes c1 only with negligible probability and thus the above A is a successful
distinguisher of experiments RealCom,A(1n) and SimulationScom(1

n).
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B An Optimal-Sound (and Not Special Sound) 3-Round
Perfect Special HVZK Proof

In this section we show a 3-round public-coin perfect special HVZK proof system
that is optimal sound and not special sound. First of all we briefly describe the
Σ-protocol of [44] to prove that, given a commitment com and a message m, m
is committed in com. Then we show the protocol of [51] that is a modification
of [44] and given a commitment com and a value Ψ , allows to prove that the
discrete logarithm of Ψ is committed in com.

In order to describe the protocol of [44] and [51] we consider two prime p and
q s.t. p = 2q + 1, a group of order G of order q such that the DDH assumption
is hard. Also we consider two random elements, g and h, taken from G. We next
describe Σ-protocol ΠCom = (PCom,VCom) of [44] for relation

RCom =
{((

(G, q, g, h), v, com = (ĝ, ĥ)
)
, w
)
: ĝ = gw, ĥ = hw+v

}
.

Common Input: (G, g, v, h, com = (ĝ, ĥ), q) and relation RCom.
Input of PCom: w s.t. ((G, v, g, h, com = (ĝ, ĥ), q), w) ∈ RCom.
The protocol ΠCom:

1. The prover PCom chooses r from Zq and sends (g̃ = gr, h̃ = hr) to VCom;
2. The verifier VCom chooses a random challenge e← Zq and sends e to PCom;
3. PCom sends z = ew + r to VCom;
4. VCom checks that ĝeg̃ = gz and

(
ĥ
hv

)e
h̃ = hz accepts if and only if the

checks are successful.

In [51] a similar protocol was used to prove that com is a commitment of the
discrete logarithm of a value Ψ ∈ G with hψ = Ψ . Formally the protocol is for
the NP language

L =
{(
Ψ = hψ, com = (ĝ = gw, ĥ = hw+ψ)

)
: g, h← G, ψ ∈ Zq, w ∈ Zq

}
and for the corresponding relation

RL =
{(

(Ψ = hψ, com = (ĝ = gw, ĥ = hw+ψ)), (w,ψ)
)
: g, h← G, ψ ∈ Zq, w ∈ Zq

}
The protocol follows ΠCom with the differences that the common input is

(G, q, g, Ψ = hψ, h, com = (ĝ, ĥ) and that the verifier decide whether to accept
or not checking if it holds that ĝeg̃ = gz and

(
ĥ
Ψ

)e
h̃ = hz. While this protocol

preserves the perfect special HVZK property, it is not a proof of knowledge for
RL and neither special sound even though it still enjoys optimal soundness. We
now proceed more formally.
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Optimal soundness. We now consider an instance that is not in the NP language
L, and show that, once the first round of the protocol is fixed, there exists only
one challenge e s.t. the prover can answer successfully computing the third round
z of the protocol. Consider the instance

(
Ψ = hψ, com = (ĝ = gw, ĥ = hw+ψ′)

)
/∈

L (with ψ 6= ψ′). Assume by contradiction that given the fist round of the
protocol (g̃, h̃) there exist two distinct challenges e0 and e1 for which the prover
can make the verifier accept with answers z0, z1 respectively. In the end we prove
that ψ = ψ′.

Proof. Since the verifier accepts, it must be that for all i ∈ {0, 1}, the following
checks are successful: ĝei g̃ = gzi and

(
ĥ
Ψ

)ei
h̃ = hzi . It follows that ĝe0−e1 =

gz0−z1 and
(
ĥ
Ψ

)e0−e1
= hz0−z1 . Suppose that h = gω, we get

gwω(e0−e1) = ĝ(e0−e1)ω = g(z0−z1)ω = h(z0−z1) = (ĥ · Ψ−1)e0−e1

= hz0−z1 = gω(w+ψ′−ψ)(e0−e1).

Therefore, if e0 6= e1 we get the contradiction that ψ = ψ′.

The protocol is not special sound for RL. To argue that the protocol of [51] is
not special sound, we note that in order to compute a commitment com of the
discrete logarithm of Ψ , knowledge of this discrete logarithm is not necessary
since it is possible to compute com = (ĝ, hw · Ψ) with w ∈ Zq. Indeed, notice
that the discrete logarithm ψ of Ψ is never used in the proof. Formally, we
suppose that the protocol is special sound for the polynomial relation RL and
then construct an adversary A that, given Y = gy ∈ G, returns the discrete
logarithm y of Y .

We have shown that there exist 3-round public-coin proof systems that are
optimal sound and not special sound. It also easy to observe that special sound-
ness implies optimal soundness. Indeed, consider an NP-Language L and a cor-
responding relation RL. All Σ-protocols for RL must also be 3-round HVZK
proofs for L with optimal soundness. If not, than the violation of optimal sound-
ness (P? for a false statement can generate (a, c, z) and (a, c′, z′) with c′ different
from c and both accepting) implies directly also a violation of special soundness.


