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Abstract. We show the following reductions from the learning with
errors problem (LWE) to the learning with rounding problem (LWR): (1)
Learning the secret and (2) distinguishing samples from random strings
is at least as hard for LWR as it is for LWE for efficient algorithms if
the number of samples is no larger than O(q/Bp), where q is the LWR
modulus, p is the rounding modulus, and the noise is sampled from any
distribution supported over the set {−B, . . . , B}.
Our second result generalizes a theorem of Alwen, Krenn, Pietrzak, and
Wichs (CRYPTO 2013) and provides an alternate proof of it. Unlike
Alwen et al., we do not impose any number theoretic restrictions on the
modulus q. The first result also extends to variants of LWR and LWE
over polynomial rings. The above reductions are sample preserving and
run in time poly(n, q,m).
As additional results we show that (3) distinguishing any number of LWR
samples from random strings is of equivalent hardness to LWE whose
noise distribution is uniform over the integers in the range [−q/2p, . . . , q/2p)
provided q is a multiple of p and (4) the “noise flooding” technique for
converting faulty LWE noise to a discrete Gaussian distribution can be
applied whenever q = Ω(B

√
m).
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1 Introduction

1.1 Learning with Rounding

The learning with rounding (LWR) problem, introduced by Banerjee, Peik-
ert, and Rosen [BPR12], concerns the cryptographic properties of the function
fs : Znq → Zp given by

fs(x) = b〈x, s〉ep = b(p/q) · 〈x, s〉e

where s ∈ Znq is a secret key, 〈x, s〉 is the inner product of x and s mod q, and
b·e denotes the closest integer. In this work we are interested in the algorithmic
hardness of the tasks of learning the secret s and of distinguishing fs from a
random function given uniform and independent samples of the form (x, fs(x)).

Learning with rounding was proposed as a deterministic variant of the learn-
ing with errors (LWE) problem [Reg05]. In this problem fs is replaced by the
randomized function gs : Znq → Zq given by gs(x) = 〈x, s〉+e, where e is sampled
from some error distribution over Zq independently for every input x ∈ Znq .

In spite of the superficial similarities between the two problems, the cryp-
tographic hardness of LWE is much better understood. Extending works of
Regev [Reg05], Peikert [Pei09], and others, Brakerski et al. [BLP+13] gave a
polynomial-time reduction from finding an approximate shortest vector in an
arbitrary lattice to the task of distinguishing gs from a random function given
access to uniform and independent samples (x, gs(x)) when e is drawn from
the discrete Gaussian distribution of sufficiently large standard deviation. Their
reduction is versatile in two important aspects. First, it is meaningful for any
modulus q that exceeds the standard deviation of the noise. Second, it does not
assume a bound on the number of samples given to the distinguisher.

In contrast, the hardness of the learning with rounding problem has only
been established for restricted settings of the parameters. In their work Baner-
jee, Peikert, and Rosen show that if fs can be efficiently distinguished from a
random function given m random samples with advantage δ, then so can gs with
advantage δ−O(mBp/q), where the noise e is supported on the range of integers
{−B, . . . , B} modulo q. From here one can conclude the hardness of distinguish-
ing fs from a random function given m random samples assuming the hardness
of learning with errors, but only when the modulus q is of an exponential order
of magnitude in the security parameter.

Alwen et al. [AKPW13] give a reduction from LWE to the same problem
assuming that qmax is at least as large as 2nmBp and q2max does not divide q,
where qmax is the largest prime divisor of q. This reduction can be meaningful
even for values of q that are polynomially related to the security parameter. For
example, when q is a prime number then the improvement over the reduction of
Banerjee, Peikert, and Rosen is substantial.

However, the result of Alwen et al. does not apply to all (sufficiently large)
values of the modulus q. For example it does not cover values of q that are powers
of two. In this case the rounding function is particularly natural as it outputs the
first log p significant bits of q in binary representation. Moreover, rounding with



a small prime q necessarily introduces noticeable bias, consequently requiring
some form of deterministic extraction. Finally, the work of Alwen et al. does not
include a treatment of the significantly more efficient ring variant of LWR.

1.2 Our results

We establish the cryptographic hardness of the function fs in the following three
settings:

One-wayness: In Theorem 1 in Section 2 we show that any algorithm that
recovers the secret s from m independent random samples of the form
(x, fs(x)) with probability at least ε also recovers the secret s from m inde-
pendent random samples of the form (x, bgs(x)ep) with probability at least

ε2/(1 + 2Bp/q)m.
Therefore, if the functionG(x1, . . . ,xm, s) = (x1, . . . ,xm, gs(x1), . . . , gs(xm))
is one-way under some B-bounded distribution (i.e. if the search version of
LWE is hard) then we conclude that

F (x1, . . . ,xm, s) = (x1, . . . ,xm, fs(x1), . . . , fs(xm))

is also one-way, as long as q ≥ 2mBp.
In Theorem 2 in Section 2.2 we show that the ring variants of the LWE and
LWR problems (defined in that section) are related in an analogous manner.

Pseudorandomness: In Theorem 3 in Section 3 we show that if there exists
an efficient distinguisher that tells apart m independent random samples
(x, gs(x)) from m independent random samples of the form (x, buep), then
LWE secrets can be learned efficiently assuming q ≥ 2mBp.
In particular, when p divides q, the above function F is a pseudorandom
generator assuming the hardness of learning with errors.
Theorem 3 improves upon several aspects of the work of Alwen et al.: First,
we do not impose any number-theoretic restrictions on q; second, they require
the stronger condition q ≥ 2nmBp; third, unlike theirs, our reduction is
sample preserving; and fourth, we believe our proof is considerably simpler.
On the other hand, the complexity of their reduction has a better dependence
on the modulus q and the distinguishing probability.

Hardness of learning from samples with uniform noise: In Theorem 5
in Section 4 we give an efficient reduction that takes as input independent
random samples of the form (x, gs(x)) and produces independent random
samples of the form (x, fs(x)) provided that p divides q and the noise e of
gs is uniformly distributed over the integers in the range [−q/2p, . . . , q/2p).
Therefore if fs can be distinguished efficiently from a random function for
any number of independent random samples, so can gs. By a reduction of
Chow [Cho13] in the other direction (Theorem 6), the two problems are in
fact equivalent. These reductions do not impose any additional restriction
on p, q and the number of LWR samples m.
The learning with errors problem under this noise distribution is not known
to be as hard as the learning with errors problem with discrete Gaussian



noise when the number of samples is unbounded in terms of q and n. The
existence of a reduction to the case of discrete Gaussian noise is an interesting
open problem.

Noise flooding: In addition, our technique allows for an improved analysis
of noise flooding. The noise flooding technique is ubiquitous in the LWE
cryptographic literature. Roughly speaking, it is used to rerandomize a faulty
sample

(
x, 〈x, s〉 + ebad

)
into one of the form

(
x, 〈x, s〉 + egood

)
where egood

is distributed according to the error distribution implicit in gs(·), while ebad
is not. Most of the time, the desired error distribution is a discrete Gaussian
over Zq whereas ebad is some arbitrary B-bounded element in Zq. The most
common method is to draw a fresh Gaussian error e and set egood = ebad + e
which results in the distribution of egood being within statistical distance
B/σ of the desired Gaussian. However, this requires choosing parameters in
order to ensure that B/σ ≥ B/q is small. In particular, it requires setting
q to be larger than any polynomial in the security parameter. Even worse,
often the bound B is polynomially related to the standard deviation σ′ of
another discrete Gaussian used in the construction. This means that q/σ′

also grows faster than any polynomial in the security parameter, which is
not ideal as the quantity q/σ′ corresponds to the strength of assumption one
is making on the hardness of the underlying lattice problem. In Section 5 we
use techniques from Section 2 to give a simple proof that noise flooding can
be used whenever q = Ω

(
B
√
m
)
. In particular, it can be used even when q

is polynomial in the security parameter.

Conventions We write x← X for a uniform sample from the set X, R(x) for the
function (R(x1), . . . , R(xn)), and Zn∗q for the set of vectors in Znq which are not
zero-divisors. Namely, Zn∗q = {x ∈ Znq : gcd(x1, . . . , xn, q) = 1}. All algorithms
are assumed to be randomized.

2 One-wayness of LWR

In this section we prove the following theorem. We say a distribution over Zq
is B-bounded if it is supported over the interval of integers {−B, . . . , B}, where
B ≤ (q− 1)/2. We say a B-bounded distribution e is balanced if Pr[e ≤ 0] ≥ 1/2
and Pr[e ≥ 0] ≥ 1/2.

Theorem 1. Let p, q, n, m, and B be integers such that q > 2pB. For every
algorithm Learn,

PrA,s,e[Learn(A, bAs + eep) = s] ≥
PrA,s[Learn(A, bAsep) = s]2

(1 + 2pB/q)m
,

where A← Zm×nq , the noise e is independent over all m coordinates, B-bounded
and balanced in each coordinate, and s is chosen from any distribution supported
on Zn∗q .



The assumptions made on the secret and error distribution in Theorem 1 are
extremely mild. The condition s ∈ Zn∗q is satisfied for at least a 1 − O(1/2n)
fraction of secrets s ← Znq . While a B-bounded error distribution may not be
balanced, it can always be converted to a 2B-bounded and balanced error distri-
bution by a suitable constant shift. The discrete Gaussian distribution of stan-
dard deviation σ is e−Ω(t2)-statistically close to being tσ-bounded and balanced
for every t ≥ 1.

Theorem 2 in Section 2.2 concerns the ring variants of the LWR and LWE
problems and will be proved in an analogous manner.

We now outline the proof of Theorem 1. Let Xs denote the distribution of a
single LWR sample a, b〈a, s〉ep where a← Znq and Ys denote the distribution of
a single rounded LWE sample a, b〈a, s〉+ eep. To prove Theorem 1 we will fix s
and look at the ratio of probabilities of any possible instance under the product
distributions Xms and Yms , respectively. If this ratio was always bounded by a
sufficiently small quantity K,5 then it would follow that the success probability
of any search algorithm for LWR does not deteriorate by more than a factor of
1/K when it is run on rounded LWE instances instead.

While it happens that there are exceptional instances for which the ratio of
probabilities under Xms and Yms can be large, our proof of Theorem 1 will show
that such instances cannot occur too often under the rounded LWE distribution
and therefore does not significantly affect the success probability of the inversion
algorithm. This can be showed by a standard probabilistic analysis, but we opt
instead to work with a measure of distributions that is particularly well suited
for bounding ratios of probabilities: the Rényi divergence.

The role of Rényi divergence in our analysis accounts for our quantitative
improvement over the result of Banerjee, Peikert, and Rosen, who used the
measure of statistical distance in its place. Rényi divergence has been used in a
related context: Bai, Langlois, Lepoint, Stehlé and Steinfeld [BLL+15] use it to
obtain tighter bounds for several lattice-based primitives.

2.1 Proof of Theorem 1

Given two distributions X and Y over Ω, the power of their Rényi divergence6

is RD2(X‖Y) = Ea←X[Pr[X = a]/Pr[Y = a]].

Lemma 1. Let Xs be the distribution of a single LWR sample and let Ys be that
of a single rounded LWE sample. Assume B < q/2p. For every s ∈ Zn∗q and every

noise distribution that is B-bounded and balanced, RD2

(
Xs‖Ys

)
≤ 1 + 2Bp/q.

Proof. By the definition of Rényi divergence,

RD2

(
Xs‖Ys

)
= Ea←Zn

q

Pr
[
Xs=(a,b〈a,s〉ep)

]
Pr
[
Ys=(a,b〈a,s〉ep)

] = Ea←Zn
q

1

Pre
[
b〈a, s〉+ eep = b〈a, s〉ep

] .
5 Levin [Lev86] calls this condition K-domination.
6 Rényi divergences [vEH14] are a class of measures parametrized by a real number
α > 1. The definition we give specializes α to 2, which is sufficient for our analysis.



Let BADs be the set
{
a ∈ Znq :

∣∣〈a, s〉 − q
p b〈a, s〉ep

∣∣ < B
}

. These are the

a for which 〈a, s〉 is dangerously close to the rounding boundary. When a /∈
BADs, Pre

[
b〈a, s〉+ eep = b〈a, s〉ep

]
= 1. Since gcd(s1, . . . , sn, q) = 1, the inner

product 〈a, s〉 is uniformly distributed over Zq, so Pr[a ∈ BADs] ≤ (2B − 1)p/q.
When a ∈ BADs, the event b〈a, s〉+ eep = b〈a, s〉ep still holds at least in one
of the two cases e ≤ or e ≥ 0. By our assumptions on the noise distribution,
Pre
[
b〈a, s〉+ eep = b〈a, s〉ep

]
≥ 1/2. Conditioning over the event a ∈ BADs, we

conclude that

RD2(Xs‖Ys) ≤ 1 · Pr[a /∈ BADs] + 2 · Pr[a ∈ BADs] ≤ 1 +
2Bp

q
.

ut

To complete the proof of Theorem 1 we need two elementary properties of
Rényi divergence.

Claim. For any two distributions X and Y, (1) RD2(Xm‖Ym) = RD2(X‖Y)m

and (2) for any event E, Pr[Y ∈ E] ≥ Pr[X ∈ E]2/RD2(X‖Y).

Proof. Property (1) follows immediately from independence of the m samples.
Property (2) is the Cauchy-Schwarz inequality applied to the functions

f(a) =
Pr[X = a]√
Pr[Y = a]

; and g(a) =
√

Pr[Y = a].

ut

Proof (Proof of Theorem 1). Fix s such that gcd(s, q) = 1 and the randomness
of Learn. By Lemma 1 and part (1) of Claim 2.1, RD2(Xms ‖Yms ) ≤ (1+2Bp/q)m.
Letting E be the event {(A,y) : Learn(A,y) = s}, by part (2) of Claim 2.1,

PrA,e[Learn(A, bAs + eep) = s] ≥
PrA[Learn(A, bAsep) = s]2

(1 + 2pB/q)m
.

To obtain the theorem, we average over s and and the randomness of Learn and
apply the Cauchy-Schwarz inequality. ut

2.2 Hardness over Rings

For many applications it is more attractive to use a ring version of LWR (RLWR).
Banerjee, Peikert, and Rosen [BPR12] introduced it together with LWR. It brings
the advantage of reducing the entropy of A for same sized bAs + eep. In the
following theorem, we give a variant of Theorem 1 for the RLWR based on the
hardness of ring LWE. This theorem is not needed for the remaining sections of
the paper.



Theorem 2. Let p, q, n, k,B be integers such that q > 2pB. Let Rq be the ring
Zq[x]/g(x) where g is a polynomial of degree n over Zq and f be an arbitrary
function over Rq. For every algorithm Learn,

Pra,s,e[Learn(a, bas+ eep) = f(s)] ≥
Pra,s[Learn(a, basep) = f(s)]2

(1 + 2pB/q)nk
,

where a← Rkq , the noise e is independent over all k coordinates, B-bounded and
balanced in each coordinate, and s is chosen from any distribution supported on
the set of all units in Rq.

An element in Rq = Zq[x]/g(x) can be represented as a polynomial (in x) of
degree less than n with coefficients in Zq. Here, for a ∈ Rq, baep is an element
in Zp[x]/g(x) obtained by applying the function b·ep to each of coefficient of
a separately. A distribution over ring Rq is B-bounded and balanced if every
coefficient is drawn independently from a B-bounded and balanced distribution
over Zq.

The bound in Theorem 2 matches the bound in Theorem 1 since k can be
chosen such that nk is on the order of m. Theorem 2 follows from Claim 2.1 and
the following variant of Lemma 1.

Lemma 2. Assume B < q/2p. For every unit s ∈ Rq and noise distribution χ
that is B-bounded and balanced over Rq, RD2

(
Xs‖Ys

)
≤
(
1 + 2pB/q

)n
where Xs

is the random variable
(
a, ba · sep

)
and Ys is the random variable

(
a, ba · sep+e

)
with a← Rq and e← χ.

Since the proof is very similar to the proof of Lemma 1, we defer it to Ap-
pendix A.

3 Pseudorandomness of LWR

In this section we prove the following Theorem. We will implicitly assume that
algorithms have access to the prime factorization of the modulus q throughout
this section.

Theorem 3. For every ε > 0, n, m, q > 2pB, and algorithm Dist such that∣∣PrA,s
[
Dist

(
A, bAsep

)
= 1
]
− PrA,u

[
Dist

(
A, buep

)
= 1
]∣∣ ≥ ε, (1)

where A← Zm×nq , s← {0, 1}n and u← Zmq there exists an algorithm Learn that
runs in time polynomial in n, m, the number of divisors of q, and the running
time of Dist such that

PrA,s
[
Learn

(
A,As + e

)
= s
]
≥
( ε

4qm
− 2n

pm

)2
· 1

(1 + 2Bp/q)m
(2)

for any noise distribution e that is B-bounded and balanced in each coordinate.



One unusual aspect of this theorem is that the secret is a uniformly dis-
tributed binary string in Znq . This assumption can be made essentially without
loss of generality: Brakerski et al. [BLP+13] show that under discrete Gaussian
noise, learning a binary secret in {0, 1}n from LWE samples is as hard as learn-

ing a secret uniformly sampled from ZΩ(n/ log q)
q . The assumption (1) can also be

stated with s sampled uniformly from Znq : In Section 3.4 we show that distin-
guishing LWR samples from random ones is no easier for uniformly distributed
secrets than it is for any other distribution on secrets, including the uniform
distribution over binary secrets. (When q is prime, the proof of Theorem 3 can
be carried out for s uniformly distributed over Znq so these additional steps are
not needed.)

To prove Theorem 3 we follow a sequence of standard steps originating from
Yao [Yao82], Goldreich and Levin [GL89]: In Lemma 3 we convert the distin-
guisher Dist into a predictor that given a sequence of LWR samples and a label
a guesses the inner product 〈a, s〉 in Zq with significant advantage. In Lemma 4
we show how to use this predictor to efficiently learn the entries of the vector s
modulo q′ for some divisor q′ > 1 of q. If the entries of the secret s are bits, s is
then fully recovered given LWR samples. By Theorem 1 the learner’s advantage
does not deteriorate significantly when the LWR samples are replaced by LWE
samples.

Our proof resembles the work of Micciancio and Mol [MM11] who give, to the
best of our knowledge, the only sample preserving search-to-decision reduction
for LWE (including its variants). Unlike our theorem, theirs imposes certain
number-theoretic restrictions on q. Also, while Micciancio and Mol work with a
problem that is “dual” to LWE, we work directly with LWR samples.

3.1 Predicting the Inner Product

Lemma 3. For all ε (possibly negative), n,m, q, every polynomial-time function
R over Zq, and every algorithm Dist such that

PrA,s
[
Dist

(
A, R(As)

)
= 1
]
− PrA,u

[
Dist

(
A, R(u)

)
= 1
]

= ε,

there exists an algorithm Pred whose running time is polynomial in its input size
and the running time of Dist such that

PrA,s,a
[
Pred

(
A, R(As),a

)
= 〈a, s〉

]
=

1

q
+

ε

mq
.

where the probabilities are taken over A ← Zm×nq , u ← Zmq , the random coins
of the algorithms, and secret s sampled from an arbitrary distribution.

Here, R(y) is the vector obtained by applying R to every coordinate of the
vector y.

Proof. Consider the following algorithm Pred. On input (A,b)=((a1, b1), . . . ,
(am, bm)) (aj ∈ Znq , bj ∈ Zq) and a ∈ Znq :



1. Sample a random index i← {1, . . . ,m} and a random c← Zq.
2. Obtain A′,b′ from A,b by replacing ai with a, bi with R(c), and every bj

for j > i with an independent element of the form R(uj), uj ← Zq.
3. If Dist(A′,b′) = 1, output c. Otherwise, output a uniformly random element

in Zq.

Let hi =
(
R(〈a1, s〉), . . . , R(〈ai, s〉), R(ui+1), . . . , R(um)

)
∈ Zmp , for i ranging

from 0 to m. Then hm = R(As) and h0 = R(u) so by the assumption on Dist it
follows that

Ei

[
PrA,s,u

[
Dist

(
A,hi

)
= 1
]
− PrA,s,u

[
Dist

(
A,hi−1

)
= 1
]]

=
ε

m
.

Conditioned on the choice of i,

Pr
[
Pred(A,b,a

)
= 〈a, s〉

]
= Pr

[
Dist(A′,b′) = 1 and c = 〈a, s〉

]
+

1

q
· Pr
[
Dist(A′,b′) 6= 1

]
=

1

q
· Pr
[
Dist(A′,b′) = 1 | c = 〈a, s〉

]
+

1

q
· Pr
[
Dist(A′,b′) 6= 1

]
=

1

q
+

1

q
·
(
Pr
[
Dist(A′,b′) = 1

∣∣c = 〈a, s〉
]
− Pr

[
Dist(A′,b′) = 1

])
when b = R(As), the distribution (A′,b′) is the same as (A,hi−1) while (A′,b′)
conditioned on c = 〈a, s〉 is the same as (A,hi). Averaging over i yields the
desired advantage of Pred. ut

3.2 Learning the Secret

Lemma 4. There exists an oracle algorithm List such that for every algorithm
Pred satisfying |Pr[Pred(a) = 〈a, s〉]−1/q| ≥ ε, ListPred(ε) outputs a list of entries
(q′, s′) containing at least one such that q′ > 1, q′ divides q, and s′ = s mod q′

in time polynomial in n, 1/ε, and the number of divisors of q with probability at
least ε/4. The probabilities are taken over a ← Znq , any distribution on s, and
the randomness of the algorithms.

When q is a prime number, the conclusion of the theorem implies that the
list must contain the secret s. When q is a composite, the assumption does not
in general guarantee full recovery of s. For example, the predictor Pred(a) =
〈a, s〉 mod q′ has advantage ε = (q′ − 1)/q but does not distinguish between
pairs of secrets that are congruent modulo q′. In this case List cannot hope to
learn any information on s beyond the value s modulo q′.

The proof of Lemma 4 makes use of the following result of Akavia, Gold-
wasser, and Safra [AGS03] on learning heavy Fourier coefficients, extending work
of Kushilevitz, Mansour, and others. Recall that the Fourier coefficients of a func-
tion h : Znq → C are the complex numbers ĥ(a) = Ex←Zn

q
[h(x)ω−〈a,x〉], where

ω = e2πi/q is a primitive q−th root of unity. Our functions of interest all map
into the unit complex circle T = {c ∈ C : |c| = 1}, so we specialize the result to
this setting.



Theorem 4 (Akavia et al. [AGS03]). There is an algorithm AGS that given
query access to a function h : Znq → T outputs a list of size at most 2/ε2 which

contains all a ∈ Znq such that |ĥ(a)| ≥ ε in time polynomial in n, log q, and 1/ε
with probability at least 1/2.

We will also need the following property of the Fourier transform of random
variables. For completeness the proof is given below.

Claim. For every random variable Z over Zq there exists a nonzero r in Zq such
that |E[ωrZ ]| ≥ |Pr[Z = 0]− 1/q|.

Proof (Proof of Lemma 4). We first replace Pred by the following algorithm:
Sample a uniformly random unit (invertible element) u from Z∗q and output
u−1Pred(ua). This transformation does not affect the advantage of Pred but
ensures that for fixed s and randomness of Pred, the value Ea[ωr(Pred(a)−〈a,s〉)] is
the same for all r with the same gcd(r, q).

Algorithm List works as follows: For every divisor r < q of q run AGS with
oracle access to the function hr(a) = ωr·Pred(a) and output (q′ = q/r, s′/r mod q′)
for every s′ in the list produced by AGS.

We now assume Pred satisfies the assumption of the lemma and analyze List.
By Claim 3.2 there exists a nonzero r ∈ Zq such that |E[ωr(Pred(a)−〈a,s〉)]| ≥ ε.
By Markov’s inequality and the convexity of the absolute value, with probability
at least ε/2 over the choice of s and the randomness of Pred |Ea[ωr(Pred(a)−〈a,s〉)]|
is at least ε/2. We fix s and the randomness of Pred and assume this is the case.
By our discussion on Pred, the expectation of interest is the same for all r with
the same gcd(r, q), so we may and will assume without loss of generality that r
is a divisor of q.

Since Ea[ωr(Pred(a)−〈a,s〉)] = ĥr(rs), by Theorem 4, the r-th run of AGS out-
puts rs with probability at least 1/2. Since (rs)/r mod q′ = s mod q′ it follows
that the entry (q′, s mod q′) must appear in the output of List with probability
at least (1/2)(ε/2) = ε/4. Regarding time complexity, List makes a call to AGS
for every divisor of q except q, so its running time is polynomial in n and the
number of divisors of q. ut

Proof (Proof of Claim 3.2). Let ε = Pr[Z = 0] − 1/q and h(a) = q(Pr[Z =
a] − Pr[U = a]), where U ← Zq is a uniform random variable. By Parseval’s
identity from Fourier analysis,∑

r∈Zq

|ĥ(r)|2 = Ea←Zq
[h(a)2] ≥ 1

q
h(0)2 = qε2.

On the left hand side, after normalizing we obtain that ĥ(r) = E[ω−rZ ] −
E[ω−rU ]. Therefore ĥ(0) = 0, so |ĥ(r)|2 = |E[ω−rZ ]|2 must be at least as large
as qε2/(q− 1) for at least one nonzero value of r, giving a slightly stronger con-
clusion than desired. ut



3.3 Proof of Theorem 3

On input (A,b), algorithm Learn runs ListPred(A,bbep,·)(ε/2qm) and outputs any
s ∈ {0, 1}n appearing in the list such that bAsep = bbep (or the message fail

if no such s exists). By Theorem 1,

Pr[Learn(A, bAs + eep) = s] ≥
Pr[Learn(A, bAsep) = s]2

(1 + 2Bp/q)m
.

For Learn(A, bAsep) to output s it is sufficient that s appears in the output of

ListPred(A,bAsep,·)(ε/2qm) and that no other s′ ∈ {0, 1}n satisfies bAs′ep = bAsep.
By Lemmas 3 and 4, the list contains s mod q′ for some q′ with probability at
least ε/4qm. Since s is binary, s mod q′ = s. By a union bound, the probability
that some bAs′ep = bAsep for some s′ 6= s is at most 2np−m and so

Pr[Learn(A, bAs + eep) = s] ≥ (ε/4qm− 2np−m)2

(1 + 2Bp/q)m
.

3.4 Rerandomizing the Secret

Lemma 5. Let S be any distribution supported on Zn∗q . For every function R
on Zq, there is a polynomial-time transformation that (1) maps the distribution
(A, R(As))A←Zm×n

q ,s←S to (A, R(As))A←Zm×n
q ,s←Zn∗

q
and (2) maps the distrib-

uton (A, R(u))A←Zm×n
q ,u←Zm

q
to itself.

In particular, it follows that the distinguishing advantage (1) can be pre-
served when the secret is chosen uniformly from Zn∗q instead of uniformly from
{0, 1}n − {0n}. The sets Zn∗q and {0, 1}n − {0n} can be replaced by Znq and
{0, 1}n, respectively, if we allow for failure with probability O(2−n).

To prove Lemma 5 we need a basic fact from algebra. We omit the easy proof.

Claim. Multiplication by an n×n invertible matrix over Zq is a transitive action
on Zn∗q .

Proof (Proof of Lemma 5). Choose a uniformly random invertible matrix P ∈
Zn×nq and apply the map f(a, b) = (Pa, b) to every row. Clearly this map sat-
isfies the second condition. For the first condition, we write f(a, R(〈a, s〉)) =
(Pa, R(〈a, s〉)), which is identically distributed as (a, R(〈a,P−ts〉)). By Claim 3.4,
for every s in the support of S the orbit of P−ts is Zn∗q , so by symmetry P−ts
is uniformly random in Zn∗q . Therefore the first condition also holds. ut

4 Equivalence of LWR and LWE with Uniform Errors

When the number of LWR samples is not a priori bounded, we show that the
pseudorandomness (resp. one-wayness) of LWR follows from the pseudorandom-
ness (resp. one-wayness) of LWE with a uniform noise distribution over the range



of integers [− q
2p , . . . ,

q
2p ). We use a rejection sampling based approach to reject

LWE samples which are likely to be rounded to the wrong value in Zp. This
comes at the cost of throwing away samples, and indeed the sample complexity
of our reduction grows with q.

Theorem 5. Let p and q be integers such that p divides q. Then there is a
reduction R with query access to independent samples such that for every s ∈ Zn∗q :

– Given query access to samples (a, 〈a, s〉 + e), a ← Znq , e ← [− q
2p , . . . ,

q
2p

)
⊂

Zq, R outputs samples from the distribution (a, b〈a, s〉ep), a← Znq ,
– Given query access to uniform samples (a, u), a← Znq , u← Zq, R outputs a

uniform sample (a, v), a← Znq , v ← Zp.

In both cases, the expected running time and sample complexity of the reduction
is O(q/p).

Proof. We view the set (q/p)Zp as a subset of Zq. The reduction R queries its
oracle until it obtains the first sample (a, b) ∈ Znq × Zq such that b is in the
set (q/p)Zp and outputs (a, (p/q)b) ∈ Znq × Zp. In both cases of interest b is
uniformly distributed in Zq, so the expected number of query calls until success
is q/p.

When the queried samples are uniformly distributed in Znq ×Zq, the output is
also uniformly distributed in Znq ×Zp. For queried samples of the form (a, 〈a, s〉+
e), we calculate the probability mass function of the output distribution. For
every possible output (a′, b′), we have

Pr
[
R outputs (a′, b′)

]
= Pr

[
a = a′ and 〈a, s〉+ e = b′

∣∣ 〈a, s〉+ e ∈ (q/p)Zp
]

= Pra[a = a′] ·
Pre
[
〈a, s〉+ e = (q/p)b′

∣∣ a = a′
]

Pre
[
〈a, s〉+ e ∈ (q/p)Zp

∣∣ a = a′
]

= q−n ·

{
p/q
p/q , if (q/p)b′ − 〈a′, s〉 ∈

[
− q

2p , . . . ,
q
2p

)
0, otherwise.

=

{
q−n, if b′ = b〈a′, s〉ep
0, otherwise.

This is the probability mass function of the distribution (a, b〈a, s〉ep), as desired.
ut

The following theorem whose proof appears in the M.Eng. thesis of Chow [Cho13]
shows that distinguishing LWR samples from uniform and inverting LWR sam-
ples are not substantially harder than they are for LWE samples under the above
noise distribution.

Theorem 6. For all m, n, p, q such that p divides q, and ε (possibly negative)
, and polynomial-time algorithm Dist such that

PrA,s
[
Dist

(
A,As + e

)
= 1
]
− PrA,u

[
Dist

(
A,u

)
= 1
]

= ε,



there exists a polynomial time algorithm Dist′ such that

PrA,s
[
Dist′

(
A, bAsep

)
= 1
]
− PrA,u

[
Dist′

(
A, buep

)
= 1
]

=
ε

q
,

where A← Zm×nq , the noise e is independent over all m coordinates and uniform
over the set [− q

2p , . . . ,
q
2p ) ⊆ Zq in each coordinate, and s is chosen from any

distribution supported on Zn∗q .

Proof. Consider the following algorithm Dist′.
On input (A,b) = ((a1, b1), . . . , (am, bm)) (aj ∈ Znq , bj ∈ Zp) and a ∈ Znq :

1. Sample a random r← Znq and a random c← Zmq .
2. Obtain A′,b′ ∈ Zm×nq ×Zmq from A,b by letting A′ = A−c•r, b′ = q

p ·b−c.

3. If Dist(A′,b′) = 1, output 1. Otherwise, output 0.

Here, c • r is the outer product of the vectors c and r.
When b = buep, (A′,b′) is distributed as (A′,u). When b = bAsep, we can

write

(A′,b′) = (A− c • r, qp · bAsep − c)

= (A′, qp · bA
′s + c · 〈r, s〉ep − c)

= (A′,A′s + c · 〈r, s〉 − {A′s + c · 〈r, s〉}p − c)

= (A′,A′s + c · (〈r, s〉 − 1)− {A′s + c · 〈r, s〉}p)

where {x}p = x − q
p · bxep. Conditioned on 〈r, s〉 = 1, (A′,b′) is distributed as

(A′,A′s+{u}p), which is the same as (A′,A′s+e) where each coordinate of e is
uniformly drawn from set [− q

2p , . . . ,
q
2p ) ⊆ Zq. In this case Dist has distinguishing

advantage ε. Conditioned on 〈r, s〉 6= 1, (A′,b′) is distributed uniformly over
Zm×nq × Zmq and Dist has zero distinguishing advantage. Since for any s ∈ Zn∗q ,
the probability that 〈r, s〉 = 1 equals 1/q over the random choice of r, the overall
distinguishing advantage is ε/q. ut

5 Noise Flooding

In this section, let χσ denote the discrete Gaussian distribution on Zq with
standard deviation σ: χσ(x) is proportional to exp

(
−π(x/σ)2

)
. Often in appli-

cations of LWE, one is given a sample (a, b) with b = 〈a, s〉 + e for e ← χσ
and by performing various arithmetic operations obtains a new pair (a′, b′) with
b′ = 〈a′, s′〉 + e′. Sometimes, the noise quantity e′ obtained is not distributed
according to a Gaussian, but is only subject to an overall bound on its absolute
value. If the proof of security needs (a′, b′) to be an LWE instance, then some-
times the “noise flooding” technique is used where a fresh Gaussian x← χσ′ is
drawn and b′ is set to 〈a′, s′〉+e′+x. As long as e′+χσ′ ≈s χσ′ the resulting (a′, b′)
is statistically close to a fresh LWE instance. This technique in some form or an-
other appears in many places, for example [AIK11,GKPV10,DGK+10,OPW11].



Unfortunately, e′ + χσ′ ≈s χσ′ requires q to be large and so the applications
also carry this requirement. In this section we bound the continuous analogue
of Rényi divergence between e′ + χσ′ and χσ′ and show that the noise flooding
technique can be used even when q is polynomial in the security parameter, as
long as the number of samples is also bounded.

We remark that our main result in this section, Corollary 1, follows from gen-
eral results in prior work which bound the Rényi divergence between Gaussians.
For example, Lemma 4.2 of [LSS14] implies Corollary 1 below. However, we are
unaware of a theorem in the literature with a simple statement which subsumes
Corollary 1. We include a proof for completeness.

Claim. Let Ψα be the continuous Gaussian on R with standard deviation α:
Ψα(x) = α−1e−π(x/α)

2

. Then for any β ∈ R,

RD2(β + Ψα‖Ψα) = e2π(β/α)
2

.

Proof. We have

RD2(β + Ψα‖Ψα) = α−1
∫ ∞
−∞

e−
(
π/α2

)[
2(x−β)2−x2)

]
dx

= α−1 · e2π
(
β/α
)2 ∫ ∞

−∞
e−
(
π/α2

)[
(x−2β)2

]
dx

= e2π
(
β/α
)2
.

We have used the substitution u = x− 2β and the identity
∫
R e
−πcu2

du = c−1/2

for all c > 0. ut

Corollary 1. Fix m, q, k ∈ Z, a bound B, and a standard deviation σ such that
B < σ < q. Moreover, let e ∈ Zq be such that |e| ≤ B. If σ = Ω

(
B
√
m/ log k

)
,

then
RD2

(
(e+ χσ)m‖χmσ

)
= poly(k)

where Xm denotes m independent samples from X.

Proof. Rényi divergence cannot grow by applying a function to both distribu-
tions. Since the discrete Gaussians e+ χσ and χσ are obtained from the contin-
uous Gaussians β + Ψα and Ψα by scaling and rounding, where β = |e|/q and
α = σ/q, we see that

RD2

(
e+ χσ‖χσ

)
≤ RD2

(
β + Ψα‖Ψα

)
= exp

(
2π(β/α)2

)
≤ exp

(
2π(B/σ)2

)
.

Therefore, RD2

(
(e+ χσ)m‖χmσ

)
≤ exp

(
2πm(B/σ)2

)
, and the result follows. ut
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Stehlé. Classical hardness of learning with errors. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, STOC, pages 575–584. ACM,
2013.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom func-
tions and lattices. In David Pointcheval and Thomas Johansson, editors,
Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237 of Lecture
Notes in Computer Science, pages 719–737. Springer, 2012.

[Cho13] Chi-Wang Chow. On algorithmic aspects of the learning with errors prob-
lem and its variants. Master’s thesis, The Chinese University of Hong Kong,
September 2013.

[DGK+10] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and
Vinod Vaikuntanathan. Public-key encryption schemes with auxiliary in-
puts. In Theory of Cryptography, 7th Theory of Cryptography Conference,
TCC 2010, Zurich, Switzerland, February 9-11, 2010. Proceedings, pages
361–381, 2010.

[GKPV10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikun-
tanathan. Robustness of the learning with errors assumption. In Inno-
vations in Computer Science - ICS 2010, Tsinghua University, Beijing,
China, January 5-7, 2010. Proceedings, pages 230–240, 2010.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In David S. Johnson, editor, Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton,
USA, pages 25–32. ACM, 1989.

[Lev86] Leonid A Levin. Average case complete problems. SIAM J. Comput.,
15(1):285–286, February 1986.
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A Proof of Lemma 2

Proof. By the definition of Rényi divergence,

RD2

(
Xs‖Ys

)
= Ea←Rq

Pr
(
Xs = (a, ba · sep)

)
Pr
(
Ys = (a, ba · sep)

)
= Ea←Rq

1

Pre←χ
(
ba · s+ eep = ba · sep

) .
We define the set borderp,q(B) =

{
x ∈ Zq :

∣∣x − q
p bxep

∣∣ < B
}

. For a ring
element a ∈ Rq, we use ai denote the ith coefficient in the power basis. For
t = 0, . . . , n and for any t ∈ {0, . . . , n}, we define the set BADs,t =

{
a ∈

Rq : |{i ∈ [n], (a · s)i ∈ borderp,q(B)}| = t}
}

. These are the a for which a · s
has exactly t coefficients which are dangerously close to the rounding bound-
ary. Fix arbitrary t and a ∈ BADs,t. For any i ∈ [n] such that (a · s)i /∈
borderp,q(B), Prei [b(a · s)i + eiep = b(a · s)iep] = 1. For any i ∈ [n] such that
(a · s)i ∈ borderp,q(B), the event b(a · s)i + eiep = b(a · s)iep still holds in one
of the two cases ei ∈ [−B, . . . , 0] and ei ∈ [0, . . . , B]. By the assumption on
the noise distribution Prei [b(a · s)i + eiep = b(a · s)iep] ≥ 1/2. Because e is in-
dependent over all coefficients and a has exactly t coefficients in borderp,q(B),
Pre←χ

(
ba · s+ eep = ba · sep

)
≥ 1

2t . Because s is a unit in Rq so that a · s is uni-

form over Rq and Pr[a ∈ BADs,t] ≤
(
n
t

) (
1− |borderp,q(B)|

q

)n−t ( |borderp,q(B)|
q

)t
.



Conditioning over the event a ∈ BADs,t, we conclude

RD2

(
Xs‖Ys

)
≤

n∑
t=0

2t · Pr[a ∈ BADs,t] =

(
1 +
|borderp,q(B)|

q

)n
.

The desired conclusion follows from |borderp,q(B)| ≤ 2pB. ut


