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Abstract. We show that homomorphic evaluation of any non-trivial
functionality of sufficiently many inputs with respect to any CPA secure
homomorphic encryption scheme cannot be implemented by circuits of
polynomial size and constant depth, i.e., in the class AC0. In contrast,
we observe that there exist ordinary public-key encryption schemes of
quasipolynomial security in AC0 assuming noisy parities are exponen-
tially hard to learn. We view this as evidence that homomorphic eval-
uation is inherently more complex than basic operations in encryption
schemes.

1 Introduction

A central objective in the theory of cryptography is to classify the relative
complexity of various cryptographic tasks. One common way of arguing that
task B is of comparable easiness to task A is to give a black-box implemen-
tation of B using A as a primitive. Notable examples include the construction
of pseudorandom generators from one-way permutations [GL89] and one-way
functions [HILL99,HRV10].

But how should we argue that task B is “more complex” than task A? In the
generic setting, one looks for the existence of a black-box separation [IR89,RTV04],
or a lower bound on the query complexity of a black-box reduction [GT00]. How-
ever such black box impossibility results are not always a good indicator of the
relative complexity of the two tasks in the real world (under suitable complexity
assumptions). For example, although collision-resistant hash functions cannot be
constructed from one-way functions in a black-box manner [Sim98], both objects
have simple, local (NC0) implementations under standard assumptions [AIK07].

An alternative way to argue that task B is more complex than task A is
to provide a concrete complexity model in which one can implement A (under
plausible assumptions), but not B. For example, Applebaum et al. [AIK07] show
that under plausible complexity assumptions, nontrivial pseudorandom genera-
tors can be implemented in the complexity class NC0. However, it is not difficult
to see that this class does not contain pseudorandom functions; in fact, Linial,
Mansour, and Nisan [LMN93] show that pseudorandom functions cannot be im-
plemented even in AC0. Taken together, these results may be viewed as concrete
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evidence that pseudorandom functions are more complex than pseudorandom
generators, despite the existence of a black-box reduction [GGM86] and the lack
of lower bounds on the complexity of such reductions [MV11].

In this work we give concrete complexity-theoretic evidence that homomor-
phic evaluation of essentially any non-trivial functionality is more complex than
the basic cryptographic operations of key generation, encryption, and decryption.
Our main result (Theorem 2) shows that homomorphic evaluation of any non-
trivial functionality (for example the AND function) that depends on sufficiently
many inputs cannot be implemented by circuits of constant depth and subexpo-
nential size with respect to any CPA secure encryption scheme. In Section 4 we
show that encryption schemes in AC0 of super-polynomial CPA security exist
assuming Learning Noisy Parities is exponentially hard.

Thus constant-depth circuits provide sufficient computational power for im-
plementing operations in both ordinary private and public-key encryption schemes
(under a previously studied assumption), but not for realizing homomorphic
evaluation of any non-trivial functionality.

2 Definitions

In this section we give a definition of what it means for an algorithm E to homo-
morphically evaluate a given functionality f . A fairly weak requirement is that
a homomorphic evaluator for f(m1, . . . ,mk) should take as inputs encryptions
of m1, . . . ,mk and output a ciphertext that decrypts to f(m1, . . . ,mk).

We will allow for the evaluation algorithm to err on some fraction of the
encryptions. This takes into account the possibility that the encryption scheme
itself may produce incorrect encryptions with some probability.

Definition 1. Let (Gen,Enc,Dec) be a private-key encryption scheme over
message set Σ with ciphertexts in {0, 1}n. We say a circuit E is a homomorphic
evaluator of f : Σk → Σ with error δ if for all m1, . . . ,mk ∈ Σ,

Pr[DecSK(E(EncSK(m1, R1), . . . ,EncSK(mk, Rk))) = f(m1, . . . ,mk)] ≥ 1− δ,

where SK ∼ Gen is a uniformly chosen secret key and R1, . . . , Rk are indepen-
dent random seeds.

In the public-key setting, we are given an encryption scheme (Gen,Enc,Dec)
and require that

Pr[DecSK(E(PK,EncPK(m1, R1), . . . ,EncPK(mk, Rk)))

= f(m1, . . . ,mk)] ≥ 1− δ.

where (PK,SK) ∼ Gen is a random key pair.
We point out one challenge that this natural definition poses in the context

of ruling out the existence of homomorphic evaluators. When k is much smaller
than n, the definition allows for plausible encryption schemes that admit trivial



homomorphic evaluators, by “outsourcing” the homomorphic evaluation to the
decryption algorithm. For example suppose that the meaningful portion of an
encryption is only captured in the first n/k bits of the ciphertext. Then the
homomorphic evaluator can simply copy the meaningful portion of its k encryp-
tions in non-overlapping parts of the output. Upon seeing a ciphertext of this
form, the decryption algorithm can easily compute the value f(m1, . . . ,mk) by
first decrypting the ciphertext corresponding to each of the k encryptions and
then evaluating f .

Thus our negative result will only apply to functions whose number of rele-
vant inputs k is sufficiently large in terms of n. Beyond this requirement, we do
not make any assumption on f .

The requirement we make on the encryption scheme is CPA message indis-
tinguishability. A private-key encryption scheme is (s, d, ε) CPA message indis-
tinguishable if for every pair of messages m,m′ ∈ Σ and every distinguishing
oracle circuit D? of size s and depth d,

|PrSK,R[DEnc(SK,·)(EncSK(m,R)) = 1]

− PrSK,R[DEnc(SK,·)(EncSK(m′, R)) = 1]| ≤ ε.

In the public key setting CPA security follows from ordinary message indistin-
guishability:

|PrPK,R[D(PK,EncPK(m,R)) = 1]−PrPK,R[D(PK,EncPK(m′, R)) = 1]| ≤ ε.

3 Homomorphic evaluation requires depth

Theorem 2. Suppose (Gen,Enc,Dec) is an (2s+ k+O(1), d+ 1, 1/6(k+ 1))
CPA message indistinguishable private-key (resp. public-key) encryption scheme.
Let E be a homomorphic evaluator of size s and depth d with error at most 1/3
for some f : Σk → Σ that depends on all of its inputs with respect to this scheme.

Then s > 2Ω((k/6n)1/(d−1)).

For notational simplicity, we present the proof for the private key variant.
Since f depends on all its inputs, for every i ∈ [k] there is a pair of messages m
and m′ that differ only in coordinate i such that f(m) 6= f(m′). Now suppose
E is a homomorphic evaluator for f with error 1/3. Then

Pr[Dec(E(Enc(m1, R1), . . . ,Enc(mi, Ri), . . . ,Enc(mk, Rk))) 6= f(m)] ≤ 1/3

and

Pr[Dec(E(Enc(m1, R1), . . . ,Enc(m′i, R
′
i), . . . ,Enc(mk, Rk))) 6= f(m′)] ≤ 1/3,

where the probability is taken over the choice of secret key SK (which we omit
to simplify notation) and the randomness R1, . . . , Ri, R

′
i, . . . , Rk used in the



encryption. Since f(m) 6= f(m′), it follows that

Pr[Dec(E(Enc(m1, R1), . . . ,Enc(mi, Ri), . . . ,Enc(mk, Rk)))

6= Dec(E(Enc(m1, R1), . . . ,Enc(m′i, R
′
i), . . . ,Enc(mk, Rk)))] ≥ 1/3.

Therefore it must be that

Pr[E(Enc(m1, R1), . . . ,Enc(mi, Ri), . . . ,Enc(mk, Rk))

6= E(Enc(m1, R1), . . . ,Enc(m′i, R
′
i), . . . ,Enc(mk, Rk))] ≥ 1/3.

By CPA message indistinguishability and a hybrid argument, we can replace
m1, . . . ,mi,m

′
i, . . . ,mk by 0 to obtain

Pr[E(Enc(0, R1), . . . ,Enc(0, Ri), . . . ,Enc(0, Rk))

6= E(Enc(0, R1), . . . ,Enc(0, R′i), . . . ,Enc(0, Rk))] ≥ 1/6. (1)

Lemma 3. Let D1, . . . , Dk be any distributions over {0, 1}n. Let g : ({0, 1}n)k →
{0, 1} be a circuit of size s and depth d where s ≤ 2(εk)

1/(d−1)/K for some absolute
constant K. Then

Pr[g(X1, . . . , Xi, . . . , Xk) 6= g(X1, . . . , X
′
i, . . . , Xk)] < ε

where the randomness is taken over the choice of i ∼ [k] and independent samples
X1 ∼ D1, . . . , Xi, X

′
i ∼ Di, . . . , Xk ∼ Dk.

We apply this lemma with Di equal to the distribution of encryptions of 0
and ε = 1/6n to each of the n outputs of E and take a union bound to conclude

that (1) is violated unless s > 2Ω((k/6n)1/(d−1)).

Proof (of Lemma 3). Fix any pair Z,Z ′ ∈ ({0, 1}n)k. For any w ∈ {0, 1}k, let
Zw ∈ ({0, 1}n)k be the string such that

the i-th block of Zw =

{
the i-th block of Z, if wi = 0

the i-th block of Z ′, if wi = 1.

Let hZ,Z′(w) = g(Zw). Then h is of size at most s and depth at most d. By
Boppana [Bop97], for every Z and Z ′ we have

PrW,i[hZ,Z′(W ) 6= hZ,Z′(W + ei)] ≤ (K log s)d−1/k

for some constant K, where W and i are uniform over {0, 1}k and [k] re-
spectively, and ei is the i-th indicator vector. Therefore for Z,Z ′ sampled in-
dependently from D1 × · · · × Dk we can rewrite Pr[g(X1, . . . , Xi, . . . , Xk) 6=
g(X1, . . . , X

′
i, . . . , Xk)] as

EZ,Z′ [PrW,i[hZ,Z′(W ) 6= hZ,Z′(W + ei)]] ≤ EZ,Z′ [(K log s)d−1/k]

= (K log s)d−1/k.

It follows that if this probability is at most ε, then s ≤ 2(εk)
1/(d−1)/K .



Lemma 3 bounds the total influence of shallow circuits under independent
inputs chosen from an arbitrary distribution. Our proof is based on ideas of
Blais, O’Donnell, and Wimmer [BOW10], who bound the noise sensitivity of
such circuits.

4 On CPA-secure encryption schemes in AC0

In this section we show that encryption schemes in AC0 of super-polynomial
CPA security exist assuming Learning Noisy Parities over {0, 1}n requires time

2Ω(nδ) for some constant δ > 0.
To begin with, we observe that asymptotically super-polynomial security

cannot be achieved by NC0 decryption circuits: If every output of the decryption
circuit depends on at most d bits of the ciphertext, then for any message m the
decryption circuit on the distribution of encryptions of m can be PAC-learned
in time Od(n

d), violating CPA security.
We obtain candidate encryption schemes in AC0 by applying the following

reduction:

Lemma 4. For every d > 0, every (public or private key) encryption scheme of

size S and depth D can be implemented in size S2D · 2d·D·S1/d

and depth 2d+ 1.

In particular, encryption schemes in the class NC2 can be simulated by
constant-depth circuit families of size 2O(nε) for any constant ε > 0.

Two such schemes are the private-key one of Gilbert et al. [GRS08] and
the public-key one of Alekhnovich [Ale11, Cryptosystem 1]. The key generation,
encryption, and decryption algorithms for these schemes apply linear algebra
over F2 and thus admit NC2 implementations [Ber84]. The security of these two
schemes is based on the hardness of Learning Noisy Parities.

Noisy Parities over Fn2 with noise rate η can be learned by brute force in
time poly(n) ·

(
n
ηn

)
. A slight improvement in the exponent is achievable for high

noise rates using the algorithm of Blum, Kalai, and Wasserman [BKW03]. Its
running time is 2Θ(n/ logn). Assuming noisy parities are hard to learn in time

2Ω(nδ) for some constant δ > 0, it follows from Lemma 4 that the above schemes
have constant-depth implementations whose security is super-polynomial in their
size. The error rate can be assumed constant in the cryptosystem of Gilbert et
al. and 1/

√
n in the cryptosystem of Alekhnovich.

The cryptosystems of Gilbert et al. and Alekhnovich have noticeable encryp-
tion error. The error can be reduced to negligible by encrypting the message
independently multiple times. While some of the multiple encryptions may be
erroneous, with all but negligible probability at least 2/3 of them will be correct.
The errors can be corrected by taking approximate majority at the decryption
stage, which can be implemented using circuits of depth 3 [Ajt83], thereby pre-
serving the constant depth complexity of the implementation.

Proof (of Lemma 4). We show that the conclusion holds for every circuit of size
S and depth D, so in particular it holds for the key generation, encryption,



and decryption circuits (where the circuits are viewed as functions of both their
input and their randomness). This is folklore and was recently used in [LV15].
We sketch the proof for completeness.

First, every circuit of size S and depth D can be simulated by a branching
program of length S and width 2D by traversing the circuit in depth first order
while maintaining the value of the evaluated subtree at each level.

Second, for every k, every branching program of length S and width W can
be written as an OR of W k ANDs of k branching programs of length S/k and
width W . This representation is obtained by factoring the branching program
over its states at time S/k, 2S/k, up to (k − 1)S/k.

Applying this transformation recursively d times, we obtain a simulation of
a size S, depth D circuit by a size (kW k)d, depth 2d circuit whose inputs are
branching programs of length S/kd and width w. Each such branching program

can be trivially simulated by a CNF of size WS/kd . Putting this together, we

obtain a simulation of size S, depth D circuits by size kdW dk+S/kd , depth 2d+1
circuits. Setting k = S1/d proves the lemma.
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