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Abstract. The seminal result that every language having an interactive proof
also has a zero-knowledge interactive proof assumes the existence of one-way
functions. Ostrovsky and Wigderson (ISTCS 1993) proved that this assumption
is necessary: if one-way functions do not exist, then only languages in BPP have
zero-knowledge interactive proofs.
Ben-Or et al. (STOC 1988) proved that, nevertheless, every language having a
multi-prover interactive proof also has a zero-knowledge multi-prover interactive
proof, unconditionally. Their work led to, among many other things, a line of
work studying zero knowledge without intractability assumptions. In this line of
work, Kilian, Petrank, and Tardos (STOC 1997) defined and constructed zero-
knowledge probabilistically checkable proofs (PCPs).
While PCPs with quasilinear-size proof length, but without zero knowledge, are
known, no such result is known for zero knowledge PCPs. In this work, we show
how to construct “2-round” PCPs that are zero knowledge and of length Õ(K)
where K is the number of queries made by a malicious polynomial time verifier.
Previous solutions required PCPs of length at least K6 to maintain zero knowl-
edge. In this model, which we call duplex PCP (DPCP), the verifier first receives
an oracle string from the prover, then replies with a message, and then receives
another oracle string from the prover; a malicious verifier can make up to K
queries in total to both oracles.
Deviating from previous works, our constructions do not invoke the PCP Theo-
rem as a blackbox but instead rely on certain algebraic properties of a specific
family of PCPs. We show that if the PCP has a certain linear algebraic struc-
ture — which many central constructions can be shown to possess, including
[BFLS91,ALMSS98,BS08] — we can add the zero knowledge property at vir-
tually no cost (up to additive lower order terms) while introducing only minor
modifications in the algorithms of the prover and verifier. We believe that our
linear-algebraic characterization of PCPs may be of independent interest, as it
gives a simplified way to view previous well-studied PCP constructions.

1 Introduction

We continue the study of proof systems that provide soundness and zero knowledge,
simultaneously and unconditionally (i.e., no intractability assumptions are needed to
achieve the two), as we now explain.



Interactive proofs. An interactive proof [6, 20] for a language L is a pair of inter-
active algorithms (P, V ), where P is known as the prover and V as the verifier, that
satisfies the following: (i) (completeness) for every instance x in L , P (x) can make
V (x) accept with probability 1; (ii) (soundness) for every instance x not in L , every
prover P̃ can make V (x) accept with at most a small probability ε. Shamir [35] showed
the expressive power of interactive proofs by proving that IP = PSPACE, i.e., all
and only languages in PSPACE have interactive proofs.

Zero knowledge. An interactive proof is zero knowledge [20] if the verifier, even
if malicious, cannot learn any information about an instance x in L , by interacting
with the prover, besides the fact x is in L : for any efficient verifier Ṽ there exists an
efficient simulator S such that S(x) is “indistinguishable” from the view of Ṽ while
interacting with P (x). Depending on the choice of definition for indistinguishability,
one gets different flavors of zero knowledge.

If indistinguishability is required to hold for efficient deciders only, then one gets
computational zero knowledge; CZK denotes the corresponding complexity class.
A seminal result in cryptography says that if one-way functions exist then CZK =
IP, i.e., every language having an interactive proof also has a computational zero-
knowledge interactive proof [20, 23, 8]. If indistinguishability is required to hold for
all deciders, then one gets statistical zero knowledge; if instead the simulator’s output
and the verifier’s view are the same distribution (and not merely close to each other),
then one gets perfect zero knowledge. These stronger notions determine the correspond-
ing complexity classes SZK and PZK, both of which are contained in AM∩coAM;
of course, PZK ⊆ SZK ⊆ CZK.

Unfortunately, zero knowledge cannot be achieved unconditionally for non-trivial
languages: Ostrovsky and Wigderson [33] proved that if one-way functions do not exist
then CZK equals an average-case variant of BPP.

Other types of proof systems. Due to the limitations of interactive proofs with respect
to zero knowledge that holds unconditionally, researchers have explored other types of
proof systems, as an alternative to interactive proofs.

– MIP. Ben-Or et al. [9] first studied statistical zero knowledge, and proved that it can
be achieved in a new model, multi-prover interactive proof (MIPs), where the verifier
interacts with multiple provers that are not allowed to communicate while interacting
with the verifier (though they may share a random string before such an interaction
begins). More precisely, Ben-Or et al. prove that every language having a multi-
prover interactive proof also has a perfect zero-knowledge multi-prover interactive
proof (again, without relying on intractability assumptions). The result of [9] was
subsequently improved in a number of papers [29, 5, 19].

– PCP. Kilian et al. [28] study statistical zero knowledge in the model of probabilisti-
cally checkable proofs (PCPs) [4, 3, 2], where the verifier has oracle access to a string.
Essentially, the oracle string can be thought of as a stateless prover: the answer to a
query depends only on the query itself, but not any other queries that were previously
made. Building on results implicit in [19], Kilian et al. showed two main theorems.
First, every language in NEXP has a PCP that is statistical zero knowledge against
verifiers that make at most any polynomial number of queries to the PCP. Second,
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every language in NP has, for every constant c > 0, a PCP that is statistically zero
knowledge against verifiers that make at most k(n) := nc queries to the PCP.
Subsequent works [24, 25, 31, 26] provided simplifications (giving alternative con-
structions or simplifying that of [28]) and limitations (showing that for languages in
NP one cannot efficiently sample the oracle if one seeks statistical zero knowledge
against verifiers that make at most a polynomial number of queries).

– IPCP. Goyal et al. [21] study statistical zero knowledge in the model of inter-
active PCPs (IPCPs) [27], where the verifier interacts with two provers of which
one is restricted to be an oracle. Goyal et al. prove that every language in NP has
a constant-round interactive PCP that is statistical zero knowledge against verifiers
that make at most any polynomial number of queries to the PCP, and where both
provers’ strategies can be implemented efficiently as a function of the instance and
the witness.

A limitation of prior work. PCPs with quasilinear-size proof length, but without zero
knowledge, are known: for every language L in NTIME(T (n)), there is a PCP with
proof length Õ(T (n)) and query complexity O(1) [17, 15, 14, 32]. On the other hand,
no such result for statistical zero knowledge PCPs is known: even when applied to PCPs
of length Õ(T (n)), [28]’s result and followup improvements yields a proof length that
is polynomial in T (n) ·k(n), where k(n), known as the knowledge bound, is a bound on
the number of queries by any verifier (see Section 4.1 for further discussion). We thus
ask the following question: are there statistical zero knowledge PCPs with proof length
quasilinear in T (n) + k(n)?

1.1 Our contributions

We do not answer the above question in the PCP model, but we give a positive answer
in a closely related model that can be thought of as a “2-round PCP”, which we call
duplex PCP (DPCP). At a high level, a DPCP works as follows: the prover first sends
an oracle string π0 to the verifier, just as in a PCP; then, the verifier sends a message
ρ to the prover; finally, the prover answers with a second oracle string π1; the verifier
may query both oracles, and then accept or reject. In other words, a DPCP is merely a
2-round interactive proof in which the prover sends oracle strings rather than messages.
We prove the following theorem:

Theorem 1 (see Theorem 4 for formal statement). For every language L in NTIME(T )∩
NP and polynomially-bounded knowledge bound k there exists a DPCP system satis-
fying the following:
– the proof length (in fact, also the prover running time) is quasilinear in n+ T (n) +
k(n);

– the query complexity is polynomial in log(T (n) + k(n));
– the verifier running time is polynomial in n+ log(T (n) + k(n));
– perfect zero knowledge holds against any verifier that makes at most k(n) adaptive

queries (in total to both oracles);
– the soundness error is 1/2 (and can be reduced by repetition to 2−λ while preserving

perfect zero knowledge, provided that the number of queries does not exceed k(n)).
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Moreover, similarly to the PCPs of [28], the DPCP system that we construct is in
fact not only sound but is also a proof of knowledge [7]; however, in contrast to [28],
the DPCP verifier is non-adaptive, in the sense that the query locations depend only on
the verifier’s random tape.

Perhaps the main difference between our construction and prior work is the tech-
niques that we use. While previous works use the PCP Theorem as a black box, com-
piling a PCP into a zero knowledge PCP by using locking schemes [28], we use certain
algebraic properties of a specific family of PCPs to guarantee zero knowledge. In com-
parison to the generic approach, we are more specific, but the addition of zero knowl-
edge essentially comes “for free” when compared to the corresponding constructions
without zero knowledge. (In contrast, [28] achieves a proof length of Ω(k(n)6 · l(n)c),
for some large enough c, when starting from a PCP with proof length l(n).)
DPCP vs IPCP. Duplex PCPs are an alternative to interactive PCPs that combine PCPs
and interaction. In a DPCP, the verifier gets an oracle string from the prover, replies with
a message, and then gets another oracle string from the prover; in an IPCP, the verifier
gets an oracle string from the prover, and then engages in an interactive proof with him.

Both [21] and our work are similar in that both address aspects that we do not
not know how to address in the PCP model, and resort to studying alternative models,
i.e., IPCP and DPCP respectively. The two works however give different flavors of
results: [21] obtain IPCPs that are zero knowledge against verifiers that ask at most
any polynomial number of queries k(n) but their oracle is of polynomial size in k(n)
(actually, of exponential size but with a polynomial-size circuit describing it); on the
other hand, our work obtains DPCPs that are zero knowledge against verifiers that ask
at most a fixed polynomial number of queries k(n) and our oracles are of quasilinear
size in k(n).

Finally, we note that our construction can be also cast as an IPCP, because the
knowledge bound k(n) holds only for the first oracle, i.e., perfect zero knowledge is
preserved even if the verifier reads the second oracle in full. This provides a result on a
2-round IPCP incomparable to [21]’s 4-round IPCP.
On the minimal computational gap between prover and verifier needed for zero
knowledge. IP and MIP systems assume a computational gap between prover and
verifier. The prover is allowed (and often assumed) to be computationally unbounded
and the verifier is polynomially bounded. An intriguing corollary of our theorem is
that the computational gap between prover and verifier can be drastically reduced, to
a mere polylogarithmic one. Namely, suppose that we wish to create zero-knowledge
systems in which the verifier runs in time tv(n); in the model above, as long as tp(n) >
tv(n) · (log tv(n))c for an absolute constant c, then perfect zero knowledge with a small
soundness error can be obtained under no intractability assumptions. (See Corollary 1
for a formal statement.)

2 Preliminaries

Functions and distributions. We use f : D → R to denote a function with domain
D and range R; given a subset D̃ of D, we use f |D̃ to denote the restriction of f to D̃.
Given a distribution D, we write x← D to denote that x is sampled according to D.
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Distances. A distance measure is a function ∆ : Σn × Σn → [0, 1] such that for all
x, y, z ∈ Σn: (i) ∆(x, x) = 0, (ii) ∆(x, y) = ∆(y, x), and (iii) ∆(x, y) ≤ ∆(x, z) +
∆(z, y). For example, the relative Hamming distance over alphabet Σ is a distance
measure: ∆Ham

Σ (x, y) := |{i |xi 6= yi}|/n. We extend ∆ to distances of strings to sets:
given x ∈ Σn and S ⊆ Σn, we define∆(x, S) := miny∈S ∆(x, y) (or 1 if S is empty).
We say that a string x is ε-close to another string y if ∆(x, y) ≤ ε, and ε-far from y if
∆(x, y) > ε; similar terminology applies for a string x and a set S.

Fields and polynomials. We denote by F a finite field, by Fq the field of size q, and by
F the set of all finite fields. We denote by F[X1, . . . , Xm] the ring of polynomials inm
variables over F; given a polynomial P in F[X1, . . . , Xm], degXi(P ) is the degree of
P in the variable Xi; the total degree of P is the sum of all of these individual degrees.

Linear spaces. Given n ∈ N, a subset S of Fn is an F-linear space if αx + βy ∈ S
for all α, β ∈ F and x, y ∈ S.

Languages and relations. We denote by R a relation consisting of pairs (x,w),
where x is the instance and w is the witness. We denote by Lan(R) the language
corresponding to R, and by R|x the set of witnesses in R for x.

Complexity classes. We write complexity classes in bold capital letters: NP, PSPACE,
NEXP, and so on. We take a “relation-centric” point of view: we view NTIME as a
class of relations rather than as the class of the corresponding languages; we thus may
write things like “let R be in NP”. If R is in NTIME(T ), we fix an arbitrary ma-
chine MR that decides R in time T (n), i.e., MR(x,w) always halts after T (|x|) steps
and MR(x,w) = 1 if and only if (x,w) ∈ R; we then say that MR decides R (or
Lan(R)). Throughout, we assume that T (n) ≥ n.

Codes. An error correcting code C is a set of functions w : H → Σ, where H,Σ are
finite sets. The message length of C is n := log|Σ| |C|, its block length is ` := |H|,
its rate is ρ := n/`, its (minimum) distance is d := min{∆(w, z) |w, z ∈ C , w 6= z}
when ∆ is the (absolute) Hamming distance, and its (minimum) relative distance is
δ := d/`. Given a code family C , we denote by Rel(C ) the relation that naturally
corresponds to C , i.e., {(C,w) | C ∈ C , w ∈ C}. A code C is linear if Σ is a finite
field and C is a Σ-linear space in Σ`; we denote by dim(C) the dimension of C when
viewed as a linear space. A code C is t-wise independent if, for every subset I of [`]
with cardinality t, the distribution of w|I (viewed as a string) for a random w ∈ C
equals the uniform distribution on Σt.

Random shifts. We later use the following folklore claim about distance preservation
for random shifts in linear spaces; for completeness, we include its short proof.

Claim. Let n be in N, F a finite field, S an F-linear space in Fn, and x, y ∈ Fn. If x is
ε-far from S, then αx+ y is ε/2-far from S, with probability 1− |F|−1 over a random
α ∈ F. (Distances are relative Hamming distances.)

Proof. Suppose, by way of contradiction, that there exist α1, α2 ∈ F and y1, y2 ∈ S
with α1 6= α2 such that, for every i ∈ {1, 2}, αix + y is ε/2 close to yi. Then, by the
triangle inequality, z := y1 − y2 is ε-close to (α1x + y) − (α2x + y) = (α1 − α2)x.
We conclude that x is ε-close to 1

α1−α2
z ∈ S, a contradiction.
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2.1 Probabilistically checkable proofs

A PCP system [4, 3, 2] for a relation R is a tuple PCP = (P, V ) that works as follows.

– The prover P is a probabilistic algorithm that, given as input an instance-witness pair
(x,w) with n := |x|, outputs a proof π : D(n)→ Σ(n), where both D(n) and Σ(n)
are finite sets.

– The verifier V is a probabilistic oracle algorithm that, given as input an instance x
with n := |x| and with oracle access to a proof π : D(n)→ Σ(n), queries π at a few
locations and then outputs a bit.

The system PCP has (perfect) completeness and soundness error e(n) if the following
two conditions hold. (Below, we explicitly denote the prover’s and verifier’s randomness
as rP and rV .)

Completeness: For every instance-witness pair (x,w) in the relation R,

Pr
rP ,rV

[
V P (x,w;rP )(x; rV ) = 1

]
= 1 .

Soundness: For every instance x not in the language Lan(R) and proof π : D(n) →
Σ(n),

Pr
rV

[V π(x; rV ) = 1] ≤ e(n) .

A relation R belongs to the complexity class PCP[a, l, q, e, tp, tv] if there is a PCP
system for R in which:
– the answer alphabet (i.e., Σ(n)) is a(n),
– the proof length over that alphabet (i.e., |D(n)|) is at most l(n),
– the verifier queries the proof in at most q(n) locations,
– the soundness error is e(n),
– the prover runs in time tp(n), and
– the verifier runs in time tv(n).
Finally, we add the symbol na in the square brackets (i.e., we write PCP[. . . ,na]) if
the queries to the proof are non-adaptive (i.e., the queried locations only depend on the
verifier’s inputs).

2.2 Probabilistically checkable proofs of proximity

A PCPP system [12, 18] for a relation R is a tuple PCPP = (P, V ) that works as
follows.

– The prover P is a probabilistic algorithm that, given as input an instance-witness pair
(x,w) with n := |x|, outputs a proof π : D(n)→ Σ(n), where both D(n) and Σ(n)
are finite sets.

– The verifier V is a probabilistic oracle algorithm that, given as input an instance x
with n := |x| and with oracle access to a witness w and proof π : D(n) → Σ(n),
queries w and π at a few locations and then outputs a bit.
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The system PCPP has (perfect) completeness, soundness error e, distance measure ∆,
and proximity parameter d if the following two conditions hold. (Below, we explicitly
denote the prover’s and verifier’s randomness as rP and rV .)

Completeness: For every instance-witness pair (x,w) in the relation R,

Pr
rP ,rV

[
V (w,P (x,w;rP ))(x; rV ) = 1

]
= 1 .

Soundness: For every instance-witness pair (x,w), perhaps not in the language, such
that ∆(w,R|x) ≥ d(n) and proof π : D(n)→ Σ(n),

Pr
rV

[
V (w,π)(x; rV ) = 1

]
≤ e(n) .

A relation R belongs to the complexity class PCPP[a, l, q, ∆, d, e, tp, tv] if there is a
PCPP system for R in which:
– the answer alphabet (i.e., Σ(n)) is a(n),
– the proof length over that alphabet (i.e., |D(n)|) is at most l(n),
– the verifier queries the two oracles (codeword and proof) in at most q(n) locations

(in total),
– the distance measure is ∆,
– the proximity parameter is d(n),
– the soundness error is e(n),
– the prover runs in time tp(n), and
– the verifier runs in time tv(n).
Finally, we add the symbol na in the square brackets (i.e., we write PCPP[. . . ,na])
if the queries to the oracles are non-adaptive (i.e., the queried locations only depend on
the verifier’s inputs).

2.3 Zero knowledge PCPs

The notion of zero knowledge for PCPs was first considered in [19, 28]. A PCP system
PCP = (P, V ) for a relation R has perfect zero knowledge with knowledge bound k if
there exists an expected-polynomial-time probabilistic algorithm S such that, for every
k-query polynomial-time probabilistic oracle algorithm Ṽ , the following two distribu-
tion families are identical:

{S(Ṽ , x)}(x,w)∈R and {PCPView(Ṽ , P, x,w)}(x,w)∈R ,

where PCPView(Ṽ , π, x,w) is the view of Ṽ in its execution when given input x
and oracle access to π := P (x,w). The definition of statistical and computational
zero knowledge (with knowledge bound k) are similar: rather than identical, the two
distribution families are required to be statistically and computationally close (as |x|
grows), respectively.

A relation R belongs to the complexity class PCPpzk[a, l, q, e, tp, tv, k] if there
exists a PCP system for R that (i) puts R in PCP[a, l, q, e, tp, tv], and (ii) has perfect
zero knowledge with knowledge bound k; as for PCP, we add the symbol na in the
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square brackets of PCPpzk if the queries to the proof are non-adaptive. The complexity
classes PCPszk and PCPczk are similarly defined for statistical and computational
zero knowledge.

The KPT result. Kilian, Petrank, and Tardos proved the following theorem:

Theorem 2 ([28]). For every polynomial time function T : N→ N, polynomial security
function λ : N→ N, and polynomial knowledge bound function k : N→ N,

NTIME(T ) ⊆ PCPszk



a = F2poly(λ)

l = poly(T, k)
q = poly(λ)
e = 2−λ

tp = poly(λ, T )
tv = poly(λ, T, k)
k


.

Remark 1. We make two remarks: (i) the symbol na does not appear above because
[28]’s construction relies on adaptively querying the proof; (ii) inspection of [28]’s con-
struction reveals that l(n) ≥ poly(T (n)) · k(n)6.

2.4 Reed–Muller and Reed–Solomon codes

We define Reed–Muller and Reed–Solomon codes, as well as their “vanishing” variants
[15]; all of these are linear codes. We then state a theorem about PCPPs for certain
families of RS codes.

RM codes. Let F be a finite field,H,V subsets of F,m a positive integer, and % a con-
stant in (0, 1]; % is called the fractional degree. The Reed–Muller code with parameters
F, H,m, % is RM[F, H,m, %] := {w : Hm → F | maxi∈[m] degXi(w) < %|H|}; its
message length is n = (%|H|)m, block length is ` = |H|m, rate is ρ = %m, and relative
distance is δ = 1− %. The vanishing Reed–Muller code with parameters F, H,m, %, V
is VRM[F, H,m, %, V ] := {w ∈ RM[F, H,m, %] | w(V m) = {0}}; it is a subcode of
RM[F, H,m, %].

RS codes. Let F be a finite field, H,V subsets of F, and % a constant in (0, 1]. The
Reed–Solomon code with parameters F, H, % is RS[F, H, %] := RM[F, H, 1, %]. The
vanishing Reed–Solomon code with parameters F, H, %, V is VRS[F, H, %, V ] := {w ∈
RS[F, H, %] | w(V ) = {0}}.
Two RS code families and their PCPPs. Given % ∈ (0, 1], we denote by: (i)RS∗% the
set of Reed–Solomon codes RS[F, H, %] for which F has characteristic 2 andH is an F2-
affine space; and (ii) VRS∗% the set of vanishing Reed–Solomon codes VRS[F, H, %, V ]
for which F has characteristic 2 and H is an F2-affine space. The following theorem
is from [15, 10] (the prover running time is shown in [10] and the other parameters in
[15]).
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Theorem 3. For every security function λ : N→ N, % ∈ (0, 1), and s > 0,

Rel(RS∗%) , Rel(VRS
∗
%) ∈ PCPP



a = F2s+log `

l = Õ(`)
q = λ · polylog(`)
∆ = ∆Ham

a

d = %/2
e = 2−λ

tp = poly(s) · Õ(`)
tv = λ · poly(s+ log `)
na


.

We will also require the following folklore claim, whose correctness can be proved
by induction on m:

Claim. Let F be a finite field, H,V subsets of F with H ∩ V = ∅, m a positive integer,
and t a positive integer not exceeding |H|−|V |. Then VRM[F, H,m, |V |+t|H| , V ] is t-wise
independent.

3 Duplex PCPs

We define duplex PCPs, and then define notions of zero knowledge for this model.
Our main theorem is the construction of a duplex PCP with certain parameters; see
Section 4. The difference between a PCP and a duplex PCP is that all provers (both
honest and malicious) produce two proof oracles rather than one: the prover produces
a proof π0; then the verifier sends a message ρ to the prover; then the prover produces
another proof π1; finally the verifier queries both π0 and π1 and either accepts or rejects.
(Thus, a PCP is a special case of a duplex PCP, but not vice versa.) More precisely, a
duplex PCP system for a relation R is a tuple DPCP = (P, V ) that works as follows.

– The prover P is a pair (P0, P1) of probabilistic algorithms, with shared randomness,
where: (a) given as input an instance-witness pair (x,w) with n := |x|, P0 outputs
a proof π0 : D0(n) → Σ(n); (b) given as input (x,w) and the verifier’s message ρ
(see below), P1 outputs a proof π1 : D1(n) → Σ(n). Here D0(n), D1(n), Σ(n) are
finite sets.

– The verifier V is a pair (V0, V1) of probabilistic algorithms, with shared random-
ness, where: (a) given as input an instance x with n := |x|, V0 outputs a message
ρ; (b) given as input x and with oracle access to proofs π0 : D0(n) → Σ(n) and
π1 : D1(n)→ Σ(n), V1 queries π0 and π1 at a few locations and then outputs a bit.

The system DPCP has (perfect) completeness and soundness error e(n) if the following
two conditions hold. (Below, we explicitly denote the prover’s and verifier’s randomness
as rP and rV .)

Completeness: For every instance-witness pair (x,w) in the relation R,

Pr
rP ,rV

V π0,π1

1 (x; rV ) = 1

∣∣∣∣∣∣
π0 ← P0(x,w; rP )

ρ← V0(x; rV )
π1 ← P1(x,w, ρ; rP )

 = 1 .
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Soundness: For every instance x not in the language Lan(R) and pair of algorithms
P̃ = (P̃0, P̃1),

Pr
rV

V π0,π1

1 (x; rV ) = 1

∣∣∣∣∣∣
π0 ← P̃0

ρ← V0(x; rV )

π1 ← P̃1(ρ)

 ≤ e(n) .

A relation R belongs to the complexity class DPCP[a, l, q, e, tp, tv] if there is a DPCP
system for R in which:
– the answer alphabet (i.e., Σ(n)) is a(n),
– the proof length over that alphabet (i.e., (|D0(n)|+ |D1(n)|)) is at most l(n),
– the verifier queries the two proofs in at most q(n) locations (in total),
– the soundness error is e(n),
– the prover runs in time tp(n), and
– the verifier runs in time tv(n).
Finally, we add the symbol na in the square brackets (i.e., we write DPCP[. . . ,na]) if
the queries to the proof are non-adaptive (i.e., the queried locations only depend on the
verifier’s inputs).
Zero knowledge. A DPCP system DPCP = (P, V ) for a relation R has perfect zero
knowledge with knowledge bound k if there exists an expected-polynomial-time prob-
abilistic algorithm S such that for every pair of polynomial-time probabilistic oracle
algorithms Ṽ := (Ṽ0, Ṽ1) the following two distribution families are identical:

{S(Ṽ , x)}(x,w)∈R and {DPCPView(k, Ṽ , P, x,w)}(x,w)∈R ,

where DPCPView(k, Ṽ , P, x,w) is the view of Ṽ1 in its execution when given input
x and when allowed to make a total of k(n) adaptive queries to π0, π1, where π0 :=
P0(x,w) and π1 := P1(x,w, Ṽ

π0
0 (x)). (As above, P0, P1 share the same randomness

rP ; ditto for Ṽ0, Ṽ1.) The definition of statistical and computational zero knowledge
(with knowledge bound k) are similar: rather than identical, the two distribution families
are required to be statistically and computationally close (as |x| grows), respectively.

4 Main theorem

The main result of this paper is the following.

Theorem 4. For every polynomial time function T : N → N, polynomial knowledge
bound function k : N→ N,

NTIME(T ) ⊆ DPCPpzk



a = F2O(log(T+k))

l = Õ(T + k)
q = polylog(T + k)
e = 1

2

tp = poly(n) · Õ(T + k)
tv = poly(n+ log(T + k))
k
na


10



A corollary. The theorem above implies that, fixing T , the prover running time is
merely quasilinear in the knowledge bound k, while the verifier running time increases
only polylogarithmically in k. This leads to an intriguing corollary: a poly-logarithmic
computational overhead of the prover over the verifier is all that is needed to maintain
perfect zero knowledge in the duplex PCP model. We state this formally next.

Corollary 1. For every polynomial time function T : N→ N and relation R ∈ NTIME(T ),
there is a constant c such that, for every function tv : N → N with tv(n) ≥ n ·
(log T (n))c, there is a DPCP system with:
– completeness 1 and soundness 2−tv(n)/polylog(T (n));
– perfect zero knowledge;
– the verifier running time is tv(n) and prover running time is tp(n) := max{T (n) ·
(log T (n))c, tv(n) · (log tv(n))c}.

The verifier has no limitations other than a bound on its running time (its query com-
plexity can be as large as tv(n)).

4.1 Proof sketch

Let R be a relation in NP, and let (x,w) be an instance-witness pair in R. The prover
and verifier both know x, while the prover also knowsw. The prover wishes to convince
the verifier that he knows a witnessw for x, in such a way that the verifier does not learn
anything about w (beyond what can be inferred from the prover’s claim).
The KPT approach. We introduce our ideas by contrasting them with those of [28].
Suppose that the prover wishes to convince the verifier by sending him a PCP proof
π = π(w) such that any k values in π do not reveal anything aboutw. Loosely speaking,
[28] (building on [19]) provide a probabilistic transformation that maps the PCP proof
π to a new proof π′, in which each bit of π is “hidden” amongst many bits of π′. The
main tool employed in the transformation is a locking scheme, and its use imposes
certain limitations: (i) the new proof π′ is poly(k) larger than the original one (k6 by
inspection of [19, 28]); (ii) zero knowledge holds only statistically, but not perfectly,
because a malicious verifier can be “lucky” and obtain information on the bit of π being
locked with fewer queries to π′ than expected.
Our approach (ideally). We take a different approach: apply a “local” PCP to a “ran-
dom” witness, as we now explain. Suppose that π = π(w) is (t, k)-local, i.e., any k
positions of the PCP proof π jointly depend on at most t positions of the witness w.
Note that, even if π is (t, k)-local, a single bit of π can still leak information about
w. So suppose further that the relation R is t-randomizable: given (x,w) ∈ R, one
can efficiently sample a witness w′ from a t-wise independent subset of the set of wit-
nesses for x. In such a case, the prover can produce a zero-knowledge PCP as follows:
(1) sample a witnessw′ from the t-wise independent subset; then (2) send to the verifier
the PCP proof π = π(w′). Indeed, the locality of π ensures that seeing any k indices of
π reveals nothing about w, because these k indices are a function of t random bits. In
sum, if we had a (t, k)-local PCP for a t-randomizable relation R, then we could obtain
a PCP for R that is zero knowledge against verifiers that ask at most k queries.
Our approach (in reality). Unfortunately, we do not know how to obtain local PCPs
for randomizable relations. However, we are able to obtain “partially local” duplex PCPs
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for certain randomizable relations, and also show that NTIME can be efficiently re-
duced to these randomizable relations, as we now explain.

Our starting point are algebraic PCPs: certain PCPs that prove satisfiability of al-
gebraic problems (APs) [34]. Numerous known PCP constructions can be viewed as
algebraic PCPs. Informally, in this work we make two basic observations: (i) algebraic
PCPs exist for certain randomizable relations; and (ii) an algebraic PCP proof can be
split in two parts, one part is local, while the other part is not local but enjoys conve-
nient linear algebraic properties that, nevertheless, enable us to hide information about
the witness, in the duplex PCP model. (Recall that, in the duplex PCP model, the prover
produces a proof π0; then the verifier sends a message ρ to the prover; then the prover
produces another proof π1; finally the verifier queries both π0 and π1 and either accepts
or rejects.)

In more detail, from a technical viewpoint, we proceed as follows. First, we intro-
duce a family of constraint satisfaction problems (CSPs) called linear algebraic CSPs,
and show that NTIME is efficiently reducible to randomizable linear algebraic CSPs.
The reduction consists of two parts: we go through an intermediary that we call group
preserving algebraic problems (GAPs), a special case of APs that we believe to be of in-
dependent interest for the study of algebraic PCPs. Second, we construct a duplex PCP
system for randomizable linear algebraic CSPs that is zero knowledge against verifiers
that ask at most a certain number of queries.

A technical piece: zero-knowledge duplex PCPP for low-degreeness. Later sections
address all of the above steps (see Section 4.2 for a roadmap of these), and for now we
only sketch one of these steps. Above we mention that an algebraic PCP proof has two
parts: a local part, and a non-local part. This latter part of the proof arises from a central
component of many PCP proofs: a PCP of proximity (PCPP) [13, 18] that facilitates
low-degree testing. Informally, given a function f : H → F and an integer d, a PCPP
for degree d is a proof π(f) that f is ε-close to an evaluation of a polynomial degree at
most degree d. We explain how to transform a PCPP for low-degreeness into a duplex
PCPP for low-degreeness that is zero knowledge against verifiers that make at most t
queries.

The set C of functions f : H → F that are evaluations of a polynomial of degree at
most d is a subspace of F|H|. The basic idea is that, in order for the prover to convince
the verifier that a function f is close to C, it suffices for the prover to convince the
verifier that a random offset of f is close to C: one can verify that, for any u : H → F,
if f is ε-far from C, then αf + u is ε/2-far from C, with probability 1 − |F|−1 over
a random α ∈ F. Hence, we can let the duplex PCP work as follows: (i) the prover
samples a witness w′ from the t-wise independent subset, chooses a random u ∈ C,
and sends π0 := (w′, u) to the verifier; (ii) the verifier sends to the prover a random
α ∈ F; (iii) the prover sends π1 = (v, π(v)) to the verifier, where v := αw′ + u and
π(v) is a PCPP for low-degreeness of v; (iv) the verifier runs the PCPP verifier on (v, π)
to check that v is close to C, and then checks that vi = αw′i + ui for a few random
indices i in {1, . . . , |H|}.

Let us discuss the various properties of the duplex PCPP.
– COMPLETENESS: If w ∈ C, then αw′ + u ∈ C; therefore, the prover convinces the

verifier.
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– ZERO-KNOWLEDGE: If the verifier asks at most t queries, then he learns nothing
about w because: π0 = (w′, u) contains w′ sampled from a t-wise independent
subset and u random in C; π1 = (v, π(v)) is running the PCPP on a vector v that is
random in C.

– SOUNDNESS: If v does equal α ·w+u, then the verifier rejects with high probability
because v is far from C (and the PCPP verifier rejects π with high probability).
If instead v does not equal α · w + u, then the fact that v is close to C does not
prove anything about whether w is also close. So, in this case, we need to reason
about the success probability of the verifier’s linearity tests: if these pass with enough
probability, then with high probability v is close to αw+ u, which again suffices for
our purpose. Overall, soundness holds.

Next, we discuss how the technical sections are organized, and how they come together
to yield our main theorem.

4.2 Roadmap of the rest of the paper

The rest of the paper is dedicated to turn the above intuition into a more formal proof.
To do so, we introduce various intermediate steps, as follows.
– In Section 5, we introduce linear algebraic CSPs (a family of constraint satisfaction

problems), and then describe how to obtain a canonical PCP for any linear algebraic
CSP.

– In Section 6, we introduce randomizable linear algebraic CSPs, a subfamily of linear
algebraic CSPs; then we show that, for every randomizable linear algebraic CSP, we
can convert the CSP’s canonical PCP into a corresponding zero-knowledge duplex
PCP, incurring only little overheads.

– In Section 7, we show an efficient reduction from NTIME to randomizable linear
algebraic CSPs; along the way, we introduce a family of algebraic problems, having
special symmetry properties, that we believe to be of independent interest (e.g., for
studying other questions about PCPs).

Combining (i) the efficient reduction from NTIME to randomizable linear algebraic
CSPs together with (ii) the zero-knowledge duplex PCP for such problems yields The-
orem 4. In Section 8 we provide details about how these components are combined.

5 Linear algebraic CSPs and their canonical PCPs

We introduce linear algebraic CSPs, a family of constraint satisfaction problems; then
we describe how to obtain a canonical PCP for any linear algebraic CSP.

5.1 Linear algebraic constraint satisfaction problems

A constraint satisfaction problem asks whether, for a given “local” function g, there
exists an input α such that g(α) is an “accepting” output. For example, in the case of 3-
SAT with n variables and m clauses, the function g maps {0, 1}n to {0, 1}m, and g(α)
indicates which clauses are satisfied by α ∈ {0, 1}n; hence α yields an accepting output
if (and only if) g(α) = 1m. Below we introduce a family of constraint satisfaction
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problems whose domain and range are linear-algebraic objects, namely, linear error
correcting codes.

We begin by providing the notion of locality that we use for g; we also provide two
other notions, one for the efficiency of computing a single coordinate of g’s output, and
another for measuring g’s “pseudorandomness”.

Definition 1. Let g : Σn → Σm be a function. We say that g is:
– q-local if for every j ∈ [m] there exists Ij ⊆ [n] with |Ij | ≤ q such that g(α)[j] (the
j-th coordinate of g(α)) depends only on α|Ij (the restriction of α to Ij);

– c-efficient if there is a time c algorithm that, given j and α|Ij , computes the set Ij
and value g(α)[j];

– (γ, ε)-sampling if Pr[ Ij ∩ I 6= ∅ | j ← [m] ] ≤ γ for every I ⊆ [n] with |I|/n ≤ ε.

Next we introduce RLA, the relation of linear algebraic CSPs:

Definition 2 (RLA). Given functions f : N → F , `, q, c : N → N, and ρ, δ, γ, ε : N →
(0, 1], the relation

RLA[f, `, ρ, δ, q, c, γ, ε]

consists of instance-witness pairs (x,w) satisfying the following.

– The instance x is a tuple (1n, C◦, C•, g) where:
• C◦, C• are linear error correcting codes with block lengths `◦(n), `•(n) at most
`(n), each with rate at most ρ(n) and relative distance at least δ(n) over the same
field f(n);

• g : f(n)`◦(n) → f(n)`•(n) is a q(n)-local, c(n)-efficient, (γ(n), ε(n))-sampling
function;

• C• ∪ g(C◦) has relative distance at least δ(n) (though may not be a linear space).
– The witness w is a tuple (α◦, α•) where α◦ ∈ f(n)`◦(n) and α• ∈ f(n)`•(n).
– The instance x and witness w jointly satisfy the following: α◦ ∈ C◦, α• ∈ C•, and
g(α◦) = α•.

We prove a simple claim about instances not in the language Lan(RLA), which we
use several times later on.

Claim. For every instance x = (1n, C◦, C•, g) not in the language Lan(RLA) and (can-
didate) witness w̃ = (α̃◦, α̃•) ∈ f(n)`◦(n) × f(n)`•(n) at least one of the following
holds:
– at least one of α̃◦ and α̃• is ε-far in relative Hamming distance from C◦ or C•,

respectively; or
– there exist α◦ ∈ C◦ and α• ∈ C• such that α̃◦ and α̃• are ε-close to α◦ and α•,

respectively, but g(α◦) 6= α•.

Proof. If neither of the two cases hold, then there exist α◦ ∈ C◦ and α• ∈ C• such
that g(α◦) = α•. But then (α◦, α•) is a satisfying assignment for x, contradicting our
assumption that x is not in the language Lan(RLA).

Finally we need notation for referring to codes appearing in instances of RLA:
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Definition 3. Given R ⊆ RLA, we denote by
– CR,◦ the set of codes C for which there is an instance x = (1n, C◦, C•, g) in the

relation R with C = C◦;
– CR,• the set of codes C for which there is an instance x = (1n, C◦, C•, g) in the

relation R with C = C•.

5.2 A canonical PCP for linear algebraic CSPs

We show how to construct a “canonical” PCP system for instances in RLA (the relation
of linear algebraic CSPs). At a high level, a canonical PCP proof for a RLA-instance x
consists of a witnessw = (α◦, α•) concatenated with two PCPP proofs π◦, π•, showing
that α◦, α• are close to C◦, C• respectively. The canonical PCP verifier first checks
the two PCPP proofs and then checks that g(α◦)[j] = α•[j] for a uniformly random
j ∈ [`•].

Definition 4. Given (i) a relation R ⊆ RLA, (ii) a PCPP system PCPP◦ = (P◦, V◦)
for Rel(CR,◦), and (iii) a PCPP system PCPP• = (P•, V•) for Rel(CR,•), the canon-
ical PCP system for the triple (R,PCPP◦,PCPP•) is the PCP system PCP = (P, V )
constructed as follows.

– Prover. Given (x,w) ∈ RLA, the PCP prover P outputs π := (w, π◦, π•) where
π◦ := P◦(C◦, α◦) and π• := P•(C•, α•). In other words, the PCP prover outputs a
PCP proof that is the concatenation of the witnessw = (α◦, α•) and a pair of PCPP
proofs, the first proving that α◦ ∈ C◦ and the second proving that α• ∈ C•.

– Verifier. Given x and oracle access to a PCP proof π = (w, π◦, π•), the PCP verifier
V works as follows:
• (proximity) check that V (α◦,π◦)

◦ (C◦) and V (α•,π•)
• (C•) both accept;

• (consistency) check that g(α◦)[j] = α•[j] for a uniformly random j ∈ [`•].

The next lemma says that the above construction is a PCP system when RLA’s
parameters are sufficiently “good”.

Lemma 1 (RLA → PCP). Suppose that R is a relation that satisfies the following
conditions:

(i) R ⊆ RLA[f1, `1, ρ1, δ1, q1, c1, γ1, ε1] with ε1 < min{ δ12 , δ1 − γ1};
(ii) Rel(CR,◦),Rel(CR,•) ∈ PCPP[a2, l2, q2, ∆

Ham
a2 , d2, e2, tp2, tv2,na?] with a2 =

f1 and d2 ≤ ε1.
Then there is a canonical PCP system for a triple (R,PCPP◦,PCPP•) that yields

R ∈ PCP



a = f1 (= a2)
l = 2l2(`1) + 2`1
q = 2q2(`1) + q1 + 1
e = max{1− δ1 + γ1 + ε1, e2}
tp = 2tp2(`1)
tv = 2tv2(`1) + c1 + log `1
na?


.

Above, na? denotes the fact that if the PCPP systems are non-adaptive so is the canon-
ical PCP system.
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Proof (Proof of Lemma 1). First, we show that the canonical PCP system satisfies com-
pleteness and soundness; afterwards, we discuss the efficiency parameters achieved by
it.
Completeness. Consider an instance-witness pair (x,w) in the relation R. Parse the
instance x as (1n, C◦, C•, g) and the witness w as (α◦, α•). Since (x,w) ∈ R, we
have that α◦ ∈ C◦, α• ∈ C•, and g(α◦) = α•. Therefore, the PCP proof (w, π◦, π•)
generated by the PCP prover is accepted by the PCP verifier with probability 1: the
PCPP verifiers V (α◦,π◦)

◦ (C◦) and V (α•,π•)
• (C•) always accept and g(α◦)[j] = α•[j]

for every j ∈ [`•].
Soundness. Consider an instance x not in the language Lan(R) and a PCP proof
π̃ = (w̃, π̃◦, π̃•). Parse the instance x as (1n, C◦, C•, g) and the wintess w̃, inside
π̃, as (α̃◦, α̃•). We use Claim 5.1 to prove that V accepts π̃ with probability at most
max{1− δ1 + γ + ε1, e2}, by considering the following three cases.

– Case 1: α̃◦ is ε1-far in relative Hamming distance from C◦. The canonical PCP ver-
ifier’s proximity test fails, because ∆Ham

a (α̃◦, C◦) ≥ ε1 ≥ d2, and so the PCPP
verifier V (α◦,π̃◦)

◦ (C◦) accepts with probability at most e2.
– Case 2: α̃• is ε1-far in relative Hamming distance from C•. This case is analogous

to the previous one.
– Case 3: there existα◦ ∈ C◦ andα• ∈ C• with∆Ham

a (α◦, α̃◦) ≤ ε1 and∆Ham
a (α•, α̃•) ≤

ε1.
First, since ε1 is less than δ1/2 (the unique decoding radius of C◦ and C•), the code-
words α◦ and α• are unique.
Next, we claim that α′• := g(α◦) and g(α̃◦) are γ1-close. Indeed, since g is (γ1, ε1)-
sampling, α◦ and α̃◦ differ in at most ε1 · `◦(n) positions, and so at most γ1 · `•(n)
positions of g(α̃◦) depend on an index where α◦ and α̃◦ differ.
Next, we claim that∆Ham

a (α•, α
′
•) ≥ δ1. Indeed, we have that α• 6= α′• because oth-

erwise (α◦, α•) would be a satisfying assignment for x (contradicting the assumption
that x 6∈ Lan(R)); moreover, we also have that C• ∪ g(C◦) has relative distance at
least δ1.
We now use the triangle inequality, along with the above observations, to obtain that

δ1∆
Ham
a (α•, α

′
•) ≤ ∆Ham

a (α•, α̃•) +∆Ham
a (α̃•, g(α̃◦)) +∆Ham

a (g(α̃◦), α
′
•)

≤ ε1 +∆Ham
a (α̃•, g(α̃◦)) + γ1 .

Thus, ∆Ham
a (α̃•, g(α̃◦)) ≥ δ1 − (γ1 + ε1), and so the canonical PCP verifier’s con-

sistency check passes with probability at most 1− δ1 + γ1 + ε1.

We conclude that V accepts π̃ with probability at most max{1− δ1 + γ1 + ε1, e2}.
Other parameters. The remaining parameters are straightforward to establish. The
canonical PCP does not change the alphabet, so a = f1 (which also equals a2). The
proof length, and the running times of the prover and verifier are the sum of the same
measures of the canonical PCP’s components: the PCP proof has l = 2l2(`1) + 2`1
symbols, is produced in time tp = 2tp2(`1), and is verified in time tv = 2tv2(`1) +
c1+O(1). The canonical PCP verifier makes q1+1 queries on top of those made by the
PCPP verifiers, so its query complexity is q = 2q2(`1) + q1 + 1. The q1 + 1 additional
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queries are non-adaptive; so if the PCPP verifiers are non-adaptive, so is the canonical
PCP verifier.

6 Zero-knowledge duplex PCPs from randomizable linear
algebraic CSPs

We introduce randomizable linear algebraic CSPs, a subfamily of linear algebraic
CSPs. Then we show that, for every randomizable linear algebraic CSP, we can convert
the CSP’s canonical PCP into a corresponding zero-knowledge duplex PCP, incurring
only little overheads.

6.1 Randomizable linear algebraic CSPs

The definition below specifies the notion of randomizability for linear algebraic CSPs.

Definition 5 (RRLA). The relation RRLA[f, `, ρ, δ, q, c, γ, ε, t, r] is the sub-relation of
RLA[f, `, ρ, δ, q, c, γ, ε] obtained by restricting it to instances that are t-randomizable
in time r. An instance x = (1n, C◦, C•, g) is t(n)-randomizable in time r(n) if: (i) there
exists a t(n)-wise independent subcode C ′ ⊆ C◦ such that if (w◦, g(w◦)) satisfies x,
then, for everyw′◦ inC ′+w◦ := {w′+w◦ | w′ ∈ C ′}, the witness (w′◦, g(w

′
◦)) satisfies

x; and (ii) one can sample, in time r(n), three uniformly random elements in C ′, C◦
and C• respectively.

6.2 Construction of zero-knowledge duplex PCPs

We construct a zero-knowledge duplex PCP system for randomizable linear algebraic
CSPs. The duplex PCP system does little more than invoking, as a subroutine, the
canonical PCP system for the linear algebraic CSP; hence, the efficiency of the duplex
PCP and of the canonical PCP system are closely related. The construction demon-
strates that “adding zero knowledge to an algebraic PCP” is cheap, provided that one
moves from the PCP model to the (more general) duplex PCP model. More precisely,
we prove the following theorem.

Theorem 5 (RRLA → DPCPpzk). Suppose that R is a relation that satisfies the fol-
lowing conditions:

(i) R ⊆ RRLA[f1, `1, ρ1, δ1, q1, c1, γ1, ε1, t1, r1] with ε1 < min{ δ12 , δ1−γ1} and r1
polynomially bounded;

(ii) Rel(CR,◦),Rel(CR,•) ∈ PCPP[a2, l2, q2, ∆
Ham
a2 , d2, e2, tp2, tv2,na?] with a2 =

f1 and d2 ≤ ε1/4.
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Then there is a duplex PCP system for R that yields

R ∈ DPCPpzk



a = f1 (= a2)
l = 2l2(`1) + 6`1
q = 2q2(`1) + q1 + 7
e = max{1− δ1 + γ1 + ε1 , (1− |f1|−1) ·max{e2, ε1/4}+ |f1|−1}
tp = 2tp2(`1) + (c1 + 5)`1 + r1
tv = 2tv2(`1) + c1 + log `1
k = t1/q1
na?


.

Above, na? denotes the fact that if the PCPP systems are non-adaptive so is the duplex
PCP system.

Proof. We prove the claim by constructing a suitable duplex PCP system DPCP =
(P, V ) for the relation R. Recall that: the prover P is a pair of algorithms (P0, P1),
and the verifier V is also a pair of algorithms (V0, V1); moreover, an instance x of R
is of the form (1n, C◦, C•, g), while a witness w of R is of the form (α◦, α•); finally,
randomizability implies that there is a t(n)-wise independent subcode C ′ ⊆ C◦ such
that if (w◦, g(w◦)) satisfies x then so does the witness (w′◦, g(w

′
◦)), for every w′◦ in

C ′ + w◦.
We now describe the construction of the duplex PCP system DPCP = (P, V ):

– P0(x,w)→ π0
Sample uniformly random v◦ ∈ C◦, v• ∈ C•, u

′ ∈ C ′; compute w◦ := u′ + α◦,
w• := g(w◦) and output π0 := (w◦‖v◦‖w•‖v•).

– V0(x)→ ρ
Sample uniformly random ρ◦, ρ• ∈ f1, and output ρ := (ρ◦, ρ•).

– P1(x,w, ρ)→ π1
Compute z◦ := ρ◦w◦+v◦ and z• := ρ•w•+v•; compute π◦ := P◦(C◦, z◦) and π• =
P•(C•, z•); and output π1 := (z◦‖z•‖π◦‖π•). (Essentially, this step corresponds to
running the canonical PCP prover with respect to a uniformly random pair (z◦, z•)
in (C◦, C•).)

– V π0,π1

1 (x)→ b
Conduct the following tests (and reject if any of them fails):
• (proximity) check that V (z◦,π◦)

◦ (C◦) and V (z•,π•)
• (C•) both accept;

• (consistency) check that g(w◦)[j] = w•[j] for a random j ∈ [`•];
• (linearity) check that z◦[i] = ρ◦w◦[i] + v◦[i] and z•[k] = ρ•w•[k] + v•[k] for

random i ∈ [`◦(n)] and k ∈ [`•(n)].
(Essentially the first two steps correspond to running the canonical PCP verifier on
modified inputs, while the third step consists of two linearity tests.)

Having described the duplex PCP system, we now show that it satisfies complete-
ness, soundness and zero-knowledge; afterwards, we discuss the efficiency parameters
achieved by it.
Completeness. Consider an instance-witness pair (x,w) in the relation R. Since
(x,w) ∈ R, we have that α◦ ∈ C◦, α• ∈ C•, and g(α◦) = α•. Since w◦ ∈ C ′ + α◦
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and R is randomizable, we have that (w◦, w•) := (w◦, g(w◦)) satisfies x; thus V1’s
consistency check passes with probability 1. Since the codes C◦ and C• are linear and
w◦, v◦ ∈ C◦, w•, v• ∈ C•, we have that z◦ := ρ◦w◦+v◦ ∈ C◦ and z• := ρ•w•+v• ∈
C•; thus the PCPP verifiers V (z◦,π◦)

◦ (C◦) and V (z•,π•)
• (C•) accept with probability 1.

Finally, by construction of z◦ and z•, V1’s linearity tests also accept with probability 1.
We conclude that the duplex PCP system described above has perfect completeness.
Soundness. Consider an instance x not in the language Lan(R). Fix an arbitrary proof
string π̃0 = (w̃◦‖ṽ◦‖w̃•‖ṽ•), and let the proof string π̃1 = (z̃◦‖z̃•‖π̃◦‖π̃•) depend
arbitrarily on the verifier message ρ = (ρ◦, ρ•). We use Claim 5.1 with respect to the
instance x and witness (w̃◦, w̃•) and distinguish between three cases below.

– Case 1: w̃◦ is ε1-far in relative Hamming distance from C◦.
Claim 2 implies that z′◦ := ρ◦w̃◦+ṽ◦ is ε1/2-far fromC◦, with probability 1−|f1|−1
over a random choice of ρ◦. Let θ := ∆Ham

a (z′◦, z̃◦) and η := ∆Ham
a (z̃◦, C◦). By the

triangle inequality, θ + η ≥ ∆Ham
a (z′◦, C◦) ≥ ε1/2; hence, at least one of the in-

equalities θ ≥ ε1/4 and η ≥ ε1/4 holds. In the former case, V1’s first linearity
test accepts with probability at most 1 − ε1/4; in the latter case, the PCPP veri-
fier V (z̃◦,π̃◦)

◦ (C◦) for V1’s first proximity test accepts with probability at most e2, as
∆Ham

a (z̃◦, C◦) ≥ ε1/4 ≥ d2.
– Case 2: w̃• is ε1-far in relative Hamming distance from C•.

This case is analogous to the previous one.
– Case 3: there existw◦ ∈ C◦ andw• ∈ C• with∆Ham

a (w◦, w̃◦) ≤ ε1 and∆Ham
a (w•, w̃•) ≤

ε1.
In this case we follow the very end of the soundness analysis in Lemma 1’s proof,
replacing α̃◦, α̃• there with w̃◦, w̃•, and conclude that the verifier accepts with prob-
ability at most 1− δ1 + γ1 + ε1.

Summing up, in the first case the verifier’s acceptance probability is at most (1−|f1|−1)·
max{e2, ε1/4} + |f1|−1; similarly for the second case. In the third case the rejection
probability is 1 − δ1 + γ1 + ε1, that of the canonical PCP consistency verifier. This
completes the soundness analysis.
Zero knowledge. We construct a simulator S that yields perfect zero knowledge with
knowledge bound k. Consider an instance-witness pair (x,w) in the relation R, and a
malicious verifier Ṽ = (Ṽ0, Ṽ1) making at most k adaptive queries. S(Ṽ , x), the output
of the simulator S, when given as input Ṽ and x, has to be identically distributed to
DPCPView(k, Ṽ , P, x,w), which is the view of Ṽ1 in its execution when given input
x and when allowed to make a total of k(n) adaptive queries to π0, π1, where π0 :=
P0(x,w) and π1 := P1(x,w, Ṽ

π0
0 (x)). In fact, we will prove a stronger statement: the

output of the simulator continues to exactly match the view of the verifier, interacting
with the honest prover, even if the verifier is allowed unbounded access to π1, provided
that Ṽ makes at most k queries to π0.

We now discuss how S works. At a high level, S treats Ṽ as a black box, running it
once without rewinding; along the way, S samples suitable answers for each query (as
discussed below); when Ṽ halts, S outputs all the answers and Ṽ ’s randomness (which
together form the view of the verifier). The simulator S runs in strict polynomial time,
without ever aborting. We now describe how S answers each query.
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The simulator S maintains a proof string πS that is initially unspecified at all loca-
tions; we write πS [i] = ∗ if the i-th location of this proof string is unspecified. Dur-
ing the simulation, S adaptively specifies locations in πS as a result of answering Ṽ ’s
queries; this specification process is definitive, in the sense that queries to locations that
have been previously specified are answered consistently with the previously-specified
value. We now discuss how S adaptively specifies locations in πS . We distinguish be-
tween two parts of the simulation: before the point when Ṽ sends his message ρ, and
only queries to π0 are possible; and afterwards, when queries to both π0 and π1 are
possible.

– Simulating answers to π0 = (w◦‖v◦‖w•‖v•), before Ṽ outputs ρ̃ = (ρ̃◦, ρ̃•).
1. For a query j ∈ [`◦] to w◦[j]: if unspecified, answer with a random field element.

That is, if wS
◦ [j] = ∗, then sample a random β ∈ f1 and set wS

◦ := β.
2. For a query j ∈ [`◦] to v◦[j]: if unspecified, answer with a random field element.

That is, if vS◦ [j] = ∗, then sample a random γ ∈ f1 and set vS◦ [j] = γ. Then
check if there are any unspecified locations of vS◦ that are determined by the linear
constraint “vS◦ ∈ C◦” and the currently specified locations of vS◦ ; if there are, set
these accordingly.

3. For a query j ∈ [`•] to w•[j]: if unspecified, (i) compute the set Ij ⊆ [`◦] of loca-
tions on which g(wS

◦ )[j] depends (see Definition 2); (ii) deduce wS
◦ |Ij by querying

each i ∈ Ij according to Step 1; and (iii) set wS
• [j] := g(wS

◦ |Ij ).
4. For a query j ∈ [`•] to v•[j]: answer in an analogous way to the case of a query
j ∈ [`◦] to v◦.

– Simulating answers to π0 = (w◦‖v◦‖w•‖v•) and π1 = (z◦‖z•‖π◦‖π•), after Ṽ out-
puts ρ̃ = (ρ̃◦, ρ̃•).
5. After receiving ρ̃ = (ρ̃◦, ρ̃•), immediately do the following:

(a) sample a random zS◦ ∈ C◦ under the constraint “zS◦ [i] = ρ̃◦w
S
◦ [i] + vS◦ [i] for

all i s.t. wS
◦ [i] 6= ∗ ∧ vS◦ [i] 6= ∗”;

(b) sample a random zS• ∈ C• under the analogous constraint;
(c) compute πS

◦ := P◦(C◦, z
S
◦ );

(d) compute πS
• := P•(C•, z

S
• ).

6. All queries to z◦, z•, π◦, π• are answered according to the values specified in Step 5.
7. For a query j ∈ [`◦] to w◦[j] or v◦[j]: if both are unspecified, answer with a random

field element; otherwise, the one that is unspecified is determined according to the
constraint zS◦ [i] = ρ̃◦w

S
◦ [i] + vS◦ [i] (except that, if ρ̃◦ = 0, then answer according

to the constraint zS◦ [i] = vS◦ [i] by setting wS [i] to be a random field element).
8. For a query j ∈ [`•] to w•[j]: answer analogously to Step 3, except that subqueries

to w◦[j] follow Step 7.
9. For a query j ∈ [`•] to v•[j]: computewS

• [j] as in Step 8 and set vS• [j] := ρ̃•w
S
• [j]−

zS• [j].

We claim that the above simulation achieves perfect zero-knowledge, that is, S(Ṽ , x)
is identically distributed to DPCPView(k, Ṽ , P, x,w). We show that the distribution
of answers provided by the simulation to Ṽ is the same as the distribution of answers
obtained by Ṽ from the oracles provided by the honest prover. First, we discuss the
answers to queries asked before Ṽ sends ρ̃ = (ρ̃◦, ρ̃•), which can only be to the oracle
π0 = (w◦‖v◦‖w•‖v•):

(i) In an honest proof, v◦ and v• are random in C◦ and C•, respectively. The simu-
lator answers a query to either of these by selecting a random field element and
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then propagating to other locations the linear constraints imposed by belonging
to the linear code.

(ii) In an honest proof, w◦ is computed as w◦ := u′ + α◦, where u′ is random in
C ′. Any t values from a random codeword in C ′ are distributed identically to
t random field elements, because C ′ is t-wise independent. The queries of Ṽ
determine at most k · q = t locations of w◦. Hence, in an honest proof, Ṽ gets
uniformly random answers for its queries to w◦; this matches the simulated view
where S answers Ṽ ’s queries to w◦ with random fields elements.

(iii) In an honest proof, w• is a deterministic function of w◦: w• := g(w◦). As de-
scribed above, the ≤ t positions of w◦ determined by the verifier’s questions are
uniformly random in the honest proof, as well as in the simulated proof. Therefore
the honest and the simulated views of w• are identically distributed, as determin-
istic functions of identically distributed random variables.

Next, we discuss the answers to queries asked after Ṽ sends ρ̃ = (ρ̃◦, ρ̃•); now Ṽ can
query both π0 = (w◦‖v◦‖w•‖v•) and π1 = (z◦‖z•‖π◦‖π•).

In an honest proof, answers to verifiers queries after sending ρ̃ are from an uniform
distribution of v◦ ∈ C◦, v• ∈ C•, u

′ ∈ C ′ (and deterministic functions of those and
α◦), that is further conditioned on the answers given before sending ρ̃.

We conclude the discussion of the simulator by examining the time complexity of
the simulation. Most steps of the simulation require (a) sampling a random field ele-
ment and, possibly, (b) solving a linear system with a polynomial number of equations.
The only expensive part of the simulation is Step 5, because it requires sampling random
codewords in C◦ and C•, as well as computing PCPP proofs for these two codewords.
Provided that r1 is polynomially bounded, the entire simulation also runs in polynomial
time in the instance size n. (The definition of zero knowledge in Section 3 prescribes,
as typically done, a simulator that runs in expected probabilistic polynomial time; our
simulator runs in strict probabilistic polynomial time.)

7 From NTIME to randomizable linear algebraic CSPs

– RAP & RGAP. In Section 7.1, we define algebraic problems, implicit in several in-
fluential works on PCPs and IP [5, 30, 4, 2] and explicitly defined in [34, 37, 22].
Afterward, we define group-preserving algebraic problems, a new “symmetric” vari-
ant of algebraic problems that not only are powerful enough to efficiently capture
NTIME but are also naturally “randomizable”, as discussed below.

– RAP → RLA. In Section 7.2 (see Lemma 2), we show that algebraic problems are a
sublanguage of linear algebraic CSPs. This observation shows that the techniques of
this paper could potentially be applied to many PCP systems (e.g., those in [5, 30, 4,
2, 37, 22, 13, 14, 15, 11, 16] to name a few) and also provides a “warm up” for the
next item.

– RGAP → RRLA. In Section 7.3 (see Lemma 3), we show an efficient reduction from
group-preserving algebraic problems to randomizable linear algebraic CSPs. In other
words, the property of group preservation allows the corresponding linear algebraic
CSPs to be randomizable.

– NTIME→ RGAP. In Section 7.4 (see Lemma 4), we show an efficient reduction
from NTIME to group-preserving algebraic problems.

21



– NTIME→ RRLA. In Section 7.5 (see Theorem 6), we explain how to combine
the above to obtain the efficient reduction from NTIME to randomizable linear
algebraic CSPs.

7.1 Algebraic problems and group preservation

The definition below of algebraic problems is essentially due to [34] (though the term
“algebraic problem” is from [22]); variants of it appear in later works such as [36, 37,
22, 15, 14, 10, 16].

Definition 6 (RAP). Given functions F : N→ F , and h,m, η, d, σ : N→ N, the rela-
tion

RAP[F, h,m, η, d, σ]

consists of instance-witness pairs (x,w) satisfying the following.

– The instance x is a tuple (1n, H,Q,N) where:
• H is a subset of F (n) with cardinality h(n);
• Q is a polynomial in F (n)[X1, . . . , Xm(n), Y1, . . . , Yη(n)] such that (i) it has

degree less than h(n) in each variable Xi, (ii) it has total degree at most d(n)
when viewed as a polynomial in the variables Y1, . . . , Yη(n) with coefficients in
F (n)[X1, . . . , Xm(n)], (iii) it can be evaluated by an arithmetic circuit of size
σ(n);

• N = (N1, . . . , Nη(n)) and each Ni : F (n)
m(n) → F (n)m(n) is an invertible

affine function.
– The witness w is a polynomial A in F (n)[X1, . . . , Xm(n)].
– The instance x and witness w jointly satisfy the following:

for every α ∈ Hm(n), (Q ◦A ◦N)(α) = 0 (1)

where

(Q◦A◦N)(X) := Q(X1, . . . , Xm(n), A(N1(X1, . . . , Xm(n))), . . . , A(Nη(n)(X1, . . . , Xm(n)))) .
(2)

Next, we define group-preserving algebraic problems, a family of algebraic prob-
lems in which the set H is a subgroup of F (n) and the neighbor functions act on the
product group Hm(n). The additional symmetry enables a reduction to randomizable
linear algebraic CSPs, which give rise to zero knowledge duplex PCPs. We believe that
group-preserving algebraic problems may find applications in the study of PCPs beyond
their use in this paper.

Definition 7 (RGAP). The relation RGAP[F, h,m, η, d, σ] is the sub-relation of RAP[F, h,m, η, d, σ]
obtained via restriction to instances that are group preserving. An instance x = (1n, H,Q,N)
is group preserving if: (i) H is an additive or a multiplicative subgroup of F (n);
(ii) each Ni : F (n)m(n) → F (n)m(n) in N can be identified with an element χi in
Hm(n) such that Ni(x) = χi � x, where � denotes the group operation of the product
group Hm(n).
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We also write RGAP[F, h,m, η, d, σ,+] to denote the further restriction to instances
that are additively group preserving (i.e., H is an additive subgroup); similarly, we
write RGAP[F, h,m, η, d, σ,×] to denote the the restriction to instances that are multi-
plicatively group preserving.

– The degree of x, denoted |x|deg, is degY1,...,Yη(n)
(Q), i.e., the total degree of Q

viewed as a polynomial in the variables Y1, . . . , Yη(n) with coefficients in the ring
F[X1, . . . , Xm(n)].

– The circuit size of x, denoted |x|circ, is the circuit size of Q.

7.2 Algebraic problems naturally reduce to linear algebraic CSPs

Lemma 2 (RAP → RLA). For every F : N → F , h,m, η, d, σ : N → N, ε : N →
(0, 1), and R ⊆ RAP[F, h,m, η, d, σ] there exist a relation R′ and algorithms inst,wit1,wit2
satisfying the following conditions:

– EFFICIENT REDUCTION. For every instance x, letting x′ := inst(x):
• for every witness w, if (x,w) ∈ R then (x′,wit1(x,w)) ∈ R′;
• for every witness w′, if (x′,w′) ∈ R′ then (x,wit2(x,w

′)) ∈ R.
Moreover, inst runs in time poly(|x|), wit1 in time poly(|x|) · Õ(|w| · η ·σ), and wit2
in time poly(|x|) · Õ(|w′|).

– LINEAR ALGEBRAIC CSP. The relation R′ is a subset of

RLA



f = F
` = |F |m
ρ = ( hd|F | )

m

δ = 1− hd
|F |

q = η
c = σ + η
γ = ηε
ε


.

– RM CODES. If x = (1n, H,Q,N) then inst(x) = (1n, C◦, C•, g) with

• C◦ = RM
[
F (n), F (n),m(n), h(n)

|F (n)|

]
;

• C• = VRM
[
F (n), F (n),m(n), h(n)d(n)|F (n)| , H

]
;

• g is the function that maps F (n)[X1, . . . , Xm(n)] to F (n)F (n)m(n)

as follows:
given A in F (n)[X1, . . . , Xm(n)] and ω ∈ F (n)m(n), the ω-th coordinate of g(A)
equals to (Q ◦A ◦N)(ω).

Proof (Proof of Lemma 2). Let x = (1n, H,Q,N) be an instance of RAP[F, h,m, η, d, σ],
and construct x′ := inst(x) = (1n, C◦, C•, g) as above. We first argue that x′ is an in-
stance of RLA[f, `, ρ, δ, q, c, γ, ε].

First, C◦ and C• are linear error correcting codes with block length at most ` :=
|F |m, rate at most ρ := max{( h

|F | )
m, ( hd|F | )

m}, and relative distance at least δ :=

min{1− h
|F | , 1−

hd
|F |} over the same field F . (See Section 2.4.)
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By construction, the function g is q-local with q := η and c-efficient with c := σ+η;
moreover, g is (γ, ε)-sampling with γ := ηε, as we now explain. (See Definition 1 for
definitions of these properties.) For every ω ∈ Fm, Iω denotes the set of indices in Fm

that g(·)[ω] depends on; for the g above, Iω equals {N1(ω), . . . , Nη(ω)}. For every
ω′ ∈ Fm and ω ∈ Fm, if ω′ ∈ Iω then ω ∈ {N−11 (ω′), . . . , N−1η (ω′)}. Hence, the
number of ω’s with ω′ ∈ Iω is at most η, because each Ni is invertible. We deduce that
Pr[ Iω ∩ I 6= ∅ |ω ← Fm ] ≤ (η · |I|) /|F |m ≤ ηε.

Finally,C•∪g(C◦) has relative distance at least δ because it is a subset of RM[F, F,m, hd|F | ].
This claim is immediate forC•; for g(C◦), it follows from the fact thatQ◦A◦N has, in
each variable, a degree that is at most a multiplicative factor of d larger than the degree
of A.

We conclude the proof by explaining how one obtains the two witness maps wit1,wit2.
For wit1, suppose that w = A ∈ F [X1, . . . , Xm] is a witness for x; then one can ver-
ify that w′ := (α◦, α•), where α◦ := A and α• := Q ◦ A ◦N , is a witness for x′;
α• can be efficiently obtained by first computing the evaluation of A on Fm (via an
FFT), then computing the evaluation of Q ◦A ◦N on Fm (via point-to-point computa-
tion), and finally interpolating (via an inverse FFT). Conversely, for wit2, suppose that
w
′ = (α◦, α•) is a witness for x′; then one can verify that w := α◦ is a witness for x.

7.3 From group-preserving algebraic problems to randomizable linear algebraic
CSPs

Lemma 3 (RGAP → RRLA). For everyF : N→ F , h,m, η, d, σ, t : N→ N, δ, ε : N→
(0, 1) with |F | ≥ ĥ, where ĥ denotes the smallest integral multiple of h that is greater
than (h+t)d

1−δ , and for any R ⊆ RGAP[F, h,m, η, d, σ] there exist a relation R′ and
algorithms inst,wit1,wit2 satisfying the following conditions:

– EFFICIENT REDUCTION. For every instance x, letting x′ := inst(x):
• for every witness w, if (x,w) ∈ R then (x′,wit1(x,w)) ∈ R′;
• for every witness w′, if (x′,w′) ∈ R′ then (x,wit2(x,w

′)) ∈ R.
Moreover, inst runs in time poly(|x|), wit1 in time poly(|x|) · Õ(|w| · η ·σ), and wit2
in time poly(|x|) · Õ(|w′|).

– RANDOMIZABLE LINEAR ALGEBRAIC CSP. The relation R′ is a subset of

RRLA



f = F

` = ĥm

ρ = ( (h+t)d
ĥ

)m

δ = 1− ( (h+t)d
ĥ

)

q = η
c = σ + η
γ = ηε
ε
t

r = Õ(ĥm)


.

24



Proof (Proof of Lemma 3). Let x = (1n, H,Q,N) be an instance of RGAP[F, h,m, η, d, σ].
We construct an instance x′ := inst(x) = (1n, C◦, C•, g) of RRLA[f, `, ρ, δ, q, c, γ, ε, t, r]
as follows.

Let Ĥ be a subset of F that is a union of cosets of H with |Ĥ| = ĥ and Ĥ ∩H = ∅.
(This can be done as follows: let S be a subset of the quotient group F�/H with
cardinality |S| = ĥ/h that does not include 1�, where F� denotes the additive or
multiplicative group of F , depending on whether H is additive or multiplicative, and
1� is the identity in H; then set Ĥ := {x � y |x ∈ S, y ∈ H}.) Analogously to the
proof of Lemma 2, we define:
– C◦ := RM

[
F (n), Ĥ,m(n), h(n)+t(n)

ĥ(n)

]
;

– C• := VRM
[
F (n), Ĥ,m(n), (h(n)+t(n))d(n)

ĥ(n)
, H
]
;

– g to be the function that maps F (n)[X1, . . . , Xm(n)] to F (n)Ĥ
m(n)

as follows: given
A in F (n)[X1, . . . , Xm(n)] and ω ∈ Ĥm(n), the ω-th coordinate of g(A) equals to
(Q ◦ A ◦N)(ω). Note that g is well-defined, i.e., g(A) is a function from Ĥm(n) to
F (n); this follows from the group preservation property of x (see Definition 7): for
every ω ∈ Ĥm and i ∈ [η], it holds thatNi(ω) ⊆ Ĥm because Ĥ is a union of cosets
of H and Ni multiplies every coordinate of ω by an element of H .

We first argue that x′ constructed above is an instance of RRLA[f, `, ρ, δ, q, c, γ, ε, t, r].
First, analogously to the proof of Lemma 2, we note that C◦ and C• are linear error

correcting codes with block length at most ` := ĥm, rate at most ρ := max{(h+t
ĥ

)m, ( (h+t)d
ĥ

)m},
and relative distance at least δ := min{1− h+t

ĥ
, 1− (h+t)d

ĥ
} over the same field F ; also,

we deduce that g is q-local with q := η, c-efficient with c := σ+η, and (γ, ε)-sampling
with γ := ηε.

Next, recalling Definition 5, x′ is t-randomizable in time r := Õ(ĥm) because:
(i) C ′ := VRM[F (n), Ĥ,m, h+t

ĥ
, H] is a subcode of C◦ and it is t-wise independent

due to Claim 2.4 (C ′ satisfies the hypotheses becauseH∩Ĥ = ∅ and ĥ−h ≥ (h+t)d
1−δ −

h ≥ t); and (ii) one can sample random elements from C ′, C◦ and C• in time Õ(ĥm)
by using the the quasilinear FFT algorithms for multipoint evaluation and interpolation
(sampling the random polynomial in necessary basis is easy forC◦; for vanishing Reed–
Muller codes we rely on Alon’s Combinatorial Nullstelensatz [1] as per Lemma 4.11 of
[15]).

We conclude the proof by observing that necessary witness maps wit1,wit2 ex-
ist. Just as in Lemma 2, if w = A ∈ F (n)[X1, . . . , Xm(n)] is a witness for x then
wit1(x,w) outputs w′ := (A,Q ◦ A ◦ N), which is a witness for x′; conversely, if
w
′ = (α◦, α•) is a witness for x′ then wit2(x,w

′) outputs w := α◦, which is a witness
for x.

7.4 An efficient reduction from NTIME to group-preserving algebraic
problems

The following lemma gives an efficient reduction from NTIME to group-preserving
algebraic problems in which instances are over fields of characteristic 2 and preserve
additive groups.
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Lemma 4 (NTIME→ RGAP). For every h,m, T : N→ N with h(n)m(n) = Ω(T (n) log T (n))
and R ∈ NTIME(T ) there exist a relation R′ and algorithms inst,wit1,wit2 satisfy-
ing the following conditions:

– EFFICIENT REDUCTION. For every instance x, letting x′ := inst(x):
• for every witness w, if (x,w) ∈ R then (x′,wit1(x,w)) ∈ R′;
• for every witness w′, if (x′,w′) ∈ R′ then (x,wit2(x,w

′)) ∈ R.
Moreover, inst runs in time poly(n + log h(n) +m(n)) and wit1,wit2 run in time
Õ(T (n)).

– GROUP PRESERVING ALGEBRAIC PROBLEM. The relation R′ is a subset of

RGAP



F = F2log T+O(log log T )

h
m
η = polylog(T )
d = O(1)
σ = poly(n+ log T )
+


.

The proof appears in the full version.

7.5 Combining the two reductions

By combining Lemma 4 and Lemma 3, we obtain the following theorem, which gives
the reduction claimed at the beginning of this section.

Theorem 6 (NTIME → RRLA). For every T, t : N → N, δ, ε : N → (0, 1), and
R ∈ NTIME(T ) there exist a relation R′ and algorithms inst,wit1,wit2 satisfying
the following conditions:

– EFFICIENT REDUCTION. For every instance x, letting x′ := inst(x):
• for every witness w, if (x,w) ∈ R then (x′,wit1(x,w)) ∈ R′;
• for every witness w′, if (x′,w′) ∈ R′ then (x,wit2(x,w

′)) ∈ R.
Moreover, inst runs in time poly(n + log(T (n)+t(n)

1−δ(n) )) and wit1,wit2 run in time

poly(n) · Õ(T (n)+t(n)
1−δ(n) ).

– RANDOMIZABLE LINEAR ALGEBRAIC CSP. The relation R′ is a subset of

RRLA



f = F2log(T+t)+O(log log(T+t))

` = Õ(T+t
1−δ )

ρ = 1− δ
δ
q = polylog(T )
c = poly(n+ log T )
γ = polylog(T ) · ε
ε
t

r = Õ(T+t
1−δ )


.
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– AFFINE RS CODES OVER CHARACTERISTIC 2. Both CR′,◦ and CR′,• are subsets
ofRS∗ρ ∪ VRS

∗
ρ (see Section 2.4).

Proof (Proof of Theorem 6). First, we invoke Lemma 4 with h,m, T such that m(n) =

1 and h(n) = O(T (n) log T (n)); this yields a relation R(1) and algorithms inst(1),wit(1)1 ,wit
(1)
2

such that: (i) inst(1),wit(1)1 ,wit
(1)
2 provide a reduction from R ∈ NTIME(T ) to R(1),

with inst(1)(x) running in time poly(n+log h(n)+m(n)) and wit
(1)
1 (x,w),wit

(1)
2 (x,w(1))

in time Õ(T (n)); and (ii) R(1) is a subset of

RGAP



F = F2log T+O(log log T )

h = O(T (n) log T (n))
m = 1
η = polylog(T )
d = O(1)
σ = poly(n+ log T )
+


.

Next, we invoke Lemma 3 on R(1), using δ, ε, t from the theorem statement. Note
that the conditions of the theorem are satisfied as |F | ≥ (h+t)d

1−δ +h ≥ ĥ . Therefore this

yields a relation R(2) and algorithms inst(2),wit(2)1 ,wit
(2)
2 such that: (i) inst(2),wit(2)1 ,wit

(2)
2

provide a reduction from R(1) to R(2), with inst(2)(x(1)) running in time poly(|x(1)|),
wit

(2)
1 (x(1),w(1)) in time poly(|x(1)|) · Õ(|w(1)| · η · σ) and wit

(2)
2 (x(1),w(2)) in time

poly(|x(1)|) · Õ(|w(2)|); and (ii) R(2) is a subset of

RRLA



f = F
` = O(h+t1−δ )

ρ = 1− δ
δ
q = η
c = σ + η
γ = ηε
ε
t

r = Õ(h+t1−δ )


.

One can check that R(2) achieves the parameters specified in the theorem statement.
The desired reduction from R to R(2) is given by the algorithms inst(x) := inst(2)(inst(1)(x)),

wit1(x,w) := wit
(2)
1 (inst(1)(x),wit

(1)
1 (x,w)), and wit2(x,w

′) := wit
(1)
2 (x,wit

(2)
2 (inst(1)(x),w′)).

One can verify that inst runs in time poly(n + log(T (n)+t(n)
1−δ(n) )) and wit1,wit2 run in

time poly(n) · Õ(T (n)+t(n)
1−δ(n) ).

8 Proof of Theorem 4

Proof (Proof of Theorem 4). We explain how to combine 6 and Lemma 5 (and Theo-
rem 3) so to obtain Theorem 4.
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Let R be a relation in NTIME(T ); we need to construct a duplex PCP system for
R with the claimed parameters. For now we focus on achieving soundness of 1

2 , and
discuss the general case at the end of the proof.a

We first reduce NTIME to randomizable linear algebraic CSPs: invoke Theorem 6
on R to obtain a relation R′ and algorithms inst,wit1,wit2 such that: (i) inst,wit1,wit2
provide a reduction from R to R′, with inst running in time poly(n + log(T (n) +
t1(n))) and wit1,wit2 in time Õ(T (n) + t1(n)); and (ii) R′ is a subset of

RRLA



f1 = F2log(T+t1)+O(log log(T+t1))

`1 = Õ(T + t1)
ρ1 = 1− δ1
δ1
q1 = polylog(T )
c1 = poly(n+ log T )
γ1 = polylog(T ) · ε1
ε1
t1
r1 = Õ(T+t1

1−δ1 )


.

Above, as parameters of Theorem 6, we chose ε1, δ1 and t1 as follows: ε1 such that
γ1 = polylog(T ) · ε1 ≤ 2

9 , then δ1 := 1− ε1/4, and t1 := k · q1 = k · polylog(T ).

Next we obtain PCPP systems for the relations corresponding to codes appearing
in instances of R′. Theorem 6 guarantees that both CR′,◦ and CR′,• are subsets of
RS∗ρ ∪VRS

∗
ρ. We now invoke Theorem 3, choosing λ = 2 and s such that fields f1 for

R′ and a2 for the PCPPs match. That is, we chose s = Õ(log log(T + t1)) and obtain:

Rel(CR′,◦) , Rel(CR′,•) ∈ PCPP



a2 = F2s+log `1

l2 = Õ(`1)
q2 = polylog(`1)
∆2 = ∆Ham

a

d2 = ρ1/2
e2 = 1/4

tp2 = poly(s) · Õ(`1)
tv2 = poly(s+ log `1)
na


.

Finally we invoke Theorem 5 for R′ to obtain a duplex PCP system for R′, supply-
ing the PCPPs we just obtained from Theorem 3. Note that our choices satisfy the hy-
pothesis of Theorem 5 is satisfied, as the two fields match, r1 is polynomially bounded,
and as we chose γ1, ε1 ≤ 2

9 , δ1 ≥ 17
18 , we also have ε1 < min{ δ12 , δ1 − γ1} and
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d2 ≤ ε1/4. This establishes our claim that:

R ∈ DPCPpzk



a = F2log(T+t1)+O(log log(T+t1))

l = 2l2(`1) + 6`1 = Õ(T + t1)
q = 2q2(`1) + q1 + 7 = polylog(T )
e = 1

2

tp = inst+ wit1 + (2tp2(`1) + (c1 + 5)`1 + r1) = poly(n) · Õ(T + k)
tv = inst+ (2tv2(`1) + c1 + log `1) = poly(n+ log(T + k))
k
na


.

The precise expression for soundness error is e := max{1−δ1+γ1+ε1 , (1−|f1|−1) ·
max{e2, ε1/4}+ |f1|−1}, but it is upper bounded by 1

2 , as for us 1− δ1+ γ1+ ε1 ≤ 1
2 ,

max{e2, ε1/4} = 1
4 and |f1| ≥ 4.
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