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Abstract. An order-revealing encryption scheme gives a public proce-
dure by which two ciphertexts can be compared to reveal the ordering of
their underlying plaintexts. We show how to use order-revealing encryp-
tion to separate computationally efficient PAC learning from efficient
(ε, δ)-differentially private PAC learning. That is, we construct a con-
cept class that is efficiently PAC learnable, but for which every efficient
learner fails to be differentially private. This answers a question of Ka-
siviswanathan et al. (FOCS ’08, SIAM J. Comput. ’11).

To prove our result, we give a generic transformation from an order-
revealing encryption scheme into one with strongly correct comparison,
which enables the consistent comparison of ciphertexts that are not ob-
tained as the valid encryption of any message. We believe this construc-
tion may be of independent interest.
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1 Introduction

Many agencies hold sensitive information about individuals, where statistical
analysis of this data could yield great societal benefit. The line of work on dif-
ferential privacy [20] aims to enable such analysis while giving a strong formal
guarantee on the privacy afforded to individuals. Noting that the framework
of computational learning theory captures many of these statistical tasks, Ka-
siviswanathan et al. [37] initiated the study of differentially private learning.
Roughly speaking, a differentially private learner is required to output a classi-
fication of labeled examples that is accurate, but does not change significantly
based on the presence or absence of any individual example.

The early positive results in private learning established that, ignoring com-
putational complexity, any concept class is privately learnable with a number
of samples logarithmic in the size of the concept class [37]. Since then, a num-
ber of works have improved our understanding of the sample complexity – the
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minimum number of examples – required by such learners to simultaneously
achieve accuracy and privacy. Some of these works showed that privacy incurs
an inherent additional cost in sample complexity; that is, some concept classes
require more samples to learn privately than they require to learn without pri-
vacy [1,2,13,16,17,25]. In this work, we address the complementary question of
whether there is also a computational price of differential privacy for learning
tasks, for which much less is known. The initial work of Kasiviswanathan et al.
[37] identified the important question of whether any efficiently PAC learnable
concept class is also efficiently privately learnable, but only limited progress has
been made on this question since then [1, 44].

Our main result gives a strong negative answer to this question. We exhibit a
concept class that is efficiently PAC learnable, but under plausible cryptographic
assumptions cannot be learned efficiently and privately. To prove this result, we
establish a connection between private learning and order-revealing encryption.
We construct a new order-revealing encryption scheme with strong correctness
properties that may be of independent learning-theoretic and cryptographic in-
terest.

1.1 Differential Privacy and Private Learning

We first recall Valiant’s (distribution-free) PAC model for learning [54]. Let C
be a concept class consisting of concepts c : X → {0, 1} for a data universe X.
A learner L is given n samples of the form (xi, c(xi)) where the xi’s are drawn
i.i.d. from an unknown distribution, and are labeled according to an unknown
concept c. The goal of the learner is to output a hypothesis h : X → {0, 1} from
a hypothesis class H that approximates c well on the unknown distribution.
That is, the probability that h disagrees with c on a fresh example from the
unknown distribution should be small – say, less than 0.05. The hypothesis class
H may be different from C, but in the case where H ⊆ C we call L a proper
learner. Moreover, we say a learner is efficient if it runs in time polynomial in
the description size of c and the size of its examples.

Kasiviswanathan et al. [37] defined a private learner to be a PAC learner
that is also differentially private. Two samples S = {(x1, b1), . . . , (xn, bn)} and
S′ = {(x′1, b′1), . . . , (x′n, b

′
n)} are said to be neighboring if they differ on exactly

one example, which we think of as corresponding to one individual’s information.
A randomized learner L : (X × {0, 1})n → H is (ε, δ)-differentially private if for
all neighboring datasets S and S′ and all sets T ⊆ H,

Pr[L(S) ∈ T ] ≤ eε Pr[L(S′) ∈ T ] + δ.

The original definition of differential privacy [20] took δ = 0, a case which is
called pure differential privacy. The definition with positive δ, called approximate
differential privacy, first appeared in [19] and has since been shown to enable
substantial accuracy gains. Throughout this introduction, we will think of ε as
a small constant, e.g. ε = 0.1, and δ = o(1/n).

Kasiviswanathan et al. [37] gave a generic “Private Occam’s Razor” algo-
rithm, showing that any concept class C can be privately (properly) learned us-
ing O(log |C|) samples. Unfortunately, this algorithm runs in time Ω(|C|), which



is exponential in the description size of each concept. With an eye toward de-
signing efficient private learners, Blum et al. [5] made the powerful observation
that any efficient learning algorithm in the statistical queries (SQ) framework
of Kearns [39] can be efficiently simulated with differential privacy. Moreover,
Kasiviswanathan et al. [37] showed that the efficient learner for the concept class
of parity functions based on Gaussian elimination can also be implemented effi-
ciently with differential privacy. These two techniques – SQ learning and Gaus-
sian elimination – are essentially the only methods known for computationally
efficient PAC learning. The fact that these can both be implemented privately
led Kasiviswanathan et al. [37] to ask whether all efficiently learnable concept
classes could also be efficiently learned with differential privacy.

Beimel et al. [1] made partial progress toward this question in the special
case of pure differential privacy with proper learning, showing that the sample
complexity of efficient learners can be much higher than that of inefficient ones.
Specifically, they showed that assuming the existence of pseudorandom gener-
ators with exponential stretch, there exists for any `(d) = ω(log d) a concept
class over {0, 1}d for which every efficient proper private learner requires Ω(d)
samples, but an inefficient proper private learner only requires O(`(d)) examples.
Nissim [44] strengthened this result substantially for “representation learning,”
where a proper learner is further restricted to output a canonical representation
of its hypothesis. He showed that, assuming the existence of one-way functions,
there exists a concept class that is efficiently representation learnable, but not
efficiently privately representation learnable (even with approximate differential
privacy). With Nissim’s kind permission, we give the details of this construction
in Section 5.

Despite these negative results for proper learning, one might still have hoped
that any efficiently learnable concept class could be efficiently improperly learned
with privacy. Indeed, a number of works have shown that, especially with dif-
ferential privacy, improper learning can be much more powerful than proper
learning. For instance, Beimel et al. [1] showed that under pure differential pri-
vacy, the simple class of Point functions (indicators of a single domain element)
requires Ω(d) samples to privately learn properly, but only O(1) samples to
privately learn improperly. Moreover, computational separations are known be-
tween proper and improper learning even without privacy considerations. Pitt
and Valiant [46] showed that unless NP = RP, k-term DNF are not efficiently
properly learnable, but they are efficiently improperly learnable [54].

Under plausible cryptographic assumptions, we resolve the question of Ka-
siviswanathan et al. [37] in the negative, even for improper learners. The assump-
tion we need is the existence of “strongly correct” order-revealing encryption
(ORE) schemes, described in Section 1.3.

Theorem 1 (Informal). Assuming the existence of strongly correct ORE, there
exists an efficiently computable concept class EncThresh that is efficiently PAC
learnable, but not efficiently learnable by any (ε, δ)-differentially private algo-
rithm.



We stress that this result holds even for improper learners and for the re-
laxed notion of approximate differential privacy. We remark that cryptography
has played a major role in shaping our understanding of the computational com-
plexity of learning in a number of models (e.g. [40, 41, 49, 54]). It has also been
used before to show separations between what is efficiently learnable in different
models (e.g. [4, 50]).

1.2 Our Techniques

We give an informal overview of the construction and analysis of the concept
class EncThresh.

We first describe the concept class of thresholds Thresh and its simple PAC
learning algorithm. Consider the domain [N ] = {1, . . . , N}. Given a number
t ∈ [N ], a threshold concept ct is defined by ct(x) = 1 if and only if x ≤ t. The
concept class of thresholds admits a simple and efficient proper PAC learning
algorithm LThresh. Given a sample {(x1, ct(x1)), . . . , (xn, ct(xn))} labeled by an
unknown concept ct, the learner LThresh identifies the largest positive example
xi∗ and outputs the hypothesis h = cxi∗ . That is, LThresh chooses the threshold
concept that minimizes the empirical error on its sample. To achieve a small
constant error on any underlying distribution on examples, it suffices to take n =
O(1) samples. Moreover, this learner can be modified to guarantee differential
privacy by instead randomly sampling a threshold hypothesis with probability
that decays exponentially in the empirical error of the hypothesis [37, 42]. The
sampling can be performed in polynomial time, and requires only a modest
blow-up in the learner’s sample complexity.

A simple but important observation about LThresh – which, crucially, is not
true of the differentially private version – is that it is completely oblivious to the
actual numeric values of its examples, or even to the fact that the domain is [N ].
In fact, LThresh works equally well on any totally-ordered domain on which it can
efficiently compare examples. In an extreme case, the learner LThresh still works
when its examples are encrypted under an order-revealing encryption (ORE)
scheme, which guarantees that LThresh is able to learn the order of its examples,
but nothing else about them. Up to small technical modifications, our concept
class EncThresh is exactly the class Thresh where examples are encrypted under
an ORE scheme.

For EncThresh to be efficiently PAC learnable, it must be learnable even
under distributions that place arbitrary weight on examples corresponding to
invalid ciphertexts. To this end, we require a “strong correctness” condition on
our ORE scheme. The strong correctness condition ensures that all ciphertexts,
even those that are not obtained as encryptions of messages, can be compared in
a consistent fashion. This condition is not met by current constructions of ORE,
and one of the technical contributions of this work is a generic transformation
from weakly correct ORE schemes to strongly correct ones.

While a learner similar to LThresh is able to efficiently PAC learn the concept
class EncThresh, we argue that it cannot do so while preserving differential pri-
vacy with respect to its examples. Intuitively, the security of the ORE scheme



ensures that essentially the only thing a learner for EncThresh can do is output
a hypothesis that compares an example to one it already has. We make this in-
tuition precise by giving an algorithm that traces the hypothesis output by any
efficient learner back to one of the examples used to produce it. This formal-
ization builds conceptually on the connection between differential privacy and
traitor-tracing schemes (see Section 1.4), but requires new ideas to adapt to the
PAC learning model.

1.3 Order-Revealing Encryption

Motivated by the task of answering range queries on encrypted databases, an
order-revealing encryption (ORE) scheme [7,8] is a special type of symmetric key
encryption scheme where it is possible to publicly sort ciphertexts according to
the order of the plaintexts. More precisely, the plaintext space of the scheme is the
set of integers [N ] = {1, ..., N},3 and in addition to the private encryption and
decryption procedures Enc,Dec, there is a public comparison procedure Comp
that takes as input two ciphertexts, and reveals the order of the corresponding
plaintexts. The notion of best-possible semantic security, defined in Boneh et
al. [8], intuitively captures the requirement that, given a collection of ciphertexts,
no information about the plaintexts is learned, except for the ordering.

Known constructions of order-revealing encryption. Relatively few constructions
of order-revealing encryption are known, and all constructions are currently
based on strong assumptions. Order-revealing encryption can be seen as a special
case of 2-input functional encryption, also known as property preserving encryp-
tion [45]. In such a scheme, there are several functions f1, ..., fk, and given two
ciphertexts c0, c1 encrypting m0,m1, it is possible to learn fi(m0,m1) for all
i ∈ [k]. General multi-input functional encryption schemes can be obtained from
indistinguishability obfuscation [30] or multilinear maps [8]. It is also possible to
build ORE from single-input functional encryption with function privacy, which
means that f is kept secret. Such schemes can be built from regular single-input
schemes without function privacy [12], and such single-input schemes can also
be built from obfuscation [27] or multilinear maps [28].

It is known that the forms of functional encryption discussed above actually
imply obfuscation [3], meaning that all the assumptions from which we can cur-
rently build order-revealing encryption imply obfuscation. However, we stress
that ORE appears to be much, much weaker than obfuscation or functional
encryption: only a single very simple functionality is supported, namely compar-
ison. In particular the functionality does not support evaluating cryptographic
primitives on the plaintext, a feature required of essentially all of the interest-
ing applications of obfuscation/functional encryption. Therefore, we conjecture
that ORE can actually be based on significantly weaker assumptions. One way
or another, it is important to resolve the status of ORE relative to obfusca-
tion and other strong primitives: if ORE can be based on mild assumptions, it

3 More generally, any totally-ordered plaintext space can be considered



would strengthen our impossibility result, and likely lead to more efficient ORE
constructions that can actually be used in practice. If ORE actually implies
obfuscation or other similarly strong primitives, then ORE could be a path to
building more efficient obfuscation with better security. Our work demonstrates
that, in addition to having real-world practical motivations, ORE is also an
interesting theoretical object.

Unfortunately, the above constructions are not quite sufficient for our pur-
poses. The issue arises from the fact that our learner needs to work for any dis-
tribution on ciphertexts, even distributions whose support includes malformed
ciphertexts. Unfortunately, previous constructions only achieve a weak form of
correctness, which guarantees that encrypting two messages and then comparing
the ciphertexts using Comp produces the same result (with overwhelming prob-
ability) as comparing the plaintexts directly. This requirement only specifies
how Comp works on valid ciphertexts, namely actual encryptions of messages.
Moreover, correctness is only guaranteed for these messages with overwhelming
probability, meaning even some valid ciphertexts may cause Comp to misbehave.

For our learner, this weak form of correctness means, for some distributions
that place significant weight on bad ciphertexts, the comparison procedure is
completely useless, and thus the learner will fail for these distributions.

We therefore need a stronger correctness guarantee. We need that, for any
two ciphertexts, the comparison procedure is consistent with decrypting the two
ciphertexts and comparing the resulting plaintexts. This correctness guarantee
is meaningful even for improperly generated ciphertexts.

We note that none of the existing constructions of order-revealing encryption
outlined above satisfy this stronger notion. For the obfuscation-based schemes,
ciphertexts consist of obfuscated programs. In these schemes, it is easy to de-
scribe invalid ciphertexts where the obfuscated program performs incorrectly,
causing the comparison procedure to output the wrong result. In the multilinear
map-based schemes, the underlying instantiation use current “noisy” multilin-
ear maps, such as [26]. An invalid ciphertext could, for example, have too much
noise, which will cause the comparison procedure to behave unpredictably.

Obtaining strong correctness. We first argue that, for all existing ORE schemes,
the scheme can be modified so that Comp is correct for all valid ciphertexts. We
then give a generic conversion from any ORE scheme with weakly correct com-
parison, including the tweaked existing schemes, into a strongly correct scheme.
We simply modify the ciphertext by adding a non-interactive zero-knowledge
(NIZK) proof that the ciphertext is well-formed, with the common reference
string added to the public comparison key. Then the decryption and compari-
son procedures check the proof(s), and only output the result (either decryption
or comparison) if the proof(s) are valid. The (computational) zero-knowledge
property of the NIZK implies that the addition of the proof to the ciphertext
does not affect security. Meanwhile, NIZK soundness implies that any ciphertext
accepted by the decryption and comparison procedures must be valid, and the



weak correctness property of the underlying ORE implies that for valid cipher-
texts, decryption and comparison are consistent. The result is that comparisons
are consistent with decryption for all ciphertexts, giving strong correctness.

As we need strong correctness for every ciphertext, even hard-to-generate
ones, we need the NIZK proofs to have perfect soundness, as opposed to com-
putational soundness. Such NIZK proofs were built in [32].

We note also that the conversion outlined above is not specific to ORE, and
applies more generally to functional encryption schemes.

1.4 Related Work

Hardness of Private Query Release. One of the most basic and well-studied sta-
tistical tasks in differential privacy is the problem of releasing answers to counting
queries. A counting query asks,“what fraction of the records in a dataset D sat-
isfy the predicate q?”. Given a collection of k counting queries q1, . . . , qk from a
family Q, the goal of a query release algorithm is to release approximate answers
to these queries while preserving differential privacy. A remarkable result of Blum
et al. [6], with subsequent improvements by [21, 23, 33–35, 48], showed that an
arbitrary sequence of counting queries can be answered accurately with differ-
ential privacy even when k is exponential in the dataset size n. Unfortunately,
all of these algorithms that are capable of answering more than n2 queries are
inefficient, running in time exponential in the dimensionality of the data. More-
over, several works [10,21,52] have gone on to show that this inefficiency is likely
inherent.

These computational lower bounds for private query release rely on a connec-
tion between the hardness of private query release and traitor-tracing schemes,
which was first observed by Dwork et al. [21]. Traitor-tracing schemes were in-
troduced by Chor, Fiat, and Naor [18] to help digital content producers identify
pirates as they illegally redistribute content. Traitor-tracing schemes are con-
ceptually analogous to the example reidentification scheme we use to obtain
our hardness result for private learning. Instantiating this connection with the
traitor-tracing scheme of Boneh, Sahai, and Waters [9], which relies on certain

assumptions in bilinear groups, Dwork et al. [21] exhibited a family of 2Õ(
√
n)

queries for which no efficient algorithm can produce a data structure which could
be used to answer all queries in this family. Very recently, Boneh and Zhandry
[10] constructed a new traitor-tracing scheme based on indistinguishability ob-
fuscation that yields the same infeasibility result for a family of n · 2O(d) queries
on records of size d. Extending this connection, Ullman [52] constructed a spe-
cialized traitor-tracing scheme to show that no efficient private algorithm can
answer more than Õ(n2) arbitrary queries that are given as input to the algo-
rithm.

Dwork et al. [21] also showed strong lower bounds against private algorithms
for producing synthetic data. Synthetic data generation algorithms produce a
new “fake” dataset, whose rows are of the same type as those in the original
dataset, with the promise that the answers to some restricted set of queries
on the synthetic dataset well-approximate the answers on the original dataset.



Assuming the existence of one-way functions, Dwork et al. [21] exhibited an effi-
ciently computable collection of queries for which no efficient private algorithm
can produce useful synthetic data. Ullman and Vadhan [53] refined this result
to hold even for extremely simple classes of queries.

Nevertheless, the restriction to synthetic data is significant to these results,
and they do not rule out the possibility that other privacy-preserving data struc-
tures can be used to answer large families of restricted queries. In fact, when
the synthetic data restriction is lifted, there are algorithms (e.g. [15, 22, 36, 51])
that answer queries from certain exponentially large families in subexponential
time. One can view the problem of synthetic data generation as analogous to
proper learning. In both cases, placing natural syntactic restrictions on the out-
put of an algorithm may in fact come at the expense of utility or computational
efficiency.

Efficiency of SQ Learning. Feldman and Kanade [24] addressed the question of
whether information-theoretically efficient SQ learners – i.e., those making poly-
nomially many queries – could be made computationally efficient. One of their
main negative results showed that unless NP = RP, there exists a concept class
with polynomial query complexity that is not efficiently SQ learnable. Moreover,
this concept class is efficiently PAC learnable, which suggests that the restriction
to SQ learning can introduce an inherent computational cost.

We show that the concept class EncThresh can be learned (inefficiently) with
polynomially many statistical queries. The result of Blum et al. [5] discussed
above, showing that SQ learning algorithms can be efficiently simulated by differ-
entially private algorithms, thus shows that EncThresh also separates SQ learners
making polynomially many queries from computationally efficient SQ learners.

Corollary 1 (Informal). Assuming the existence of strongly correct ORE, the
concept class EncThresh is efficiently PAC learnable and has polynomial SQ query
complexity, but is not efficiently SQ learnable.

While our proof relies on much stronger hardness assumptions, it reveals
ORE as a new barrier to efficient SQ learning. As discussed in more detail in
Section 3.3, even though their result is about computational hardness, Feldman
and Kanade’s choice of a concept class relies crucially on the fact that parities
are hard to learn in the SQ model even information-theoretically. By contrast,
our concept class EncThresh is computationally hard to SQ learn for a reason
that appears fundamentally different than the information-theoretic hardness of
SQ learning parities.

Learning from Encrypted Data. Several works have developed schemes for train-
ing, testing, and classifying machine learning models over encrypted data (e.g.
[11, 31]). In a model use case, a client holds a sensitive dataset, and uploads an
encrypted version of the dataset to a cloud computing service. The cloud service
then trains a model over the encrypted data and produces an encrypted classi-
fier it can send back to the client, ideally without learning anything about the



examples it received. The notion of privacy afforded to the individuals in the
dataset here is complementary to differential privacy. While the cloud service
does not learn anything about the individuals in the dataset, its output might
still depend heavily on the data of certain individuals.

In fact, our non-differentially private PAC learner for the class EncThresh
exactly performs the task of learning over encrypted data, producing a classifier
without learning anything about its examples beyond their order (this addresses
the difficulty of implementing comparisons from prior work [31]). Thus one can
interpret our results as showing that not only are these two notions of privacy
for machine learning training complementary, but that they may actually be in
conflict. Moreover, the strong correctness guarantee we provide for ORE (which
applies more generally to multi-input functional encryption) may help enable the
theoretical study of learning from encrypted data in other PAC-style settings.

2 Preliminaries and Definitions

2.1 PAC Learning and Private PAC Learning

For each k ∈ N, let Xk be an instance space (such as {0, 1}k), where the pa-
rameter k represents the size of the elements in Xk. Let Ck be a set of boolean
functions {c : Xk → {0, 1}}. The sequence (X1, C1), (X2, C2), . . . represents an
infinite sequence of learning problems defined over instance spaces of increasing
dimension. We will generally suppress the parameter k, and refer to the problem
of learning C as the problem of learning Ck for every k.

A learner L is given examples sampled from an unknown probability dis-
tribution D over X, where the examples are labeled according to an unknown
target concept c ∈ C. The learner must select a hypothesis h from a hypothesis
class H that approximates the target concept with respect to the distribution
D. More precisely,

Definition 1. The generalization error of a hypothesis h : X → {0, 1} (with
respect to a target concept c and distribution D) is defined by errorD(c, h) =
Prx∼D[h(x) 6= c(x)]. If errorD(c, h) ≤ α we say that h is an α-good hypothesis
for c on D.

Definition 2 (PAC Learning [54]). Algorithm L : (X × {0, 1})n → H is an
(α, β)-accurate PAC learner for the concept class C using hypothesis class H with
sample complexity n if for all target concepts c ∈ C and all distributions D on
X, given an input of n samples S = ((xi, c(xi)), . . . , (xn, c(xn))), where each
xi is drawn i.i.d. from D, algorithm L outputs a hypothesis h ∈ H satisfying
Pr[errorD(c, h) ≤ α] ≥ 1 − β. The probability here is taken over the random
choice of the examples in S and the coin tosses of the learner L.

The learner L is efficient if it runs in time polynomial in the size parameter k,
the representation size of the target concept c, and the accuracy parameters 1/α
and 1/β. Note that a necessary (but not sufficient) condition for L to be efficient
is that its sample complexity n is polynomial in the learning parameters.



If H ⊆ C then L is called a proper learner. Otherwise, it is called an improper
learner.

Kasiviswanathan et al. [37] defined a private learner as a PAC learner that
is also differentially private. Recall the definition of differential privacy:

Definition 3. A learner L : (X × {0, 1})n → H is (ε, δ)-differentially private if
for all sets T ⊆ H, and neighboring sets of examples S ∼ S′,

Pr[L(S) ∈ T ] ≤ eε Pr[L(S′) ∈ T ] + δ.

The technical object that we will use to show our hardness results for differ-
ential privacy is what we call an example reidentification scheme. It is analogous
to the hard-to-sanitize database distributions [21,53] and re-identifiable database
distributions [14] used in prior works to prove hardness results for private query
release, but is adapted to the setting of computational learning. In the first step,
an algorithm Genex chooses a concept and a sample S labeled according to that
concept. In the second step, a learner L receives either the sample S or the sam-
ple S−i where an appropriately chosen example i is replaced by a junk example,
and learns a hypothesis h. Finally, an algorithm Traceex attempts to use h to
identify one of the rows given to L. If Traceex succeeds at identifying such a row
with high probability, then it must be able to distinguish L(S) from L(S−i),
showing that L cannot be differentially private. We formalize these ideas below.

Definition 4. An (α, ξ)-example reidentification scheme for a concept class C
consists of a pair of algorithms, (Genex,Traceex) with the following properties.

Genex(k, n) Samples a concept c ∈ Ck and an associated distribution D. Draws
i.i.d. examples x1, . . . , xn ←R D, and a fixed value x0. Let S denote the
labeled sample ((x1, c(x1)), . . . , (xn, c(xn)), and for any index i ∈ [n], let S−i
denote the sample with the pair (xi, c(xi)) replaced with (x0, c(x0)).

Traceex(h) Takes state shared with Genex as well as a hypothesis h and identifies
an index in [n] (or ⊥ if none is found).

The scheme obeys the following “completeness” and “soundness” criteria on the
ability of Traceex to identify an example given to a learner L.

Completeness. A good hypothesis can be traced to some example. That is, for
every efficient learner L,

Pr[errorD(c, h) ≤ α ∧ Traceex(h) = ⊥] ≤ ξ.

Here, the probability is taken over h←R L(S) and the coins of Genex and Traceex.

Soundness. For every efficient learner L, Traceex cannot trace i from the sample
S−i. That is, for all i ∈ [n],

Pr[Traceex(h) = i] ≤ ξ

for h←R L(S−i).



We may sometimes relax the completeness condition to hold only under cer-
tain restrictions on L’s output (e.g. L is a proper learner or L is a representation
learner). In this case, we say the (Genex,Traceex) is an example reidentification
scheme for (properly, representation) learning a class C.

Theorem 2. Let (Genex,Traceex) be an (α, ξ)-example reidentification scheme
for a concept class C. Then for every β > 0 and polynomial n(k), there is no
efficient (ε, δ)-differentially private (α, β)-PAC learner for C using n samples
when

δ <

(
1− β − ξ

n

)
− eεξ.

In a typical setting of parameters, we will take α, β, ε = O(1) and δ, ξ = o(1/n),
in which case the inequality in Theorem 2 will be satisfied for sufficiently large
n.

Proof. Suppose instead there were a computationally efficient (ε, δ)-differentially
private (α, β)-PAC learner L for C using n samples. Then there exists an i ∈ [n]
such that Pr[Traceex(L(S)) = i] ≥ (1−β−ξ)/n. However, since L is differentially
private,

Pr[Traceex(L(S−i)) = i] ≥ e−ε
(

1− β − ξ
n

− δ
)
> ξ(n),

which contradicts the soundness of (Genex,Traceex).

2.2 Order-Revealing Encryption

Definition 5. An Order-Revealing Encryption (ORE) scheme is a tuple (Gen,
Enc,Dec,Comp) of algorithms where:

– Gen(1λ, 1`) is a randomized procedure that takes as inputs a security param-
eter λ and plaintext length `, and outputs a secret encryption/decryption key
sk and public parameters pars.

– Enc(sk,m) is a potentially randomized procedure that takes as input a secret
key sk and a message m ∈ {0, 1}`, and outputs a ciphertext c.

– Dec(sk, c) is a deterministic procedure that takes as input a secret key sk
and a ciphertext c, and outputs a plaintext message m ∈ {0, 1}` or a special
symbol ⊥.

– Comp(pars, c0, c1) is a deterministic procedure that “compares” two cipher-
texts, outputting either “>”, “<”, “=”, or ⊥.

Correctness. An ORE scheme must satisfy two separate correctness require-
ments:

– Correct Decryption: This is the standard notion of correctness for an en-
cryption scheme, which says that decryption succeeds. We will only consider
strongly correct decryption, which requires that decryption always succeeds.
For all security parameters λ and message lengths `,

Pr[Dec(sk, Enc(sk,m) ) = m : (sk, pars)← Gen(1λ, 1`)] = 1.



– Correct Comparison: We require that the comparison function succeeds.
We will consider two notions, namely strong and weak. In order to define
these notions, we first define two auxiliary functions:

• Compplain(m0,m1) is just the plaintext comparison function. That is,
for m0 < m1, Compplain(m0,m1) = “ < ”, Compplain(m1,m0) = “ > ”,
and Compplain(m0,m0) = “ = ”.

• Compciph(sk, c0, c1) is a ciphertext comparison function which uses the
secret key. If first computes mb = Dec(sk, cb) for b = 0, 1. If either m0 =
⊥ or m1 = ⊥ (in other words, if either decryption failed), then Compciph
outputs ⊥. If both m0,m1 6= ⊥, then the output is Compplain(m0,m1).

Now we define our comparison correctness notions:

• Weakly Correct Comparison: This informally requires that compari-
son is consistent with encryption. For all security parameters λ, message
lengths `, and messages m0,m1 ∈ {0, 1}`,

Pr

[
Comp(pars, c0, c1)

= Compplain(m0,m1)
:

(sk, pars)← Gen(1λ, 1`)
cb ← Enc(sk,mb)

]
= 1.

In particular, for correctly generated ciphertexts, Comp never outputs
⊥.

• Strongly Correct Comparison: This informally requires that compar-
ison is consistent with decryption. For all security parameters λ, message
lengths `, and ciphertexts c0, c1,

Pr

[
Comp(pars, c0, c1)

= Compciph(sk, c0, c1)
: (sk, pars)← Gen(1λ, 1`)

]
= 1.

Security. For security, we will consider a relaxation of the “best possible” security
notion of Boneh et al. [8]. Namely, we only consider static adversaries that submit
all queries at once. “Best possible” security is a modification of the standard
notion of CPA security for symmetric key encryption to block trivial attacks.
That is, since the comparison function always leaks the order of the plaintexts,
the left and right sets of challenge messages must have the same order. In our
relaxation where all challenge messages are queried at once, we can therefore
assume without loss of generality that the left and right sequences of messages
are sorted in ascending order. For simplicity, we will also disallow the adversary
from querying on the same message more than once. This gives the following
definition:

Definition 6. An ORE scheme (Gen,Enc,Dec,Comp) is statically secure if, for
all efficient adversaries A, |Pr[W0]−Pr[W1]| is negligible, where Wb is the event
that A outputs 1 in the following experiment:

– A produces two message sequences m
(L)
1 < m

(L)
2 < · · · < m

(L)
q and m

(R)
1 <

m
(R)
2 < · · · < m

(R)
q



– The challenger runs (sk, pars)← Gen(1λ, 1`). It then responds to A with pars,
as well as c1, . . . , cq where

ci =

{
Enc(sk,m

(L)
i ) if b = 0

Enc(sk,m
(R)
i ) if b = 1

– A outputs a guess b′ for b.

We also consider a weaker definition, which only allows the sequences m
(L)
i

and m
(R)
i to differ at a single point:

Definition 7. An ORE scheme (Gen,Enc,Dec,Comp) is statically single-challenge
secure if, for all efficient adversaries A, |Pr[W0] − Pr[W1]| is negligible, where
Wb is the event that A outputs 1 in the following experiment:

– A produces a sequence of messages m1 < m2 < · · · < mq, and challenge
messages mL,mR such that mi < mL < mR < mi+1 for some i ∈ [q − 1].

– The challenger runs (sk, pars)← Gen(1λ, 1`). It then responds to A with pars,
as well as c1, . . . , cq where ci = Enc(sk,mi) and

c∗ =

{
Enc(sk,mL) if b = 0

Enc(sk,mR) if b = 1

– A outputs a guess b′ for b.

We now argue that these two definitions are equivalent up to some polynomial
loss in security.

Theorem 3. (Gen,Enc,Dec,Comp) is statically secure if and only if it is stati-
cally single-challenge secure.

Proof. We prove that single-challenge security implies many-challenge security
through a sequence of hybrids. Each hybrid will only differ in the messages mi

that are encrypted, and each adjacent hybrid will only differ in a single message.

The first hybrid will encrypt m
(L)
i , and the last hybrid will encrypt m

(R)
i . Thus,

by applying the single-challenge security for each hybrid, we conclude that the
first and last hybrids are indistinguishable, thus showing many-challenge secu-
rity.

Hybrid j for j ≤ q.

mi =

{
min(m

(L)
i ,m

(R)
i ) if i ≤ j

m
(L)
i if i > j

First, notice that all the mi are in order since both sequences m
(L)
i and m

(R)
i

are in order. Second, the only difference between Hybrid (j − 1) and Hybrid

j is that mj = m
(L)
j in Hybrid (j − 1) and mj = min(m

(L)
j ,m

(R)
j ) in Hybrid

j. Thus, single-challenge security implies that each adjacent hybrid is indistin-

guishable. Moreover, for j where m
(L)
j < m

(R)
j , the two hybrids are actually

identical.



Hybrid j for j > q.

mi =

{
min(m

(L)
i ,m

(R)
i ) if i ≤ 2q − j

m
(R)
i if i > 2q − j

Again, notice that all the mi are in order. Moreover, the only different between

Hybrid (2q − j) and Hybrid (2q − j + 1) is that mj = min(m
(L)
j ,m

(R)
j ) in

Hybrid (2q− j) and mj = m
(R)
j in Hybrid (2q− j+ 1). Thus, single-challenge

security implies that each adjacent hybrid is indistinguishable. Moreover, for j

where m
(L)
j > m

(R)
j , the two hybrids are actually identical.

3 The Concept Class EncThresh and its Learnability

Let (Gen,Enc,Dec,Comp) be a statically secure ORE scheme with strongly cor-
rect comparison. We define a concept class EncThresh, which intuitively captures
the class of threshold functions where examples are encrypted under the ORE
scheme. Throughout this discussion, we will take N = 2` and regard the plain-
text space of the ORE scheme to be [N ] = {1, . . . , N}. Ideally we would like, for
each threshold t ∈ [N + 1] and each (sk, pars)← Gen(1λ), to define a concept

ft,sk,pars(c) =

{
1 if Decsk(c) < t

0 otherwise.

However, we need to make a few technical modifications to ensure that EncThresh
is efficiently PAC learnable.

1. In order for the learner to be able to use the comparison function Comp,
it must be given the public parameters pars generated by the ORE scheme.
We address this in the natural way by attaching a set of public parameters
to each example. Moreover, we define EncThresh so that each concept is
supported on the single set of public parameters that corresponds to the
secret key used for encryption and decryption.

2. Only a subset of binary strings form valid (sk, pars) pairs that are actually
produced by Gen in the ORE scheme. To represent concepts, we need a
reasonable encoding scheme for these valid pairs. The encoding scheme we
choose is the polynomial-length sequence of random coin tosses used by the
algorithm Gen to produce (sk, pars).

We now formally describe the concept class EncThresh. Each concept is pa-
rameterized by a string r, representing the coin tosses of the algorithm Gen, and
a threshold t ∈ [N + 1] for N = 2`. In what follows, let (skr, parsr) be the keys
output by Gen(1λ, 1`) when run on the sequence of coin tosses r. Let

ft,r(pars, c) =

{
1 if (pars = parsr) ∧ (Dec(skr, c) 6= ⊥) ∧ (Dec(skr, c) < t)

0 otherwise.

Notice that given t and r, the concept ft,r can be efficiently evaluated. The
description length k of the instance space Xk = {0, 1}k is polynomial in the
security parameter λ and plaintext length `.



3.1 An Efficient PAC Learner for EncThresh

We argue that EncThresh is efficiently PAC learnable by formalizing the argu-
ment from the introduction. Because we need to include the ORE public param-
eters in each example, the PAC learner L (Algorithm 3) for EncThresh actually
works in two stages. In the first stage, L determines whether there is signif-
icant probability mass on examples corresponding to some public parameters
pars. Recall that each concept in EncThresh is supported on exactly one such
set of parameters. If there is no significant mass on any pars, then the all-zeroes
hypothesis is a good hypothesis. On the other hand, if there is a heavy set of
parameters, the learner L applies Comp using those parameters to learn a good
comparator.

Theorem 4. Let α, β > 0. There exists a PAC learning algorithm L for the
concept class EncThresh achieving error α and confidence 1− β. Moreover, L is
efficient (running in time polynomial in the parameters k, 1/α, log(1/β)).

Algorithm 1 Learner L for EncThresh

1. Request examples {(pars1, c1, b1), . . . , (parsn, cn, bn)} for n = dlog(1/β)/αe.
2. Identify an i for which bi = 1 and set pars∗ = parsi; if no such i exists, return

h ≡ 0.
3. Let G = {j : parsj = pars∗, bj = 1}. Let j∗ ∈ G be an index with

Comp(pars∗, cj , cj∗) ∈ {<,=,⊥} for all j ∈ G.
4. Return h defined by

h(pars, c) =

{
1 if (pars = pars∗) ∧ (Comp(pars∗, c, cj∗) ∈ {<,=})
0 otherwise.

Proof. Fix a target concept ft,r ∈ EncThreshk and a distribution D on examples.
First observe that the learner L always outputs a hypothesis with one-sided
error, i.e. we always have h ≤ ft,r pointwise. Also observe that ft′,r ≤ ft,r
pointwise for any t′ < t. These both follow from the strong correctness of the
ORE scheme. Let (skr, parsr) denote the keys output by Gen(1λ, 1`) when run
on the sequence of coin tosses r. Let POS denote the set of examples (pars, c)
on which ft,r(pars, c) = 1. We divide the analysis of the learner in to two cases
based on the weight D places on POS.

Case 1: D places weight at least α on POS. Define t̂ ∈ [N + 1] as the largest
t̂ ≤ t such that errorD(ft̂,r, ft,r) ≥ α. Such a t̂ is guaranteed to exist since f0,r
is the all-zeros function, and therefore errorD(f0,r, ft,r) is equal to the weight D
places on POS, which is at least α.

Suppose ft̂+1,r ≤ h pointwise. Since h has one-sided error (that is, h ≤ ft,r
pointwise), we have errorD(ft̂+1,r, ft,r) = errorD(ft̂+1,r, h) + errorD(h, ft,r), or

errorD(h, ft,r) = errorD(ft̂+1,r, ft,r)−errorD(ft̂+1,r, h) ≤ errorD(ft̂+1,r, ft,r) < α.



Therefore, it suffices to show that ft̂+1,r ≤ h with probability at least
1 − β. This is guaranteed as long as L receives a sample (parsr, ci, 1) with
t̂ ≤ Dec(skr, ci) < t. In other words, ft,r(pars

r, ci) = 1 and ft̂,r(pars
r, ci) = 0.

Since ft̂,r ≤ ft,r pointwise, such samples exactly account for the error be-
tween ft̂,r and ft,r. Thus since errorD(ft̂,r, ft,r) ≥ α, for each i it must be

that t̂ ≤ Dec(skr, ci) < t with probability at least α. The learner L therefore
receives some sample ci with t̂ ≤ Dec(skr, ci) < t with probability at least
1− (1− α)n ≥ 1− β (since we took n ≥ log(1/β)/α).

Case 2: D places less than α weight on POS. Then the identically zero hypothesis
has error at most α, so the claim holds because 0 ≤ h ≤ ft,r.

3.2 Hardness of Privately Learning EncThresh

We now prove the hardness of privately learning EncThresh by constructing an
example reidentification scheme for this concept class. Recall that an example
reidentification scheme consists of two algorithms, Genex, which selects a distri-
bution, a concept, and examples to give to a learner, and Traceex which attempts
to identify one of the examples the learner received.

Our example reidentification scheme yields a hard distribution even for weak-
learning, where the error parameter α is taken to be inverse-polynomially close
to 1/2.

Theorem 5. Let γ(n) and ξ(n) be noticeable functions. Let (Gen,Enc,Dec,Comp)
be a statically single-challenge secure ORE scheme. Then there exists an (effi-
cient) (α = 1

2 − γ, ξ)-example reidentification scheme (Genex,Traceex) for the
concept class EncThresh.

We start with an informal description of the scheme (Genex,Traceex). The al-
gorithm Genex sets up the parameters of the ORE scheme, chooses the “middle”
threshold concept corresponding to t = N/2, and sets the distribution on exam-
ples to be encryptions of uniformly random messages (together with the correct
public parameters needed for comparison). Let m1 < m2 < · · · < mn denote the
sorted sequence of messages whose encryptions make up the sample produced
by Genex (with overwhelming probability, they are indeed distinct). We can thus
break the plaintext space up into buckets of the form Bi = [mi,mi+1). Suppose
L is a (weak) learner that produces a hypothesis h with advantage γ over ran-
dom guessing. Such a hypothesis h must be able to distinguish encryptions of
messages m ≤ t from encryptions of messages m > t with advantage γ. Thus,
there must be a pair of adjacent buckets Bi−1, Bi for which h can distinguish
encryptions of messages from Bi−1 from encryptions from Bi with advantage γ

n .
This observation leads to a natural definition for Traceex: locate a pair of

adjacent buckets Bi−1, Bi that h distinguishes, and output the identity i of the
example separating those buckets. Completeness of the resulting scheme, i.e.
the fact that some example is reidentified when L succeeds, follows immediately
from the preceding discussion. We argue soundness, i.e. that an example absent



from L’s sample is not identified, by reducing to the static security of the ORE
scheme. The intuition is that if L is not given example i, then it should not be
able to distinguish encryptions from bucket Bi−1 from encryptions from bucket
Bi.

To make the security reduction somewhat more precise, suppose for the sake
of contradiction that there is an efficient algorithm L that violates the soundness
of (Genex,Traceex) with noticeable probability ξ. That is, there is some i such that
even without example i, the algorithm L manages to produce (with probability
ξ) a hypothesis h that distinguishes Bi−1 from Bi. A natural first attempt to
violate the security of the ORE is to construct an adversary that challenges on

the message sequences m1 < · · · < mi−1 < m
(L)
i < mi+1, <,mn and m1 <

· · · < mi−1 < m
(R)
i < mi+1 < · · · < mn, where m

(L)
i is randomly chosen from

Bi−1 and m
(R)
i is randomly chosen from Bi. Then if h can distinguish Bi−1

from Bi, the adversary can distinguish the two sequences. Unfortunately, this
approach fails for a somewhat subtle reason. The hypothesis h is only guaranteed
to distinguish Bi−1 from Bi with probability ξ. If h fails to distinguish the buckets
– or distinguishes them in the opposite direction – then the adversary’s advantage
is lost.

To overcome this issue, we instead rely on the security of the ORE for se-
quences that differ on two messages. For the “left” challenge, our adversary
samples two messages from the same randomly chosen bucket, Bi−1 or Bi (in
addition to requesting encryptions of m1, . . . ,mi−1,mi, . . . ,mn). For the “right”
challenge, it samples one message from each bucket Bi−1 and Bi. Let c0 and c1

be the ciphertexts corresponding to thee challenge messages. If h agrees on c0

and c1, then this suggests the messages are from the same bucket, and the ad-
versary should guess “left”. On the other hand, if h disagrees on c0 and c1, then
the adversary should guess “right”. If h distinguishes the buckets Bi−1 and Bi,
this adversary does strictly better than random guessing. On the other hand,
even if h fails to distinguish the buckets, the adversary does at least as well
as random guessing. So overall, it still has a noticeable advantage at the ORE
security game.

We now give the formal proof of Theorem 5.

Proof. We construct an example reidentification scheme for EncThresh as follows.
The algorithm Genex fixes the threshold t = N/2 and samples (skr, parsr) ←R

Gen(1λ, 1`), yielding a concept ft,r. Let D be the distribution (parsr,Enc(skr,m))
for uniformly random m ∈ [N ]. Let m′1, . . . ,m

′
n ←R [N ], and let m1 ≤ · · · ≤ mn

be the result of sorting the m′i. Let m0 = 0 and mn+1 = N . Since n = poly(k)�
N , these random messages will be well-spaced. In particular, with overwhelming
probability, |mi+1 −mi| > 1 for every i, so we assume this is the case in what
follows. Genex then sets the samples to be (x1 = (parsr,Enc(skr,m′1)), . . . , xn =
(parsr,Enc(skr,m′n))). Let x0 = (parsr,Enc(skr,m0)) be a “junk” example.

The algorithm Traceex creates buckets Bi = [mi,mi+1). For each i, let

pi = Pr
m∈Bi,coins of Enc

[h(parsr,Enc(sk,m)) = 1].



By sampling random choices of m in each bucket, Traceex can efficiently compute
a good estimate p̂i ≈ pi for each i (Lemma 1). It then accuses the least i for
which p̂i−1 − p̂i ≥ γ

n , and ⊥ if none is found.

Lemma 1. Let K = 8n2

γ2 log(9n/ξ). For each i = 0, . . . , n, let

p̂i =
1

K

K∑
j=1

h(xj)

where xj = (parsr,Enc(skr,mj)) for i.i.d. m1, . . . ,mK ←R Bi. Then |p̂i−pi| ≤ γ
4n

for every i with probability at least 1− ξ/4.

Proof. By a Chernoff bound, the probability that any given p̂i deviates from pi
by more than γ

4n is at most 2 exp(−Kγ2/8n2) ≤ ξ
4(n+1) . The lemma follows by

a union bound.

We first verify completeness for this scheme. Let L be a learner for EncThresh
using n examples. If the hypothesis h produced by L is ( 1

2 − γ)-good, then there
exists i0 < i1 such that pi0 − pi1 ≥ 2γ. If this is the case, then there must be
an i for which pi−1 − pi ≥ 2γ

n . Then with probability all but ξ(n)/2 over the
estimates p̂i, we have p̂i−1 − p̂i ≥ γ

n , so some index is accused.
Now we verify soundness. Fix a PPT L, and let j∗ ∈ [n]. Suppose L violates

the soundness of the scheme with respect to j∗, i.e.

Pr
h←RL(S−j∗ ),coins of Genex

[Traceex(h) = j∗] > ξ.

We will use L to construct an adversary A for the ORE scheme that succeeds
with noticeable advantage. It suffices to build an adversary for the static (many-
challenge) security of ORE, with Theorem 3 showing how to convert it to a single-
challenge adversary. This many-challenge adversary is presented as Algorithm
2. (While not explicitly stated, the adversary should halt and output a random
guess whenever the messages it samples are not well-spaced.)

Let i∗ be such that mi∗ = m′j∗ . With probability at least ξ over the parame-
ters (skr, parsr), the choice of messages, the choice of the hypothesis h, and the
coins of Traceex, there is a gap p̂i∗−1 − p̂i∗ ≥ γ

n . Hence, by Lemma 1, there is a

gap pi∗−1 − pi∗ ≥ γ
2n with probability at least ξ

2 .
We now calculate the advantage of the adversary A. Fix a hypothesis h. For

notational simplicity, let p = pi∗−1 and let q = pi∗ . Let y0 = h(parsr, c0i∗) and
y1 = h(parsr, c1i∗). Then the adversary’s success probability is:

Pr[b′ = b] =
1

2
(Pr[y0 = y1|b = 0] + Pr[y0 6= y1|b = 1])

=
1

2
(
1

2
(p2 + (1− p)2 + q2 + (1− q)2) + (1− pq − (1− p)(1− q)))

=
1

2
+

1

2
(p− q)2.



Algorithm 2 ORE adversary A
1. Sample m′1, . . . ,m

′
n ←R [N ], and let m1 ≤ · · · ≤ mn be the result of sorting the

m′j . Let π be the permutation on {1, . . . , n} such that mπ(j) = m′j . Let m0 = 0.
Let i∗ = π(j∗) so that mi∗ = m′j∗ .

2. Construct pairs (m0
L,m

1
L) and (m0

R,m
1
R) as follows. Let B0 = (mi∗−1,mi∗) and

B1 = (mi∗ ,mi∗+1). Sample m0
L ≤ m1

L at random from the same Bj , for a random
choice of j ∈ {0, 1}. Sample m0

R ←R B0 and m1
R ←R B1.

3. Challenge on the pair of sequences m0,m1, . . . ,mi∗−1,m
1
L,m

2
L,mi∗ , . . . ,mn

and m0,m1, . . . ,mi∗−1,m
1
R,m

2
R,mi∗ , . . . ,mn, receiving ciphertexts c1, . . . , c

0
i∗ ,

c1i∗ , . . . , cn. For j 6= j∗, let c′j = cπ(j) so that c′j is an encryption of m′j .
4. Set t = N/2 and let

S−j∗ =
{

(parsr, c′1, χ(m′1 ≤ t)), . . . , (parsr, c′j∗−1, χ(m′j∗−1 ≤ t)),
(parsr, c0, 1), (parsr, c′j∗+1, χ(m′j∗+1 ≤ t)), . . . ,
(parsr, c′n, χ(m′n ≤ t))

}
=
{

(parsr, cπ(1), χ(mπ(1) ≤ t)), . . . , (parsr, cπ(j∗−1), χ(mπ(j∗−1) ≤ t)),
(parsr, c0, 1), (parsr, cπ(j∗+1), χ(mπ(j∗+1) ≤ t)), . . . ,
(parsr, cπ(n), χ(mπ(n) ≤ t))

}
Obtain h←R L(S−j∗).

5. Guess b′ = 0 if h(parsr, c0i∗) = h(parsr, c1i∗). Otherwise guess b′ = 1.

Thus if p − q ≥ γ
2n , then the adversary’s advantage is at least γ2

4n2 . On the
other hand, even for arbitrary values of p, q, the advantage is still nonnegative.

Therefore, the advantage of the strategy is at least ξγ2

8n2 − negl(k) (the negl(k)
term coming from the assumption that the m′i sampled where distinct), which
is a noticeable function of the parameter k. This contradicts the static security
of the ORE scheme.

3.3 The SQ Learnability of EncThresh

The statistical query (SQ) model is a natural restriction of the PAC model by
which a learner is able to measure statistical properties of its examples, but
cannot see the individual examples themselves. We recall the definition of an SQ
learner.

Definition 8 (SQ learning [39]). Let c : X → {0, 1} be a target concept
and let D be a distribution over X. In the SQ model, a learner is given access
to a statistical query oracle STAT(c,D). It may make queries to this oracle of
the form (ψ, τ), where ψ : X × {0, 1} → {0, 1} is a query function and τ ∈
(0, 1) is an error tolerance. The oracle STAT(c,D) responds with a value v such
that |v − Prx∈D[ψ(x, c(x)) = 1]| ≤ τ . The goal of a learner is to produce, with
probability at least 1−β, a hypothesis h : X → {0, 1} such that errorD(c, h) ≤ α.
The query functions must be efficiently evaluable, and the tolerance τ must be
lower bounded by an inverse polynomial in k and 1/α.

The query complexity of a learner is the worst-case number of queries it
issues to the statistical query oracle. An SQ learner is efficient if it also runs in
time polynomial in k, 1/α, 1/β.



Feldman and Kanade [24] investigated the relationship between query com-
plexity and computational complexity for SQ learners. They exhibited a concept
class C which is efficiently PAC learnable and SQ learnable with polynomially
many queries, but assuming NP 6= RP, is not efficiently SQ learnable. Concepts
in this concept class take the form

gφ,y(x, x′) =

{
PARy(x′) if x = φ

0 otherwise.

Here, PARy(x′) is the inner product of y and x′ modulo 2. The concept class C
consists of gφ,y where φ is a satisfiable 3-CNF formula and y is the lexicographi-
cally first satisfying assignment to φ. The efficient PAC learner for parities based
on Gaussian elimination shows that C is also efficiently PAC learnable. It is also
(inefficiently) SQ learnable with polynomially many queries: either the all-zeroes
hypothesis is good, or an SQ learner can recover the formula φ bit-by-bit and de-
termine the satisfying assignment y by brute force. On the other hand, because
parities are information-theoretically hard to SQ learn, the satisfying assignment
y remains hidden to an SQ learner unless it is able to solve 3-SAT.

In this section, we show that the concept class EncThresh shares these prop-
erties with C. Namely, we know that EncThresh is efficiently PAC learnable and
because it is not efficiently privately learnable, it is not efficiently SQ learn-
able [5]. We can also show that EncThresh has an SQ learner with polynomial
query complexity. Making this observation about EncThresh is of interest be-
cause the hardness of SQ learning EncThresh does not seem to be related to the
(information-theoretic) hardness of SQ learning parities.

Proposition 1. The concept class EncThresh is (inefficiently) SQ learnable with
polynomially many queries.

As with C there are two cases. In the first case, the target distribution places
nearly zero weight on examples with pars = parsr, and so the all-zeroes hypoth-
esis is good. In the second case, the target distribution places noticeable weight
on these examples, and our learner can use statistical queries to recover the com-
parison parameters parsr bit-by-bit. Once the public parameters are recovered,
our learner can determine a corresponding secret key by brute force. Lemma 2
below shows that any corresponding secret key – even one that is not actually
skr – suffices. The learner can then use binary search to determine the threshold
value t.

Proof. Let ft,r be the target concept, D be the target distribution, and α be
the target error rate. With the statistical query (x× b 7→ b, α/4), we can deter-
mine whether the all-zeroes hypothesis is accurate. That is, if we receive a value
that is less than α/2, then Prx∈D[ft,r(x) = 1] ≤ α. If not, then we know that
Prx∈D[ft,r(x) = 1] ≥ α/4, so D places significant weight on examples prefixed
with parsr. Suppose now that we are in the latter case.

Let m = |pars|. For i = 1, . . . ,m, define ψi(pars, c, b) = 1 if parsi = 1 and
b = 1, and ψi(pars, c, b) = 0 otherwise. Then by asking the queries (ψi, α/16),
we can determine each bit parsri of parsr.



Now by brute force search, we determine a secret key sk for which (sk, parsr)
∈ Range(Gen). The recovered secret key sk may not necessarily be the same
as skr. However, the following lemma shows that sk and skr are functionally
equivalent:

Lemma 2. Suppose (Gen,Enc,Dec,Comp) is a strongly correct ORE scheme.
Then for any pair (sk1, pars), (sk2, pars) ∈ Range(Gen), we have that Decsk1(c)
= Decsk2(c) for all ciphertexts c.

With the secret key sk in hand, we now conduct a binary search for the
threshold t. Recall that we have an estimate v for the weight that ft,r places on
positive examples, i.e. |v − Prx∈D[ft,r(x) = 1]| ≤ α/4. Starting at t1 = N/2, we
issue the query (ϕ1, α/4) where ϕ1(pars, c, b) = 1 iff pars = parsr and Dec(sk, c) <
t. Let ht1 denote the hypothesis

ht1(pars, c) =

{
1 if (pars = parsr) ∧ (Dec(sk, c) 6= ⊥) ∧ (Dec(sk, c) < t1)

0 otherwise.

Thus, the query (ϕ1, α/4) approximates the weight ht1 places on positive exam-
ples. Let the answer to this query be v1. If |v1 − v| ≤ α/2, then we can halt
and output the good hypothesis ht1 . Otherwise, if v1 < v − α/2, we set the
next threshold to t2 = 3N/4, and if v1 > v + α/2, we set the next threshold
to t2 = N/4. We recurse up to logN = ` = poly(k) times, yielding a good
hypothesis for ft,r.

Proof (Proof of Lemma 2). Suppose the lemma is not true. First suppose that
there exists a ciphertext c such that Dec(sk1, c) = p1 < p2 = Dec(sk2, c). Let c′ ∈
Enc(sk1, p2). Then by strong correctness applied to the parameters (sk1, pars),
we must have Comp(pars, c, c′) = “<”. Now by strong correctness applied to
(sk2, pars), we must have Dec(sk2, c

′) > p2. Thus, p1 < Dec(sk1, c
′) = p2 <

Dec(sk2, c
′). Repeating this argument, we obtain a contradiction because the

message space is finite.
Now suppose instead that there is a ciphertext c for which Dec(sk1, c) =

p ∈ [N ], but Dec(sk2, c) = ⊥. Let c′ ∈ Enc(sk1, p
′) for some p′ > p. Then

Comp(pars, c, c′) = “<” by strong correctness applied to (pars, sk1). But Comp(pars,
c, c′) = “⊥” by strong correctness applied to (pars, sk2), again yielding a contra-
diction.

4 ORE with Strong Correctness

We now explain how to obtain ORE with strongly correct comparison, as all
prior ORE schemes only satisfy the weaker notion of correctness. The lack of
strong correctness is easiest to see with the scheme of Boneh et al. [8]. The
protocol is built from current multilinear map constructions, which are noisy.
If the noise terms grow too large, the correctness of the multilinear map is not
guaranteed. The comparison function in [8] is computed by performing multi-
linear operations, and for correctly generated ciphertexts, the operations will



give the right answer. However, there exist ciphertexts, namely those with very
large noise, for which the comparison function gives an incorrect output. The
result is that the comparison operation is not guaranteed to be consistent with
decrypting the ciphertexts and comparing the plaintexts.

As described in the introduction, we give a generic conversion from any ORE
scheme with weakly correct comparison into a strongly correct scheme. We sim-
ply modify the encryption algorithm by adding a non-interactive zero-knowledge
(NIZK) proof that the resulting ciphertext is well-formed. Then the decryption
and comparison procedures check the proof(s), and only output a non-⊥ result
(either decryption or comparison) if the proof(s) are valid.

Instantiating our scheme. In our construction, we need the (weak) correctness
of the underlying ORE scheme to hold with probability one. However, the ex-
isting protocols only have correctness with overwhelming probability, so some
minor adjustments need to be made to the protocols. This is easiest to see in the
ORE scheme of Boneh et al. [8]. The Boneh et al. scheme uses noisy multilinear
maps [26] which may introduce errors. Therefore, the protocol described in [8]
only achieves the (weak) correctness property with overwhelming probability,
whereas we will require (weak) correctness with probability 1 for the conversion.
However, it is straightforward to generate the parameters for the protocol in such
a way as to completely eliminate errors. Essentially, the parameters in the pro-
tocol have an error term that is generated by a (discrete) Gaussian distribution,
which has unbounded support. Instead, we truncate the Gaussian, resulting in
a noise distribution with bounded support. By truncating sufficiently far from
the center, the resulting distribution is also statistically close to the full Gaus-
sian, so security of the protocol with truncated noise follows from the security
of the protocol with un-truncated noise. By truncating the noise distribution, it
is straightforward to set parameters so that no errors can occur.

It is similarly straightforward to modify current obfuscation candidates, which
are also built from multilinear maps, to obtain perfect (weak) correctness by
truncating the noise distributions. Thus, our scheme has instantiations using
multilinear maps or iO.

4.1 Conversion from Weakly Correct ORE

We describe our generic conversion from an order-revaling encryption scheme
with weak correctness using NIZKs. We will need the following additional tools:

Perfectly binding commitments. A perfectly binding commitment Com is a ran-
domized algorithm with two properties. The first is perfect binding, which states
that if Com(m; r) = Com(m′; r′), then m = m′. The second requirement is com-
putational hiding, which states that the distributions Com(m) and Com(m′) are
computationally indistinguishable for any messages m,m′. Such commitments
can be built, say, from any injective one-way function.

Perfectly sound NIZK. A NIZK protocol consists of three algorithms:



– Setup(1λ) is a randomized algorithm that outputs a common reference string
crs.

– Prove(crs, x, w) takes as input a common reference string crs, an NP state-
ment x, and a witness w, and produces a proof π.

– Ver(crs, x, π) takes as input a common reference string crs, statement x, and
a proof π, and outputs either accept or reject.

We make three requirements for a NIZK:

– Perfect Completeness. For all security parameters λ and any true state-
ment x with witness w,

Pr[Ver(crs, x, π) = accept : crs← Setup(1λ);π ← Prove(crs, x, w)] = 1.

– Perfect Soundness. For all security parameters λ, any false statement x
and any (invalid) proof π,

Pr[Ver(crs, x, π) = accept : crs← Setup(1λ)] = 0.

– Computational Zero Knowledge. There exists a simulator S1,S2 such
that for any computationally bounded adversary A, the quantity

‖Pr[AProve(crs,·,·)(crs) = 1 : crs← Setup(1λ)]

− Pr[ASim(crs,τ,·,·)(crs) = 1 : (crs, τ)← S1(1λ)]‖

is negligible, where Sim(crs, τ, x, w) outputs S2(crs, τ, x) if w is a valid wit-
ness for x, and Sim(crs, τ, x, w) = ⊥ if w is invalid.

NIZKs satisfying these requirements can be built from bilinear maps [32].

The Construction We now give our conversion. Let (Setup,Prove,Ver) be a
perfectly sound NIZK and (Gen′,Enc′,Dec′,Comp′) and ORE with weakly correct
comparison. We will assume that Enc′ is deterministic; if not, we can derandom-
ize Enc′ using a pseudorandom function. Let Com be a perfectly binding com-
mitment. We construct a new ORE scheme (Gen,Enc,Dec,Comp) with strongly
correct comparison:

– Gen(1λ, 1`): run (sk′, pars′) ← Gen′(1λ, 1`). Let σ = Com(sk; r) for random-
ness r, and run crs← Setup(1λ). Then the secret key is sk = (sk′, r, crs) and
the public parameters are pars = (pars′, σ, crs).

– Enc(sk,m): Compute c′ = Enc′(sk′,m). Let xc′ be the statement ∃m̂, ŝk
′
, r̂ :

σ = Com(ŝk
′
, r̂) ∧ c′ = Enc′(ŝk

′
, m̂). Run πc′ = Prove(crs, xc′ , (m, sk′, r) ).

Output the ciphertext c = (c′, πc′).
– Dec(sk, c): Write c = (c′, πc′). If Ver(crs, xc′ , πc′) = reject, output ⊥. Other-

wise, output m = Dec′(sk′, c′).
– Comp(pars, c0, c1); Write cb = (c′b, πc′b) and pars = (pars′, σ, crs). If Ver(crs, xc′b ,

πc′b) = reject for either b = 0, 1, then output⊥. Otherwise, output Comp′(pars′,
c′0, c

′
1).



Correctness. Notice that, for each plaintext m, the ciphertext component c′ =
Enc′(sk′,m) is the unique value such that Dec(sk, (c′, π)) = m for some proof π.
Moreover, the completeness of the zero knowledge proof implies that Enc(sk,m)
outputs a valid proof. Decryption correctness follows.

For strong comparison correctness, consider two ciphertexts c0, c1 where cb =
(c′b, πc′b). Suppose both proofs πc′b are valid, which means that verification passes

when running Comp and so Comp(pars, c0, c1) = Comp′(pars′, c′0, c
′
1). Verification

also passes when decrypting cb, and so Dec(sk, cb) = Dec′(sk′, c′b).
Since the proofs are valid, c′b = Enc′(sk′,mb) for some mb for both b =

0, 1. The weak correctness of comparison for (Gen′,Enc′,Dec′,Comp′) implies
that Comp′(pars′, c′0, c

′
1) = Compplain(m0,m1). The decryption correctness of

(Gen′,Enc′,Dec′,Comp′) then implies that Dec(sk′, c′b) = mb, and therefore Dec(sk,
cb) = mb. Thus Compciph(sk, c0, c1) = Compplain(m0,m1). Putting it all to-
gether, Comp(pars, c0, c1) = Compciph(sk, c0, c1), as desired.

Now suppose one of the proofs πc′b are invalid. Then Comp(pars, c0, c1) = ⊥
and Dec(sk, cb) = ⊥. This means Compciph(sk, c0, c1) = ⊥ = Comp(pars, c0, c1),
as desired.

Security. To prove security, we first use the zero-knowledge simulator to simulate
the proofs π′c without using a witness (namely, the secret decryption key). Then
we use the hiding property of the commitment to replace σ with a commitment
to 0. At this point, the entire game can be simulated using an Enc′ oracle, and
so the security reduces to the security of Enc′.

Theorem 6. If (Gen′,Enc′,Dec′,Comp′) is a (statically) secure ORE, (Setup,
Prove,Ver) is computationally zero knowledge, and Com is computationally hid-
ing, then (Gen,Enc,Dec,Comp) is a statically secure ORE.

Proof. We will prove security through a sequence of hybrids. Let A be an adver-
sary with advantage ε in breaking the static security of (Gen,Enc,Dec,Comp).

Hybrid 0. This is the real experiment, where σ ← Com(sk), crs← Setup(1λ), and
the proofs πc′ are answered using Prove and valid witnesses. A has advantage ε
in distinguishing the left and right ciphertexts.

Hybrid 1. This is the same as Hybrid 0, except that crs is generated as
(crs, τ)← S1(1λ), and all proofs are generated using S2(crs, τ, ·). The zero knowl-
edge property of (Setup,Prove,Ver) shows that this is indistinguishable from
Hybrid 0.

Hybrid 2. This is the same as Hybrid 1, except that σ ← Com(0). Since the
randomness for computing σ is not needed for simulation, this change is unde-
tectable using the hiding of Com.

Thus the advantage of A in Hybrid 2 is at least ε−negl for some negligible
function negl. Now consider the following adversary cB that attempts to break
the security of (Gen′,Enc′,Dec′,Comp′). B simulatesA, and forwards the message



sequences m
(L)
1 < m

(L)
2 < · · · < m

(L)
q and m

(R)
1 < m

(R)
2 < · · · < m

(R)
q produced

by A to its own challenger. In response, it receives pars′, and ciphertexts c′i,

where c′i encrypts either m
(L)
i if b = 0 or m

(R)
i if b = 1, for a random bit b chosen

by the challenger.
B now generates σ ← Com(0), (crs, τ)← S1(1λ), and lets pars = (pars′, σ, crs).

It also computes πc′i ← S2(crs, τ, xc′i), and defines ci = (c′i, πc′i), and gives pars
and the ci to A. Finally when A outputs a guess b′ for b, B outputs the same
guess b′.

We see that the view of A as a subroutine of B is exactly the same view
as in Hybrid 2. Thus, b′ = b with probability at least ε − negl. The secu-
rity of (Gen′,Enc′,Dec′,Comp′) implies that this quantity, and hence ε, must be
negligible. Thus A must have negligible advantage in breaking the security of
(Gen,Enc,Dec,Comp).

5 A Separation for Representation Learning

In this section, we show how to construct a concept class ValidSig that separates
efficient representation learning from efficient private representation learning,
assuming only the existence of one-way functions. Here by “representation learn-
ing” we mean a restricted form of proper learning where a learner must output
a particular representation (i.e. encoding) of a hypothesis h in the concept class
C. As with proper learning, this is a natural syntactic restriction to place on a
learner: for instance, if one wants to learn linear threshold functions (LTF), it
makes sense to require a learner to produce the actual coefficients of an LTF,
rather than an arbitrary circuit that happens to compute an LTF.

The construction is based on the following elegant idea due to Kobbi Nissim
[44]. Suppose H : D → R is a cryptographic hash function with the property
that given x1, . . . , xn with y = H(x1) = · · · = H(xn), it is infeasible for an
efficient adversary to find another x for which H(x) = y. Consider the concept
class HashPoint consisting of the concepts

fx(x′) =

{
1 if H(x) = H(x′)

0 otherwise.

for every x ∈ R. The representation of a concept fx is the point x. The con-
cept class HashPoint is very easy to learn (by representation) without privacy:
a learner can identify any positive example xi and output the representation
xi. Since H(xi) = H(x), the concept fxi is actually equal to the target concept
fx. On the other hand, a learner that identifies an index x∗ for which fx∗ = fx
cannot be differentially private, since the security of the hash function means it
is infeasible to produce such an x∗ that is not present in the sample.

Note that this argument breaks down if one tries to show that HashPoint
is not privately properly learnable. While it is infeasible to privately produce
a representation x∗ for which fx∗ is a good hypothesis, the hypothesis h(x) =
χ(H(x) = h(xi)) is equal as a function to every good fx∗ . Moreover, this hy-
pothesis can be constructed privately as long as the sample contains sufficiently
many positive examples.



We make this discussion formal by constructing a concept class ValidSig based
on super-secure digital signature schemes, which can be constructed from one-
way functions. Our use of signatures to derive hardness results for private proper
learning is very analogous to prior hardness results for synthetic data generation
[21,53].

Definition 9. A digital signature scheme is a triple of algorithms (Gen,Sign,Ver)
where

– Gen(1λ) produces a key pair (sk, vk).
– Sign(sk,m) takes the private signing key sk and a message m ∈ {0, 1}∗ and

produces a signature σ for the message m.
– Ver(vk,m, σ) takes the public verification key vk, a message m, and a signa-

ture σ, and (deterministically) outputs a bit indicating whether σ is a valid
signature for m.

The correctness property of a digital signature scheme is that for every (sk, vk)←R

Gen(1λ), every message m ∈ {0, 1}∗, and every signature σ ←R Sign(sk,m), we
have Ver(vk,m, σ) = 1.

Definition 10. A digital signature scheme is super-secure under adaptive chosen-
plaintext attacks if all efficient adversaries A win the following weak forgery
game with negligible probability:

– The challenger samples (sk, vk)←R Gen(1λ).
– The adversary A is given vk and oracle access to Sign(sk, ·). It adaptively

queries the signing oracle, obtaining a sequence of message-signature pairs
A. It then outputs a forgery (m∗, σ∗).

– The value of the game is 1 iff Ver(vk,m∗, σ∗) = 1 and (m∗, σ∗) /∈ A.

It is known that super-secure digital signature schemes can be constructed
from one-way functions [29,38,43,47].

We now describe our concept class ValidSig. Let (Gen,Sign,Ver) be a super-
secure digital signature scheme. We define a concept class ValidSig as follows. Fix
the message length `. For every (vk,m, σ) with m ∈ {0, 1}` and Ver(vk,m, σ) = 1,
define the concept

fvk,m,σ(vk′,m′, σ′) =

{
1 if (vk = vk′) ∧ (Ver(vk,m′, σ′) = 1)

0 otherwise.

For convenience, we also include the all-zeroes hypothesis in ValidSig, with rep-
resentation ⊥.

Theorem 7. Let α, β > 0. There exists a proper PAC learning algorithm L for
the concept class ValidSig achieving error α and confidence 1 − β. Moreover, L
is efficient (running in time polynomial in the parameters k, 1/α, log(1/β)).

Proof. Fix a target concept fvk,m,σ ∈ ValidSigk and a distributionD on examples.
Let POS denote the set of examples (vk′,m′, σ′) on which fvk,m,σ(vk′,m′, σ′) = 1.
We divide the analysis of the learner into three cases based on the weightD places
on the sets POS.



Algorithm 3 Learner L for ValidSig

1. Request examples {((vk′1,m′1, σ′1), b1), . . . , ((vk′n,m
′
n, σ

′
n), bn)} for n =

dlog(1/β)/αe.
2. Identify an i for which bi = 1 and return the representation (vk′i,m

′
i, σ
′
i). If no such

i exists, return ⊥ representing the all-zeroes hypothesis.

Case 1: D places at least α weight on POS. Then L receives a positive example
with probability at least 1 − (1 − α)n ≥ 1 − β, and is thus able to identify a
concept that equals the target concept.

Case 2: D places less than α weight on POS. If L gets a positive example, then
the analysis of Case 1 applies. Otherwise, the all-zeroes hypothesis is α-good.

We now prove the hardness of properly privately learning ValidSig by con-
structing an example reidentification scheme for properly learning this concept
class. Our example reidentification scheme yields a hard distribution even when
the error parameter α is taken to be inverse-polynomially close to 1.

Theorem 8. Let γ(n) and ξ(n) be noticeable functions. Let (Gen,Sign,Ver) be a
super-secure digital signature scheme. Then there exists an (efficient) (α = 1−
γ, ξ)-example reidentification scheme (Genex,Traceex) for representation learning
the concept class ValidSig.

Proof. We construct an example reidentification scheme for ValidSig as follows.
The algorithm Genex samples (sk, vk) ←R Gen(1λ), a message m ∈ {0, 1}`, and
a signature σ ←R Sign(sk,m), yielding a concept fvk,m,σ. Let D be the dis-
tribution of (vk,m,Sign(sk,m)) for random m ←R {0, 1}`. Genex then samples
x0, x1, . . . , xn i.i.d. from D. Given a representation (vk∗,m∗, σ∗), the algorithm
Traceex simply identifies an index i for which xi = (vk∗,m∗, σ∗), and outputs ⊥
if none is found.

We first verify completeness. Let L be a learner for ValidSig using n examples.
If the representation (vk∗,m∗, σ∗) produced by L represents an (1 − γ)-good
hypothesis, then it must be the case that vk∗ = vk and Ver(vk,m∗, σ∗) = 1.
Thus, if L violates the completeness condition, it can be used to construct the
weak forgery adversary A (Figure 4) that succeeds with noticeable probability
ξ.

Algorithm 4 Weak forgery adversary A
1. Query the signing oracle on random messages m′1, . . . ,m

′
n ←R {0, 1}`, obtaining

signatures σ′1, . . . , σ
′
n.

2. Run L on the labeled examples ((vk,m′1, σ
′
1), 1), . . . , ((vk,m′n, σ

′
n), 1), obtaining a

representation (m∗, σ∗).
3. Output the forgery (m∗, σ∗).



Now we verify soundness. Observe that for any i, the sample S−i contains no
information about message mi. Therefore, the learner has a 2−` = negl(k) prob-
ability at producing a representation containing message mi, proving soundness.
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