
Simplified Universal Composability Framework

Douglas Wikström

KTH Royal Institute of Technology

dog@kth.se

Abstract. We introduce a simplified universally composable (UC) security frame-

work in our thesis (2005). In this paper we present an updated more comprehen-

sive and illustrated version. The introduction of our simplified model is motivated

by the difficulty to describe and analyze concrete protocols in the full UC frame-

work due to its generality and complexity.

The main differences between our formalization and the general UC security

framework are that we consider: a fixed number of parties, static corruption, and

simple ways to bound the running times of the adversary and environment. How-

ever, the model is easy to extend to adaptive adversaries. Authenticated channels

become a trivial ideal functionality.

We generalize the framework to allow protocols to securely realize other proto-

cols. This allows a natural and modular description and analysis of protocols.

We introduce invertible transforms of models that allow us to reduce the proof

of the composition theorem to a simple special case and transform any hybrid

protocol into a hybrid protocol with at most one ideal functionality. This factors

out almost all of the technical details of our framework to be considered when

relating our framework to any other security framework, e.g., the UC framework,

and makes this easy.

1 Introduction

Canetti [3], and independently Pfitzmann and Waidner [11] propose security frame-

works for reactive processes. Both frameworks have composition theorems, and are

based on older definitional work. The initial ideal-model based definitional approach for

secure function evaluation is informally proposed by Goldreich, Micali, and Wigderson

in [6]. The first formalizations appear in Goldwasser and Levin [7], Micali and Rog-

away [10], and Beaver [1]. Canetti [2] presents the first definition of security that is

preserved under composition. See [2,3] for an excellent background.

The basic approach of all these models is the same. An ideal functionality is defined

that implicitly captures the functionality and security properties we expect from a real

protocol. The real protocol is then said to be secure if it is indistinguishable from the

ideal functionality by any efficient distinguisher. However, in an execution of the real

protocol the adversary may influence the execution or extract information that it passes

on to the distinguisher. Thus, we introduce an simulation adversary (simulator) that is

given the same task, but when interacting with the ideal functionality. The ideal func-

tionality is secure by inspection, so the simulation adversary can by definition not attack

the ideal functionality in any meaningful way. Instead it must simulate a real attack to

the distinguisher. The definition of security then says that if for every real adversary

there exists an simulation adversary such that no efficient distinguisher can distinguish:

(1) an interaction with the real protocol and the real adversary from (2) an interaction

with the ideal functionality and the simulation adversary, then the real protocol is said

to securely realize the ideal functionality.

The UC framework is an ambitious attempt to capture the security of a wide range

of settings in a uniform way, but the original UC framework was flawed in several ways.

The most recent version of the online paper [3] contains a discussion about the issues

and pointers to relevant literature. However, the core ideas of the UC framework are

correct, and there are no flaws in the basic instantiations needed to prove the security

of practical protocols. In this paper we detail one possible instantiation, but before we

do so, we point out the main areas where our particular instantiation is more restricted,

and hence less complex, than the general framework.

Canetti assumes the existence of an “operating system” that takes care of the in-

stantiation of subprotocols when needed. This is necessary to handle dynamically in-

stantiated subprotocols, but in our application we may assume that all subprotocols are

instantiated at the start of the execution. This means that we can view each instance of

a subprotocol as a separate Turing machine that exists from scratch that interacts with

the invoking protocol with a predefined session identifier.

Canetti models an asynchronous communication network, where the adversary has

the power to delete, modify, and insert any messages of his choice. To do this he is

forced to give details for exactly what the adversary is allowed to do to messages passed

in different ways between interactive Turing machines, which quickly becomes quite

complex. We instead factor out all aspects of the communication network into a separate

concrete “communication model”-machine. The real, ideal, and hybrid models are then

defined solely by how certain machines are linked. The adversary is defined as any

interactive Turing machine, and how the adversary can interact with other machines

also follows implicitly from the definitions of the real and ideal communication models.

With our approach there is also no need for session identifiers.

The above means that the real, ideal, and hybrid models can not only be illustrated

by a graph of connected parties, they are graphs of Turing machines in a very tangible

way, which makes the composition theorem almost trivial.

There are several ways to model corruption in cryptographic protocols. In this paper,

we only consider static corruption, i.e., the adversary must decide which parties to

corrupt before the execution starts. However, it is straightforward to extend the model

to adaptive corruption as explained in Remark 2. Even dynamic adversaries could be

handled in a similar way, so there is no inherent restriction to static adversaries.

1.1 Contribution

We present a precise and workable security framework using modularized definitions

that are easily verified to be sound. Abstractions emerge in a natural way that are are

firmly grounded in the underlying definitions. Although our treatment may initially

seem more complex than the description of the UC framework, the actual content is

captured faithfully in simple drawings that are enough to understand the framework,

and the composition theorem becomes almost trivial.

2

Explicit invertible transforms are introduced that can turn any hybrid model into a

hybrid model with a single ideal functionality (or a real model). Thus, it suffices to con-

sider how the security of such a protocol in our simplified UC framework relates to its

security in any other security framework, in particular the UC framework. This also im-

mediately generalizes the single composition theorem to allow multiple compositions.

We introduce a novel generalization the UC framework and other frameworks we

are aware of in that the definition of security captures the case where a hybrid protocol

securely realizes another hybrid protocol, and not only ideal functionalities. This allows

a novel type of proof that is not only based on securely realizing ideal functionalities

and applying the composition theorem. We give natural examples where this technique

is applicable.

The essential restriction in our framework compared to general UC is that the set of

parties and the protocol, including all subprotocols and ideal functionalities used, are

determined at the start of the execution.

1.2 Related Work

Several frameworks have been proposed today, but we only mention two frameworks

that perhaps are closest to our framework at a philosphical level.

Constructive cryptography was developed and proposed by Maurer and Renner [9,8]

independently of our work. The design of cryptographic primitives and protocols in this

framework is viewed as the construction of an ideal resource from assumed or real re-

sources. It shares with our framework the aims of achieving simplicity and eliminating

irrelevant artefacts. We have not carried out a detailed analysis of the relations between

their model and ours, but we are currently corresponding with the authors.

In subsequent, but independent work, Canetti et al. [4] propose an alternative for-

malization of a simplified UC framework motivated by the same problems as we do,

and to some extent they use also the same approach as we do. Their motivation and

the restrictions they introduce compared to the full UC framework are the same. Sev-

eral features of the formalization that distinguishes it from the UC framework are also

similar, e.g., their explicit “router” corresponds to our “communication model”.

We consider the main difference between our framework and theirs to be that they

use top-down approach, whereas we gradually build the model from the bottom up.

They explicitly relate their model to the general UC model. We instead provide trans-

forms that allow us to relate our framework to any other framework with ease, since

today there are many proposals of security framework and it is nearly impossible to

understand each framework sufficiently well to perform a valid comparison.

That said, we hope that the reader takes the time to read both papers, since they

both attempt to capture the core ideas of the UC framework in a way that is easier to

understand and use.

2 Interactive Turing Machines

Parties and algorithms are modeled as probabilistic Turing machines, but to be able

to talk about multiple parties that interact with each other we need to augment this

3

model with a notion of communication. We follow the approach of Goldreich [5] and

Canetti [3] and define interactive Turing machines, but we replace the activation bit

used by Goldreich by a slightly more complicated gadget to allow seamless treatment

of multiparty protocols.

Definition 1 (Interactive Turing Machine). An interactive Turing machine (ITM) is a

Turing machine with the following tapes and tape heads in addition to its work tapes: a

read-only identity tape, a read-only security parameter tape, a read-once input tape, a

write-once output tape, a read-once random tape, a write-once send head s, a read-once

receive head r, and two single-bit read/write activity heads as and ar. The following

restrictions apply to an ITM, where we use brackets to indicate the value stored in the

cell pointed at by a tape head.

1. If ([as], [ar]) ∈ {(0, 0), (1, 0)}, then it is inactive and can not change its state in a

state transition, or read, write, or move on any tape.

2. If ([as], [ar]) = (0, 1), then it is active and can change its state in a state transition.

3. A special instruction allows it to atomically: set ([as], [ar]) = (1, 0) and become

inactive.

Note that a single ITM is not a complete computational model, since some tape

heads do not have matching tapes. Two ITM’s are connected by adding the missing

tapes and pairing the write-once send head of one party with the read-once receive head

of the other and the activity head as of one party with the activity head ar of the other.

Intuitively, the activation tapes implement an “activation token” that is passed back and

forth between the parties. This is illustrated in Figure 1. We denote the set of all ITM’s

by ITM.

· · · · · ·

s r

M0

as ar

ar as

M1

r s

· · · · · ·

Fig. 1. The ITM’s M0 and M1 share activation and send/receive tapes. The send head of M0

points to same tape as the receive head of M1 and vice versa. A corresponding configuration is

used for the activation tapes. The figure does not contain the other tapes of the ITM’s.

3 Graph of Interactive Turing Machines

To connect multiple ITM’s with each other without introducing extra tapes for each

machine and thereby change the computational model, we introduce a gadget that plays

4

the role of a router. A router is a Turing machine with several sets of tape heads that can

share tapes with interactive Turing machines (ITM) or other routers.

Definition 2 (Router). An l-router is a Turing machine with write-once send heads de-

noted s0, . . . , sl, read-once receive heads, denoted r0, . . . , rl, and single-bit read/write

activity heads as,i and ar,i for i = [0, l] such that
∑k

i=0([as,i] + [ar,i]) ∈ {0, 1}.

Active. If [ar,i] = 1 for some i ∈ [0, k], then it is active and proceeds as follows.

1. To form a string w it reads and stores symbols from its ith receive tape using ri
until it encounters ⊥.

2. If i = 0 then

• if |w| ≥ n and the last n bits of w is an integer j ∈ [k], then it writes w except

the last n bits to its jth send tape using sj , and

• otherwise it writes ♦‖w to its 0th send tape using s0.

If i 6= 0, then it sets j = 0 and writes w and a n-bit representation of i to its 0th

send tape using s0.

3. It sets ([as,j], [ar,i]) = (1, 0) (as an atomic operation) to pass the activity token to

the jth party.

Inactive. If [ar,i] = 0 for all i ∈ [0, k], then it is inactive and keeps its state and does

not read, write, or move on any tape.

The use of routers inbetween ITM’s makes sure that an ITM activates another ITM

(indirectly through the router) if and only if it first sends it a message. The message

may of course be empty to simply pass activation. Note that the address of a message

is appended to the end of the message. This may seem odd, but it turns out to be useful

for technical reasons (see Appendix A.4 for details).

Due to the test in Step 2, a message can only be copied from the 0th receive tape to

the ith send tape for i > 0, or from the ith receive tape for i > 0 to the 0th send tape.

Furthermore, data written to or read from the 0th tape contains the index of another pair

of tapes as an n-bit appendix, whereas it does not for other tapes. Thus, data written to

the 0th write-once tape may be badly formed in which case the data is simply written

back to the 0th write-once tape with the prefix ♦. This prefix is a special symbol used

only for this purpose that indicates badly formed inputs.

Remark 1 (Concatenation). Concatenations such as that in Step 2 are common in this

chapter and the chapters that follows. Care has to be taken to avoid that such concate-

nation, directly or indirectly, give rise to strings that can not be decoded uniquely into

the original components. We can not solve this by simply stating that concatenation is a

short hand for an invertible encoding algorithm, since we need the associative property

of concatenation to prove that routers and communication models “commute”. Fortu-

nately, it is easy to see that there is no risk of ambiguous representations for most uses

of concatenation.

To connect routers and ITM’s with each other we let them share tapes pairwise. We

formalize this as follows.

5

Definition 3 (Slot of Interactive Turing Machine or Router). A tuple of heads of

an ITM (s, r, as, ar) or a tuple of heads of a router (si, ri, as,i, ar,i) is a slot. (Using

notation from Definition 1 and Definition 2.)

Definition 4 (Linked). Two slots (s, r, as, ar) and (s′, r′, a′s, a
′
r) are linked if there are

four tapes such that the heads of each pair (s, r′), (s′, r), (as, a
′
r), and (a′s, ar) point

to the same tape and no other heads point to any of these tapes.

An ITM graph is simply a number of ITM’s that are linked to each other indirectly

using routers. Note that a router of which the 0th slot is linked to an ITM effectively

increases the number of slots of the ITM. From now on we take this view. A basic

requirement of an ITM graph to be executable, is that no ITM has any “dangling” tape

heads.

Definition 5 (ITM Graph). An ITM graph is a set V of ITM’s, a set R of routers, and

a set of additional tapes such that the slot of each ITM is linked to the 0th slot of a

router, the 0th slot of each router is linked to the slot of an ITM, and every other slot of

every router in R is linked to a slot of a different router in R. The set of all ITM graphs

is denoted GITM.

In other words, we use the routers to increase the number of slots of ITM’s and

then link the slots of routers to each other to allow the ITM’s to communicate. Figure 2

illustrates this. The idea behind this approach is to restrict the notion of an ITM to

Turing machines that have a fixed number of tapes. This avoids the need to change the

computational model by adding tapes for parties in a protocol depending on how many

parties there are.

M1 M2

M3

Fig. 2. An ITM graph consisting of parties M1, M2, and M3 linked by three unnamed routers

providing three slots each. The 0th slot of each router is marked by an arrow. We use this conven-

tion throughout this paper.

Definition 6 (Initializing an ITM Graph). To initialize an ITM graph with ITM’s

M1, . . . ,Mk, the identity tape of Mj is assigned the integer j in binary, every cell

of every activity tape is set to zero, every cell of every random tape is set to a randomly

chosen bit, every cell of every other tape is set to ⊥, and tape heads pointing to the

same tape are set to point to the same cell.

6

We say that a tape of an initialized ITM graph is assigned a string x when we fill the

consecutive cells starting at the cell pointed to by the tape heads with x. This is done

in the reachable direction for directed tape heads and in some canonical direction for

other tape heads.

To simplify the analysis of running times, we ignore the state transitions occuring

in routers when stating running times. This does not change any results about concrete

protocols in any essential way, since only a small constant number of routers are used

and they all run in linear time in the messages forwarded.

Definition 7 (Executing an ITM Graph). An ITM graph with ITM’s M1, . . . ,Mk,

that has been initialized, is executed starting at M1 on security parameter n and input

z to M1 as follows.

1. Assign 1n to the security parameter tape of Mj for j ∈ [k].

2. Set the input tape of M1 to z.

3. Set [ar] = 1, where ar is the receiving activity head of M1.

4. Repeatedly execute the transition functions of all ITM’s in unison.

Note that due to the demand that an ITM or a router is active to change its state, or

read, write, or move on a tape, this effectively means that a single machine is executing

at any time.

Definition 8 (Bounding the Running Time). Let G be an ITM graph and let X be a

subset of the ITM’s in G. We say that the running time of G is bounded at X by TX if

the number of active state transitions taking place in ITM’s in X is bounded by TX .

The above gives a solid foundation for defining a simple and explicit version of the

UC framework, but the notation is cumbersome. From now on we say that two ITM’s

are linked if two or more slots of their routers are linked. This allows us to take an

abstract view of an ITM graph as a set of ITM’s V and a set of links E describing how

the ITM’s are connected. If two machines are linked, then they can exchange messages

and activate each other.

However, an ITM with a set of slots not only expects to be linked to some other

ITM’s, it expects that particular slots are used to form links to particular slots of other

ITM’s. Thus, we must label the slots of each ITM and introduce notation for forming

a link using two such slots. Suppose that the ITM’s M1 and M2 have slots [a] and
[b] respectively. Then 〈M1[a],M2[b]〉 denotes a link formed between slot [a] of M1

and slot [b] of M2. Due to the restrictions on ITM’s, the definition of a router, and the

starting state of an initialized ITM graph, this guarantees that exactly one ITM is active

at any given time. In figures, we now draw the machines as circles instead of squares to

indicate that we have abstracted from the details of communication.

Throughout we use the convention that a small letter in a slot, e.g., a in [a], is a

variable over the set of all labels of slots, and a capital letter is the label given verbatim,

e.g., M in [M].

7

4 Entities of Models

Before we introduce the real, ideal, and hybrid models, we introduce the ITM’s used

to form these models. To be able to talk about different types of ITM’s below without

ambiguity we mark them. This can be formalized by adding an additional read-only tape

on which the marking is written when the ITM is initialized, but we avoid formalizing

this to avoid cluttering. Furthermore, each ITM of a given type has dedicated named

slots.

An implementation of a function in software typically checks that the input is of a

given form and returns an error code or throws an exception otherwise. It is then the

responsibility of the caller of the function to deal with the error or exception. We mirror

this in that if an ITM receives a message w on a slot [a] that does not match the explicitly

stated format of valid messages, then ♦‖w is written to [a]. We have already used this

convention in Definition 2.

A communication model captures how the parties of a protocol can communicate in

the presence of an adversary.

Definition 9 (Communication Model). A k-communication model C is an ITM marked

as a “communication model” with one ideal functionality slot [F], party slots [P1], . . . , [Pk],

and an adversary slot [A]. If ♦‖w is read from [Pi] or [F], then ♦‖w is written to [A].

The adversary slot is used by an adversary to influence the behaviour of the com-

munication model, e.g., if the communication model represents the Internet, then the

adversary can insert, delay, or remove messages. The party slots are used by parties to

communicate through the communication model. The ideal functionality slot is used

to communicate with an ideal functionality. Note that the above definition implies that

whenever a party or an ideal functionality refuses to accept an input, then the adversary

is informed about this incident and activated. When no ideal functionality is needed we

tacitly assume that an ideal functionality that refuses any input is used.

Definition 10 (Ideal Functionality). An ideal functionality F is an ITM marked as an

“ideal functionality” with a single communication slot [C].

The communication slot is used by the ideal functionality both to accept inputs and to

return outputs.

Definition 11 (Party). An f -party P is an ITM marked “party” with an environment

slot [Z], a communication slot [C], f subparty slots [U1], . . . , [Uf], and an adversary slot
[A]. When f = 0 we simply say that P is a party.

The subprotocol slots are used in the hybrid model to formalize access to subpro-

tocols and ideal functionalities. The adversary slot is only used by corrupted parties. If

it is not used in the formation of a model, then we assume that it is simply linked to an

ITM that does not accept any input.

Definition 12 (Protocol). A (k, f)-protocol π is a list (P1, . . . ,Pk) of f -parties. When

f = 0 we simply say that π is a k-protocol (or protocol when k is clear from the

context).

8

Definition 13 (Adversary). A (k, f)-adversary A is an ITM marked as an “adver-

sary” with a communication slot [C], an environment slot [Z], f subadversary slots
[A1], . . . , [Af], and k corrupted party slots [P∗

1
], . . . , [P∗

k]. When f = 0 we simply say

that A is a k-adversary.

The corrupted party slots are used to communicate with corrupted parties in proto-

cols. Depending on which parties, and how many parties, are corrupted some of these

slots may remain unused. To meet the requirement that a model is an ITM graph we as-

sume that each such slot is linked to an ITM that does not accept any input. Figure 3 and

Figure 4 illustrate a communication model, an ideal functionality, a party, an adversary,

and a corrupt party.

C [A]

[P1] [P2] [P3]

[F] F [C] P [C]

[Z]

[U1] [U2]

Fig. 3. To the left a 3-communication model C with ideal functionality slot [F], adversary slot [A],

and party slots [P1], [P2], and [P3]. In the middle an ideal functionality F with a single communi-

cation slot [C]. To the right a 2-party with subparty slots [U1] and [U2], communication slot [C], and

environment slot [Z].

A[C]

[A1] [A2]

[Z]

[P∗

1
] [P∗

2
] [P∗

3
]

P∗ [C]

[Z]

[U1] [U2]

[A]

Fig. 4. To the left a (3, 2)-adversary with a communication slot [C], subadversary slots [A1] and
[A2], an environment slot [Z], and corrupted party slots [P∗

1
], [P∗

2
], and [P∗

3
]. To the right a corrupted

2-party P∗ with a communication slot [C], subparty slots [U1] and [U2], an adversary slot [A], and

an environment slot [Z].

5 Real Free Models

The real communication model formalizes a network in which the adversary can read,

delete, modify, and insert any message of its choice. The Internet is an example of such

a network.

9

Definition 14 (Real Communication Model). The real k-communication model Nk

is defined as follows.

• If w is read from [Pi], where i ∈ [k], then Pi‖w is written to [A].

• If Pi‖w is read from [A], where i ∈ [k], then w is written to [Pi].

A real free model describes a protocol that executes over a real communication

model. We define a map that combines a communication model, parties, and an adver-

sary into a graph of linked ITM’s. Recall that 〈M0[a],M1[b]〉 denotes a link between

slot [a] of M0 and slot [b] of M1.

Definition 15 (Real Model Map). The real (k, I, f)-model map is the map Rk,I,f :
(π,A, π∗) 7→ (V,E), where π = (P1, . . . ,Pk) is a (k, f)-protocol, A is an f -adversary,

and π∗ = {P∗
i }i∈I is a set of corrupted f -parties, defined by

V ={Nk,A} ∪
⋃

i/∈I
{Pi} ∪

⋃

i∈I
{P∗

i } and

E =
{

〈A[C],Nk [A]〉
}

∪
⋃

i/∈I

{

〈Pi[C],Nk [Pi]〉
}

∪
⋃

i∈I

{

〈P∗
i
[C],Nk [Pi]〉, 〈P∗

i
[A],A[Pi]〉

}

.

Definition 16 (Real Free Model). A real free (k, I, f)-model M is an output of the

real free (k, I, f)-model map. If f = 0, then we simply say that M is a real free (k, I)-
model.

We say that the real model is free, since the parties and the adversary in it have free

environment slots (and possibly free subparty or subadversary slots), i.e., a real free

model is not an ITM graph and can not be executed. Figure 5 and Figure 6 illustrate

real free models without and with corruption.

N3

P1 P2 P3

A

Fig. 5. A real free (3, ∅)-model R3,∅,0(π,A, ∅) with a real 3-communication model N3, 3-

protocol π = (P1,P2,P3), and real 3-adversary A.

6 Ideal Free Models

The ideal model formalizes a protocol execution in an ideal world where there is an

ideal functionality, i.e., a trusted party that performs some service. The trusted party is

10

N3

P1 P2 P∗
3

A

Fig. 6. The real (3, I)-model R3,I,0(π,A, π∗) with indices of corrupted parties I = {3}, real 3-

communication model N3, 3-protocol π = (P1,P2,P3), real 3-adversary A, and set of corrupted

parties π∗ = {P∗
3 }. Note the link between A and the corrupted party P∗

3 .

simply an ITM executing a program, and it communicates with the parties through the

ideal communication model.

The ideal communication model below captures the fact that the adversary may

decide if and when it would like to deliver a message from the ideal functionality to

a party, but it cannot read the contents of the communication between parties and the

ideal functionality.

Definition 17 (Ideal Communication Model). The ideal k-communication model Ik
is defined as follows.

• If F‖m is read from [A], then S‖m is written to [F].

• If S‖m is read from [F], then F‖m is written to [A].

• If w is read from [Pi], then Pi‖w is written to [F].

• If w‖(Pj , wj)j∈J‖e is read from [F], where J ⊂ [k], then for j ∈ J:

1. τj is chosen randomly, and

2. (Pj , wj‖e) is stored in a database under τj .

Then w‖(Pj , τj)j∈J‖e is written to [A].

• If τ is read from [A] and (Pj , w‖e) is stored under τ in the database, then w‖e is

written to [Pj].

In our thesis we use an authenticated bulletin board for communication. Authen-

ticated channels are trivial to define using an ideal functionality. Although we could

absorb this into a separate communication model, this makes little sense.

Definition 18 (Authenticated Channels Functionality). The authenticated channels

functionality Fauth repeatedly reads an input of the form Pi‖(Pj ,m) from [C] and writes

(Pj ,Pi‖m)‖(Pj ,Pi‖m) to [C].

In most formalizations the lengths of messages are provided to the simulation ad-

versary by the communication model. This is needed to prove the security of most

protocols, since without it the ideal functionality could hide the lengths of messages

from the simulation adversary (something that would be impossible to achieve in a real

protocol). Our formalization requires the definition of each ideal functionality to pro-

vide the lengths explicitly. However, for concrete protocols this is rarely needed, since

11

the lengths of messages can be derived by the simulation adversary from the security

parameter.

Definition 19 (Dummy Party). A dummy party is a party that writes any input on [Z]

to [C], and writes any input on [C] to [Z].

Dummy parties are introduced to provide identical interfaces to the parties in real

models and to ideal functionalities. There may be many copies of the dummy party.

Dummy parties are denoted by Qi to distinguish them from real parties and may be

thought of as labels for links. We denote a dummy k-protocol by (Q1, . . . ,Qk).

The ideal free model below captures the setup one wishes to realize, i.e., the envi-

ronment may interact with the ideal functionality F , except that the adversary S has

some control over how the communication model behaves.

Definition 20 (Ideal Free Model Map). The ideal free (k, I)-model map is the map

Ik,I : (F ,S, σ∗) 7→ (V,E), where I ⊂ [k] is a set of indices of corrupted parties, F
is an ideal functionality, S is a simulation k-adversary, and σ∗ = {Q∗

i }i∈I is a set of

corrupted parties, defined by

V ={Ik,F ,S} ∪
⋃

i/∈I
{Qi} ∪

⋃

i∈I
{Q∗

i } , and

E =
{

〈Ik[F],F [C]〉, 〈S [C], Ik[A]〉
}

∪
⋃

i/∈I

{

〈Qi[C], Ik[Pi]〉
}

∪
⋃

i∈I

{

〈Q∗
i
[C], Ik [Pi]〉, 〈Q∗

i
[A],S [Pi]〉

}

.

Definition 21 (Ideal Free Model). An ideal free (k, I)-model is an output of the ideal

free (k, I)-model map.

Figure 7 illustrate an ideal free model without corruption.

I3

Q1 Q2 Q3

S

F

Fig. 7. An ideal free (3, ∅)-model I3,∅(F ,S, ∅) with ideal 3-communication model I3, dummy

3-protocol (Q1,Q2,Q3), ideal functionality F , and simulation 3-adversary S.

12

7 Hybrid Free Models

A hybrid free model formalizes the execution of a real protocol that has access to other

real subprotocols, ideal functionalities, or hybrid protocols. It can both be used to de-

scribe protocols that need setup assumptions (or trusted parties) for specific tasks and

as a tool to construct protocols in a modular way.

Note that the following definitions give a joint inductive definition of the hybrid free

model map and hybrid free models.

Definition 22 (Hybrid Free Model). A hybrid free (k, I, f)-model is an output of the

hybrid free k-model map Hk,I,f of Definition 26 below. We drop f from our notation if

it is zero.

Definition 23 (Free Model). A free (k, I, f)-model is a real free (k, I, f)-model, a

hybrid free (k, I, f)-model, or provided f = 0, an ideal free (k, I)-model.

A free model is complete if it does not have any dangling subparty slots. Thus, every

free ideal model and every real/hybrid (k, I)-model is complete.

Definition 24 (Complete Free Model). A free (k, I, 0)-model is complete.

Definition 25 (Root of Free Model). The root of a free (k, I, f)-model (V,E) is the

unique pair of a protocol and adversary ((X1, . . . ,Xk),A) such that Xi ∈ V is a party

with a free slot [Z] for i ∈ [k] and A ∈ V is an adversary with a free slot [Z].

We stress that if i ∈ I , then Xi is a corrupted party usually denoted P∗
i (or Q∗

i),

and otherwise it is an uncorrupted party Pi (or Qi) defined by the original protocol or

dummy protocol of the ideal functionality.

Definition 26 (Hybrid Free Model Map). The hybrid free (k, I, f)-model map is the

map Hk,I,f with f > 0 that takes as input:

• A real free (k, I, f)-model (V,E) with root ((X1, . . . ,Xk),A).
• A complete free (k, I)-model (Vj , Ej) with root ((Xj,1, . . . ,Xj,k),Aj) for j ∈ [f].

and outputs a complete free model (V ′, E′) where

V ′ = V ∪
⋃

j∈[f]
Vj and

E′ = E ∪
⋃

j∈[f]

(

Ej ∪
{

〈A[Aj],Aj [Z]〉
}

∪
⋃

i∈[k]

{

〈Xi[Uj],Xj,i[Z]〉
}

)

.

8 Environments and Models

To be able to execute a free model we need an environment that connects to the free

slots of the root protocol and root adversary. We formalize the environment in which a

protocol is executed as an ITM.

13

N3

P1 P2 P3

S

A

I3

Q1 Q2 Q3

F

Fig. 8. A hybrid free model H3,I,1

(

R3,I,1(π,A, ∅),I3,I(F ,S, ∅)
)

with indices of corrupted

parties I = ∅, real 3-communication model N3, root (3, 1)-protocol π = (P1,P2,P3), root

(3, 1)-adversary A, ideal 3-communication model I3, dummy 3-protocol (Q1,Q2,Q3), ideal

functionality F , and simulation 3-subadversary S.

Definition 27 (Environment). A k-environment is an ITM marked as an “environ-

ment” with party slots [P1], . . . , [Pk] and an adversary slot [A].

Figure 9 illustrates an environment. The environment provides the data used by the

parties in the protocol and is always the first ITM to be activated during the execution

of the model.

Definition 28 (Environment Map). The (k, I)-environment map Zk : (M,Z) 7→
(V ′, E′) takes a complete free (k, I)-model M = (V,E) with root

(

(X1, . . . ,Xk),A
)

and a k-environment Z as input and outputs (V ′, E′) where

V ′ = V ∪ {Z} and

E′ = E ∪
{

〈Z [A],A[Z]〉
}

∪
⋃

i∈[k]

{

〈Z [Pi],Xi[Z]〉
}

.

Definition 29 (Model). A (k, I)-model is an output of the (k, I)-environment map.

Z

[P1] [P2] [P3]

[A]

Fig. 9. A k-environment with party slots [P1], [P2], and [P3], and an adversary slot [A].

Note that a model is an ITM graph, which means that it can be executed. In an

execution of a model the environment is always activated first with some auxiliary in-

put. Figure 10, Figure 11, and Figure 12 illustrate a real model, an ideal model, and a

14

hybrid model respectively. We abuse notation and write Rk,I,f (π,A, π∗,Z) instead of

Zk(Rk,I,f (π,A, π∗),Z) and correspondingly for ideal and hybrid free model maps.

N3

P1 P2 P3

A

Z

Fig. 10. A real (3, ∅)-model R3,∅,0(π,A, ∅,Z) with real 3-communication model N3, 3-protocol

π = (P1,P2,P3), real 3-adversary A, and 3-environment Z .

I3

Q1 Q2 Q3

S

Z

F

Fig. 11. An ideal (3, ∅)-model I3,∅(F ,S, ∅,Z) with ideal 3-communication model I3, dummy

3-protocol (Q1,Q2,Q3), ideal functionality F , simulation 3-adversary S, and 3-environment Z .

9 Classes of Adversaries

We need to bound the running times of the adversary, the simulation adversary, and the

environment to give a definition of security. Several ways to do this have been proposed

in the literature. We choose a simple solution that gives concrete bounds on the security

reductions. Given a model M = (V,E) with an adversary H (real, ideal, or hybrid) and

environment Z we say that:

1. H has running time TH if the running time of M is bounded by TH at V \ {Z}.

15

N3

P1 P2 P3

S

A

Z

I3

Q1 Q2 Q3

Z

F

Fig. 12. A hybrid model H3,I,1

(

R3,I,1(π,A, ∅),I3,I(F ,S, ∅),Z
)

with real 3-communication

model N3, root (3, 1)-protocol π = (P1,P2,P3), root (3, 1)-adversary A, ideal 3-

communication model I3, dummy 3-protocol (Q1,Q2,Q3), ideal functionality F , simulation

3-subadversary S, and 3-environment Z .

2. Z has running time TZ if the running time of M is bounded by TZ at {Z}.

We remark that this approach differs from the simpler approach used in our the-

sis [12] and in [4], where the running time of each ITM was simply bounded by a

polynomial in the security parameter. The advantage with the current approach is that

ideal functionalities and protocols never halt until they are explicitly asked to by the

adversary or the environment. However, both approaches are possible in our formaliza-

tion.

10 Simplified Notation

At this point we have defined the models of the simplified UC framework rigorously, but

it is convenient to introduce some alternative notation more in line with the literature

to emphasize protocols, ideal functionalities, and adversaries instead of the technical

details of how these are linked. We stress that we do not abandon the original nota-

tion; the freedom to change notation when convenient greatly simplifies describing and

analyzing protocols.

It is easy to see that we may assume that all corrupted parties and all adversaries

except the one linked to the environment are simulations of the router of Definition 2

with a suitable number of heads. This is illustrated in Figure 13.

The subprotocols and ideal functionalities of a hybrid model are arranged in a tree

of subprotocols where every ideal functionality is a leaf. Thus, given the set of indices

of corrupted parties and the tree of subprotocols and ideal functionalities, an adversary,

and an environment we can introduce an indexing scheme and recover the hybrid model.

16

N3

P1 P2

A′

Z

I3

Q1 Q2

Z

F

Fig. 13. A modification of a hybrid free model with corruption, where Q∗
3, P∗

3 , and S are replaced

by routers and A′ is a corresponding modification of A, but with an environment Z turning it

into a model. The 0th slot of each router is marked by an arrow. We stress that strictly speaking

each router is simulated by an ITM to adhere to our definitions. The routers needed for this ITM

to have multiple links are hidden by our abstractions.

We denote a tree of subprotocols and ideal functionalities by inductively applying the

rules that:

1. An ideal free model based on an ideal functionality F is denoted by F .

2. A real free model based on a protocol π is denoted by π.

3. A hybrid free model based on a real protocol π, and complete free models based on

hybrid protocols ρ1, . . . , ρt is denoted π(ρ1, . . . , ρt).

We may consider the set of indices of corrupted parties to be embedded in the de-

scription of the adversary and simply say that we consider an adversary that corrupts a

certain set of parties. This convention gives less concrete notation than the original, but

it is more in line with the literature.

Suppose that ρ is such a description of a protocol, Z is an environment, and A
is an adversary (where the indices of corrupted parties have been encoded). Then we

denote by Zz(ρ,A) the output of the environment Z running on auxiliary input z when

executing the model recovered from ρ, Z , and A. Sometimes we structure the adversary

to match the topology of the protocols and ideal functionalities, i.e., we denote each

simulation subadversary by S and each hybrid or real subadversary by A with suitable

subscripts.

We remark that in hybrid models the number of dummy parties linked to any ideal

functionalities that are used is easily derived. Thus, there is no need to state this explic-

itly. This is not the case for ideal models, but the number of parties is always clear from

the context.

Example 1. Suppose that π is a protocol that uses real subprotocols π0 and π1, and an

ideal functionality F , where π1 in turn uses an ideal functionality F1. Suppose further

17

that A is the overall adversary that attacks π, and orchestrates: (1) subadversaries S
and S1 of F and F1 respectively, and (2) real subadversaries A1 and A2 of π1 and π2

respectively. Then the output of the corresponding model executed with auxiliary input

z is denoted by Zz

(

π(π0, π1(F1),F),A(A0,A1(S1),S)
)

. If we are not interested in

the internal structure of A, then we simply write A instead of A(A0,A1(S1),S).

11 Definition of Security

Following the approach outlined at the beginning of the paper we now formalize the

security of protocols. In this paper we only consider static corruption, i.e., an adversary

may only choose a set of parties to corrupt before execution starts.

Remark 2. Adaptive corruption is easy to add to our framework as follows. (1) Add a

link between each party and the adversary. There are already slots prepared for this. (2)

Wrap each party in an ITM that simulates the party until it receives “corrupt” from the

adversary, at which point it writes the state of the party to the adversary, and waits for

a new ITM with a given state in return that it executes instead. The adversary may now

use the link to the wrapped replacement freely. (3) Stipulate to which sets of parties the

adversary may send “corrupt”. Another wrapper of the adversary can be used to enforce

this to avoid restrictions when quantifying over adversaries.

One would typically assume a uniform adversarial structure for subprotocols as for

static corruption, but the approach works even when this is not the case.

Most proofs of security only hold as long as the adversary does not corrupt certain

parties or some subsets of parties. An adversarial structure is a collection of sets, where

each set is a set of indices of parties that the adversary can corrupt. We use J to denote

an adversarial structure.

Example 2. If we have five parties P1, . . . ,P5 in a protocol and we are able to prove

that the protocol is secure provided that at most one out of P1 and P2 is corrupted and

two out of P3, P4, and P5 are corrupted. Then the adversarial structure we consider is

J = {{1, 3, 4}, {1, 4, 5}, {1, 3, 5}, {2, 3, 4}, {2, 4, 5}, {2, 3, 5}}.

Here we only consider the case where corruption takes place in a uniform way in

all free models within a model, i.e., if a party is corrupted, then so are all its subparties

recursively. However, it is quite natural to generalize this in certain situations.

We use A to denote a class of adversaries with running time bounded by TA, where

the number of parties k and the topology of hybrid adversaries are implicit. Further-

more, the subset of such adversaries that corrupt the parties with indices in a set J are

denoted by AJ . We use the same conventions for a class of simulation adversaries S

and the corresponding class SJ of adversaries that corrupt dummy parties with indices

in J . Finally, we use Z to denote a class of environments with running time bounded

by TZ. Given two classes A and A′ of adversaries with the same topology, we simply

write A+A′ to denote the class of adversaries with the same topology and running time

TA + TA′ .

For standard asymptotic security we can simply require that TA, TS, and TZ are poly-

nomially bounded, but for concrete security claims we can give explicit upper bounds.

18

Definition 30 (Secure Realization). A protocol ρ is a (J,A, S,Z, µ)-secure realization

of a target protocol τ if for every J ∈ J and every adversary A ∈ AJ , there exists

a simulation adversary S ∈ SJ such that for every environment Z ∈ Z and every

auxiliary input z ∈ {0, 1}∗:

|Pr [Zz(ρ,A) = 1]− Pr [Zz(τ,S) = 1]| ≤ µ .

The above definition is considerably more general than other flavours of the UC

framework in that a protocol can securely realize another protocol and not only an

ideal functionality. This may seem contrived at first glance, but is in fact an important

generalization that simplifies the description and analysis of concrete protocols.

Consider for example an ideal functionality for distributed key generation and de-

cryption. It outputs a public key and can then be used to decrypt ciphertexts if asked

to do so by the parties using its service. This works well with a CCA2-secure cryp-

tosystem, but for IND-CPA secure cryptosystems the functionality can not be securely

realized, since a simulator has no way of limiting access to the plaintexts needed to

simulate decryption. Thus, any application of such a functionality must ensure that this

information is otherwise available, but there are several ways to do this, e.g., a trusted

party, secret sharing, and proofs of knowledge, and these are actually used in various

electronic voting systems (see [13] for a discussion).

We can formalize an intuitive ideal functionality F for distributed key generation

and decryption, and several different ideal functionalities F1, . . . ,Fl for submitting

a ciphertext as an input to the ideal functionality. The individual functionalities may

be impossible to securely realize in isolation, but we can consider a hybrid protocol

π(F ,Fi), where π forces any inputs to F to first be processed by Fi (possibly along

with other information or through interaction) in such a way that Fi, and hence the

simulator, knows the plaintext of any ciphertexts decrypted by F . This hybrid protocol

can then be securely realized by a protocol of the form π(σ, σi), where σ and σi are

the natural and often classic implementations in practice. The hybrid protocol π(F ,Fi)
may either be viewed as a type of ideal functionality that is secure by inspection, in

which π should be a “thin” middle layer that is trivial to understand, or there could be

another ideal functionality F ′ that it securely realizes. Thus, this approach avoids some

of the artificial complexity of the UC framework and allows a more modular approach.

12 Universal Composition Theorem

Canetti [3] proves a powerful composition theorem. Loosely speaking it says that if

a protocol π securely realizes some functionality F , then the protocol π can be used

instead of the ideal functionality regardless of how the functionality F is employed.

The general composition theorem can handle polynomially many instances of a constant

number of ideal functionalities for many different adversarial models, but we only need

the following weaker special case due to the results in Appendix A.

Theorem 1 (Special Universal Composition Theorem). If ρ0 is a (J,A, S,Z, µ)-secure

realization of τ0 and π(τ0,F1) is a (J,A + S, S′,Z, µ)-secure realization of τ , then

π(ρ0,F1) is a (J,A, S′,Z, µ+ µ′
)

-secure realization of τ .

19

Proof. The triangle inequality implies that for every simulation adversary S0, every

hybrid adversary A(A0,S1), every simulation adversary S , every environment Z and

every auxiliary input z ∈ {0, 1}∗

∣

∣Pr
[

Zz

(

π(ρ0,F1),A(A0,S1)
)

= 1
]

− Pr [Zz(τ,S) = 1]
∣

∣

≤
∣

∣Pr
[

Zz

(

π(ρ0,F1),A(A0,S1)
)

= 1
]

− Pr
[

Zz

(

π(τ0,F1),A(S0,S1)
)

= 1
]∣

∣

+
∣

∣Pr
[

Zz

(

π(τ0,F1),A(S0,S1)
)

= 1
]

− Pr [Zz(τ,S) = 1]
∣

∣ (1)

We now denote by Zz(A,S1) the environment that simulates the environment Z
on auxiliary input z, the real free model Rk,J,2(π,A, π∗), and the ideal free model

Ik,J(F1,S1, σ
∗
1). Here π∗ and σ∗

1 are the sets of corrupted subparties, but without loss

of generality we may assume that they are routers. This allows us to rewrite the right

side of Inequality (1) as

|Pr [Zz(A,S1)(ρ0,A0) = 1]− Pr [Zz(A,S1)(τ0,S0) = 1]|

+
∣

∣Pr
[

Zz

(

π(τ0,F1),A(S0,S1)
)

= 1
]

− Pr [Zz(τ,S) = 1]
∣

∣ ,

without restricting the quantification.

Note that if A(A0,S1) ∈ AJ and S0 ∈ SJ , then A0 ∈ AJ and A(S0,S1) ∈ AJ+SJ .

Morover, if Z(A,S1) ∈ Z, then Z ∈ Z. From the hypothesis of the theorem we know

that for every hybrid adversary A(A0,S1) ∈ AJ there exists a simulation adversary

S0 ∈ SJ such that for the hybrid adversary A(S0,S1) ∈ (AJ + SJ) there exists a

simulation adversary S ∈ S′J such that for every environment Zz(A,S1) ∈ Z and

every auxiliary input z ∈ {0, 1}∗

|Pr [Zz(A,S1)(ρ0,A0) = 1]− Pr [Zz(A,S1)(τ0,S0) = 1]| ≤ µ and
∣

∣Pr
[

Zz

(

π(τ0,F1),A(S0,S1)
)

= 1
]

− Pr [Zz(τ,S) = 1]
∣

∣ ≤ µ′ .

We conclude that for every A(A0,S1) ∈ AJ there exists a simulation adversary S ∈ S′

such that for every Z ∈ Z and every auxiliary input z ∈ {0, 1}∗

∣

∣Pr
[

Zz

(

π(ρ0,F1),A(A0,S1)
)

= 1
]

− Pr [Zz(τ,S) = 1]
∣

∣ ≤ µ+ µ′ .

13 Transforms of Models

It is intuitively clear that we can absorb any real subprotocols into the main protocol by

simply combining each real party and its subparties into single new real party, but this

does not give a valid model according to our definitions, since each such party is linked

to multiple real communication models. A similar problem appears when bundling mul-

tiple ideal communication models.

In Appendix A we describe and analyze three explicit faithful transforms that allow

us to: (1) simulate multiple ITM’s in a single ITM, (2) simulate multiple links between

two ITM’s using a single link, and (3) simulate multiple identical communication mod-

els using a single communication model. The first two are straightforward, but the third

depends on the details of the definitions of the communication models. A transform is

faithful if it is invertible and preserves functionality.

20

These transforms give us the freedom to view protocols with subprotocols and ideal

functionalities in the most convenient way for each situation without sacrificing rigor.

In particular, it means that we can apply Theorem 1 to protocols with more than two

ideal functionalities. More precisely, we can transform any protocol and adversary into

a protocol of the form π(F0,F1), as required by the composition theorem and a cor-

responding adversary A. Suppose that π0 securely realizes F0. Then, due to the com-

position theorem we know that there is a simulation adversary S which shows that

π(π0,F1) securely realizes π(F0,F1). Due to faithfulnesss, we may then recover the

original protocol along with a modified simulation adversary S ′, which implies that the

composition is secure for the original protocol. We provide details in Appendix A.

14 Relation to Other Security Frameworks

It is natural to ask if the simplified UC framework captures the same notion of security

as other security frameworks. Instead of providing relations and proofs for particular

other frameworks we exploit our tranforms to make this easy for any security frame-

work.

The faithful transforms allow us to turn any protocol into a protocol with at most one

ideal functionality. If a protocol securely realizes an ideal functionality, then its trans-

form does as well. Thus, proving that it securely realizes the functionality in another

security framework is reduced to the special case where the protocol has at most one

ideal functionality. More precisely, to relate the simplified UC framework to an alterna-

tive framework it suffices that: (1) protocols with at most one ideal functionality can be

expressed in the alternative framework (with suitable restrictions), and (2) if there is an

adversary that contradicts the security of such a protocol in the alternative framework,

then there is an adversary that violates the security in the simplified UC framework.

In particular, relating the simplified UC framework to any reasonable presentation

of the UC framework is straightforward. This should be contrasted with the analysis of

Canetti et al. [4] which relates their presentation of the simplified UC framework with

a particular presentation of the UC framework. Determining if their proof still holds

after further modifications of the UC framework or for other alternative presentations is

cumbersome.

References

1. D. Beaver. Foundations of secure interactive computation. In Advances in Cryptology –

Crypto ’91, volume 576 of Lecture Notes in Computer Science, pages 377–391. Springer

Verlag, 1991.

2. R. Canetti. Security and composition of multi-party cryptographic protocols. Journal of

Cryptology, 13(1):143–202, 2000.

3. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.

In 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pages 136–145.

IEEE Computer Society Press, 2001. (Full version at Cryptology ePrint Archive, Report

2000/067, http://eprint.iacr.org, October, 2001.).

21

http://eprint.iacr.org

4. R. Canetti, A. Cohen, and Y. Lindell. A simpler variant of universally composable security

for standard multiparty computation. Cryptology ePrint Archive, Report 2014/553, 2014.

http://eprint.iacr.org/.

5. O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, New

York, NY, USA, 2000.

6. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In 19th ACM

Symposium on the Theory of Computing (STOC), pages 218–229. ACM Press, 1987.

7. S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral

majority. In Advances in Cryptology – Crypto ’90, volume 537 of Lecture Notes in Computer

Science, pages 77–93. Springer Verlag, 1990.

8. U. Maurer. Constructive cryptography – a new paradigm for security definitions and proofs.

In Theory of Security and Applications (TOSCA 2011), volume 6993 of Lecture Notes in

Computer Science, pages 33–56. Springer-Verlag, April 2011.

9. U. Maurer and R. Renner. Abstract cryptography. In The Second Symposium on Innovations

in Computer Science, ICS 2011, pages 1–21, January 2011.

10. S. Micali and P. Rogaway. Secure computation. In Advances in Cryptology – Crypto ’91,

volume 576 of Lecture Notes in Computer Science, pages 392–404. Springer Verlag, 1991.

11. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive

systems. In 7th ACM Conference on Computer and Communications Security (CCS), pages

245–254. ACM Press, 2000.

12. D. Wikström. On the security of mix-nets and hierarchical group signatures. Doctoral thesis,

Department of Numerical Analysis and Computer Science, Royal Institute of Technology,

TRITA NA 05-38, ISSN 0348-2952, ISRN KTH/NA/R--05/38--SE, ISBN 91-7283-717-9,

December 2005, http://www.kth.se.

13. D. Wikström. Simplified submission of inputs to protocols. In Security in Communica-

tion Networks 2008, volume 5229 of Lecture Notes in Computer Science, pages 293–308.

Springer Verlag, 2008.

A Transforms of Models

This section is dedicated to define and analyze the transforms informally described

in the body of the paper. Although the definitions are somewhat technical in nature,

the ideas and concepts are simple and illustrated in Figure 14, Figure 15, Figure 16,

Figure 17, and Figure 18. For all practical purposes, i.e., when analyzing concrete pro-

tocols, browsing these illustrations should be enough.

Throughout, we assume without loss of generality that if a Turing machine Mi

simulates some other Turing machines for i = 1, . . . ,m and M is said to simulate

the Mi’s, then during execution M instead simulates the machines simulated by each

Mi directly. Thus, we may freely argue in terms of nested simulations without any

computational penalty. To avoid cluttering we also assume that simulation of multiple

Turing machines can be done without any overhead.

A.1 Faithful Transforms of ITM Graphs

We are interested in transforms of ITM graphs that preserve the functionality of the

original, but we must also be able to invert each transform and recover the original ITM

graph. Below we give rigorous definitions that captures these properties, but for all our

transforms it is straightforward to see that this is the case.

22

http://eprint.iacr.org/
http://www.kth.se

Intuitively, the first component of an input to a transform is the ITM graph to be

transformed and the second component parametrizes the transform, e.g., it may pinpoint

particular ITMs to remove, move, or link in a specific way.

Definition 31 (Transform). An ITM graph transform is a map Φ : S → GITM, where

S ⊂ GITM × ITM
∗
.

Given an ITM graph G = (V,E) we may assume that we can list the ITMs in V in

a canonical order. Thus, it is meaningful to view any inputs and random tapes of these

ITMs as lists m = (m1, . . . ,m|V |) and r = (r1, . . . , r|V |), respectively, and denote by

ZG(n,m, r) the output of Z ∈ V in an execution of G starting at Z , using security

parameter n, on inputs m and random tapes r.

We need to argue about the behaviour of both an ITM graph and its transform on

the “same” random tapes, but the latter may have more or less ITMs. Thus, for every

integers a, b > 0, we need a bijection ǫ : ({0, 1}∗)a → ({0, 1}∗)b such that both ǫ and

its inverse are efficiently computable. Such bijections are readily constructed, e.g., we

can use interleaving of bits.

Definition 32 (Faithful Transforms). An ITM graph transform Φ : S → GITM is

faithful if

1. Preservation of functionality. For every (G,C) ∈ S, where G = (V,E) with

communication models U , every Z ∈ V , every security parameter n, every random

tapes r ∈ ({0, 1}∗)|V |−|U | to non-communication models, and every inputs m ∈
({0, 1}∗)|V | the transformed ITM graph Φ(G,C) computes the same function at Z
with overwhelming probability, i.e.,

Pr
[

ZG(n,m, r) = ZΦ(G,C)(n,m
′, r′)

]

< 2−poly(n) ,

where m′ = ǫ(m), r′ = ǫ(r), and the probability is taken over the random tapes of

the communication models.

2. Invertibility. There exists a transform Θ : S → GITM that computes the original

ITM graph, i.e., for every (G,C) ∈ S we have Θ(Φ(G,C), C) = G.

In the following we compose transforms and it is not possible in general to invert

each step without access to the parameter C used in the transform, e.g., we may modify

different parts of an ITM graph and it is impossible to know afterwords which part was

modified first.

However, for composed transforms we may view the sequence of parameters used

as a transcript and recover the previous ITM graph of each step due to the invertibility

property. Thus, if G′ = Φ(G,C), then without loss of generality we abuse notation and

simply write G = Φ−1(G′) instead of G = Θ(G′, C) and assume that the parameter C

is available.

A.2 Simulating Multiple Interactive Turing Machines

The most obvious simplification of the description of an ITM graph is to let a single

ITM simulate several other ITMs as well as their links. This is illustrated in Figure 14

and defined below. Given subsets A and B of a set V of ITMs, we denote by E(A,B)
the set of links between slots of ITMs in A and B respectively and set E(A) = E(A,A).

23

Definition 33 (Simulation of ITMs). Let G = (V,E) be an ITM graph and let A ⊂ V .

Denote by SX the set of slots of X ∈ A that are not part of a link in E(A). Then

ΩITM (A) denotes the ITM that simulates all ITMs in A with slots
⋃

X∈A

⋃

[a]∈SX
{[X|a]},

where [X|a] is identified with the slot [a] of X in the simulation for every X ∈ A.

Definition 34 (Simulation Transform). Define the simulation transform ΦITM (G,A) =
(V ′, E′), where G = (V,E) is an ITM graph and A ⊂ V , by

B = V \A

XA = ΩITM (A)

V ′ = B ∪ {XA}

E′ = E(B) ∪
⋃

〈X [a],Y[b]〉∈E(A,B)
{〈XA[X|a],Y [b]〉} .

We abuse notation and write G′ = ΦITM (G,A1, A2) instead of the more cumber-

some G′ = ΦITM (ΦITM (G,A1), A2) and correspondingly for multiple sets A1, . . . , Al.

Theorem 2. The simulation transform is faithful.

Proof. It is clear that the transform is faithful, since the parties in A are simply simu-

lated and we merely replace the links to parties outside A with corresponding links with

differently labeled slots.

X1 X2

X

[a]

[b]

[X1|a]

[X1|b]

[c]

[d]

[e]

[X2|c]

[X2|d]

[X2|e]

Fig. 14. Two ITMs X1 and X2 with links to other ITMs (not shown in the figure) are simulated

by a single ITM X that inherits the links of all the original parties. More precisely, the slots [a]

and [b] of X1 are exposed as the slots [X1|a] and [X1|b], and the slots [c] and [d], and [e] of X2 are

exposed as [X2|c], [X2|d], and [X2|e].

A.3 Simulate Multiple Links

Suppose that two ITMs have multiple direct links between them. Then we simply plug

in two routers and absorb these routers into the respective ITMs using wrappers. This

is illustrated in Figure 15.

Definition 35 (Wrapper). Let X be an ITM with slots [a1], . . . , [al], let R be an l-router,

define links E = {〈X [aj],R[j]〉}j∈[l], and define X ′ = Ωwrap(X , ([a1], . . . , [al]), [a]) to

be the wrapper ITM that simulates X and R including the links in E, and identifies R[0]

with a new slot [a] of X ′. All other slots of X are exposed by X ′.

24

Definition 36 (Swap). Let G = (V,E) be an ITM graph, let X ∈ V , and define

Ωswap (E,X ,Y), where L is the set of common labels of slots of X and Y , by

Ωswap (E,X ,Y) =
⋃

a∈L

⋃

〈X [a],Z[a]〉∈E
{〈Y [a],Z [a]〉} .

We generalize Ωswap to lists of ITMs in the natural way, i.e., we simply write

Ωswap (E, (X1,X2), (Y1,Y2)) instead of Ωswap (Ωswap (E,X1,Y1) ,X2,Y2) and sim-

ilarly for longer lists.

Definition 37 (Link Simulation Transform). Define the link simulation transform

Φlinks(G,A) = (V ′, E′), where G = (V,E) is an ITM graph and A = {X1,X2}
with A ⊂ V and EA = E(X1,X2) = {〈X1[ai],X2[bi]〉}i∈[l], by

X ′
1 = Ωwrap(X1, ([ai])i∈[l], [a]) where [a] is not a slot of X1

X ′
2 = Ωwrap(X2, ([bi])i∈[l], [b]) where [b] is not a slot of X2

V ′ = (V \A) ∪ {X ′
1,X

′
2}

E′ = E(V \A) ∪Ωswap (E \ EA, (X1,X2), (X
′
1,X

′
2)) ∪ {〈X ′

1
[a],X ′

2
[b]〉} .

Theorem 3. The link simulation transform is faithful.

Proof. The flow of information between slots [ai] and [bi] is identical in the original ITM

graph and its transform, since routers are deterministic and take no input, and we can

recover the original ITM graph from its transform given A.

We abuse notation and simply write Φlinks(G) for the repeated application of the

link simulation transform to, starting from G, a sequence of ITM graphs and any pair

of ITMs with multiple links in it until no such pair exists.

X1 X2

X1 X2X ′
1 X ′

2

Fig. 15. The upper part shows two ITMs X1 and X2 that are linked by three links. The lower part

shows how two routing wrappers can be used to form slightly modified ITMs X ′
1 and X ′

2 that are

connected by a single link.

A.4 Redundant Communication Models

Even if we absorb subparties into real parties and simulate multiple links with a single

link as explained above we still need to combine multiple communication models into

25

one to turn an ITM graph into a model. This is illustrated in Figure 16 and Figure 17

and formalized in the next definition.

Definition 38 (Redundant Communication Models). Let G = (V,E) be an ITM

graph and let B = {Ck,1, . . . , Ck,l} be a set of ideal/real communication models in V .

Then B is a set of l-redundant ideal/real k-communication models of G if l > 1 and

there is a subset A = {X1, . . . ,Xk,H,Y} of V , such that E(A ∪B) is of the form

⋃

j∈[l]

{

〈H[cj], Ck,j [A]〉, 〈Y [cj], Ck,j [F]〉
}

∪
⋃

i∈[k]

{

〈Ck,j [Pi],Xi[cj]〉
}

.

Note that Xj plays the role of a party, except that it is linked to multiple commu-

nication models. Similarly, H and Y represent an adversary and an ideal functionality,

respectively, except that they are linked to multiple communication models.

We stress that the definition should be interpreted to say that all communication

models of a set of redundant communication models must either be ideal or real and

never a mix of both.

Definition 39 (Redundant Communication Model Transform). Define the redun-

dant communication model transform Φred(G,B) = (V ′, E′), where G = (V,E) is

an ITM graph with a set of l-redundant k-communication models B (with notation

from Definition 38), c = ([c1], . . . , [cl]), [ci] 6= [C], and Ck is a k-communication model,

by

X ′
i = Ωwrap(Xi, c, [C]) , H′ = Ωwrap(H, c, [C]) , and Y ′ = Ωwrap(Y, c, [C]) ,

V ′ = (V \A) ∪ {Ck,X
′
1, . . . ,X

′
k,H

′,Y ′}

E′ = {〈H′[C], Ck[A]〉, 〈Y ′[C], Ck [F]〉} ∪
⋃

i∈[k]
{〈X ′

i
[C], Ck [Pi]〉}

∪ Ωswap (E, (H,Y,X1, . . . ,Xk), (H
′,Y ′,X ′

1, . . . ,X
′
k)) .

Note that if the redundant communication models are ideal, then each Xi is the result

of a combining multiple dummy parties with the simulation transform, which means

that X ′
i is equivalent to a single dummy party. We abuse notation and simply write

Φred(G) for the repeated application of the redundant communication model transform

until there is no longer any set of redundant communication models.

Theorem 4. The redundant communication model transform is faithful.

Proof. Note that a communication model is routing messages based on the prefixes of

messages. The routers used in the wrappers on the other hand route messages based

on the postfixes of messages. This means that adding/removing a prefix commutes with

adding/removing a postfix. Ideal communication models behave in the same way. The

probability that the same randomly chosen tag appears in two ideal communication

models is exponentially small. (This is where we need the extra leg room in the defini-

tion of preservation of functionality.)

26

A

N3

P1 P2 P3

H

N3,1 N3,2 N3,3

X1 X2 X3

Fig. 16. The left side shows a real free model except that each party and the adversary is linked by

a set of 3-redundant real 3-communication models. The right side shows how a single equivalent

real communication model can be formed. Here it is understood in the figure that the routers with

multiple links to a party or adversary would be absorbed into the party to reduce the number of

links.

Remark 3. Consider a dummy party Q and two routers R and R′ with the same number

of slots l. If a slot [a] of Q is linked to the 0th slot of R and the ith slot of R is linked to

the ith slot of R′ for i ∈ [l], then an ITM Q′ that simulates Q, R, and R′ and exposes

the 0th slot of R′ as [a] is equivalent to Q. Thus, if multiple dummy parties are simulated

by a single ITM and then the corresponding redundant ideal communication models are

combined, then we may view the resulting ITMs as dummy parties. We tacitly ignore

this technicality below.

Given an ITM graph with multiple links between some parties or redundant com-

munication models it is natural to simplify it by eliminating them. Thus, we define the

simplifying transform as a short hand for cleaning up an ITM graph

Φsim(G) = Φred(Φlinks(G)) .

A.5 Transforms of Models

We are now ready to introduce transforms that turn one model into another. We begin

with a transform that takes several free models, ideal or real, and applies the simulation

transform to the adversaries, the subparties for each index, and the ideal functionalities

if there are any.

Definition 40 (Combining Transform). Define the combining transform by

Φcom(G,H) = Φsim(ΦITM (G,H,X1, . . . , Xk, F))

where G is a (k, I)-model, H = {H1, . . . ,Hl} is a set of real/simulation subadver-

saries with the same real parent adversary, Xj,i is the ith party linked to the same

27

F S

I3

Q1 Q2 Q3

Y H

I3,1 I3,2 I3,3

X1 X2 X3

Fig. 17. The left side shows an ideal free model except that each party and the simulation ad-

versary is linked by a set of 3-redundant ideal 3-communication models. The right side shows

how a single equivalent ideal communication model can be formed. Here it is understood that the

routers with multiple links to a party or adversary would be absorbed into the party.

communication model Ck,j as Hj , and Xi = {X1,i, . . . ,Xl,i}. Furthermore, if the

communication models are ideal, then Fj is the ideal functionality linked to Ck,j and

F = {F1, . . . ,Fl}, and otherwise F = ∅.

We stress that the definition must be interpreted to say that the input adversaries

are either all real or all ideal and never a mix. We sometimes abuse notation and write

Φcom(G,F), where F is a set of ideal functionalities, to denote Φcom(G,H) where H

is the set of simulation adversaries linked to the ideal communication models linked

to the ideal functionalities in F . We also write Φcom(G) to denote the transform that

repeatedly applies the combining transform to a sequence of models starting with G

until there are no real/simulation subadversaries with the same parent in a model.

Definition 41 (Absorbing Transform). Define the absorbing transform by

Φabs(G,A) = Φsim(ΦITM (G,A, P1, . . . , Pk))

where G is a (k, I)-model, A = {A1, . . . ,Al} is a set of real subadversaries such that

Aj+1 is a real subadversary of Aj for j = 1, . . . , l − 1, Pj,i is the ith party linked to

the same real communication model as Aj , and Pi = {P1,i, . . . ,Pl,i}.

Note that the absorbing transform not only absorbs the subprotocol. It also absorbs

real subadversaries into the root adversary. We abuse notation and write Φabs(G) for

the transform that repeatedly applies the absorbing transform to a sequence of models

starting with G until no real subadversary exists in a resulting model. We say that a

model without subprotocols is normalized, i.e., a model for which the absorbing trans-

formation can not be applied.

28

Definition 42 (Normalized Model). A (k, I)-model is normalized if it has no subpro-

tocols, or equivalently no real subadversaries.

Another natural transform is to collapse parts of models. This is useful to focus on

particular parts of a model and allows generalizing the composition theorem.

Definition 43 (Collapsing Transform). Define the collapsing transform Φcol(G, ρ),
where G is a (k, I)-model and ρ is a hybrid protocol embedded in G, as the transform

that repeatedly applies the combining and/or the absorbing transforms to G except the

free model uniquely identified by ρ until no longer possible.

Note that if G is a model, then Φcol(G, ρ) has at most one ideal functionality out-

side of the free model in G based on ρ, i.e., the corresponding protocol is of the form

π(ρ,F) for some root protocol π and ideal functionality F . In particular, we can use

the collapsing transform without restriction to put a model into a minimal form where

all ideal functionalities have been combined into a single ideal functionality and all

subprotocols have been absorbed.

Definition 44 (Minimal Model). A (k, I)-model is minimal if it is normalized and has

at most one ideal functionality.

A.6 Adversary Converter

We need an explicit way to map an arbitrary adversary (not constructed through our

transforms) for a transformed protocol back into an equivalent adversary of the protocol.

Fortunately, the transforms leave a blue print for what to do. Note that a template

adversary resulting from our transforms of models consists of an original adversary and

routers forming trees where the leaves of the trees are linked to the original adversary

and the roots of the trees are exposed as slots of the adversary. We may think of the trees

as mapped onto an annulus where the inner circle represents the original adversary and

the outer circle represents the template adversary. This is illustrated in Figure 18 and

made precise below.

To convert an adversary with identical slots to the template adversary, we simply

fold the annulus inside out, link the roots of the trees of routers to the adversary and

relabel the slots of the leaves of the trees of routers to the labels of the original adversary.

If we plug this converted adversary into the original model and transform it, then we get

a transformed converted adversary that is equivalent to the adversary, since each tree of

routers is effectively canceled by its mirror embedded in the converted adversary.

We say that a set of routers form a tree if exactly one router has a free 0th slot and

the 0th slot of every other router is linked to the ith slot of another router for some

i > 0. We say that the free 0th slot is the root of the tree and all other free slots are

leaves of the tree.

Definition 45 (Adversary Converter). The adversary converter Φadv is defined as fol-

lows. Let T be an adversary that simulates an original adversary O and trees t1, . . . , tr
of routers with roots exposed as slots [a1], . . . , [ar] of T and leaves [bj,1], . . . , [bj,sj] of

tj linked to slots [cj,1], . . . , [cj,sj] of O. Let A be an adversary with slots [a1], . . . , [ar].

Then Φadv (T ,A) is the adversary that simulates A and t1, . . . , tr with the set of links
{

〈A[aj], tj [0]〉
}

j∈[r]
and exposes [bj,i] as [cj,i] for j = 1, . . . , r and i ∈ 1, . . . , sj .

29

The importance of the adversary converter can be illustrated as follows. Suppose

we are given a model M and wish to prove that its embedded hybrid protocol securely

realizes some ideal functionality F . To do this we need to show that for every adversary

A, there is a suitable simulator S . Given an adversary we can of course apply our

transforms and get a new model M ′ along with a transformed adversary A′ for which

the simulator is still suitable.

More interesting is to consider the transformed protocol of M ′ directly. If this se-

curely realizes F , then for every adversary A′ in M ′, there exists a suitable simulator

S ′. We may plug in a place-holder adversary O and apply the transforms to get a tem-

plate adversary T as in the definition. Then we can use this to construct an adversary

A such that if we transform M with A we will recover M ′ and an adversary that is

functionally identical to A′.

Thus, we can safely prove the security for any transformed protocol and conclude

that any other transformation of it is secure as well.

A

A−1

[Z]

[C]

[A]

O

T

A

A−1

[Z]

[C]

[A]

A′

Fig. 18. The left side illustrates a template adversary T resulting from applying some of the above

transforms on an original adversary O that does not corrupt any parties. The original model could

for example have had two subprotocols that were absorbed and two ideal functionalities that were

combined.

30

	Simplified Universal Composability Framework

