
Characterization of Secure Multiparty
Computation Without Broadcast

Ran Cohen1?, Iftach Haitner2??, Eran Omri3? ? ?, and Lior Rotem4

1 Department of Computer Science, Bar-Ilan University
cohenrb@cs.biu.ac.il

2 School of Computer Science, Tel Aviv University
iftachh@cs.tau.ac.il

3 Department of Computer Science and Mathematics, Ariel University
omrier@ariel.ac.il

4 School of Computer Science, Tel Aviv University
lior.rotem@gmail.com

Abstract. A major challenge in the study of cryptography is charac-
terizing the necessary and sufficient assumptions required to carry out
a given cryptographic task. The focus of this work is the necessity of
a broadcast channel for securely computing symmetric functionalities
(where all the parties receive the same output) when one third of the
parties, or more, might be corrupted. Assuming all parties are connected
via a peer-to-peer network, but no broadcast channel (nor a secure setup
phase) is available, we prove the following characterization:

– A symmetric n-party functionality can be securely computed facing
n/3 ≤ t < n/2 corruptions (i.e., honest majority), if and only if it
is (n − 2t)-dominated ; a functionality is k-dominated, if any k-size
subset of its input variables can be set to determine its output.

– Assuming the existence of one-way functions, a symmetric n-party
functionality can be securely computed facing t ≥ n/2 corruptions
(i.e., no honest majority), if and only if it is 1-dominated and can
be securely computed with broadcast.

It follows that, in case a third of the parties might be corrupted, broad-
cast is necessary for securely computing non-dominated functionalities
(in which “small” subsets of the inputs cannot determine the output), in-
cluding, as interesting special cases, the Boolean XOR and coin-flipping
functionalities.

Keywords: broadcast; point-to-point communication; multiparty com-
putation; coin flipping; fairness; impossibility result.

? Work supported by the israel science foundation (grant No. 189/11), the Min-
istry of Science, Technology and Space and by the National Cyber Bureau of Israel.

?? Research supported by ERC starting grant 638121, ISF grant 1076/11, I-CORE
grant 4/11, BSF grant 2010196, and Check Point Institute for Information Security.

? ? ? Research supported by ISF grant 544/13.



1 Introduction

Broadcast (introduced by Lamport et al. [20] as the Byzantine Generals prob-
lem) allows any party to deliver a message of its choice to all parties, such
that all honest parties will receive the same message even if the broadcasting
party is corrupted. Broadcast is an important resource for implementing secure
multiparty computation. Indeed, much can be achieved when broadcast is avail-
able (hereafter, the broadcast model); in the computational setting, assuming
the existence of oblivious transfer, every efficient functionality can be securely
computed with abort,5 facing an arbitrary number of corruptions [25, 15]. Some
functionalities can be computed with full security,6 e.g., Boolean OR and three-
party majority [17], or 1/p-security,7 e.g., coin-flipping protocols [21, 18]. In the
information-theoretic setting, considering ideally-secure communication lines be-
tween the parties, every efficient functionality can be computed with full security
against unbounded adversaries,8 facing any minority of corrupted parties [24].

The above drastically changes when broadcast or a secure setup phase are not
available.9 Specifically, when considering multiparty protocols (involving more
than two parties), in which the parties are connected only via a peer-to-peer
network (hereafter, the point-to-point model) and one third of the parties, or
more, might be corrupted.10 Considering authenticated channels and assuming
the existence of oblivious transfer, every efficient functionality can be securely
computed with abort, facing an arbitrary number of corruptions [12]. In the full-
security model, some important functionalities cannot be securely computed
(e.g., Byzantine agreement [22] and three-party majority [8]), whereas other
functionalities can (e.g., weak Byzantine agreement [12] and Boolean OR [8]).
The characterization of many other functionalities, however, was unknown. For
instance, it was unknown whether the coin-flipping functionality or the Boolean
XOR functionality can be computed with full securely, even when assuming an
honest majority.

5 An efficient attack in the real world is computationally indistinguishable, via a sim-
ulator, from an attack on an “ideal computation”, in which malicious parties are
allowed to prematurely abort.

6 The malicious parties in the “ideal computation” are not allowed to prematurely
abort.

7 The real model is 1/p-indistinguishable from an “ideal computation” without abort.
8 The real and ideal models are statistically close: indistinguishable even in the eyes

of an all-powerful distinguisher.
9 In case a secure setup phase is available, authenticated broadcast can be computed

facing t < n corrupted parties; Authenticated broadcast exists in the computational
setting over authenticated channels assuming one-way functions exist [10] and in
the information-theoretic setting over secure channels assuming a limited access to
a broadcast channel in the offline phase [23].

10 For two-party protocols, the broadcast model is equivalent to the point-to-point
model (and thus all the results mentioned in the broadcast model hold also in the
point-to-point model). If less than a third of the parties are corrupted, broadcast
can be implemented using a protocol, and every functionality can be computed with
information-theoretic security [2, 5].



1.1 Our Result

A protocol is t-consistent, if in any execution of the protocol, in which at most
t parties are corrupted, all honest parties output the same value. Our main
technical result is the following attack on consistent protocols.

Lemma 1 (main lemma, informal). Let n ≥ 3, t ≥ n
3 and let s = n −

2t if t < n
2 and s = 1 otherwise. Let π be an efficient n-party, t-consistent

protocol in the point-to-point model with secure channels. Then, there exists an
efficient adversary that by corrupting any s-size subset I of the parties can do
the following: first, before the execution of π, output a value y∗ = y∗(I). Second,
during the execution of π, force the remaining honest parties to output y∗.

The lemma extends to expected polynomial-time protocols, and to protocols that
only guarantee consistency to hold with high probability. We prove the lemma by
extending the well-known hexagon argument of Fischer et al. [11], originally used
for proving the impossibility of reaching (strong and weak) Byzantine agreement
in the point-to-point model.

A corollary of Lemma 1 is the following lower bound on symmetric func-
tionalities (i.e., all parties receive the same output value). A functionality is
k-dominated, if there exists an efficiently computable value y∗ such that any
k-size subset of the functionality input variables, can be manipulated to make
the output of the functionality be y∗ (e.g., the Boolean OR functionality is 1-
dominated with value y∗ = 1).

Corollary 1 (Informal). Let n ≥ 3, t ≥ n
3 , and let s = n − 2t if t < n

2
and s = 1 otherwise. A symmetric n-party functionality that can be computed
with full security in the point-to-point model with secure channels, facing up to
t corruptions, is s-dominated.11

Interestingly, the above lower bound is tight. Cohen and Lindell [8] (following
Fitzi et al. [12]) showed that assuming one-way functions exist, any 1-dominated
functionality (e.g., Boolean OR) that can be securely computed in the broadcast
model with authenticated channels, can be securely computed in the point-to-
point model with authenticated channels. This shows tightness when an hon-
est majority is not assumed. We generalize the approach of [8], using the two-
threshold detectable precomputation of Fitzi et al. [13], to get the following
upper bound.

Proposition 1 (Informal). Let n ≥ 3 and n
3 ≤ t < n

2 . Assuming up to t cor-
ruptions, any efficient symmetric n-party functionality that is (n−2t)-dominated
can be computed in the secure-channels point-to-point model with information-
theoretic security.

11 Stating the lower bound in the secure-channels model is stronger than stating it
in the authenticated-channels model, since if a functionality can be computed with
authenticated channels then it can be computed with secure channels.



Combining Corollary 1, Proposition 1 and [8, Thm. 7], yields the following
characterization of symmetric functionalities.

Theorem 1 (main theorem, informal). Let n ≥ 3, t ≥ n
3 and let f be an

efficient symmetric n-party functionality.

1. For t < n
2 , f can be t-securely computed (with information-theoretic security)

in the secure-channels point-to-point model, if and only if f is (n − 2t)-
dominated.

2. For t ≥ n
2 , assuming one-way functions exist, f can be t-securely computed

(with computational security) in the authenticated-channels point-to-point
model, if and only if f is 1-dominated and can be t-securely computed (with
computational security) in the authenticated-channels broadcast model.

Another application of Lemma 1 regards coin-flipping protocols. A coin-
flipping protocol [3] allows the honest parties to jointly flip an unbiased coin,
where even a coalition of (efficient) cheating parties cannot bias the outcome
of the protocol by too much. We focus on protocols in which honest parties
must output the same bit. Although Theorem 1 shows that fully-secure coin
flipping cannot be achieved facing one-third corruptions, we provide a stronger
impossibility result under a weaker security requirement that only assumes n

3 -
consistency and a non-trivial bias. In particular, we show that 1/p-secure coin
flipping cannot be achieved using consistent protocols in case a third of the
parties might be corrupted.

Corollary 2 (impossibility of many-party coin flipping in the point-
to-point model, informal). In the secure-channels point-to-point model, there
exists no (n ≥ 3)-party coin-flipping protocol that guarantees a non-trivial bias
(i.e., smaller than 1

2) against an efficient adversary controlling one third of the
parties.

The above is in contrast to the broadcast model, in which coin flipping can be
computed with full security if an honest majority exists [4, 6], and 1/p-security
when no honest majority is assumed [7, 1, 18].

1.2 Our Technique

We present the ideas underlying our main technical result, showing that the
following holds in the point-to-point model. For any efficient consistent protocol
involving more than two parties, if one third of the parties (or more) might
be corrupted, then there exists an efficient adversary that can make the honest
parties output a predetermined value. In the following discussion we focus on
three-party protocols with a single corrupted party.

Let π = (A,B,C) be an efficient 1-consistent three-party protocol, and let q
be its round complexity on inputs of fixed length κ. Consider the following ring
network R = (A1,B1,C1, . . . ,Aq,Bq,Cq), where each two consecutive parties, as
well as the first and last, are connected via a secure channel, and party Pj , for
P ∈ {A,B,C}, has the code of P (see Figure 1).



A

B

C

Aq

Bq

Cq

A1

B1

C1

A2

P∗
> q

Fig. 1: The original 3-party protocol π = (A,B,C) is on the left. On the right is the 3q-Ring —
q copies of π concatenated. Communication time between parties of opposite sides is larger than
3q/2 > q.

Consider an execution of R on input w = (w1
A, w

1
B, w

1
C, . . . , w

q
A, w

q
B, w

q
C) ∈

({0, 1}κ)3q (i.e., party Pi has input wiP, containing its actual input and random
coins). A key observation is that the view of party Aj , for instance, in this
execution, is a valid view of the party A on input wjA in an interaction of π in

which B acts honestly on input wjB. It is also a valid view of A, on input wjA, in

an interaction of π in which C acts honestly on input w
j−1 (mod q)
C . Hence, the

consistency of π yields that any two consecutive parties in R output the same
value, and thus all parties of R output the same value.

Consider for concreteness an attack on the parties {A,B}. The efficient adver-
sary D first selects a value w ∈ ({0, 1}κ)3q, emulates (in its head) an execution
of R on w, and sets y∗ to be the output of the party P∗ = Aq/2 in this execution.
To interact with the parties {A,B} in π, the adversary D corrupts party C and
emulates an execution of R, in which all but

{
A1,B1

}
have their inputs according

to w (the roles of all parties but
{
A1,B1

}
are played by the corrupted C), and

{A,B} take (without knowing it) the roles of
{
A1,B1

}
.

We claim that the output of {A,B} under the above attack is y∗. Observe
that the emulation of R, induced by the interaction of D with {A,B}, is just a
valid execution of R on some input w′ (not completely known to the adversary).
Hence, by the above observation, all parties in R (including {A,B}) output the
same value at the end of this emulation. Since the execution of R ends after at
most q rounds, and since the number of communication links between

{
A1,B1

}
and P∗ is ≈ 3q/2 > q, the actions of

{
A1,B1

}
have no effect on the view of P∗.

In particular, the output of P∗ in the attack is also y∗, and by the above this is
also the output of {A,B}.

Extension to expected polynomial-time protocols. The above attack works per-
fectly if π runs in (strict) polynomial time. For expected polynomial-time proto-
cols, one has to work slightly harder to come up with an attack that is (almost)
as good.



Let q be the expected round complexity of π. That is, an honest party
of π halts after q rounds in expectation, regardless of what the other par-
ties do, where the expectation is over its random coins. Consider the ring
R = (A1,B1,C1, . . . ,Am,Bm,Cm), for m = 2q. By Markov bound, in a random
execution of R, a party halts after m rounds with probability at least 1

2 .
The adversary D attacking {A,B} is defined as follows. For choosing a

value for y∗, it emulates an execution of R on arbitrary inputs and uniformly-
distributed random coins. If the party P∗ = Am/2 halts in at most m rounds, D
sets y∗ to be P∗’s output, and continues to the second stage of the attack. Oth-
erwise, it emulates R on new inputs and random coins. Note that in k attempts,
D finds a good execution with probably (at least) 1− 2−k. After finding y∗, the
adversary D continues as in the strict polynomial case discussed above.

The key observation here is that in the emulated execution of R, induced
by the interaction of D with {A,B}, the party P∗ never interacts in more than
m communication rounds. Therefore, again, being far from {A,B}, their actions
do not affect P∗ in the first m rounds, and so do not affect it at all. Hence, P∗

outputs y∗ also in the induced execution, and so do the parties {A,B}.

1.3 Additional Related Work

Negative results. In their seminal work, Lamport et al. [20] defined the problem
of simulating a broadcast channel in the point-to-point model in terms of the
Byzantine agreement problem. They showed that a broadcast protocol exists
if and only if more than two-thirds of the parties are honest. Lamport [19]
defined the weak Byzantine agreement problem, and showed that even this weak
variant of agreement cannot be computed, using deterministic protocols, facing
one-third corruptions. Fischer et al. [11] presented simpler proofs to the above
impossibility results using the so-called hexagon argument, which is also the
basis of our lower bound (see Section 1.2). They assumed a protocol exists for
the three-party case, and composed multiple copies of this protocol into a ring
system that contains an internal conflict. Since the ring system cannot exist, it
follows that the three-party protocol does not exist. We remark that the result
of [11] extends to public-coins protocols, where parties have access to a common
random string. It follows that coin flipping is not sufficient for solving Byzantine
agreement, and thus the impossibility result for coin flipping stated in Corollary 2
is not implied by the aforementioned impossibility of Byzantine agreement.

Cohen and Lindell [8] analyzed the relation between security in the broadcast
model and security in the point-to-point model, and showed that some (non 1-
dominated) functionalities, e.g., three-party majority, that can be computed in
the broadcast model cannot be securely computed in the point-to-point model,
since they imply the existence of broadcast.

Positive results. If the model is augmented with a trusted setup phase, e.g., a
public-key infrastructure (PKI), then Byzantine agreement can be computed fac-
ing any number of corrupted parties [20]. Pfitzmann and Waidner [23] presented
an information-theoretic broadcast protocol assuming a temporary broadcast



channel is available during the setup phase. Fitzi et al. [12] presented a prob-
abilistic protocol that securely computes weak Byzantine agreement facing an
arbitrary number of corrupted parties. Cohen and Lindell [8] showed (using the
protocol from [12]) that assuming the existence of one-way functions, any 1-
dominated functionality that can be securely computed in the broadcast model,
can also be securely computed in the point-to-point model.

Goldwasser and Lindell [16] presented a weaker definition for MPC without
agreement, in which non-unanimous abort is permitted, i.e., some of the hon-
est parties may receive output while other honest parties might abort. Using
this weaker definition, they utilized non-consistent protocols and constructed
secure protocols in the point-to-point model, assuming an arbitrary number of
corrupted parties.

1.4 Open Questions

Our result for the non honest-majority case (second item of Theorem 1), requires
the existence of one-way functions. In particular, given a protocol π for comput-
ing a 1-dominated functionality f with full security in the broadcast model,
one-way functions are used for compiling π into a protocol for computing f with
full security in the point-to-point model.12 It might be, however, that the exis-
tence of such a broadcast-model protocol (for non-trivial functionalities) implies
the existence of one-way functions, and thus adding this extra assumption is not
needed.

A different interesting challenge is characterizing which non-symmetric func-
tionalities can be computed in the point-to-point model, in the spirit of what
we do here for symmetric functionalities. For example, can a three-party coin
flipping in which only two parties learn the outcome coin, be computed with full
security facing a single corruption?

Paper Organization

Basic definitions can be found in Section 2. Our attack is described in Section 3,
and its applications are given in Section 4. The characterization is presented in
Section 5.

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables, low-
ercase for values, boldface for vectors, and sans-serif (e.g., A) for algorithms
(i.e., Turing Machines). For n ∈ N, let [n] = {1, · · · , n}. Let poly denote the

12 For some trivial functionalities, e.g., constant functions, there exist information-
theoretically secure protocols in the point-to-point model that are not based on such
a compilation, and this extra assumption is not needed.



set all positive polynomials and let ppt denote a probabilistic algorithm that
runs in strictly polynomial time. A function ν : N 7→ [0, 1] is negligible, denoted
ν(κ) = neg(κ), if ν(κ) < 1/p(κ) for every p ∈ poly and large enough κ.

The statistical distance between two random variables X and Y over a finite
set U , denoted SD(X,Y ), is defined as 1

2 ·
∑
u∈U |Pr [X = u]− Pr [Y = u]|. We

say that X and Y are δ-close if SD(X,Y ) ≤ δ and statistically close (denoted

X
s≡ Y ) is they are δ-close and δ is negligible.
Two distribution ensembles X = {X(a, κ)}a∈{0,1}∗,κ∈N and Y =

{Y (a, κ)}a∈{0,1}∗,κ∈N are computationally indistinguishable (denoted X
c≡ Y )

if for every non-uniform polynomial-time distinguisher D there exists a function
ν(κ) = neg(κ), such that for every a ∈ {0, 1}∗ and all sufficiently large κ’s

|Pr [D(X(a, κ), 1κ) = 1]− Pr [D(Y (a, κ), 1κ) = 1]| ≤ ν(κ).

2.2 Protocols

An n-party protocol π = (P1, . . . ,Pn) is an n-tuple of probabilistic interactive
TMs. The term party Pi refers to the i’th interactive TM. Each party Pi starts
with input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗. Without loss of generality,
the input length of each party is assumed to be the security parameter κ. An
adversary D is another interactive TM describing the behavior of the corrupted
parties. It starts the execution with input that contains the identities of the
corrupted parties and their private inputs, and possibly an additional auxiliary
input. The parties execute the protocol in a synchronous network. That is, the
execution proceeds in rounds: each round consists of a send phase (where parties
send their message from this round) followed by a receive phase (where they
receive messages from other parties).

In the point-to-point (communication) model, which is the one we assume by
default, all parties are connected via a fully-connected point-to-point network.
We consider two models for the communication lines between the parties: In the
authenticated-channels model, the communication lines are assumed to be ideally
authenticated but not private (and thus the adversary cannot modify messages
sent between two honest parties but can read them). In the secure-channels
model, the communication lines are assumed to be ideally private (and thus the
adversary cannot read or modify messages sent between two honest parties). In
the broadcast model, all parties are given access to a physical broadcast channel in
addition to the point-to-point network. In both models, no preprocessing phase
is available.

Throughout the execution of the protocol, all the honest parties follow the
instructions of the prescribed protocol, whereas the corrupted parties receive
their instructions from the adversary. The adversary is considered to be mali-
cious, meaning that it can instruct the corrupted parties to deviate from the
protocol in any arbitrary way. At the conclusion of the execution, the honest
parties output their prescribed output from the protocol, the corrupted parties
output nothing and the adversary outputs an (arbitrary) function of its view of



the computation (containing the views of the corrupted parties). The view of a
party in a given execution of the protocol consists of its input, its random coins,
and the messages it sees throughout this execution.

2.2.1 Time and Round Complexity We consider both strict and expected
bounds on time and round complexity.

Definition 1 (time complexity). Protocol π = (P1, . . . ,Pn) is a T -time pro-
tocol, if for every i ∈ [n] and every input xi ∈ {0, 1}∗, random coins ri ∈ {0, 1}∗,
and sequence of messages Pi receives during the course of the protocol, the run-
ning time of an honest party Pi is at most T (|xi|). If T ∈ poly, then π is of
(strict) polynomial time.

Protocol π has an expected running time T , if for every i ∈ [n], every input
xi ∈ {0, 1}∗ and sequence of messages Pi receives during the course of the pro-
tocol, the expected running time of an honest party Pi, over its random coins ri,
is at most T (|xi|). If T ∈ poly, then π has expected polynomial running time.

Definition 2 (round complexity). Protocol π = (P1, . . . ,Pn) is a q-round
protocol, if for every i ∈ [n] and every input xi ∈ {0, 1}∗, random coins ri ∈
{0, 1}∗, and sequence of messages Pi receives during the course of the protocol,
the round number in which an honest party Pi stops being active (i.e., stops
sending and receiving messages) is at most q(|xi|). If q ∈ poly, then π has
(strict) polynomial round complexity.

Protocol π has an expected round complexity q, if for every i ∈ [n], every
input xi ∈ {0, 1}∗ and sequence of messages Pi receives during the course of
the protocol, the expected round number in which an honest party Pi stops being
active, over its random coins ri, is at most q(|xi|). If q ∈ poly, then π has
expected polynomial round complexity.

3 Attacking Consistent Protocols

In this section, we present a lower bound for secure protocols in the secure-
channels point-to-point model. Protocols in consideration are only assumed to
have a very mild security property (discussing the more standard notion of se-
curity is deferred to Section 4). Specifically, we only require the protocol to be
consistent – all honest parties output the same value. We emphasize that in a
consistent protocol, a party may output the special error symbol ⊥ (i.e., abort),
but it can only do so if all honest parties output ⊥ as well.

Definition 3 (consistent protocols). A protocol π is (δ, t)-consistent against
C-class (e.g., polynomial-time, expected polynomial-time) adversaries, if the fol-
lowing holds. Consider an execution of π on security parameter κ, and any vector
of inputs of length κ for the parties, in which a C-class adversary controls at most
t parties. Then with probability at least δ(κ), all honest parties output the same
value, where the probability is taken over the random coins of the adversary and
of the honest parties.



We now present an attack on consistent protocols whose round complexity
is strictly bounded. An extension of the attack to consistent protocols with a
bound on their expected number of rounds appears in the full version of this
paper [9].

Lemma 2. Let n ≥ 3, let t ≥ n
3 , and let s = n−2t if t < n

2 and s = 1 otherwise.
Let π be an n-party, T -time, q-round protocol in the secure-channels point-to-
point model that is (1 − δ, t)-consistent against (TD = 2nqT )-time adversaries.
Then, there exists a TD-time adversary D such that given the control over any
s-size subset I of parties, the following holds: on security parameter κ, D first
outputs a value y∗ = y∗(I). Next, D interacts with the remaining honest parties
of π on inputs of length κ, and except for probability at most

(
3
2 · q(κ) + 1

)
·δ(κ),

the output of every honest party in this execution is y∗.13

For a polynomial-time protocol that is (1 − neg, t)-consistent against ppt
adversaries and assuming an honest majority, Lemma 2 yields a ppt adversary
that by controlling n−2t of the parties can manipulate the outputs of the honest
parties (i.e., forcing them all to be y∗) with all but a negligible probability. If an
honest majority is not assumed, the adversary can manipulate the outputs of the
honest parties, by controlling any single party, except for a negligible probability.

We start by proving the lemma for three-party protocols, and later prove the
multiparty case using a reduction to the three-party case. We actually prove a
stronger statement for the three-party case, where the value y∗ is independent
of the set of corrupted parties.

Lemma 3. Let π be a 3-party, q-round protocol in the secure-channels point-
to-point model, let T be the combined running-time of all three parties.14 If π
is (1 − δ, 1)-consistent against (TD = 2qT )-time adversaries, then there exists
a TD-time adversary D such that the following holds. On security parameter κ,
D first outputs a value y∗. Next, given the control over any non-empty set of
parties, D interacts with the remaining honest parties of π on inputs of length κ,
and except for probability at most 3

2 · q(κ) · δ(κ), the output of every honest party
in this execution is y∗.

Proof. We fix the input-length parameter κ and omit it from the notation when
its value is clear from the context. Let π = (A,B,C) and let m = q (assume for
ease of notation that m is even). Consider, without loss of generality, that a single
party is corrupted (the case of two corrupted parties follows from the proof) and
assume for concreteness that the corrupted party is C. Consider the following
ring network R = (A1,B1,C1, . . . ,Am,Bm,Cm), in which each two consecutive
parties, as well as the first and last, are connected via a secure channel, and
party Pj , for P ∈ {A,B,C}, has the code of P. Let v = κ+T (κ), and consider an

13 We would get slightly better parameters using an attack in which at least one honest
party (but not necessarily all) outputs y∗.

14 This is more general than T -time 3-party protocols, as it captures asymmetry be-
tween the running time of the parties; this measure will turn out to be useful for
proving Lemma 2.



execution of R with arbitrary inputs and uniformly-distributed random coins for
the parties being w = (w1

A, w
1
B, w

1
C, . . . , w

m
A , w

m
B , w

m
C ) ∈ ({0, 1}v)3m (i.e., party

Pi has input wiP, containing its actual input and random coins).
A key observation is that the point of view of the party Aj , for instance, in

such an execution, is a valid view of the party A on input wjA in an execution of

π in which B acts honestly on input wjB. It is also a valid view of A, on input

wjA, in an execution of π in which C acts honestly on input w
j−1 (mod m)
C . This

observation yields the following consistency property of R.

Claim 2 Consider an execution of R on joint input w ∈ ({0, 1}v)3m, where the
parties’ coins in w are chosen uniformly at random, and the parties’ (actual)
inputs are chosen arbitrarily. Then parties of distance d in R, measured by the
(minimal) number of communication links between them, as well as all d − 1
parties between them, output the same value with probability at least 1− dδ.

Proof. Consider the pair of neighboring parties
{
Aj ,Bj

}
in the ring R (an anal-

ogous argument holds for any two neighboring parties). Let D be an adversary,
controlling the party C of π that interacts with {A,B} by emulating an execu-
tion of R on arbitrary inputs and uniform random coins (apart from the roles of{
Aj ,Bj

}
), and let {A,B} take (without knowing that) the roles of

{
Aj ,Bj

}
in

this execution. The joint view of {A,B} in this emulation has the same distri-
bution as the joint view of

{
Aj ,Bj

}
in an execution of R with uniform random

coins. Hence, the (1− δ)-consistency of π yields that Aj and Bj output the same
value in an execution of R on w ∈ ({0, 1}v)3m (where the random coins within
w of each party are chosen uniformly at random) with probability at least 1− δ.
The proof follows by a union bound.

The adversary D first selects a value for w ∈ ({0, 1}v)3m, consisting of arbi-
trary input values (e.g., zeros) and uniformly-distributed random coins, and sets
y∗ to be the output of P∗ = Am/2 in the execution of R on w. To interact with
{A,B} in π, D emulates an execution of R in which all but

{
A1,B1

}
have their

inputs according to w, and {A,B} take the roles of
{
A1,B1

}
. The key observa-

tion is that the view of party P∗ in the emulation induced by the above attack,
is the same as its view in the execution of R on w (regardless of the inputs of
{A,B}). This is true since the execution of R ends after at most m communica-
tion rounds. Thus, the actions of {A,B} have no effect on the view of P∗, and
therefore the output of P∗ is y∗ also in the emulated execution of R. Finally,
since all the parties in the emulated execution of R have uniformly-distributed
random coins, and since the distance between P∗ and {A,B} is (less than) 3m

2 ,
Claim 2 yields that with probability at least 1 − 3m

2 · δ, the output of {A,B}
under the above attack is y∗.

Note that the value y∗ does not depend on the identity of the corrupted
party, since in the first step y∗ is set independently of C, and in the second step
the attack follows without any change when the honest parties play the roles of{
B1,C1

}
if A is corrupted or

{
A2,C1

}
if B is corrupted.

We now proceed to prove Lemma 2 in the many-party case.



Proof. Let π = (P1, . . . ,Pn) be a T -time, q-round, n-party protocol that is (1−
δ, t)-consistent against 2nqT -time adversaries. We will show an adversary that
by controlling any s corrupted parties, manipulates all honest parties to output
a predetermine value. We separately handle the case that n

3 ≤ t < n
2 and the

case n
2 ≤ t < n.

Case n
3 ≤ t < n

2 . Let I ⊆ [n] be a subset of size s = n − 2t, representing the
indices of the corrupted parties in π. Consider the three-party protocol π′ =
(A′,B′,C′), defined by partitioning the set [n] into three subsets {IA′ , IB′ , I},
where IA′ and IB′ are each of size t, and letting A′ run the parties {Pi}i∈IA′ , B

′

run the parties {Pi}i∈IB′ and C′ run the parties {Pi}i∈I . Each of the parties in

π′ waits until all the virtual parties it is running halt, arbitrarily selects one of
them and outputs the virtual party’s output value.

Since the subsets IA′ , IB′ , I are of size at most t, the q-round, 3-party proto-
col π′ is (1 − δ, 1)-consistent against 2nqT -adversaries (otherwise there exists a
2nqT -time adversary against the consistency of π, corrupting at most t parties).
In addition, since the combined time complexity of all three parties is nT , by
Lemma 3 there exists a 2nqT -time adversary D′ that first determines a value y∗,
and later, given control over any party in π′ (in particular C′), can force the two
honest parties to output y∗ with probability at least 1− 3qδ

2 .
The attacker D for π, controlling the parties indexed by I, is defined as

follows: In the first step, D runs D′ and outputs the value y∗ that D′ outputs.
In the second step, D interacts with the honest parties in π by simulating the
parties {A′,B′} to D′, i.e., D runs D′ and sends every message it receives from
D′ to the corresponding honest party in π, and similarly, whenever D receives
a message from an honest party in π it forwards it to D′. It is immediate that
there exists i ∈ IA′ such that Pi outputs y∗ in the execution of π with the
same probability that A′ outputs y∗ in the execution of π′, i.e., with probability
at least 1 − 3qδ

2 . From the consistency property of π, all honest parties output
the same value with probability at least 1 − δ, and using the union bound we
conclude that the output of all honest parties in π under the above attack is y∗

with probability at least 1− ( 3qδ
2 + δ).

Case n
2 ≤ t < n. Let i∗ ∈ [n] be the index of the corrupted party in π and

consider the three-party protocol π′ = (A′,B′,C′) defined by partitioning the set
[n] into three subsets {IA′ , IB′ , {i∗}}, for |IA′ | =

⌈
n−1
2

⌉
and |IB′ | =

⌊
n−1
2

⌋
. As

in the previous case, the size of each subset IA′ , IB′ , {i∗} is at most t, and the
proof proceeds as above.

4 Impossibility Results for Secure Computation

In this section, we present applications of the attack of Section 3 to secure
multiparty computations in the secure-channels point-to-point model.15 In Sec-

15 Note that a lower bound in the secure-channels model is stronger than in the
authenticated-channels model.



tion 4.1, we show that the only symmetric functionalities that can be securely
realized, according to the real/ideal paradigm, in the presence of n/3 ≤ t < n/2
corrupted parties (i.e., honest majority), are (n− 2t)-dominated functionalities.
The only symmetric functionalities that can be securely realized in the presence
of n/2 ≤ t < n corrupted parties (i.e., no honest majority), are 1-dominated func-
tionalities. In Section 4.2, we show that non-trivial (n > 3)-party coin-flipping
protocols, in which the honest parties must output a bit, are impossible when
facing t ≥ n/3 corrupted parties.

For concreteness, we focus on strict polynomial-time protocols secure against
strict polynomial-time adversaries, but all the results readily extend to the ex-
pected polynomial-time regime.

4.1 Symmetric Functionalities Secure According to the Real/Ideal
Paradigm

The model of secure computation we consider is defined in Section 4.1.1, dom-
inated functionalities are defined in Section 4.1.2 and the impossibility results
are stated and proved in Section 4.1.3.

4.1.1 Model Definition We provide the basic definitions for secure multi-
party computation according to the real/ideal paradigm, for further details see
[14]. Informally, a protocol is secure according to the real/ideal paradigm, if
whatever an adversary can do in the real execution of protocol, can be done
also in an ideal computation, in which an uncorrupted trusted party assists the
computation. We consider full security, meaning that the ideal-model adversary
cannot prematurely abort the ideal computation.

Functionalities.

Definition 4 (functionalities). An n-party functionality is a random process
that maps vectors of n inputs to vectors of n outputs.16 Given an n-party func-
tionality f : ({0, 1}∗)n 7→ ({0, 1}∗)n, let fi(x) denote its i’th output coordinate,
i.e., fi(x) = f(x)i. A functionality f is symmetric, if the output values of all
parties are the same, i.e., for every x ∈ ({0, 1}∗)n, f1(x) = f2(x) = . . . = fn(x).

Real-model execution. A real-model execution of an n-party protocol proceeds
as described in Section 2.2.

Definition 5 (real-model execution). Let π = (P1, . . . ,Pn) be an n-party
protocol and let I ⊆ [n] denote the set of indices of the parties corrupted
by D. The joint execution of π under (D, I) in the real model, on input vec-
tor x = (x1, . . . , xn), auxiliary input z and security parameter κ, denoted
REALπ,I,D(z)(x, κ), is defined as the output vector of P1, . . . ,Pn and D(z) re-
sulting from the protocol interaction, where for every i ∈ I, party Pi computes
its messages according to D, and for every j /∈ I, party Pj computes its messages
according to π.

16 We assume that a functionality can be computed in polynomial time.



Ideal-model execution. An ideal computation of an n-party functionality f on
input x = (x1, . . . , xn) for parties (P1, . . . ,Pn) in the presence of an ideal-model
adversary D controlling the parties indexed by I ⊆ [n], proceeds via the following
steps.

Sending inputs to trusted party: An honest party Pi sends its input xi to the
trusted party. The adversary may send to the trusted party arbitrary inputs
for the corrupted parties. Let x′i be the value actually sent as the input of
party Pi.

Trusted party answers the parties: If x′i is outside of the domain for Pi, for some
index i, or if no input was sent for Pi, then the trusted party sets x′i to
be some predetermined default value. Next, the trusted party computes
f(x′1, . . . , x

′
n) = (y1, . . . , yn) and sends yi to party Pi for every i.

Outputs: Honest parties always output the message received from the trusted
party and the corrupted parties output nothing. The adversary D outputs
an arbitrary function of the initial inputs {xi}i∈I , the messages received by
the corrupted parties from the trusted party {yi}i∈I and its auxiliary input.

Definition 6 (ideal-model computation). Let f : ({0, 1}∗)n 7→ ({0, 1}∗)n be
an n-party functionality and let I ⊆ [n]. The joint execution of f under (D, I)
in the ideal model, on input vector x = (x1, . . . , xn), auxiliary input z to D and
security parameter κ, denoted IDEALf,I,D(z)(x, κ), is defined as the output vector
of P1, . . . ,Pn and D(z) resulting from the above described ideal process.

Security definition. Having defined the real and ideal models, we can now define
security of protocols according to the real/ideal paradigm.

Definition 7. Let f : ({0, 1}∗)n 7→ ({0, 1}∗)n be an n-party functionality, and
let π be a probabilistic polynomial-time protocol computing f . The protocol π
t-securely computes f (with computational security), if for every non-uniform
polynomial-time real-model adversary D, there exists a non-uniform (expected)
polynomial-time adversary S for the ideal model, such that for every I ⊆ [n] of
size at most t, it holds that{
REALπ,I,D(z)(x, κ)

}
(x,z)∈({0,1}∗)n+1,κ∈N

c≡
{
IDEALf,I,S(z)(x, κ)

}
(x,z)∈({0,1}∗)n+1,κ∈N

.

The protocol π t-securely computes f (with information-theoretic security), if for
every real-model adversary D, there exists an adversary S for the ideal model,
whose running time is polynomial in the running time of D, such that for every
I ⊆ [n] of size at most t,{
REALπ,I,D(z)(x, κ)

}
(x,z)∈({0,1}∗)n+1,κ∈N

s≡
{
IDEALf,I,S(z)(x, κ)

}
(x,z)∈({0,1}∗)n+1,κ∈N

.

4.1.2 Dominated Functionalities A special class of symmetric functional-
ities are those with the property that every subset of a certain size can fully



determine the output. For example, the multiparty Boolean AND and OR func-
tionalities both have the property that every individual party can determine the
output (for the AND functionality any party can always force the output to be
0, and for the OR functionality any party can always force the output to be 1).
We distinguish between the case where there exists a single value for which every
large enough subset can force the output and the case where different subsets
can force the output to be different values.

Definition 8 (dominated functionalities). A symmetric n-party function-
ality f is weakly k-dominated, if for every k-size subset I ⊆ [n] there exists
a polynomial-time computable value y∗I , for which there exist inputs {xi}i∈I ,
such that f(x1, . . . , xn) = y∗I for any complementing subset of inputs {xj}j /∈I .
The functionality f is k-dominated, if there exists a polynomial-time computable
value y∗ such that for every k-size subset I ⊆ [n] there exist inputs {xi}i∈I , for
which f(x1, . . . , xn) = y∗ for any subset of inputs {xj}j /∈I .

Example 1. The function f(x1, x2, x3, x4) = (x1∧x2)∨(x3∧x4) is an example of
a 4-party function that is weakly 2-dominated but not 2-dominated. Every pair
of input variables can be set to determine the output value. However, there is
no single output value that can be determined by all pairs, for example, {x1, x2}
can force the output to be 1 (by setting x1 = x2 = 1) whereas {x1, x3} can force
the output to be 0 (by setting x1 = x3 = 0). The function

f2-of-4(x1, x2, x3, x4) = (x1∧x2)∨(x1∧x3)∨(x1∧x4)∨(x2∧x3)∨(x2∧x4)∨(x3∧x4)

is 2-dominated with value y∗ = 1.

Claim 3 Let f be an n-party functionality and let m ≤ n
3 . If f is weakly m-

dominated, then it is m-dominated.

Proof. Let I1, I2 ⊆ [n] be two subsets of size m. In case I1 and I2 are dis-
joint, consider the corresponding sets of input variables {xi}i∈I1 and {xi}i∈I2 ,
and fix an arbitrary complementing subset of inputs {xj}j /∈I1∪I2 . On the one

hand it holds that f(x1, . . . , xn) = y∗I1 and on the other hand it holds that
f(x1, . . . , xn) = y∗I2 , hence y∗I1 = y∗I2 .

In case I1 and I2 are not disjoint, it holds that |I1 ∪ I2| < 2m ≤ 2n
3 and

since m ≤ n
3 , there exists a subset I3 ⊆ [n] \ (I1 ∪ I2) of size m. Denote by y∗I3

the output value that can be determined by the input variables {xi}i∈I3 (y∗I3 is
guaranteed to exist since f is weakly m-dominated). I3 is disjoint from I1 and
from I2, so it follows that y∗I1 = y∗I3 and y∗I2 = y∗I3 , therefore y∗I1 = y∗I2 .

4.1.3 The Lower Bound

Lemma 4. Let n ≥ 3, let t ≥ n
3 and let f be a symmetric n-party functionality

that can be t-securely computed in the secure-channels point-to-point model.

1. If n
3 ≤ t <

n
2 , then f is (n− 2t)-dominated.



2. If n
2 ≤ t < n, then f is 1-dominated.

Proof. Assume that n
3 ≤ t < n

2 (the proof for n
2 ≤ t < n is similar). Let

π be a protocol that t-securely computes f in the point-to-point model with
secure channels. Since f is symmetric, all honest parties output the same value
(except for a negligible probability), hence π is (1 − neg, t)-consistent; let D be
the ppt adversary guaranteed from Lemma 2 and let I ⊆ [n] be any subset of
size n− 2t. It follows that given control over {Pi}i∈I , D can first fix a value y∗I ,
and later force the output of the honest parties to be y∗I (except for a negligible
probability). Since π t-securely computes f and n− 2t ≤ t, there exists an ideal-
model adversary S that upon corrupting {Pi}i∈I , can force the output of the
honest parties in the ideal-model computation to be y∗I . All S can do is to select
the input values of the corrupted parties, hence, there must exist input values
{xi}i∈I that determine the output of the honest parties to be y∗I , i.e., f is weakly
(n− 2t)-dominated. Since n− 2t ≤ n

3 and following Claim 3 we conclude that f
is (n− 2t)-dominated.

4.2 Coin-Flipping Protocols

A coin-flipping protocol [3] allows the honest parties to jointly flip an unbiased
coin, where even a coalition of cheating (efficient) parties cannot bias the outcome
of the protocol by much. Our focus is on coin flipping, where the honest parties
must output a bit. Although Lemma 4 immediately shows that coin flipping
cannot be securely computed according to the real/ideal paradigm, we present
a stronger impossibility result by considering weaker security requirements.

Definition 9. A polynomial-time n-party protocol π is a (γ, t)-bias coin-flipping
protocol, if the following holds.

1. π is (1, t)-consistent against ppt adversaries.17

2. When interacting on security parameter κ (for sufficiently large κ’s) with a
ppt adversary controlling at most t corrupted parties, the common output of
the honest parties is γ(κ)-close to the being a uniform bit.18

The following is a straightforward application of Lemma 2.

Lemma 5. In the secure-channels point-to-point model, for n ≥ 3 and γ(κ) <
1
2 − 2−κ, there exists no n-party, (γ,

⌈
n
3

⌉
)-bias coin-flipping protocol.

Proof. Let π be a point-to-point n-party (γ,
⌈
n
3

⌉
)-bias coin-flipping protocol.

Let D be the ppt adversary that is guaranteed by Lemma 2 (since π is (1,
⌈
n
3

⌉
)-

consistent against ppt adversaries). Consider some fixed set of
⌈
n
3

⌉
corrupted

parties of π and let Y (κ) denote the random variable of D(κ)’s output in the

17 Our negative result readily extends to protocols where consistency is only guaranteed
to hold with high probability.

18 In particular, the honest parties are allowed to output ⊥, or values other than {0, 1},
with probability at most γ.



first step of the attack. Without loss of generality, for infinitely many values of
κ it holds that Pr [Y (κ) = 0] ≤ 1

2 . Consider the adversary D′ that on security
parameter κ, repeats the first step of D(κ) until the resulting value of y∗ is
non-zero or κ failed attempts have been reached, where if the latter happens
D′ aborts. Next, D′ continues the non-zero execution of D to make the honest
parties of π output y∗. It is immediate that for infinitely many values of κ, the
common output of the honest parties under the above attack is 0 with probability
at most 2−κ, and hence the common output of the honest parties is 1

2 − 2−κ far
from uniform. Thus, π is not a (γ,

⌈
n
3

⌉
)-bias coin-flipping protocol.

5 Characterizing Secure Computation Without
Broadcast

In this section we show that the lower bounds presented in Lemma 4 is tight.
We treat separately the case where an honest majority is assumed and the case
where no honest majority is assumed.

5.1 No Honest Majority

Cohen and Lindell [8, Thm. 7] showed that, assuming the existence of one-way
functions, any 1-dominated functionality that can be t-securely computed in
the broadcast model with authenticated channels, can also be t-securely com-
puted in the point-to-point model with authenticated channels.19 Combining
with Lemma 4, we establish the following result.

Theorem 4 (restating second part of Theorem 1). Let n ≥ 3, let n
2 ≤ t <

n and assume that one-way functions exist. An n-party functionality can be t-
securely computed in the authenticated-channels point-to-point model, if and only
if it is 1-dominated and can be t-securely computed in the authenticated-channels
broadcast model.

Proof. Immediately by Lemma 4 and Cohen and Lindell [8, Thm. 7].

5.2 Honest Majority

Proposition 2. Let n ≥ 3, let n
3 ≤ t < n

2 , and let f be a symmetric n-party
functionality. If f is (n − 2t)-dominated, then it can be t-securely computed in
the secure-channels point-to-point model with information-theoretic security.

19 The result in [8] is based on the computationally-secure protocol in [12, Thm. 2].
In the authenticated-channels point-to-point model, this protocol requires one-way
functions for constructing a consistent public-key infrastructure between the parties,
to be used for authenticated broadcast.



To prove Proposition 2 we use the two-threshold multiparty protocol of Fitzi
et al. [13, Thm. 6]. This protocol with parameters t1, t2 runs in the point-to-
point model with secure channels, and whenever t1 ≤ t2 and t1 + 2t2 < n, the
following holds. Let I be the set of parties that the (computationally unbounded)
adversary corrupts. If |I| ≤ t1, then the protocol computes f with full security.
If t1 < |I| ≤ t2, then the protocol securely computes f with fairness (i.e., the
adversary may force all honest parties to output ⊥, provided that it learns no
new information). In Section 5.2.1, we formally define the notion of two-threshold
security. This notion captures the security achieved by the protocol of Fitzi et al.
[13, Thm. 6].

Theorem 5 ([13, Thm. 6]). Let n ≥ 3, let t1, t2 be parameters such that
t1 ≤ t2 and t1 + 2t2 < n, and let f be an n-party functionality. Then, f can
be (t1, t2)-securely computed in the secure-channels point-to-point model with
information-theoretic security.

We now proceed to the proof of Proposition 2.

Proof (Proof of Proposition 2). Let f be an (n − 2t)-dominated functionality
with default output value y∗. If n − 2t = 1, then f is 1-dominated, and since
t < n

2 , f can be t-securely computed with information-theoretic security in the
secure-channels broadcast model (e.g., using Rabin and Ben-Or [24]). Hence, the
proposition follows from [8, Thm. 7].20

For n−2t ≥ 2, set t1 = n−2t−1 and t2 = t, and let π′ be the n-party protocol,
guaranteed to exist by Theorem 5, that (t1, t2)-securely computes f . We define π
to be the following n-party protocol for computing f in the point-to-point model
with secure channels.

Protocol 6 (π)

1. The parties run the protocol π′. Let yi be the output of Pi at the end of the
execution.

2. If yi 6= ⊥, party Pi outputs yi, otherwise it outputs y∗.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let D be an adversary attacking the execution of π and let I ⊆ [n] be a
subset of size at most t. It follows from Theorem 5 that there exists a (possibly
aborting) adversary S′ for D in the t1-threshold ideal model such that{
REALπ′,I,D(z)(x, κ)

}
(x,z)∈({0,1}∗)n+1,κ∈N

s≡
{
IDEAL

t1
f,I,S′(z)(x, κ)

}
(x,z)∈({0,1}∗)n+1,κ∈N

.

Using S′, we construct the following non-aborting adversary S for the full-
security ideal model. On inputs {xi}i∈I and auxiliary input z, S starts by emu-
lating S′ on these inputs, playing the role of the trusted party (in the t1-threshold

20 When an honest majority is assumed, the result in [8] can be adjusted to use the
information-theoretically secure protocol in [12, Thm. 3]. In the secure-channels
point-to-point model, this protocol uses information-theoretically pseudo-signatures
[23] for computing a setup, to be used for authenticated broadcast.



ideal model). If S′ sends an abort command, it is guaranteed that |I| ≥ n − 2t
and since f is (n − 2t)-dominated, there exist input values {x′i}i∈I that deter-
mine the output of f to be y∗. So in this case, S sends these {x′i}i∈I to the
trusted party (in the full-security ideal model) and returns ⊥ to S′. Otherwise,
S′ does not abort and S forwards the message from S′ to the trusted party and
the answer from the trusted party back to S′. In both cases S outputs whatever
S′ outputs and halts.

A main observation is that the views of the adversary D in an execution of π
and in an execution of π′ (with the same inputs and random coins) are identical.
This holds since the only difference between π and π′ is in the second step of π
that does not involve any interaction. It follows that in case the output of the
parties in Step 1 of π is not ⊥, the joint distribution of the honest parties’ output
and the output of D in π is statistically close to the output of the honest parties
and of S in the full-security ideal model (since the later is exactly the output of
the honest parties and of S′ in the t1-threshold ideal model). If the output in
Step 1 of π is ⊥, then all honest parties in π output y∗. In this case S′ sends
abort (except for a negligible probability) and since S sends to the trusted party
the input values {x′i}i∈I that determine the output of f to be y∗, the honest
parties’ output is y∗ also in the ideal computation. We conclude that{
REALπ,I,D(z)(x, κ)

}
(x,z)∈({0,1}∗)n+1,κ∈N

s≡
{
IDEALf,I,S(z)(x, κ)

}
(x,z)∈({0,1}∗)n+1,κ∈N

.

Theorem 7 (restating the first part of Theorem 1). Let n ≥ 3 and n
3 ≤

t < n
2 . A symmetric n-party functionality can be t-securely computed in the

secure-channels point-to-point model, if and only if it is (n− 2t)-dominated.

Proof. Immediately follows by Lemma 4 and Proposition 2.

5.2.1 Defining Two-Threshold Security We present a weaker variant of
the ideal model that allows for a premature (and fair) abort, in case sufficiently
many parties are corrupted. Next, we define two-threshold security of protocols.

Threshold ideal-model execution. A t-threshold ideal computation of an n-party
functionality f on input x = (x1, . . . , xn) for parties (P1, . . . ,Pn), in the pres-
ence of an ideal-model adversary D controlling the parties indexed by I ⊆ [n],
proceeds via the following steps.

Sending inputs to trusted party: An honest party Pi sends its input xi to the
trusted party. The adversary may send to the trusted party arbitrary inputs
for the corrupted parties. If |I| > t, then the adversary may send a special
abort command to the trusted party. Let x′i be the value actually sent as the
input of party Pi.

Trusted party answers the parties: If the adversary sends the special abort com-
mand (specifically, |I| > t), then the trusted party sends ⊥ to all the parties.
Otherwise, if x′i is outside of the domain for Pi, for some index i, or if no
input is sent for Pi, then the trusted party sets x′i to be some predetermined



default value. Next, the trusted party computes f(x′1, . . . , x
′
n) = (y1, . . . , yn)

and sends yi to party Pi for every i.
Outputs: Honest parties always output the message received from the trusted

party and the corrupted parties output nothing. The adversary D outputs
an arbitrary function of the initial inputs {xi}i∈I , the messages received by
the corrupted parties from the trusted party {yi}i∈I and its auxiliary input.

Definition 10 (Threshold ideal-model computation). Let f : ({0, 1}∗)n 7→
({0, 1}∗)n be an n-party functionality and let I ⊆ [n]. The joint execution of f
under (D, I) in the t-threshold ideal model, on input vector x = (x1, . . . , xn),
auxiliary input z to D and security parameter κ, denoted IDEAL

t
f,I,D(z)(x, κ), is

defined as the output vector of P1, . . . ,Pn and D(z) resulting from the above
described ideal process.

Definition 11. Let f : ({0, 1}∗)n 7→ ({0, 1}∗)n be an n-party functionality, and
let π be a probabilistic polynomial-time protocol computing f . The protocol π
(t1, t2)-securely computes f (with information-theoretic security), if for every real-
model adversary D, there exists an adversary S for the t1-threshold ideal model,
whose running time is polynomial in the running time of D, such that for every
I ⊆ [n] of size at most t2{
REALπ,I,D(z)(x, κ)

}
(x,z)∈({0,1}∗)n+1,κ∈N

s≡
{
IDEAL

t1
f,I,S(z)(x, κ)

}
(x,z)∈({0,1}∗)n+1,κ∈N

.



Bibliography

[1] A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with
dishonest majority. In Advances in Cryptology – CRYPTO 2010, pages
538–557, 2010.

[2] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended ab-
stract). In Proceedings of the 29th Annual Symposium on Foundations of
Computer Science (FOCS), pages 1–10, 1988.

[3] M. Blum. Coin flipping by telephone. In Advances in Cryptology – CRYPTO
’81, pages 11–15, 1981.

[4] A. Z. Broder and D. Dolev. Flipping coins in many pockets (Byzantine
agreement on uniformly random values). In Proceedings of the 25th Annual
Symposium on Foundations of Computer Science (FOCS), pages 157–170,
1984.

[5] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In Proceedings of the 10th Annual ACM
Symposium on Theory of Computing (STOC), pages 11–19, 1988.

[6] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret shar-
ing and achieving simultaneity in the presence of faults (extended abstract).
In Proceedings of the 26th Annual Symposium on Foundations of Computer
Science (FOCS), pages 383–395, 1985.

[7] R. Cleve. Limits on the security of coin flips when half the processors are
faulty. In Proceedings of the 18th Annual ACM Symposium on Theory of
Computing (STOC), pages 364–369, 1986.

[8] R. Cohen and Y. Lindell. Fairness versus guaranteed output delivery in
secure multiparty computation. In Advances in Cryptology – ASIACRYPT
2014, pages 466–485, 2014.

[9] R. Cohen, I. Haitner, E. Omri, and L. Rotem. Characterization of secure
multiparty computation without broadcast. Cryptology ePrint Archive,
Report 2015/846, 2015. http://eprint.iacr.org/.

[10] D. Dolev and R. Strong. Authenticated algorithms for Byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

[11] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for
distributed consensus problems. In Proceedings of the Fourth Annual ACM
Symposium on Principles of Distributed Computing (PODC), pages 59–70,
1985.

[12] M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein, and A. Smith. Detectable
Byzantine agreement secure against faulty majorities. In Proceedings of
the 21st Annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 118–126, 2002.

[13] M. Fitzi, M. Hirt, T. Holenstein, and J. Wullschleger. Two-threshold broad-
cast and detectable multi-party computation. In Advances in Cryptology –
EUROCRYPT 2003, pages 51–67, 2003.

http://eprint.iacr.org/


[14] O. Goldreich. Foundations of Cryptography – VOLUME 2: Basic Applica-
tions. Cambridge University Press, 2004.

[15] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In Proceedings
of the 19th Annual ACM Symposium on Theory of Computing (STOC),
pages 218–229, 1987.

[16] S. Goldwasser and Y. Lindell. Secure computation without agreement. In
Proceedings of the 16th International Symposium on Distributed Computing
(DISC), pages 17–32, 2002.

[17] D. Gordon and J. Katz. Complete fairness in multi-party computation
without an honest majority. In Theory of Cryptography, 6th Theory of
Cryptography Conference, TCC 2009, pages 19–35, 2009.

[18] I. Haitner and E. Tsfadia. An almost-optimally fair three-party coin-flipping
protocol. In Proceedings of the 46st Annual ACM Symposium on Theory of
Computing (STOC), pages 817–836, 2014.

[19] L. Lamport. The weak Byzantine generals problem. Journal of the ACM,
30(3):668–676, 1983.

[20] L. Lamport, R. E. Shostak, and M. C. Pease. The Byzantine generals
problem. ACM Transactions on Programming Languages and Systems, 4
(3):382–401, 1982.

[21] T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. In Theory
of Cryptography, 6th Theory of Cryptography Conference, TCC 2009, pages
1–18, 2009.

[22] M. C. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, 27(2):228–234, 1980.

[23] B. Pfitzmann and M. Waidner. Unconditional Byzantine agreement for any
number of faulty processors. In Proceedings of the 9th Annual Symposium
on Theoretical Aspects of Computer Science (STACS), pages 339–350, 1992.

[24] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In Proceedings of the 30th Annual
Symposium on Foundations of Computer Science (FOCS), pages 73–85,
1989.

[25] A. C. Yao. Protocols for secure computations. In Proceedings of the 23th
Annual Symposium on Foundations of Computer Science (FOCS), pages
160–164, 1982.


	Characterization of Secure Multiparty Computation Without Broadcast 

