Functional Encryption for Turing Machines

Prabhanjan Ananth* and Amit Sahai**

Department of Computer Science and Center for Encrypted Functionalities,
University of California, Los Angeles,
USA

Abstract. In this work, we construct an adaptively secure functional
encryption for Turing machines scheme, based on indistinguishability
obfuscation for circuits. Our work places no restrictions on the types of
Turing machines that can be associated with each secret key, in the sense
that the Turing machines can accept inputs of unbounded length, and
there is no limit to the description size or the space complexity of the
Turing machines.

Prior to our work, only special cases of this result were known, or stronger
assumptions were required. More specifically, previous work (implicitly)
achieved selectively secure FE for Turing machines with a-priori bounded
input based on indistinguishability obfuscation (STOC 2015), or achieved
FE for general Turing machines only based on knowledge-type assump-
tions such as public-coin differing-inputs obfuscation (TCC 2015).

A consequence of our result is the first constructions of succinct adap-
tively secure garbling schemes (even for circuits) in the standard model.
Prior succinct garbling schemes (even for circuits) were only known to
be adaptively secure in the random oracle model.

1 Introduction

Contemporary cloud-based computing systems demand encryption schemes
that go far beyond the traditional goal of merely securing a commu-
nication channel. The notion of functional encryption, first conceived
under the name of Attribute-Based Encryption in [?] and formalized
later in the works of [?,?], has emerged as a powerful form of encryp-
tion well-suited to many contemporary applications (see [?,?] for further
discussion of application scenarios for functional encryption). A func-
tional encryption (FE) scheme allows a user possessing a key associated

* Email: prabhanjan.va@gmail.com. This work was partially supported by grant
#360584 from the Simons Foundation.

** Email: sahai@cs.ucla.edu. Research supported in part from a DARPA/ARL SAFE-
WARE award, NSF Frontier Award 1413955, NSF grants 1228984, 1136174, 1118096,
and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award,
an equipment grant from Intel, and an Okawa Foundation Research Grant. This
material is based upon work supported by the Defense Advanced Research Projects
Agency through the ARL under Contract W911NF-15-C-0205. The views expressed
are those of the author and do not reflect the official policy or position of the De-
partment of Defense, the National Science Foundation, or the U.S. Government.

with a function f to recover the output f(z), given an encryption of x.
The intuitive security guarantee of a FE scheme dictates that the only
information about z revealed to the user is f(x). Furthermore, if the
user obtains keys for many functions fi,... fx, then the user should only
learn fi(x),..., fx(z) and nothing more. It turns out that formalizing
security using a simulation-based definition leads to impossibility re-
sults [?,?]; however, there are sound adaptive indistinguishability-based
formulations [?] that also imply simulation-based security in restricted
settings [?]. Following most recent work on FE [?,?,?,?], we will focus on
achieving this strong indistinguishability-based notion of security here.
In this work, we address the following basic question:

“Is FE possible for functions described by arbitrary Turing machines?”

Previous work and its limitations. There have been many works on
functional encryption over the past few years but a satisfying answer to
this question has remained elusive.

The first constructions of FE considered only limited functions, such as
inner product [?]. The first constructions of FE that allowed for more
general functions considered the setting where the adversary can just
request a single (or a bounded number of) key queries [?,?], but only for
functions represented by circuits. A major advance occurred in the work
of [?], which constructed an FE scheme allowing for functions specified
by arbitrary circuits, with no bound on key queries, based on indistin-
guishability obfuscation (i0) for circuits. Since this work, the assumption
of i0 for circuits has become the staple assumption in this area.
However, [?] and other FE results deal with functionalities represented
by circuits — and representing functions as circuits gives rise to two major
drawbacks. The first drawback is that a circuit representation takes the
worst case running time on every input. Research to deal with this issue
was initiated by Goldwasser et al. [?], and there have been several recent
works [?,7,7,?], that (implicitly or explicitly) give rise to FE schemes
with input-specific runtimes based on iO for circuits.

The second drawback is that the input length of the function is a-priori
bounded. In many scenarios, especially involving large datasets, having
an a-priori bound is clearly unreasonable. For example, if functional en-
cryption is used for allowing a researcher to perform some data analysis
on hospital records, then having a bound on input length would require
that there be an a-priori bound, at the time of setting up the encryp-
tion scheme, on the length of encrypted hospital records, which seems
quite unreasonable. In general, we would like to represent the function
being computed as a Turing Machine, that can accept inputs of arbitrary
length. The problem of constructing FE schemes which can handle mes-
sages of unbounded length has remained largely open: the recent works
of [?,2,?] construct iO for Turing Machines only with bounded input
length, where the bound must be specified at the time of obfuscating the
Turing Machine. If this iO method is combined, for example, with the
FE construction recipe of [?], then this would only yield FE for functions
with a bound on input length specified at the time of setting up the FE
scheme.

There have been works [?,?] on overcoming the issue of a priori bounded
input lengths but these are based on strong knowledge-type assump-
tions called differing inputs obfuscation [?,?,?] or more recently public-
coin differing inputs obfuscation [?]. Our main contribution is developing
new technical approaches that allow us to remove the need for such as-
sumptions, and use only iO for circuits’.

Results and Technical Overview. We prove the following informal
theorem.

Theorem 1 (Informal). There exists a public-key FE scheme, assum-
ing the existence of indistinguishability obfuscation and one-way func-
tions, that satisfies the following properties:
1. There is no a priori bound on the number of functional keys issued.
2. The secret keys correspond to Turing machines.
3. It achieves adaptive security.
4. There is no a priori bound on length of the plaintext and the size of
the Turing machine.
5. The running time of encryption is independent of the Turing ma-
chine size. The running time of the key generation is independent of
the plaintext size.

A corollary of the above theorem is the first construction of succinct
adaptively secure garbling schemes for TMs (with indistinguishability-
based security) in the standard model. By succinctness, we mean that the
size of the input encoding is independent of the function (circuit or TM)
size. Prior solutions were either shown in the random oracle model [?,7]
or under restricted settings [?].

We now give a roadmap for the overall approach and the techniques we
use to achieve our result.

To gather some ideas towards achieving our goal of adaptive FE for TMs,
we first focus on the simplest possible scenario of FE for Turing machines:
adversary can make only a single ciphertext query and a function query,
and furthermore we work in the secret-key setting. We call a FE scheme
satisfying this security notion to be 1-CT 1-Key Private-key FE.

Initial goal: Adaptive 1-CT 1-Key Private-key FE for TMs. To
build an adaptive 1-CT 1-key private-key FE for TMs scheme, we first
take inspiration from the corresponding FE for circuits constructions
known in the literature to see what tools might be helpful here. Sahai
and Seyalioglu [?] and Gorbunov et al. [?] give constructions using the
tool of randomized encodings (RE) of computation. A randomized encod-
ing is a representation of a function along with an input that is simpler
to compute than the function itself. Further this representation reveals
only the output of the function and nothing else. In other words, given
functions f1, f2 and inputs x1,z2 such that fi(z1) = f2(x2), it should
be the case that the encoding of (f1,x1) should be computationally in-
distinguishable from an encoding of (f2, z2). Such randomized encodings
for TMs were recently constructed in [?,?,?], based on iO for circuits.

1 'We stress that despite recent cryptanalytic progress, iO candidates such as [?] remain
beyond the reach of any known cryptanalytic technique.

The essential difference between a randomized encoding and what we
need for a 1-CT 1-key FE scheme concerns two additional features that
we would need from the randomized encoding:

— First, we need the randomized encoding to be computable separately
for the function and the input. That is, given only f, it should be
possible to compute an encoding f ; and given only z, it should be
possible to compute an encoding Z; such that (f, Z) constitute a
randomized encoding of (f,z). We need this because the ciphertext
will be akin to the encoding of the input, whereas the private key
will be akin to the encoding of the function. This is essentially the
notion of a decomposable randomized encoding [?].

— Then, more crucially, we also need to strengthen our notion of se-
curity: In a standard randomized encoding scheme, the adversary
needs to declare f1, fo,x1,z2 all at the beginning, and then we have
the guarantee that (fl,fl) is computationally indistinguishable to
(fg, 22). However, for an FE scheme, even with just “selective” secu-
rity, the adversary is given the power to adaptively specify at least
f1, f2 after it has seen the encodings #; and 22. More generally, we
would like to have security where the adversary can choose whether
it would like to specify fi, f2 first or z1, z2 first.

It turns out that achieving these two properties is relatively straightfor-
ward when dealing with randomized encodings of circuits using Yao’s
garbled circuits [?]. It is not so straightforward for us in the context of
TMs and adaptive security, as we explain below.

To see why our situation is nontrivial and to get intuition about the ob-
stacles we must overcome, let us first consider a failed attempt to achieve
these properties by trying to apply the generic transformation, which was
formalized in the work of Bellare et al. [?], to achieve adaptive security:
in this attempt, the new input encoding and new function encoding will
now be (£ ® R, S) and (R, f @ S), respectively, where R and S are ran-
dom strings. The idea behind this transformation is as follows: no matter
what the adversary queries for (input or function) in the beginning, it
is just given two random strings (R, S). When the adversary makes the
other query, the simulator would know at this point both the input and
the function. Hence, it would obtain the corresponding encodings f and
Z from the ordinary security of the randomized encoding scheme. Now,
the simulator would respond to the adversary by giving (Z @ R, f @S)
thus successfully simulating the game. The problem with this solution
for us lies in the sizes of the encodings. If we look at the strings R and S,
they are as long as the length of & and f respectively. This would mean
that the size of the new input encoding (resp., new function encoding)
depends on the function length (resp., input length) — which violates our
main goal of achieving FE without restrictions on input length!

Revisiting the KLW randomized encoding. In order to achieve
our goal, we will need to look at the specifics of the decomposable RE
for TMs construction in [?]. We then develop new ideas specific to the
construction that help us achieve adaptive security. Before we do that,
we revisit the KLW randomized encoding at a high level, sufficient for
us to explain the new ideas in our work. The encoding procedure of a
Turing machine M and input z consists of the following two main steps:

1. The storage tape of the TM is initialized with the encryption of x.
It then builds an accumulator storage tree on the ciphertext. The
accumulator storage tree resembles a Merkle hash tree with the ad-
ditional property that this tree is unconditionally sound for a select
portion of the storage. The root of the tree is then authenticated.

2. A program that computes the next step function of the Turing ma-
chine M is then designed. This program enables computation of M
one step at a time. This program has secrets that enable decrypting
encrypted tape symbols and also to perform some checks on the input
encrypted symbol. To hide the secrets, this program is obfuscated.

The decoding just involves running the next message function repeatedly
on the computation obtained so far until the Turing Machine terminates.
At this point, the decode algorithm will output whatever the Turing
Machine outputs.

First Step towards Adaptivity: 3-Stage KLW. The main issue with
trying to use the random masking technique was that we were trying
to use randomness to mask the entire input encoding or the function
encoding, which could be of unbounded length. So our main goal will be
to find a way to achieve adaptivity where randomness need only be used
to mask bounded portions of the encoding.

As a first step towards achieving this, we want to symmetrize how we
treat the input x and the function f. We do this by treating both x and
f as being inputs to a Universal Turing Machine U, where U is both of
bounded size and is entirely known a-priori, such that U(f,z) = f(z).
That is, we have three algorithms?: InpEnc outputs an encoding of input
x, FnEnc outputs an encoding of f, and UTMEnc outputs a TM encoding
of UTM.

A natural approach would be to try to use the KLW scheme sketched
above to achieve the goal. The only difference is that, unlike the original
KLW scheme, in the 3-stage KLW scheme, the input encoding is split into
two encodings (InpEnc and FnEnc) and so there must be a way to stitch
the input encodings into one. We develop a mechanism, called combiner,
to achieve this goal. A combiner is an algorithm that combines two input
encodings into one input encoding. Furthermore, the combiner algorithm
we develop is succinct; it only takes a portion of the two encodings (of
say, = and f) and spits out an element that together with the encodings
of z and f represent z||f. Note, however, that the combiner algorithm
needs secret information in order to perform its combining role correctly.
The key to constructing this combiner is the accumulator storage scheme
of KLW. Recall that the accumulator storage on (z||f) was essentially a
binary tree on z||f. We modify this accumulator storage such that the
storage tree on (z||f) can be built by first building a storage tree on z,
then building a separate independent storage tree on f, and then joining
both these two trees by making them children of a root node. Once
we have this tool, developing our combiner algorithm is easy: the input
encoding of x consists of a storage tree on an encryption of z, encoding of
f consists of a storage tree on the encryption of f. The combine algorithm

2 The actual algorithms as presented in the technical section is slightly different. We
chose to present it this way in the introduction for intuitive clarity.

then takes only the root nodes of both these two trees and creates a new
root node which is the parent of these two root nodes. The combiner
then signs on the root node as a means of authenticating the fact that
this new root node was created legally.

We are almost ready to now apply the random masking technique to
achieve adaptive security by masking our new succinct representations.
However, there is a problem: the combiner algorithm. In 3-stage KLW,
once we have encodings of x and f, before we can have a randomized
encoding, these two encodings need to be combined using secret infor-
mation. This is not allowed in a randomized encoding, where the decode
algorithm must be public.

Getting rid of combiner: 2-ary FE for TMs (1-CT 1-Key set-
ting). Since we need to eliminate the need for the combiner algorithm,
we start by trying to delegate the combine operation to the decoder. We
can attempt to do so by including an obfuscated version of the com-
biner program as part of the encoding itself, where obfuscation is needed
since the combiner procedure contains some secret values that have to
be hidden. By itself, however, this approach does not work, because the
adversary who now possesses the obfuscated combine program can now
illegally combine different storages (other than those corresponding to x
and f) — we term this type of attack as a mized storage attack.

To prevent mixed storage attacks, we use splittable signatures: the chal-
lenger can sign the root of the storage of z as well as the root of the
storage of f. The obfuscated program now only outputs the combined
value if the signatures can be verified correctly. By using splittable signa-
tures, we can argue that the adversary is prevented from mixed storage
attacks relying only on indistinguishability obfuscation for circuits.
Once we have the obfuscated combiner program, the next issue is whether
the obfuscated combiner should be included as part of InpEnc or FnEnc.
Including it in either of them will cause problems because the simulator
needs to simulate the appropriate parameters in the combiner algorithm
and it can do that only after looking at both the InpEnc and FnEnc
queries. Here we can (finally!) apply the random masking technique since
the size of the combiner is independent of the size of the input as well
as the function and thus the length of the random mask needed is small.
The resulting scheme that we get is a 2-ary FE [?] for TMs, where the
adversary can only make a single message and key query — note that it
is essentially the same as 3-stage KLW scheme except that it does not
have the combiner algorithm.

Using some additional but similar ideas, we can show that the algorithms
FnEnc and UTMEnc can be combined into one encoding. The result is
a scheme with an input encoding, function encoding and a decode algo-
rithm with the security guarantee that the input query and the function
query can be made adaptively, which is precisely the goal we had started
off with.

Boosting mechanism: 1-Key 1-CT (private-key) FE to many-
key (public-key) FE. Now that we have achieved the goal of single-
ciphertext single-key private key FE for TMs, the next direction is to
explore whether there is any way to combine this with other known tools

to obtain a public-key FE with unbounded number of function queries.
We give a mechanism of combining the 1-Key 1-CT FE scheme with other
FE schemes that are defined for circuits to obtain a public-key FE scheme
for Turing machines. Further, our resulting FE scheme is such that it
is adaptively secure assuming only that the 1-Key 1-CT FE scheme is
adaptively secure. The high level approach is that the ciphertexts and
the functional keys are designed such that every ciphertext-functional
key pair gives rise to a unique instantiation of single-ciphertext single-
key private FE. This is reminiscent of the approach of Waters [?], later
revisited by [?], in the context of constructing adaptively secure FE for
circuits.

Our boosting mechanism, however, diverges in several ways from the
previous works of [?,?]. First, we note that just syntactically, our boosting
mechanism is the first such mechanism that uses only 1-Key 1-CT FE
as a building block; in contrast, for example, [?] needed many-Key 1-CT
FE as a building block.

Zooming in on the main new idea we develop for our boosting mecha-
nism, we find that it is used exactly to deal with the fact that unbounded
inputs that must be embedded in ciphertexts. Note that all previous FE
schemes placed an a-priori bound on the inputs to be encrypted in ci-
phertexts. Therefore, to build our encryption mechanism, we cannot use
previous FE encryption to encode inputs. We also cannot directly use the
1-Key 1-CT FE, since this scheme can only support a single key and a
single ciphertext. To resolve this dilemma, we note that even though pre-
vious FE schemes could not handle inputs of unbounded length, previous
FE schemes can handle keys corresponding to arbitrary-length circuits.
Therefore, crucially in our boosting procedure, when encrypting an in-
put x, we actually prepare a circuit H, that has = built into it, and then
use an existing FE scheme to prepare a key corresponding to H,. Here
we make use of the Brakerski-Segev [?] transformation to guarantee that
the key for H, does not leak z. We utilize a new layer of indirection,
where this circuit H, expects to receive as input the master secret key of
a 1-Key 1-CT FE scheme, and then uses this master secret key to create
a 1-Key 1-CT encryption of z. In this way, the final FE scheme that we
construct inherits the security of the 1-Key 1-CT encryption scheme, but
a fresh and independent instance of the 1-Key 1-CT scheme is created
for each pair of (input, function) that is ever considered within our final
FE scheme.

Subsequent Work. Recently, Nimishaki, Wichs and, Zhandry [?] con-
struct a traitor tracing scheme which allows for embedding user infor-
mation in the issued keys. One of the main tools used to construct this
primitive is an adaptively secure FE scheme. As a first step, they show
how to achieve a traitor tracing scheme from a private linear broadcast
encryption (PLBE) scheme defined for a large identity space. In the next
step, they show how to design a PLBE scheme from adaptive FE.

2 Preliminaries

We denote A to be the security parameter. We say that a function p(\)
is negligible if for any polynomial p(\) it holds that u(\) < 1/p(\) for all
sufficiently large A € N. We use the notation negl to denote a negligible
function.

We assume that the reader is familiar with the notion of Turing ma-
chines, standard cryptographic notions of pseudorandom functions and
symmetric encryption schemes. We use the convention that a Turing ma-
chine also outputs the time it takes to execute. As a consequence, if we
have My(z) = My (z) then it means that not only are the outputs same
but even the running times are the same.

2.1 Functional Encryption for Turing machines

We now define the notion of functional encryption (FE) for Turing ma-
chines. This notion differs from the traditional notion of FE for circuits
(to be defined later) in that the functional keys are associated to Turing
machines as against circuits. Further, the functional keys can be used
to decrypt ciphertexts of messages of arbitrary length and the decryp-
tion time depends only the running time of the Turing machine on the
message.

A public-key functional encryption scheme, defined for a message space
M and a class of Turing machines F, consists of four PPT algorithms
FE = (Setup, KeyGen, Enc, Dec) described as follows.

— Setup(l)‘): The setup algorithm takes as input the security parameter
A in unary and outputs a public key-secret key pair (PK, MSK).

— KeyGen(MSK, f € F): The key generation algorithm takes as input
the master secret key MSK, a Turing machine f € F 3, and outputs
a functional key skj.

— Enc(PK,m € M): The encryption algorithm takes as input the pub-
lic key PK, a message m € M and outputs a ciphertext CT.

— Dec(sky, CT): The decryption algorithm takes as input the functional
key sky, a ciphertext CT and outputs 1.

The FE scheme defined above, in addition to correctness and security,
needs to satisfy the efficiency property. All these properties are defined
below.

Correctness. The correctness notion of a FE scheme dictates that there
exists a negligible function negl(\) such that for all sufficiently large
A € N, for every message m € M, and for every Turing machine f € F it
holds that Pr[f(m) < Dec(KeyGen(MSK, f), Enc(PK, m))] > 1—negl()),
where (PK,MSK) < Setup(1*), and the probability is taken over the
random choices of all algorithms.

3 We use the same notation to denote the function as well as the Turing machine
representing the function f.

Efficiency. The efficiency property of a public-key FE scheme says that
the algorithm Setup on input 1* should run in time polynomial in X,
KeyGen on input the Turing machine f (along with master secret key)
should run in time polynomial in ()\,|f]), Enc on input a message m
(along with the public key) should run in time polynomial in (X, |m]|).
Finally, Dec on input a functional key of f and an encryption of m should
run in time polynomial in (A, |f],|m|, timeTM(f,m))).

Security. The security notion we define is identical to the indistinguishability-
based security notion defined for circuits.

Definition 1. A public-key functional encryption scheme FE = (Setup,
KeyGen, Enc, Dec) over a class of Turing machines F and a message
space M is adaptively secure if for any PPT adversary A there exists
a negligible function p(X) such that for all sufficiently large X € N, the
advantage of A is defined to be

Adv'y = |Prob[Expt’y (1*,0) = 1] — Prob[Expt’y (1%, 1) = 1]| < p(N),

where for each b € {0,1} and X\ € N the experiment Exptff(lx, b), modeled
as a game between the challenger and the adversary A, is defined as
follows:

1. The challenger first executes Setup(1*) to obtain (PK, MSK). It then
sends PK to the adversary.

2. Query Phase I: The adversary submits a Turing machine query f
to the challenger. The challenger sends back sky to the adversary,
where sky is the output of KeyGen(MSK, f).

3. Challenge Phase: The adversary submits a message-pair (mo,m1)
to the challenger. The challenger checks whether f(mgo) = f(ma) for
all Turing machine queries f made so far. If this is not the case,
the challenger aborts. Otherwise, the challenger sends back CT =
Enc(MSK, ms).

4. Query Phase II: The adversary submits a Turing machine query f
to the challenger. The challenger generates sky, where sky is the
output of KeyGen(MSK, f). It sends sky to the adversary only if
f(mo) = f(ma), otherwise it aborts.

5. The output of the experiment is b, where b’ is the output of A.

We can also consider a weaker notion, termed as selective security, where
the adversary has to submit the challenge message pair at the beginning
of the game itself even before it receives the public parameters and such
a FE scheme is said to be selectively secure.

Private Key Setting. We can analogously define the notion of FE for
TMs in the private-key setting. The difference between the public-key
setting and the private-key setting is that in the private-key setting, the
encryptor needs to know the master secret key to encrypt the messages.
We provide the formal definition of private-key FE for TMs in the full
version [?].

2.2 (Compact) FE for circuits

Public-Key FE One of the building blocks in our construction of FE
for TMs is a public-key FE for circuits (i.e., the functions are represented
as circuits). We now recall its definition from [?,7].

A public-key functional encryption (FE) scheme PubFE, defined for a
class of functions F = {Fa}ren and message space M = { M }aen, is
represented by four PPT algorithms, namely (Setup, KeyGen, Enc, Dec).
The input length of any f € F is the same as the length of any m € M.
The description of these four algorithms is given below.

— Setup(1*): It takes as input a security parameter A in unary and
outputs a public key-secret key pair (PK, MSK).

— KeyGen(MSK, f € F\): It takes as input a secret key MSK, a function
f € F and outputs a functional key skjy.

— Enc(PK,m € M,): It takes as input a public key PK, a message
m € M, and outputs an encryption of m.

— Dec(skys,CT): It takes as input a functional key sky, a ciphertext CT
and outputs m.

We require the FE scheme to satisfy the efficiency property in addition
to the traditional properties of correctness and security.

Correctness. The correctness property says that there exists a neg-
ligible function negl(A) such that for all sufficiently large A € N, for
every message m € My, and for every function f € Fy it holds that
Pr[f(m) <+ Dec(KeyGen(MSK, f),Enc(PK, m))] > 1 — negl(\), where
(PK,MSK) < Setup(1*), and the probability is taken over the random
choices of all algorithms.

Efficiency. At a high level, the efficiency property says that the setup
and the encryption algorithm is independent of the size of the circuits
for which functional keys are produced. More formally, the running time
of the setup algorithm, Setup(1*) is a polynomial in just the security
parameter A and the encryption algorithm, Enc(PK,m) is a polynomial
in only the security parameter A and length of the message, |m]|.

An FE scheme that satisfies the above efficiency property is termed as
compact FE. It was shown by [?,?] that iO is implied by (sub-exponentially
hard) compact FE. However, we don’t place any sub exponential hard-
ness requirement on compact FE in our work.

Remark 1. We note that the definitions of FE for circuits commonly used
in the literature do not have the above efficiency property.

Security. The security definition is modeled as a game between the
challenger and the adversary as before.

Definition 2. A public-key functional encryption scheme FE = (Setup,
KeyGen, Enc, Dec) over a function space F = {Fx}ren and a message
space M = {Mx}ren is an adaptively-secure public-key functional
encryption scheme if for any PPT adversary A there exists a negligible

function u(X) such that for all sufficiently large A\ € N, the advantage of
A is defined to be

Adv't = |Prob[Expt’ (1*,0) = 1] — Prob[Expt’y (1%, 1) = 1]| < u()),

where for each b € {0,1} and \ € N the experiment Exptff(l)‘, b), modeled
as a game between the challenger and the adversary A, is defined as
follows:

1. The challenger first executes Setup(1*) to obtain (PK, MSK). It then
sends PK to the adversary.

2. Query Phase I: The adversary submits a function query f to the
challenger. The challenger sends back sky to the adversary, where
sky is the output of KeyGen(MSK, f).

3. Challenge Phase: The adversary submits a message-pair (mo, m1)
to the challenger. The challenger checks whether f(mo) = f(m1) for
all function queries f made so far. If this is not the case, the chal-

lenger aborts. Otherwise, the challenger sends back CT = Enc(MSK, my).

4. Query Phase II: The adversary submits a function query f to the
challenger. The challenger generates sky, where sky is the output
of KeyGen(MSK, f). It sends sky to the adversary only if f(mo) =
f(m1), otherwise it aborts.

5. The output of the experiment is b', where b’ is the output of A.

We define the FE scheme to be selectively secure if the adversary has
to declare the challenge message pair even before it receives the public
parameters.

Function-private Private Key FE We now give an analogous
definition of FE for circuits in the private-key setting. In particular, we
focus on the private-key FE that is function-private.

A function-private private-key functional encryption (FE) scheme PrivFE,
defined for a class of functions F = {Fx}ren and message space M =
{M }xen, is represented by four PPT algorithms, namely (PrivFE.Setup,
PrivFE.KeyGen, PrivFE.Enc, PrivFE.Dec). The input length of any f € Fx
is the same as the length of any m € M.

We give the description of the four algorithms below.

— PrivFE.Setup(lA): It takes as input a security parameter X\ in unary
and outputs a secret key PrivFE.MSK.
— PrivFE.KeyGen(PrivFE.MSK, f € F\): It takes as input a secret key

PrivFE.MSK, a function f € F and outputs a functional key PrivFE.sk;.

— PrivFE.Enc(PrivFE.MSK, m € M): It takes as input a secret key
PrivFE.MSK, a message m € M) and outputs an encryption of m.

— PrivFE.Dec(PrivFE.sky, CT): It takes as input a functional key PrivFE.sky,

a ciphertext CT and outputs 7.
We require the above function-private private key FE scheme to sat-
isfy the correctness, efficiency and the function privacy properties of the
above FE scheme.

Correctness. The correctness notion of a function-private private-key
FE scheme dictates that there exists a negligible function negl()) such
that for all sufficiently large A € N, for every message m € M, and for
every function f € Fy it holds that Pr[f(m) - PrivFE.Dec(PrivFE.KeyGen(
PrivFE.MSK, f), PrivFE.Enc(PrivFE.MSK, m))] > 1 — negl()), where
PrivFE.MSK < PrivFE.Setup(1%), and the probability is taken over the
random choices of all algorithms.

Efficiency. At a high level, the efficiency property says that the setup
algorithm and the encryption algorithm is independent of the size of
the circuits for which functional keys are produced. More formally, the
running time of PrivFE.Setup(1*) is just a polynomial in the security
parameter A, and PrivFE.Enc(PrivFE.MSK,m) is a polynomial in only
the security parameter A and length of the message, |m)|.

Function Privacy. We now recall the definition of function privacy in
private key FE as defined by Brakerski, and Segev [?].

Note that the function privacy property below subsumes the usual notion
of security (when only one function is submitted).

Definition 3. A private-key functional encryption scheme PrivFE =
(PrivFE.Setup, PrivFE.KeyGen, PrivFE.Enc, PrivFE.Dec) over a function
space F = {Fxr}ren and a message space M = {Mx}xren is a function-
private adaptively-secure private-key FE scheme if for any PPT
adversary A there exists a negligible function u(\) such that for all suf-
ficiently large A € N, the advantage of A is defined to be

AdvME = |Prob[Expt’ "5 (1%, 0) = 1]—Prob[Expt " 5 (1%, 1) = 1]| < u(N),

where for each b € {0,1} and A\ € N the experiment Expt"*"(1*,0),
modeled as a game between the challenger and the adversary A, is defined
as follows:

1. The challenger first executes PrivFE.MSK < PrivFE.Setup(1*). The
adversary then makes the following message queries and function
queries in no particular order.

— Message queries: The adversary submits a message-pair (mo, my)
to the challenger. In return, the challenger sends back CT =
PrivFE.Enc(PrivFE.MSK, my).

— Function queries: The adversary them makes functional key
queries. For every function-pair query (fo, fi), the challenger
sends PrivFE.sky, to the adversary, where PrivFE.sky, s the out-
put of PrivFE.KeyGen(PrivFE.MSK, f3) only if fo(mo) = fi(m1),
for all message-pair queries (mg, m1). Otherwise, it aborts.

2. The output of the experiment is b’, where b’ is the output of A.

We define a function-private private key FE to be selectively secure if the
adversary has to declare all the challenge message pairs at the beginning
of the security game.

Remark 2. We note that we can define a private-key FE scheme without
the function privacy property, analogous to the public-key FE.

Single-key setting. A single-key function-private functional encryption
scheme (in the private-key setting) is a functional encryption scheme,
where the adversary in the security game (either selective or adaptive)
is allowed to query for only one function. There are several known con-
structions [?,?7,7] but none of them satisfy the efficiency property of our
FE definition — in particular, the size of the ciphertexts in these construc-
tions grow with the circuit size (for which functional keys are computed).
We later describe how to obtain a single-key scheme that indeed satisfies
the efficiency property.

3 Adaptive 1-Key 1-Ciphertext FE for TMs

One of the main tools in our constructions is a single-key single-ciphertext
FE for TMs in the private key setting. In the security game, the adver-
sary only gets to make a single message and function query. Since we are
interested in adaptive security, the message and the function query can
be made in any order. In the language of randomized encodings (RE),
this primitive is nothing but an adaptively secure succinct decomposable
RE. The formal definition of single-ciphertext single-key FE for TMs is
provided in the full version [?].

In the adaptive security game of single-ciphertext single-key FE, the ad-
versary can only make a single function query and a single challenge
message query. We define this notion for the case when the functions are
represented by Turing machines.

As before, we can define a single-ciphertext single-key private-key FE to
be selectively-secure if the adversary has to declare the challenge message
pair even before he submits the function query.

We now proceed to build this tool based on iO and one-way functions.
Towards this end, we first consider the notion of private key multi-ary
functional encryption (FE) [?] for TMs. Multi-ary FE is a generalization
of FE where the functions can take more than one input. We are inter-
ested in the restricted setting when the adversary only makes a single
function and message query. Moreover, we restrict ourselves to the 2-ary
setting, i.e., the arity of the functions is 2. We refer to this notion as
2-ary FE for TMs. We describe this notion formally in Section 3.1.
Prior to this work, we knew how to construct this only based on (public
coins) differing inputs obfuscation. Later we show how to construct this
primitive assuming just iO for circuits and one-way functions.

3.1 Semi-Adaptive 2-ary FE for TMs: 1-Key
1-Ciphertext Setting

The formal description of the 2-ary FE for TMs is given below. A 2-ary
FE for a class of Turing machines F consists of four PPT algorithms,
2FE = (2FE.Setup, 2FE.Enc, 2FE.KeyGen, 2FE.Dec), as described below.
— 2FE.Setup(1>‘): On input the security parameter A, the algorithm
2FE.Setup outputs a master secret key 2FE.MSK.

— 2FE.KeyGen(2FE.MSK, M): On input the master secret key 2FE.MSK
and Turing machine M € F, it outputs the key 2FE.skas.

— 2FE.Enc(2FE.MSK, z, b): On input the master secret key 2FE.MSK,
message = € {0,1}" and position b € {0, 1}, it outputs 2FE.CT,.
Remark 3. The bit b essentially indicates the position with respect
to which the message needs to be encrypted. For convenience sake,
we refer to the first position as the 0" position and the second
position as the 1°¢ position.

— 2FE.Dec(2FE.skas, 2FE.CT,, 2FE.CT,): On input the functional key
2FE.skas and ciphertexts 2FE.CT, and 2FE.CT, it outputs the value
z.

For the above notion to be interesting, a 2-ary FE for TMs scheme is
required to satisfy the following correctness, efficiency and security prop-
erties.

Correctness: This property ensures that the output of 2FE.Dec(2FE.skas,
2FE.CT,, 2FE.CT,) is always M (z, y) where (i) 2FE.MSK « 2FE.Setup(1*),
(ii) 2FE.skas + 2FE.KeyGen(2FE.MSK, M), (iii) 2FE.CT, «+ 2FE.Enc(
2FE.MSK, z,0) and (iv) 2FE.CT, < 2FE.Enc(2FE.MSK, y, 1).

Efficiency: This property says that the size of the ciphertexts (resp.,
functional key) depend solely on the size of the message (resp., machine)
and the security parameter. That is, the complexity of 2FE.Enc(2FE.MSK,
x,b) is a polynomial in (A, |z|) and the complexity of 2FE.KeyGen(2FE.MSK,
M) is a polynomial in (A, |M]|). Furthermore, we require that the com-
plexity of 2FE.Dec(2FE.skas, 2FE.CT,,2FE.CT,) is just a polynomial in
(A, ||, lyl, | M|, t), where t is the time taken by M to execute on the input

(z,y).

Semi-Adaptive Security: The security guarantee states that the ad-
versary cannot distinguish joint ciphertexts of (o, yo) from the joint ci-
phertexts of (z1,y1) given the functional key of M, as long as M (zo, yo) =
M(z1,y1). Note that we adopt the convention that the Turing machine
also outputs its running time and thus this alone ensures that the exe-
cution time of M (zo, yo) is the same as the execution time of M (z1,y1).
Depending on the order of the message and the Turing machine queries
the adversary can make, there are many ways to model the security of
a 2-ary FE scheme. We adopt the notion where the adversary can make
the message queries corresponding to 0*" and 1% position in an adaptive
manner but the TM query should be made only after both the message
queries. We term this notion semi-adaptive security.

Suppose A be any PPT adversary. We define an experiment Expt 4semiad
below.

ExptiemiAd (lk):
1. The challenger first executes 2FE.Setup(1*) to obtain 2FE.MSK. It
then chooses a bit b at random.
2. The following two bullets are executed in an arbitrary order (de-
pending on the choice of the adversary).

— The adversary submits the message query (zo, 1), correspond-
ing to 0" position, to the challenger. The challenger responds
with 2FE.CT, < 2FE.Enc(2FE.MSK,z0,0) if b = 0 else it re-
sponds with 2FE.CT, « 2FE.Enc(2FE.MSK, z1, 0).

— The adversary submits the message query (yo,y1), correspond-
ing to 1% position, to the challenger. The challenger responds
with 2FE.CT, <+ 2FE.Enc(2FE.MSK, yo,1) if b = 0 else it re-
sponds with 2FE.CT, «+ 2FE.Enc(2FE.MSK, y1,1).

3. After both the message queries, the adversary then submits a Turing
machine M to the challenger. The challenger aborts if either (i)
M(z0,0) # M(z1,31) or (i) |wo| # a1 or (iii) [yo| # [y]. I it has
not aborted, it executes 2FE.skys + 2FE.KeyGen(2FE.MSK, M). It
then sends 2FE.skas to the adversary.

4. The adversary outputs b'.

The experiment outputs 1 if b = b’, otherwise it outputs 0.
We now define the semi-adaptive security notion.

Definition 4. A 2-ary FE scheme is semi-adaptive secure if for any
PPT adversary A, we have that the probability that the output of the
experiment Expts™A is 1 is at most 1/2 + negl()\), for any negligible
function negl.

3.2 Adaptive FE from Semi-Adaptive 2-ary FE for TMs

We now show how to achieve adaptively secure single-ciphertext single-
key FE starting from a semi-adaptively secure 2-ary FE for TMs. Recall
that in the semi-adaptive security game of 2-ary FE, the key query can be
made only after the message queries but however, the message queries
corresponding to the first and the second position can be made in an
adaptive manner. This leads to the main idea behind our construction
— symmetrization of the input and the TM. That is, the adaptive FE
functional key of a machine M is the 2-ary FE encryption of M w.r.t the
1°% position and the adaptive FE encryption of a message m is essentially
the 2-ary FE encryption of m w.r.t the 0" position. This takes care of
the adaptivity issue. To facilitate the execution of M on m, a 2-ary FE
key of a universal TM (UTM) is also provided. The question is whether
we include the 2-ary FE key of UTM in the ciphertext or the functional
key. This is crucial because the UTM key can only be provided by the
challenger after seeing the queries corresponding to both the 0*" and
1% position. To solve this issue, we additively secret share the UTM
key across both the ciphertext and the functional key. This gives the
challenger leeway to provide a random string as part of the response
to the first query and by providing the appropriate secret share in the
second response it can reveal the UTM key — at this point the challenger
has seen both m and M. The formal scheme is described next.
Consider a 2-ary FE for TMs, denoted by 2FE = (2FE.Setup, 2FE.KeyGen,
2FE.Enc, 2FE.Dec), for a class of Turing machines F. We construct a
single-ciphertext single-key FE, OneCTKey, for the same class F.
Denote by UTM = UTM,, the universal Turing machine, that takes as
input a Turing machine M, message m and outputs M(m) if it halts

within 2* steps else it outputs L. Further, we denote by futm to be the
length of the output of a 2FE key of UTM.

OneCTKey.Setup(l)‘): On input the security parameter A, it first executes
2FE.Setup(1*) to obtain the master secret key 2FE.MSK. It also picks a
random string R in {0, 1}*U™ Tt outputs the secret key OneCTKey.MSK =
(2FE.MSK, R) as the master secret key.

OneCTKey.KeyGen(OneCTKey.MSK, M € F): On input the master se-
cret key OneCTKey.MSK = (2FE.MSK, R), and a Turing machine M €

F, it executes 2-ary FE encryption of M w.r.t 0" position, 2FE.Enc(2FE.MSK,
M, 0), to obtain 2FE.CT . It then computes a 2-ary FE key of UTM by
generating 2FE.skytm < 2FE.KeyGen(2FE.MSK, UTM,). Finally, it out-
puts the functional key OneCTKey.skas = (2FE.CT s, 2FE.skytm @ R).

OneCTKey.Enc(OneCTKey.MSK, m): On input the master secret key
OneCTKey.MSK = (2FE.MSK, R), and message m, it generates a 2-ary
FE encryption of m by executing 2FE.CT,, < 2FE.Enc(2FE.MSK,m, 1).
It outputs the ciphertext OneCTKey.CT = (2FE.CT,, R).

OneCTKey.Dec(OneCTKey.skar, OneCTKey.CT): On input the functional
key OneCTKey.skar = (2FE.CTas, S) and ciphertext OneCTKey.CT =
(2FE.CTm, R). It computes S @ R to obtain 2FE.skytm. It then executes
2FE.Dec(2FE.skytm, 2FE.CT ar, 2FE.CT,,,) to obtain z. Finally, it outputs
z.

We prove the following theorem. The proof of the theorem is available
in the full version [?].

Theorem 2. The scheme OneCTKey satisfies correctness, efficiency and
adaptive security properties.

3.3 Constructing Semi-Adaptive 2-ary FE for TMs:
Overview

Lets begin with the following simple idea: the 2-ary FE encryption of z
w.r.t 0" position will just be a standard public key encryption of xo.
Since this encryption should not be malleable, we provide an authenti-
cation of the ciphertext. Similarly, the 2-ary FE encryption of y w.r.t 15
position is also a public key encryption of y along with its authentication.
The functional key of M is an obfuscated program that takes as input an
encrypted tape symbol; decrypts it; executes the next message function
and then outputs an encryption of the new symbol. The evaluation is
performed by executing next message function one step at a time while
updating the storage tape which is initialized to the encryptions of z and
y along with their respective authentications.

This however suffers from consistency issues. An adversary could re-use
encrypted storage tape values of the current tape in the future steps. It
would seem that using signatures to bind the time step to the tape symbol

should solve this problem. In fact, if we had virtual black box obfuscation
this idea would work. However, we are stuck with indistinguishability ob-
fuscation and it is not clear how to make this work — signatures in general
aren’t compatible with iO because signatures guarantee computational
soundness whereas iO demands information theoretic soundness. Look-
ing back at the literature, we notice that Koppula-Lewko-Waters had to
deal with similar issues in their recent work on randomized encodings
(RE)* for TMs [?]. The template of their construction comprises of two
components as described below. The actual construction of KLW has
more intricate details involved from what is presented below but to keep
the discussion at an intuitive level, we choose to describe it this way.
Let M and x be the input to the encoding procedure.

— Storage tree: Encrypt = using a public key encryption scheme.
Initialize the work tape with this ciphertext. Compute a storage
tree on this ciphertext. The root of the storage tree along with the
current time step (which is initially 0) is then signed using a signature
scheme. This signature serves as an authentication of the work tape
and the current time step.

— Obfuscated next message program: The obfuscated program
takes as input an encrypted tape symbol (leaf node), its path to the
root of the storage tree and the signature on the root. It performs few
checks to test whether the encrypted tape symbol is valid. It then
decrypts the encrypted tape symbol, computes the next message
function of the TM M and then re-encrypts the output tape symbol.
Finally, it computes the new root of the storage tree (this can be
done by just having the appropriate path from the new tape symbol
leading up to the root) and signs it.

There are two main hurdles in using the above template for our construc-
tion of 2-ary FE for TMs: (i) the TM only takes a single input in the
above template whereas in our setting the TM takes two inputs. More-
over, we require that the TM and the inputs are encoded separately and,
(ii) the security notion considered by KLW is weak-selective — the adver-
sary is required to declare both the TM and the input at the beginning of
the game. On the other hand the security notion we consider is stronger.
Because of these two main reasons, we employ new techniques to achieve
our construction.

Ciphertext combiner mechanism. As remarked earlier, we require that
the TM and the inputs are encoded separately. We exploit the fact that
inherently KLW has two components — storage tree and obfuscated next
message program — that depend upon the input and the TM separately.
But note that we have two inputs and so we need to further split the
storage tree component. The tree structure automatically allows for such
a decomposition. We compute a storage tree on the (encrypted) 0" posi-
tion input and another tree on the (encrypted) 1%* position input. We can
then combine the roots of both the trees, during the decryption phase, to

4 A randomized encoding of a machine M and input z is an encoding of M (x) that
takes much less time to compute than M (z). Furthermore, the encoding should only
reveal M (z) and nothing more.

obtain a new root. But the root of the new tree needs to be authenticated
and this operation needs to be public. We could provide the decryptor
the signing key but then we end up sacrificing security!

To overcome this problem, we provide a combiner program, as part of
one of the ciphertexts, that takes as input two nodes in the tree and
outputs a new node along with a signature. This signature is signed
using a signing key which is part of the combiner program. Of course
the combiner program needs to be obfuscated to hide the signing key. As
we will see later in the actual construction, we require “iO-compatible”
signatures a.k.a splittable signatures scheme of KLW to make this idea
work.

While using combiner seems to solve the problem, the next question is
in which ciphertext do we include the combiner? We will see next that
this becomes crucial for our proof of security.

Ensuring semi-adaptivity. Suppose we decide to include the combiner
as part of the 0" ciphertext. In line with the techniques used in proving
the security using iO, we require that in the proof of security we hard-
wire the resulting (combined) root node in the combiner. But this is not
possible if the 0*" position challenge message is requested before the 1°¢
position challenge message. The same problem occurs if we include the
combiner as part of the 1° position ciphertext — the adversary can now
query for the 1°% position challenge ciphertext first and then query the
0™ position challenge message.

This conundrum can be tackled by using deniable encryption. We can
compute a deniable encryption of combiner in one ciphertext and in the
other ciphertext we open the deniable ciphertext. This gives us the flexi-
bility to open the ciphertext to whatever message we want depending on
the adversary’s queries. While this solves the problem, we can replace de-
niable encryption with a much simpler tool — one-time pad! We compute
a one-time pad of the combiner with randomness R in one ciphertext
and the other ciphertext contains just R. This solves our problem just
like the case of deniable encryption.

We present a high level and a simplified description of the 2-ary FE
scheme below. The formal description is more involved and is presented
in full version [?] where we present the construction in a modular fashion

by first describing an intermediate primitive that we call 3-stage KLW.
1. Setup: Generate a master signing key-verification key pair (SK, VK).

Also generate two auxiliary signature key-verification key pairs (SKx,
VK,) and (SK,,V K,). Generate the public parameters PP of the
storage tree. Compute a random string R of appropriate length. The
public key is PP while the master secret key is (SK., SKy, VK,,
VK,,SK,VK,R).

2. Key generation of M: Generate an obfuscated next message pro-
gram of M whose functionality is as in the above high level descrip-
tion. The pair (SK, V K) is hardwired inside the obfuscated program.

3. Encryption of z w.r.t 0" position: Compute a storage tree on
x. Sign the root of the tree rt, using SK, to obtain o,. Compute
the obfuscated combiner program S = Comb & R whose description
is as given above. Output (rtz, 04, 5).

4. Encryption of y w.r.t 1°* position: Compute a storage tree on
y. Sign the root of the tree rt, using SK, to obtain o,. Output
(rty, oy, R).

5. Decryption: First, compute S @ R to recover Comb. Then execute
Comb on inputs ((rtz,0z), (rty,0y)) to obtain the joint root rt ac-
companied by the signature o computed using SK. Once this is
done, using the joint tree and obfuscated next message program of
M, execute the decode procedure of KLW to recover the answer.

4 Adaptive FE for TMs

We show how to obtain an adaptively secure public key functional en-
cryption scheme for Turing machines. To achieve this, we use a public key
FE scheme for circuits, single-key FE scheme for circuits and single-key
single-ciphertext FE for Turing machines.

Tools. We use the following tools to achieve the transformation.

— (Compact) Public key FE scheme for circuits, denoted by PubFE =
(PubFE.Setup, PubFE.KeyGen, PubFE.Enc, PubFE.Dec). It suffices for
us that PubFE is selectively secure.

— (Compact) Function-private Single-key FE scheme for circuits, de-
noted by OneKey = (OneKey.Setup, OneKey.KeyGen, OneKey.Enc,
OneKey.Dec). It suffices for us that OneKey is selectively secure.

— Single-key single-ciphertext FE scheme for Turing machines, denoted
by OneCTKey = (OneCTKey.Setup, OneCTKey.KeyGen, OneCTKey.Enc,
OneCTKey.Dec). We require that OneCTKey is adaptively secure.

— Psuedorandom function family, F.

— Symmetric encryption scheme with pseudorandom ciphertexts, de-
noted by Sym = (Sym.Setup, Sym.Enc, Sym.Dec).

Instantiations of the tools. We gave an construction of single-key
single-ciphertext FE for Turing machines satisfying adaptive security in
Section 3. We can instantiate the compact public-key FE scheme using
the construction of [?,?] (here, we refer to the post-challenge FE con-
struction of [?]). This construction can be based on indistinguishability
obfuscation and other standard assumptions. Lastly, we can instantiate
a function-private single key FE by, first, applying the function-privacy
transformation by Brakerski-Segev [?] on the public-key FE °. The re-
sulting FE is a private-key FE which is also function-private. And, a
function-private single-key FE in the private key setting is a special case
of function-private private key FE. Note that this instantiation can be
based off the same assumptions as public-key FE (this is because, [?]
does not add any additional assumptions).

5 The function-privacy transformation was defined for private key FE but a public key
FE can be transformed into a private key FE in a straightforward way.

Intuition. We view our construction as a transformation from adaptively
secure 1-CT 1-key FE scheme into one that can handle unbounded col-
lusions. Even though in general we don’t know any way of achieving
this, we show that by leveraging additional tools we can attain this goal.
These additional tools, as mentioned above, are multi-key FE schemes
that are only selective secure.

The key idea is as follows: we give a mechanism to generate a unique key
corresponding to a pair of ciphertext (of m) and functional key (of f)
in the resulting adaptive multi-key FE scheme. This unique key would
correspond to the master secret key of the adaptive 1-CT 1-Key FE
scheme. At this point, we can generate functional keys of f and ciphertext
of m w.r.t this unique key. Implementing this mechanism using iO, in the
context of FE for circuits, was introduced by Waters [?]. We show how
to implement the same, in the more general context of FE for TMs, but
using just a multi-key FE. We highlight that in general we don’t know
how to replace the use of iO with multi-key FE since FE does not offer
function hiding.

At the high level, the construction proceeds as follows. A ciphertext of
m “communicates” a PRF key K to a functional key of f. This commu-
nication is enabled by a multi-key FE scheme. The functional key using
K and hardwired values, derives the master secret key OneCTKey.MSK
of a 1-CT 1-Key FE scheme. If then computes a functional key of f w.r.t
OneCTKey.MSK. But the ciphertext of m does not contain an encryp-
tion w.r.t OneCTKey.MSK! And so this key has to be “communicated”
from functional key back to the ciphertext. To do this, we will use an-
other instantiation of selectively secure FE scheme. Here, we note that it
suffices to consider just a single-key scheme and that too in the private
key setting. Once we have this instantiation, the functional key can now
generate a single-key FE encryption of OneCTKey.MSK. The single-key
FE functional key, which will now be part of the ciphertext, will take
as input encryption of OneCTKey.MSK and outputs an encryption of m
w.r.t OneCTKey.MSK. Finally, we can just run the decryption algorithm
of OneCTKey to obtain the answer. We illustrate a simple example, when
a single ciphertext and functional key is released, in Figure 1.

Our construction has more details that we present below.

Construction. We now describe the construction. We denote the FE for
TMs scheme, that we construct, to be FE = (Setup, KeyGen, Enc, Dec).

Setup(1*): Execute PubFE.Setup(1*) to obtain (PubFE.MSK, PubFE.PK).
Output the secret key-public key pair (MSK = PubFE.MSK, PK = PubFE.PK).

KeyGen(MSK = PubFE.MSK, f): Draw Cg at random®. Denote 7 to be
(rol|lm1]|72]|73), where 7; for ¢ € {0, 1,2, 3} is picked at random. Execute

5 The length of Cg is determined as follows. Denote by |f|, the size of the Turing
machine representing f. Denote by fonecTkey, the length of the ciphertext obtained
by encrypting a message of length |f|, using OneCTKey.Enc. Denote by £onekey, the
length of the ciphertext obtained by encrypting a message of length A + 2, using
OneKey.Enc. Further, denote by fsym to be the length of the ciphertext obtained by

Ciphertext of m FE Key of f

* From PRF(K tag) derive
1CTKey.MSK

FEz Key (g)
FE1 Enc ()

FEiKey (* Using 1CTKey.MSK, generate
1CTKey FE key of f

* Using FE;.MSK, generate
encryption of 1CTKey.MSK

1CTKey.Enc

f(m)

Fig. 1 The ciphertext of m has two components — the first component is a single-key FE
(denoted by FE3) functional key and the second component is a multi-key FE (denoted
by FE;) encryption of a PRF key K. The function key of f is just a FE; functional
key of the program described in the figure. The arrows indicate the flow of execution
of decryption of the ciphertext of m using the functional key of f.

PubFE.KeyGen(PubFE.MSK, G|[f, Cg, 7]), where G[f, Cg, 7] is described
in Figure 2, to obtain PubFE.skg. Output sky = PubFE.skg.

Enc(PK = PubFE.PK, m):
— Draw a PRF key K at random from {0,1}*.
— Execute OneKey.Setup(1*) to obtain OneKey.MSK.
— Execute OneKey.KeyGen(OneKey.MSK, H[m]) to obtain OneKey.skg,
where H[m)] is defined in Figure 3.
— Execute PubFE.Enc(PubFE.PK, (OneKey.MSK, K, L,0)) to obtain PubFE.CT.
Finally, output CT = (OneKey.skz, PubFE.CT).

Dec(sky = skq,CT = (OneKey.sky, PubFE.CT)):
— Execute PubFE.Dec(PubFE.sk¢, PubFE.CT) to obtain (OneCTKey.sky,
OneKey.CT).

encrypting a message of length fonectkey + fonekey, using Sym.Enc. We set the length
of Cg to be lsym.

G[f,Cg,7](OneKey.MSK, K, Sym.k,)

. Parse 7 as (7o|71||72||73)

. If 8 =0 then

— R; + PRF(K,n), for i € {0,1,2,3}

OneCTKey.MSK + OneCTKey.Setup(1*; Ro)

— OneCTKey.sky < OneCTKey.KeyGen(OneCTKey.MSK;, f; R1)

— OneKey.CT < OneKey.Enc(OneKey.MSK, (OneCTKey.MSK, R2,0); R3)
— Output (OneCTKey.skys, OneKey.CT)

. Else,

— (OneCTKey.skys, OneKey.CT) <— Sym.Dec(Sym.k, Ck)

— Output (OneCTKey.skys, OneKey.CT)

Fig. 2

H[m](OneCTKey.MSK, R, &)

. If a =0 then

— OneCTKey.CT < OneCTKey.Enc(OneCTKey.MSK, m; R)
— Output OneCTKey.CT

. Else, output L.

Fig.3

— Execute OneKey.Dec(OneKey.skx, OneKey.CT) to obtain OneCTKey.CT.
— Execute OneCTKey.Dec(OneCTKey.sk s, OneCTKey.CT) to obtain rh.
Output m.

We prove the following theorem that establishes the proof of security of
the above scheme.

Theorem 3. Assuming the selective security of PubFE, OneKey, adap-
tive security of OneCTKey, security of F, Sym, we have that the scheme
FE is adaptively secure.

Since the proof is involved, we choose to first present the proof of selective
security of FE. We then point out the (minor) changes that need to be
made to prove the adaptive security of FE. We give a sketch of the proof
of the above scheme in Section 5 and the formal proof is provided in the
full version [?]. We also present the proof of correctness and efficiency in
the full version.

5 Proof of Theorem 3: Overview

To explain the proof intuition, we restrict ourselves to the setting when
the adversary makes only a single message and key query.

In the first hybrid, the challenger uses a bit b picked at random, to gen-
erate the challenge ciphertext as in the (selective) security notion. By
using the security of many primitives (listed in the theorem statement),

we then move to a hybrid where the bit b is information-theoretically
hidden from the adversary. At this point, the probability that the adver-
sary guesses the bit b is 1/2. And thus the probability that the adversary
guesses b correctly in the first hybrid is at most 1/2 4 negl()\).

Hybridy: This corresponds to the real experiment when the challenger

uses the b'" message in the challenge message pair query to compute the
challenge ciphertext, where the bit b is picked at random. The output of
the hybrid is the same as the output of the adversary.

Hybrid; : In this hybrid, the values corresponding to the challenge cipher-
text are hardwired in the “Cg” component of all the functional keys.

That is, the challenger upon receiving a function query f, first sam-
ples a symmetric key Sym.k*. It generates an encryption of the mes-
sage (OneCTKey.MSK;, R3,0) with respect to the single-key FE scheme.
Call this ciphertext, OneKey.CT. It then samples a functional key of
f with respect to the single-key single-ciphertext FE scheme. Call this
functional key, OneCTKey.sky. It is important to note here that, the
(pseudo)randomness used in the generation of OneKey.CT and OneCTKey
is as described in the scheme. Finally, it computes a symmetric encryp-
tion of (OneKey.CT, OneCTKey.skys) using the key Sym.k. The resulting
ciphertext will be assigned to Cr and then the challenger proceeds as in
the previous hybrid.

The indistinguishability of Hybrid, and Hybrid, follows from the security
of symmetric encryption scheme.

Hybrid,: In this hybrid, the mode is switched from g =0 to 8 = 1.
Upon receiving a challenge message query (mg, m1), the challenger com-
putes the challenge ciphertext as follows. Recall that there are two com-
ponents in the ciphertext — namely, the single-key FE functional key and
the public-key FE ciphertext. The challenger computes the single-key
FE functional key as in the previous hybrid. However, it generates the
public-key FE cipehertext to be an encryption of (L, L,Sym.k*,1) in-
stead of (OneKey.MSK*,K*, L,0), as in Hybrid;. The rest of the hybrid
is the same as the previous hybrid.

The indistinguishability of Hybrid, and Hybrid, follows from the secu-
rity of public-key FE scheme. This is because the output of G (Fig-
ure 2) on input (L,Ll,Sym.k*, 1) is nothing but the decryption of Cg.
And by our choice of Cg, this is the same as the output of G on input
(OneKey.MSK* K*, L,0).

Hybrid;: The hardwired values in the “C'r” components of all the func-
tional keys are now computed using randomness drawn from a uniform
distribution. Recall that in the previous hybrid, the single-key ciphertext
and the single-key single-ciphertext FE encrypted in Cr were computed
using pseudorandom values.

The indistinguishability of Hybrid, and Hybrid; follows from the security
of pseudorandom function family.

Hybrid,: A branch encrypting message mo (the 0" message in the chal-
lenge message query) is introduced in the function H.

The challenger upon receiving the challenge message query (mo, m1), first
computes a single-key FE functional key of the function H*[mo, ms,v],
as described in Figure 4. Here, b is the challenge bit, picked at random by
the challenger. The program H™ is the same as H except that it contains
an additional branch. The rest of the hybrid is the same as Hybrids.
The indistinguishability of Hybrid; and Hybrid, follows from the function-
privacy property of single-key FE scheme. To see why, let us look at the
messages that are encrypted under the single-key FE scheme (note that
each encryption is part of the “Cg” component of some functional key).
We observe that each message is of the form (OneCTKey.MSK, R,0).
From the descriptions of H and H™, it follows that the output of H on
(OneCTKey.MSK, R, 0) is the same as the output of H* on (OneCTKey.MSK,
R,0).

H*[m,m’,v](OneCTKey.MSK, R, @)

1. If @« =0 then
— OneCTKey.CT < OneCTKey.Enc(OneCTKey.MSK, m; R)
— Output OneCTKey.CT

2. If =1 then
— OneCTKey.CT < OneCTKey.Enc(OneCTKey.MSK, m'; R)
— Output OneCTKey.CT

3. Else, output v.

Fig.4

Hybrid;: We switch the mode of o from 0 to 1 in the OneKey ciphertexts
output by all the functional keys.

The challenger, upon receiving a functional query f, first generates a
single-key FE ciphertext to be an encryption of (OneCTKey.MSK, R, 1),
where OneCTKey.MSK is as generated in the previous hybrids. The re-
sulting ciphertext along with the single-key single-ciphertext FE func-
tional key is then encrypted, using the symmetric key encryption, to
obtain Cg. The rest of the functional key is then generated as previ-
ously.

The indistinguishability of Hybrid, and Hybrid; is more complex and in-
volves more intermediate hybrids and thus we defer the explaination.

Hybridg: We change the o = 0 branch in the function H to encrypt the
message mo instead of my,.

The challenger upon receiving a message query (mg,m1), first generates
a single-key FE functional key of H*[mg, mo,v]. It then generates the
public key FE encryption as in previous hybrids. The rest of the hybrid
is as in Hybrid;.

The indistinguishability of Hybrid; and Hybridg follows from the function
privacy property of single-key FE scheme. To see why, we look at the

messages encrypted in the single-key FE ciphertexts. We first note all
these ciphertexts are part of “Cg” component of some functional key.
Further, each message is of the form (OneCTKey.MSK, R,1). Thus, the
output of H*[my, mo,v] is the same as the output of H™[mg, mo, v].

Observe that the challenge bit b is no longer used. This combined with
the indistinguishability of consecutive hybrids proves that the probability
that A wins in Hybrid, is at most 1/2 + negl(X). This proves the security
of FE.

6 Future Directions

The works of [?,7,?7] show the equivalence of (sub-exponentially secure)
FE and iO for the case of circuits. It would be interesting to explore
the possibility of the equivalence of FE for Turing machines and iO for
Turing machines (with no restriction on the input length). One direct
consequence of a feasibility result in this direction is establishing the
existence of iO for Turing machines based on iO for circuits. The current
feasibility results on iO for Turing machines are based on knowledge
assumptions.

Acknowledgements

We thank Brent Waters for collaboration at early stages of this project
and several discussions. We also thank the anonymous reviewers of TCC
2016-A for their useful suggestions. This work was done in part while the
authors were visiting the Simons Institute for the Theory of Computing,
supported by the Simons Foundation and by the DIMACS/Simons Col-
laboration in Cryptography through NSF grant CNS-1523467.

A Tools Used in [?]

We recall the key tools, namely, positional accumulators, iterators and
splittable signatures, used in the work of Koppula et al. [?].

We now describe the syntax of the tools below. We refer the reader to [?]
for the correctness and the security definitions.

A.1 DPositional Accumulators

The notion of positional accumulators is defined below. A positional ac-
cumulator for message space Msg, consists of the following algorithms.

SetupAcc(lX,T) — PPacc, wo, storeg The setup algorithm takes as in-
put a security parameter A in unary and an integer 7' in binary
representing the maximum number of values that can stored. It out-
puts public parameters PPac, an initial accumulator value wg, and
an initial storage value storeg.

EnforceRead(1*, T, (m1,INDEX,), ..., (ms, INDEX},), INDEX*) — (PPac,
wo, storeg). The setup enforce read algorithm takes as input a secu-
rity parameter A in unary, an integer 7' in binary representing the
maximum number of values that can be stored, and a sequence of
symbol, index pairs, where each index is between 0 and 7" — 1, and
an additional INDEX™ also between 0 and T — 1. It outputs public
parameters PPac, an initial accumulator value wp, and an initial
storage value storeg.

EnforceWrite(lA7 T, (m1,INDEX,),. .., (mk, INDEX)) = PPacc, wo, storeg
The setup enforce write algorithm takes as input a security param-
eter A in unary, an integer 7' in binary representing the maximum
number of values that can be stored, and a sequence of symbol, index
pairs, where each index is between 0 and 7" — 1. It outputs public
parameters PPac, an initial accumulator value wp, and an initial
storage value storeg.

PrepRead(PPacc, storein, INDEX) — m, 7w The prep-read algorithm takes
as input the public parameters PPac, a storage value store;,, and
an index between 0 and T' — 1. It outputs a symbol m (that can be
€) and a value 7.

PrepWrite(PPacc, storein, INDEX) — auz The prep-write algorithm takes
as input the public parameters PPac., a storage value store;,, and
an index between 0 and 7' — 1. It outputs an auxiliary value auzx.

VerifyRead (PPacc, Win, Mread, INDEX,) — {T'rue, False} The verify-read
algorithm takes as input the public parameters PPac, an accumula-
tor value win, a symbol, My eqd, an index between 0 and 7" — 1, and
a value 7. It outputs T'rue or False.

WriteStore(PPacc, storein, INDEX, m) — store,u: The write-store algo-
rithm takes in the public parameters, a storage value store;,, an
index between 0 and T — 1, and a symbol m. It outputs a storage
value storeout.

Update(PPacc, Win, Mwrite, INDEX, auz) — wout or Reject The update
algorithm takes in the public parameters PPac., an accumulator
value win, a symbol Mmyrite, and index between 0 and T — 1, and
an auxiliary value aux. It outputs an accumulator value wyyu: or
Reject.

A.2 TIterators

In this subsection, we now describe the notion of cryptographic itera-
tors. As remarked earlier, iterators essentially consist of states that are
updated on the basis of the messages received. We describe its syntax
below.

Syntazr Let £ be any polynomial. An iterator PPy, with message space
Msg, = {0, 1}8()‘) and state space SplScheme, consists of three algo-
rithms - Setupltr, ItrEnforce and Iterate defined below.

Setupltr(1*,T") The setup algorithm takes as input the security parame-
ter A (in unary), and an integer bound 7" (in binary) on the number
of iterations. It outputs public parameters PPy, and an initial state
vo € SplScheme,.

ItrEnforce(1*,T,m = (m1,...,ms)) The enforced setup algorithm takes
as input the security parameter A (in unary), an integer bound T'
(in binary) and k messages (m1, ..., ms), where each m; € {0,1}**
and k is some polynomial in A. It outputs public parameters PPy,
and a state vg € SplScheme.

Iterate(PPir, vin, m) The iterate algorithm takes as input the public pa-
rameters PPy, a state vin, and a message m € {0, 1}1{(”. It outputs
a state vout € SplScheme, .

For simplicity of notation, the dependence of £ on A will not be explic-

itly mentioned. Also, for any integer k¥ < T, we will use the notation

Iteratek(PPm, vo, (M1, ..., mg)) to denote Iterate(PPyy, vx—1, my), where

v; = Iterate(PP.t,,vjfl,mj) forall 1 < 7 < k—1.

A.3 Splittable Signatures

We describe the syntax of the splittable signatures scheme below.

Syntazr A splittable signature scheme SplScheme for message space Msg

consists of the following algorithms:

SetupSpI(lA) The setup algorithm is a randomized algorithm that takes
as input the security parameter A\ and outputs a signing key SK, a
verification key VK and reject-verification key VK.

SignSpl(SK, m) The signing algorithm is a deterministic algorithm that
takes as input a signing key SK and a message m € Msg. It outputs
a signature o.

VerSpl(VK, m, o) The verification algorithm is a deterministic algorithm
that takes as input a verification key VK, signature o and a message
m. It outputs either 0 or 1.

SplitSpl(SK, m*) The splitting algorithm is randomized. It takes as input
a secret key SK and a message m”™ € Msg. It outputs a signature
Oone = SignSpl(SK, m™), a one-message verification key VKone, an all-
but-one signing key SKabo and an all-but-one verification key VKapo.

SignSplAbo(SKabe, m) The all-but-one signing algorithm is deterministic.
It takes as input an all-but-one signing key SK.p, and a message m,
and outputs a signature o.

KLW described various security notions corresponding to the above split-

table signatures scheme. We describe only one of the properties that will

be useful for this work. This security notion is termed as VKgne indis-
tinguishability and states that given a signature on a message m, an
adversary should not be able to distinguish the verification key VK from
the split verification key VKone, that is computed as a result of applying
SplitSpl on the signing key and message m.

	Functional Encryption for Turing Machines

