
On the Impossibility of Virtual Black-Box
Obfuscation in Idealized Models

Mohammad Mahmoody1,?, Ameer Mohammed1,??, and Soheil
Nematihaji1,? ? ?

University of Virginia, {mohammad,am8zv,sn8fbt}@virginia.edu

Abstract. The celebrated work of Barak et al. (Crypto’01) ruled out
the possibility of virtual black-box (VBB) obfuscation for general cir-
cuits. The recent work of Canetti, Kalai, and Paneth (TCC’15) extended
this impossibility to the random oracle model as well assuming the exis-
tence of trapdoor permutations (TDPs). On the other hand, the works
of Barak et al. (Crypto’14) and Brakerski-Rothblum (TCC’14) showed
that general VBB obfuscation is indeed possible in idealized graded en-
coding models. The recent work of Pass and Shelat (Cryptology ePrint
2015/383) complemented this result by ruling out general VBB obfus-
cation in idealized graded encoding models that enable evaluation of
constant-degree polynomials in finite fields.
In this work, we extend the above two impossibility results for general
VBB obfuscation in idealized models. In particular we prove the following
two results both assuming the existence of trapdoor permutations:
– There is no general VBB obfuscation in the generic group model

of Shoup (Eurocrypt’97) for any abelian group. By applying our
techniques to the setting of Pass and Shelat we extend their result
to any (even non-commutative) finite ring.

– There is no general VBB obfuscation in the random trapdoor per-
mutation oracle model. Note that as opposed to the random oracle
which is an idealized primitive for symmetric primitives, random
trapdoor permutation is an idealized public-key primitive.

Keywords: Virtual Black-Box Obfuscation, Idealized Models, Graded
Encoding, Generic Group Model.

1 Introduction

Obfuscating programs to make them “unintelligible” while preserving their func-
tionality is one of the most sought after holy grails in cryptography due to its nu-
merous applications. The celebrated work of Barak et al. [BGI+01] was the first

? Supported by NSF CAREER award CCF-1350939. The work was done in part while
the author was visiting the Simons Institute for the Theory of Computing, supported
by the Simons Foundation and by the DIMACS-Simons Collaboration in Cryptog-
raphy through NSF grant CNS-1523467.

?? Supported by University of Kuwait.
? ? ? Supported by NSF award CCF-1350939.



to launch a formal study of this notion in its various forms. Virtual Black-Box
(VBB) obfuscation is a strong form of obfuscation in which the obfuscated code
does not reveal any secret bit about the obfuscated program unless that infor-
mation could already be obtained through a black-box access to the program. It
was shown in [BGI+01] that VBB obfuscation is not possible in general as there
is a family of functions F that could not be VBB obfuscated. Roughly speaking,
F would consist of circuits C such that given any obfuscation B = O(C) of
C, by running B over B itself as input one can obtain a secret s about C that
could not be obtained through mere black-box interaction with C. This strong
impossibility result, however, did not stop the researchers from exploring the
possibility of VBB obfuscation for special classes of functions, and positive re-
sults for special cases were presented (e.g., [Can97,Wee05]) based on believable
computational assumptions.

The work of Lynn, Prabhakaran and Sahai [LPS04] showed the possibility
of VBB obfuscation for certain class of functions in the random oracle model
(ROM). The work of [LPS04] left open whether general purpose obfuscator for
all circuits could be obtained in the ROM or not. Note that when we allow
the random oracle to be used during the obfuscation phase (and also let the
obfuscated code to call the random oracle) the impossibility result of [BGI+01] no
longer applies, because the proof of [BGI+01] requires the obfuscated algorithm
to be a circuit in the plain model where no oracle is accessed. In fact, despite the
impossibility of general VBB obfuscation in the plain model, a construction for
VBB obfuscation in the ROM could be used as a practical heuristic obfuscation
mechanism once instantiated with a strong hash function such as SHA3. This
would be in analogy with the way ROM based constructions of other primitives
are widely used in practice despite the impossibility results of [CGH04].

On a different route, the breakthrough of Garg et al. [GGH+13b] proposed
a candidate indistinguishability obfuscation (iO), a weaker form of obfuscation
compared to VBB for which no impossibility results were (are) known, relying on
the so called “approximate multi-linear maps” (MLM) assumption [GGH13a].
Shortly after, it was proved by Barak et al. [BGK+14] and Brakerski and Roth-
blum [BR14] that the construction of [GGH+13b] could be used to get even
VBB secure obfuscation (rather than the weaker variant of iO) in an idealized
form of MLMs, called the graded encoding model. The VBB obfuscation schemes
of [BGK+14,BR14] in idealized models raised new motivations for studying the
possibility of VBB obfuscation in such models including the ROM.

Canetti, Kalai, and Paneth [CKP15] proved the first impossibility result for
VBB obfuscation in a natural idealized model by ruling out the existence of
general purpose VBB obfuscators in the random oracle model, assuming the
existence of trapdoor permutations. Their work resolved the open question of
[LPS04] negatively. At a technical level, [CKP15] showed how to compile any
VBB obfuscator in the ROM into an approximate VBB obfuscator in the plain
model which preserves the circuit’s functionality only for “most” of the inputs.
This would rule out VBB obfuscation in plain model (assuming TDPs) since



Bitansky and Paneth [BP13] had shown that no approximate VBB obfuscator
for general circuits exist if trapdoor permutations exist.

Pass and shelat [Pas15] further studied the possibility of VBB obfuscation
in idealized algebraic models in which the positive results of [BGK+14,BR14]
were proved. [Pas15] showed that the existence of VBB obfuscation schemes in
the graded encoding model highly depends on the degree of polynomials (al-
lowed to be zero tested) in this model. In particular they showed that VBB
obfuscation of general circuits is impossible in the graded encoding model of
constant-degree polynomials. Their work nicely complemented the positive re-
sults of [BGK+14,BR14] that were proved in a similar (graded encoding) model
but using super-constant (in fact polynomial in security parameter) polynomials.

We shall emphasize that proving limitations of VBB obfuscation or any
other primitive in generic models of computation such as the generic group
model of Shoup [Sho97] are strong lower-bounds (a la black-box separations
[RTV04,IR89]) since such results show that for certain crypto tasks, as long as
one uses certain algebraic structures (e.g., an abelian group) in a black-box way
as the source of computational hardness, there will always be a generic attack
that (also treats the underlying algebraic structure in a black-box way and)
breaks the constructed scheme. The fact that the proposed attack is generic
makes the lower-bound only stronger.

1.1 Our Results

In this work we extend the previous works [CKP15,Pas15] on the impossibility of
VBB obfuscation in idealized models of computation and generalize their results
to more powerful idealized primitives. We first focus on the generic group model
of Shoup [Sho97] (see Definitions 10 and 11) and rule out the existence of general
VBB obfuscation in this model for any finite abelian group.

Theorem 1 (Informal). Assuming trapdoor permutations exist, there is no
virtual black-box obfuscation for general circuits in the generic group model for
any finite abelian group.

The work of [Pas15] implies a similar lower bound for the case of abelian
groups of prime order. We build upon the techniques of [CKP15,Pas15] and
extend the result of [Pas15] to arbitrary (even noncyclic) finite abelian groups.
See the next section for a detailed description of our techniques for proving this
theorem and the next theorems described below.

We then apply our techniques designed to prove Theorem 1 to the setting of
graded-encoding model studied in [Pas15] and extend their results to arbitrary
finite rings (rather than fields) which remained open after their work. Our proof
even handles noncommutative rings.

Theorem 2 (Informal). Assuming trapdoor permutations exist, there is no
virtual black-box obfuscation for general circuits in ideal degree-O(1) graded en-
coding model for any finite ring.



Finally, we generalize the work of [CKP15] beyond random oracles by ruling
out general VBB obfuscation in random trapdoor permutations (TDP) oracle
model. Our result extends to an arbitrary number of levels of hierarchy of trap-
doors, capturing idealized version of primitives such as hierarchical identity based
encryption [HL02].

Theorem 3 (Informal). Assuming trapdoor permutations exist, there is no
virtual black-box obfuscation for general circuits in the random trapdoor permu-
tation model, even if the oracle provides an unbounded hierarchy of trapdoors.

Note that the difference between the power of random oracles and random
TDPs in cryptography is usually huge, as random oracle is an idealized primitive
giving rise to (very efficient) symmetric key cryptography primitives, while TDPs
could be used to construct many public-key objects. Our result indicates that
when it comes to VBB obfuscation random TDPs are no more powerful than
just random oracles.

Connection to black-box complexity of iO. In a very recent follow-up work by
the authors, Rafael Pass, and abhi shelat [MMN+15] it is shown that the results
of this work and those of [Pas15] could be used to derive lower-bounds on the
assumptions that can be used in a black-box way to construct indistinguishability
obfuscation. In particular, let P be a primitive implied by (i.e. exist relative to)
random trapdoor permutations, generic abelian group model, or the degree-O(1)
graded encoding model; this includes powerful primitives such as exponentially
secure TDPs or exponentially secure DDH-type assumptions. [MMN+15] shows
that basing iO on P in a black-box way is either impossible, or it is at least as
hard as basing public-key cryptography on one-way functions (in a non-black-box
way). Whether or not public-key encryption can be based on one-way functions
has remained as one of the most fundamental open questions in cryptography.

1.2 Technical Overview

The high level structure of the proofs of our results follows the high level struc-
ture of [CKP15], so we start by recalling this approach. The idea is to convert the
VBB obfuscator OI in the idealized model to an approximate VBB obfuscation
Ô in the plain model which gives the correct answer C(x) with high (say, 9/10)
probability over the choice of random input x and randomness of obfuscator.
The final impossibility follows by applying the result of [BP13] which rules out
approximate VBB in the plain model. Following [CKP15] our approximate VBB

obfuscator Ô in the plain model has the following high level structure.

1. Obfuscation emulation. Given a circuit C emulate the execution of the
obfuscator OI in the idealized model over input C to get circuit B (running
in the idealized model).1

1 The emulation here and in next steps would require the idealized model I to have an
efficient “lazy evaluation” procedure. For example lazy evaluation for random oracles
chooses a random answer (different from previous ones) given any new query.



2. Learning phase. Emulate the execution of B over m random inputs for
sufficiently large m. Output B and the view z of the m executions above as
the obfuscated code B̂ = (B, z).

3. Final execution. Execute the obfuscated code B̂ = (B, z) on new random
points using some form of “lazy evaluation” of the oracle while only using
the transcript z of the learning phase (and not the transcript of obfuscator
O which is kept private) as the partially fixed part of the oracle. The exact
solution here depends on the idealized model I, but they all have the follow-
ing form: if the answer to a new query could be “derived” from z then use
this answer, otherwise generate the answer from some simple distribution.

VBB property. As argued in [CKP15], the VBB property of Ô follows from the
VBB property of O and that the sequence of views z could indeed be sampled by
any PPT holding B in the idealized model (by running B on m random inputs),
and so it is simulatable (see Lemma 5).

Approximate correctness. The main challenge is to show the approximate cor-
rectness of the new obfuscation procedure in the plain model. The goal here is
to show that if the learning phase is run for sufficiently large number of rounds,
then its transcript z has enough information for emulating the next (actual) ex-
ecution consistently with but without knowing the view of O. In the case that I
is a random oracle [CKP15] showed that it is sufficient to bound the probability

of the “bad” event E that the final execution of B̂ = (B, z) on a random input
x asks any of the “private” queries of the obfuscator O which is not discovered
during the learning phase. The work of [Pas15] studies graded encoding oracle
model where the obfuscated code can perform arbitrary zero-test queries for low
degree polynomials p(·) defined over the generated labels s1, . . . , sk. The oracle
will return true if p(s1, . . . , sk) = 0 (in which case p(·) is called a zero polynomial)
and returns false otherwise. Due to the algebraic structure of the field here, it is
no longer enough to learn the heavy queries of the obfuscated code who might
now ask its oracle query p(·) from some “flat” distribution while its answer is
correlated with previous answers.

Generic Group Model: Proving Theorem 1 To describe the high level
ideas of the proof of our Theorem 1 it is instructive to start with the proof of
[Pas15] restricted to zero testing degree-1 polynomials and adapt it to the very
close model of GGM for Zp when p is a prime, since as noted in [Pas15] when it
comes to zero-testing linear functions these two models are indeed very close.2

Case of Zp for prime p [Pas15]. When we go to the generic group model we can
ask addition and labeling queries as well. It can be shown that we do not need to
generate any labels during obfuscation and they can be emulated using addition

2 More formally, using the rank argument of [Pas15] it can be shown that for the pur-
pose of obfuscation, the two models are equivalent up to arbitrary small 1/ poly(n)
completeness error.



queries. Then, by induction, all the returned labels t1, . . . , t` for addition queries
are linear combinations of s1, . . . , sk with integer coefficients3 and that is how we
represent queries. Suppose we get an addition query a+b and want to know the
label of the group element determined by (the coefficients) a + b = x. Suppose
for a moment that we know s is the label for a vector of integers c, and suppose
we also know that the difference x − c evaluates to zero. In this case, similarly
to [CKP15], we can confidently return the label s as the answer to a + b. To
use this idea, at any moment, let W be the space of all (zero) vectors α − β
such that we have previously discovered same labels for α and β. Now to answer
a + b = x we can go over all previously discovered labels (c 7→ s) and return
s if x − c ∈ span(W ), and return a random label otherwise. The approximate
correctness follows from the following two points.

– The rank argument. First note that if x− c ∈ span(W ) then the label for
the vector a + b = x is indeed s. So we only need worry about cases where
x− c 6∈ span(W ) but x− c is still zero. The rank argument of [Pas15] shows
that this does not happen too often if we repeat the learning phase enough
times. The main idea is that if this “bad” event happens, it increases the
rank of W , but this rank can increase only k times.

– Gaussian elimination. Finally note that the test x− c 6∈ span(W ) can be
implemented efficiently using Gaussian elimination when we work in Zp.

Case of general cyclic abelian groups. We first describe how to extend the above
to any cyclic abelian group Zm (for possibly non-prime m) as follows.

– Alternative notion for rank of W . Unfortunately, when we move to the
ring of Zm for non-prime m it is no longer a field and we cannot simply talk
about the rank of W (or equivalently the dimension of span(W )) anymore.4

More specifically, similarly to [Pas15], we need such (polynomial) bound to
argue that during most of the learning phases the set span(W ) does not
grow. To resolve this issue we introduce an alternative notion which here

we call r̃ank(W ) that has the following three properties even when vectors

w ∈ W are in Zkm (1) If a ∈ span(W ) then r̃ank(W ) = r̃ank(W ∪ {a}),
and (2) if a 6∈ span(W ) then r̃ank(W ) + 1 ≤ r̃ank(W ∪ {a}), and (3) 1 ≤
r̃ank(W ) ≤ k · log |Zm| = k · logm. In particular in Lemma 21 we show that

the quantity r̃ank(W ) := log |span(W )| has these three properties. These
properties together show that span(W ) can only “jump up” k · logm (or
fewer) times during the learning phase, and that property is enough to be
able to apply the argument of [Pas15] to show that sufficiently large number
of learning phases will bound the error probability by arbitrary 1/ poly(n).

– Solving system of linear equations over Zm. Even though m is not
necessarily prime, this can still be done using a generalized method for cyclic
abelian groups [McC90].

3 Even though the summation is technically defined over the group elements, for sim-
plicity we use the addition operation over the labels as well.

4 Note that this is even the case for Zq when q is a prime power, although finite fields
have prime power sizes.



Beyond cyclic groups. Here we show how to extend the above argument beyond
cyclic groups to arbitrary abelian groups. First note that to solve the Gaussian
elimination algorithm for Zm, we first convert the integer vectors of W into some
form of finite module by trivially interpreting the integer vectors of W as vectors

in Zkm. This “mapping” was also crucially used for bounding r̃ank(W ).

– Mapping integers to general abelian G. When we move to a general
abelian group G we again need to have a similar mapping to map W into
a “finite” module. Note that we do not know how to solve these questions
using integer vectors in W efficiently. In Lemma 9 we show that a generalized
mapping ρG(·) : Z 7→ G (generalizing the mapping ρZm(x) = (x mod m)
for Zm) exists for general abelian groups that has the same effect; namely,
without loss of generality we can first convert integer vectors in W to vectors
in Gk and then work with the new W .

– The alternative rank argument. After applying the transformation above
over W (to map it into a subset of Gk) we can again define and use the

three rank-like properties of r̃ank(·) (instead of rank(W )) described above,

but here for any finite abelian group G. In particular we use r̃ank(W ) :=
log |spanZ(W )| where spanZ(·) is the module spanned by W using integer
coefficients. Note that even though G is not a ring, multiplying integers with
x ∈ G is naturally defined (see Definition 8).

– System of linear equations over finite abelian groups. After the con-
version step above, now we need to solve a system of linear equation xW = a
where elements of W,a are from G but we are still looking for integer vector
solutions x. After all, there is no multiplication defined over elements from
G. See the full version of this paper in which we give a reduction from this
problem (for general finite abelian groups) to the case of G = Zm which is
solvable in polynomial time [McC90].

Low-Degree Graded Encoding Model: Proving Theorem 2 To prove
Theorem 3 for general finite rings, we show how to use the ideas developed for
the case of general abelian generic groups discussed above and apply them to
the framework of [Pas15] for low-degree graded encoding model as specified in
Theorem 2. Recall that here the goal is to detect the zero polynomials by checking
their membership in the module span(W ). Since here we deal with polynomials
over a ring (or field) R the multiplication is indeed defined. Therefore, if we
already know a set of zero polynomials W and want to judge whether a is also
(the vector corresponding to) a zero polynomial, the more natural approach is
to solve a system of linear equations xW = a over ring R.

Searching for integer solutions again. Unfortunately we are not aware of a poly-
nomial time algorithm to solve x · W = a in general finite rings and as we
mentioned above even special cases like R = Zm are nontrivial [McC90]. Our
idea is to try to reduce the problem back to the abelian groups by somehow elim-
inating the ring multiplication. Along this line, when we try to solve x ·W = a,



we again restrict ourselves only to integer solutions. In other words, we do not
multiply inside R anymore, yet we take advantage of the fact that the existence
of integer solution to x ·W = a is still sufficient to conclude a is a zero vector.
As we mentioned above, we indeed know how to find integer solutions to such
system of linear equations in polynomial time (see Theorem ??).

Finally note that, we can again use our alternative rank notion of r̃ank(W )
to show that if we run the learning phase of the obfuscation (in plain model) m
times the number of executions in which spanZ(W ) grows is at most poly(n) (in
case of degree-O(1) polynomials). This means that we can still apply the high
level structure of the arguments of [Pas15] for the case of finite rings without
doing Gaussian elimination over rings.

Random Trapdoor Permutation Model: Proving Theorem 3. Here we
give the high-level intuition behind our result for the random TDP oracle model.

Recalling the case of Random Oracles [CKP15]. Recall the high level structure
of the proof of [CKP15] for the case of random oracles described above. As we
mentioned, [CKP15] showed that to prove approximate correctness it is sufficient

to bound the probability of the event E that the final execution of B̂ = (B, z) on
a random input x asks any of the queries that is asked by emulated obfuscation
O of B (let QO denote this set) which is not discovered during the learning
phase. So if we let QE , QB , QO denote the set of queries asked, respectively,
in the final execution, learning, and obfuscation phases, the bad event would be
QE∩(QO \QB) 6= ∅. This probability could be bound by arbitrary small 1/ poly
by running the learning phase sufficiently many times. The intuition is that all
the “heavy” queries which have a 1/poly-chance of being asked by B̂ = (B, z)
(i.e., being in QE) on a random input x would be learned, and thus the remaining
unlearned private queries (i.e., QO \QB) would have a sufficiently small chance

of being hit by the execution of B̂ = (B, z) on a random input x.

Warm-up: Random Permutation Oracle. We start by first describing the proof
for the simpler case of random permutation oracle. The transformation tech-
nique for the random oracle model can be easily adapted to work in the random
permutation model as follows. For starters, assume that the random permuta-
tion is only provided on one input length k; namely R : {0, 1}k 7→ {0, 1}k. If
k = O(log n) where n is the security parameter, then it means that the whole
oracle can be learned during the obfuscation and hardcoded in the obfuscated
code, and so R cannot provide any advantage over the plain model. On the other
hand if k = ω(log n) it means that the range of R is of super-polynomial size.
As a result, the same exact procedure proposed in [CKP15] (that assumes R is a
random oracle and shows how to securely compile out R from the construction)
would also work if R is a random permutation oracle. The reason is that the
whole transformation process asks poly(n) number of queries to R and, if the
result of the transformation does not work when R is a random permutation,
then the whole transformation gives a poly(n) = q query attack to distinguish



between whether R is a random permutation or a random function. Such an
attack cannot “succeed” with more than negligible probability when the domain
of R has super-polynomial size qω(1) in the number of queries q5.

Random TDP Model. Suppose T = (G,F, F−1) is a random trapdoor permuta-
tion oracle in which G is a random permutation for generating the public index,
F is the family of permutations evaluated using public index, and F−1 is the
inverse permutation computed using the secret key (see Definition 28 for formal
definition and notation used). When the idealized oracle is T = (G,F, F−1),
we show that it is sufficient to apply the same learning procedure used in the
random oracle case over the normalized version of the obfuscated algorithm B
to get a plain-model execution B̂(x) that is statistically close to an execution
BT (x) that uses oracle T . This, however, requires careful analysis to prove that
inconsistent queries specific to the TDP case occur with small probability.

Indeed, since the three algorithms (emulation, learning, and final execution)
are correlated, there is a possibility that the execution of B on the new random
input might ask a new query that is not in QO, and yet still be inconsistent
with some query in QO\QB . For example, assume we have a query q of the form
G(sk) = pk that was asked during the obfuscation emulation phase (and thus is
in QO) but was missed in the learning phase (and thus is not in QB) and assume
that a query of the form F [pk](x) = y was asked during the learning phase (so it
is in QB). Then, it is possible that during the evaluation of the circuit B, it may
ask a query q′ of the form F−1[sk](y) and since this is a new query undetermined

by previously learned queries, the plain-model circuit B̂ will answer with some
random answer y′. Note that in this case, y′ would be different from y with very
high probability, and thus even though q 6= q′, they are together inconsistent
with respect to oracle T .

As we show in our case-by-case analysis of the learning heavy queries proce-
dure for the case of trapdoor permutation (in Section 4.2), the only bad events
that we need to consider (besides hitting unlearned QO queries, which was al-
ready shown to be unlikely) will be those whose probability of occurring are
negligible (we use the lemmas from [GKLM12] as leverage). Due to our normal-
ization procedure, the rest of the cases will be reduced to the case of not learning
heavy queries, and this event is already bounded.

2 Virtual Black-Box Obfuscation

Below we give a direct formal definition for approximately correct virtual black-
box (VBB) obfuscation in idealized models. The (standard) definition of VBB is
equivalent to 0-approximate VBB in the plain model where no oracle is accessed.

5 In general, when the random permutation R is available in all input lengths, we
can use a mixture of the above arguments by generating all the oracle queries of
length c log(n) (for a sufficiently large constant c) during the obfuscation (in the
plain model) and representing this randomness in the obfuscated circuit. This issue
also exists in the trapdoor permutation and the generic group models and can be
handled exactly the same way.



Definition 4 (Approximate VBB in Idealized Models [BGK+13,CKP15]).
For a function ε(n) ∈ [0, 1], a PPT algorithm O is called an ε-approximate gen-
eral purpose VBB obfuscator in the I-ideal model if the following is satisfied:

– Approximate Functionality: For any circuit C of size n and input size m

Pr
x←{0,1}m

[OI(C)(x) 6= C(x)] ≤ ε(n)

where the probability is over the choice of input x, the oracle I, and the
internal randomness of O.

– Virtual Black-Box: For every PPT adversary A, there exists a PPT simulator
S and a negligible σ(n) such that for all n ∈ N and circuits C ∈ {0, 1}n:∣∣Pr[AI(OI(C)) = 1]− Pr[SC(1n) = 1]

∣∣ ≤ σ(n)

where the probability is over I and the randomness of A, S, and O.

The following lemma is used in [CKP15], and here we state it in an abstract
form considering only the VBB security and ignoring the completeness.

Lemma 5 (Preservation of VBB Security). Let O be a PPT algorithm in
the I-ideal model that satisfies VBB security, and let U be a PPT algorithm (in
the I-ideal model) that, given input B = OI(C) for some circuit C ∈ {0, 1} of
size n, outputs (B, z) where z is some string. If there exists a plain-model PPT

algorithm Ô that, on input C, outputs (B′, z′) with distribution statistically close

to (B, z) conditioned on C then Ô also satisfies VBB security.

Proof. To prove that Ô satisfies the security of VBB obfuscation (regardless of

its completeness) we show a reduction that turns any plain-model adversary Â

that breaks the VBB security of Ô into an ideal-model adversary AI against O.
For any fixed circuit C, AI accepts as input B = OI(C) then executes

UI(B) to get (B, z). AI will then run Â with input (B, z) then output whatever

Â outputs. Given the behaviour of AI , we have that:

Pr[AI(B) = 1] = Pr[Â(B, z) = 1] (1)

Furthermore, if we let the statistical distance between (B, z) and Ô(C) = (B′, z′)
be at most ε(n), then we also have:∣∣∣Pr[Â(B′, z′) = 1]− Pr[Â(B, z) = 1]

∣∣∣ ≤ ε(n) (2)

Since O satisfies the security of VBB in the ideal model, we have that, there is
a simulator S for the adversary AI in the ideal model such that:∣∣Pr[AI(B) = 1]− Pr[SC(1n) = 1]

∣∣ ≤ negl(n) (3)

Now let Ŝ be a VBB simulator for Â. Combining this with Equations 1 and 2,
and given that ε(n) is a negligible function, we find that Ô is also VBB-secure
using the same simulator S.



3 Impossibility of VBB in Generic Algebraic Models

In this section we will formally state and prove our Theorems 1 and 2 for the
generic group and graded encoding models.

3.1 Preliminaries

We start by stating some basic group theoretic notation, facts, and definitions.
By Z we refer to the set of integers. By Zn we refer to the additive (or maybe
the ring) of integers modulo n. When G is an abelian group, we use + to denote
the operation in G. A semigroup (G,�) consists of any set G and an associative
binary operation � over G.

Definition 6. For semi-groups (G1,�1), . . . , (Gk,�1), by the direct product semi-
group (G,�) = (G1×· · ·×Gk,�1×· · ·×�k) we refer to the group in which for g =
(g1, . . . , gk) ∈ G, h = (h1, . . . , hk) ∈ G we define g�h = (g1�1 h1, . . . , gk�k h1).
If Gi’s are groups, their direct product is also a group.

The following is the fundamental theorem of finitely generated abelian groups
restricted to case of finite abelian groups.

Theorem 7 (Characterization of Finite Abelian Groups). Any finite
abelian group G is isomorphic to some group Zpα1

1
× · · · × Zpαdd in which pi’s

are (not necessarily distinct) primes and Zpαii is the additive group mod pαii .

Definition 8 (Integer vs in-group multiplication for abelian groups).
For integer a ∈ Z and g ∈ G where G is any finite abelian group by a ·g we mean
adding g by itself |a| times and negating it if a < 0. Now let g, h ∈ G both be
from abelian group G and let G = Zpα1

1
×· · ·×Zpαdd where pi’s are primes. If not

specified otherwise, by g · h we mean the multiplication of g, h in G interpreted
as the multiplicative semigroup that is the direct product of the multiplicative
semigroups of Zpαii ’s for i ∈ [d] (where the multiplications in Zpαii are mod pαii ).

Lemma 9 (Mapping integers to abelian groups). Let G = Zpα1
1
× · · · ×

Zpαdd . Define ρG : Z 7→ G as ρG(a) = (a1, . . . , ad) ∈ G where ai = a mod pαii ∈
Zpαii . Also for a = (a1, . . . , ak) ∈ Zk define ρG(a) = (ρG(a1), . . . , ρG(ak)). Then

for any a ∈ Z and g ∈ G = Zpα1
1
× · · · × Zpαdd it still holds that a · g = ρG(a) · g

where the first multiplication is done according to Definition 8, and the second
multiplication is done in G. More generally, if a = (a1, . . . , ak) ∈ Zk, and g =
(g1, . . . , gk) ∈ G, then

∑
i∈[k] aigi = 〈a,g〉 = 〈ρG(a),g〉.

3.2 Generic Group Model

We start by formally defining the generic group model.



Definition 10 (Generic Group Model [Sho97]). Let (G,�) be any group of
size N and let S be any set of size at least N . The generic group oracle I[G 7→ S]
(or simply I) is as follows. At first an injective random function σ : G 7→ S is
chosen, and two type of queries are answered as follows.

– Type 1: Labeling Queries. Given g ∈ G oracle returns σ(g).
– Type 2: Addition Queries. Given y1, y2, if there exists x1, x2 such that
σ(x1) = y1 and σ(x2) = y2, it returns σ(x1 � x2). Otherwise it returns ⊥.

Definition 11. [Generic Algorithms in Generic Group Model] Let AI be an
algorithm (or a set of interactive algorithms A = {A1, A2, . . .}) accessing the
generic group oracle I[G 7→ S]. We call AI generic if it never asks any query
(of the second type) that is answered as ⊥. Namely, only queries are asked for
which the labels are previously obtained.

Remark 12 (Family of Groups). A more general definition allows generic oracle
access to a family of groups {G1, G2, . . .} in which the oracle access to each
group is provided separately when the index i of Gi is also specified as part of
the query and the size of the group Gi is known to the parties. Our negative
result of Section 3 directly extends to this model as well. We use the above
“single-group” definition for sake of simplicity.

Remark 13 (Stateful vs Stateless Oracles and the Multi-Party Setting). Note that
in the above definition we used a stateless oracle to define the generic group
oracle, and we separated the generic nature of the oracle itself from how it is
used by an algorithm AI . In previous work (e.g., Shoup’s original definition
[Sho97]) a stateful oracle is used such that: it will answer addition queries only
if the two labels are already obtained before.6

Note that for “one party” settings in which AI is a single algorithm, AI

“knows” the labels that it has already obtained from the oracle I, and so w.l.o.g.
AI would never ask any addition queries unless it has previously obtained the
labels itself. However, in the multi-party setting, a party might not know the set
of labels obtained by other parties. A stateful oracle in this case might reveal
some information about other parties’ oracle queries if the oracle does not an-
swer a query (y1, y1) (by returning ⊥) just because the labels for y1, y2 are not
obtained so far.

Remark 14 (Equivalence of Two Models for Sparse Encodings). If the encoding
of G is sparse in the sense that |S|/|G| = nω(1) where n is the security parameter,
then the probability that any party could query a correct label before it being
returned by oracle through a labeling (type 1) query is indeed negligible. So
in this case any algorithm (or set of interactive algorithms) AI would have a
behavior that is statistically close to a generic algorithm that would never ask
a label in an addition query unless that label is previously obtained from the
oracle. Therefore, if |S|/|G| = nω(1), we can consider AI to be an arbitrary
algorithm (or set of interactive algorithms) in the generic group model I. The

6 So the oracle might return ⊥ even if the two labels are in the range of σ(G).



execution of A would be statistically close to a “generic execution” in which AI

never asks any label before obtaining it.

In light of Remarks 13 and 14, for simplicity of the exposition we will always
assume that the encoding is sparse |S|/|G| = nω(1) and so all the generic group
model are automatically (statistically close to being) generic.

Theorem 15 (Theorem 1 Formalized). Let G be any abelian group of size
at most 2poly(n). Let O be an obfuscator in the generic group model I[G 7→ S]
where the obfuscation of any circuit followed by execution of the obfuscated code
(jointly) form a generic algorithm. If O is an ε-approximate VBB obfuscator
in the generic group model I[G 7→ S] for poly-size circuits, then for any δ =

1/ poly(n) there exists an (ε + δ)-approximate VBB obfuscator Ô for poly-size
circuits in the plain model.

Remark 16 (Size of G). Note that if a poly(n)-time algorithm accesses (the
labels of the elements of) some group G, it implicitly means that G is at most
of exp(n) size so that its elements could be names with poly(n) bit strings. We
chose, however, to explicitly mention this size requirement |G| ≤ 2poly(n) since
this upper bound plays a crucial role in our proof for general abelian groups
compared to the special case of finite fields.

Remark 17 (Sparse Encodings). If we assume a sparse encoding i.e., |S|/|G| =
nω(1) (as e.g., is the case in [Pas15] and almost all prior work in generic group
model) in Theorem 15 we no longer need to explicitly assume that the obfusca-
tion followed by execution of obfuscated code are in generic form; see Remark 14.

Since [BP13] showed that (assuming TDPs) there is no (1/2 − 1/ poly)-
approximate VBB obfuscator in the plain-model for general circuits, the fol-
lowing corollary is obtained by taking δ = ε/2.

Corollary 18. If TDPs exist, then there exists no (1/2− ε)-approximate VBB
obfuscator O for general circuits in the generic group model for any ε = 1/ poly(n),
any finite abelian group G and any label set S of sufficiently large size |S|/|G| =
nω(1). The result would hold for labeling sets S of arbitrary size if the execution
of the obfuscator O followed by the execution of the obfuscated circuit O(C) form
a generic algorithm.

Now we formally prove Theorem 15. We will first describe the algorithm of
the obfuscator in the plain model, and then will analyze its properties.

Notation and w.l.o.g. assumptions. Using Theorem 7 w.l.o.g. we assume that our
abelian group G is isomorphic to the additive direct product group Zpα1

1
× · · · ×

Zpαdd where pi’s are prime. Let ei ∈ G be the vector that is 1 in the i’th coordinate

and zero elsewhere. Note that {e1, . . . , ek} generates G. We can always assume
that the first d labels obtained by O are the labels of e1, . . . , ed and these labels
are explicitly passed to the obfuscated circuit B = O(C). Let k = poly(n) be an



upper bound on the running time of the obfuscator O for input C which in turn
upper bounds the number of labels obtained during the obfuscation (including
the the d labels for e1, . . . , ed). We also assume w.l.o.g. that the obfuscated code
never asks any type one (i.e., labeling) oracle queries since it can use the label
for e1, . . . , ed to obtain labels of any arbitrary g = a1e1 + · · · + aded using a
polynomial number of addition (i.e., type two) oracle queries. For σ(g) = s,
a ∈ Z, and t = σ(a · g) we abuse the notation and denote a · s = t.

The Construction Even though the output of the obfuscator is always an
actual circuit, we find it easier to first describe how the obfuscator Ô generates
some “data” B̂, and then we will describe how to use B̂ to execute the new
obfuscated circuit in the plain model. For simplicity we use B̂ to denote the
obfuscated circuit.

How to Obfuscate

The new obfuscator Ô. The new obfuscator Ô uses lazy evaluation to simulate
the labeling σ(·) oracle. For this goal, it holds a set Qσ of the generated labels.
For any new labeling query g ∈ G if σ(g) = s is already generated it returns s.
Otherwise it chooses an unused label s from S uniformly at random and adds
the mapping (g → s) to Qσ and returns s. For an addition query (s1, s2) it first
finds g1, g2 such that σ(g1) = s1 an σ(g2) = s2 (which exist since the algorithm

that calls the oracle is in generic form) and gets g = g1 + g2. Now Ô proceeds

as if g is asked as a labeling query and returns the answer. The exact steps of Ô
are as follows.

1. Emulating obfuscation. Ô emulates OI(C) to get circuit B.
2. Learning phase 1 (heavy queries): Set QB = ∅. For i ∈ [d] let ti = σ(ei) be

the label of ei ∈ G which is explicitly passed to B by the obfuscator O(C)
and T = (t1, . . . , td) at the beginning. The length of the sequence T would
increase during the steps below but will never exceed k. Choose m at random
from ` = [d3 · k · log(|G|)/δe]. For i = 1, . . . ,m do the following:
– Choose xi as a random input for B. Emulate the execution of B on xi

using the (growing) set Qσ of partial labeling for the lazy evaluation of
labels. Note that as we said above, w.l.o.g. B only asks addition (i.e.,
type two) oracle queries. Suppose B (executed on xi) needs to answer
an addition query (s1, s2). If either of the labels u = s1 or u = s2 is
not already obtained during the learning phase 1 (which means it was
obtained during the initial obfuscation phase) append u to the sequence
T of discovered labels by T := (T, u). Using induction, it can be shown
that for any addition query asked during learning phase 1, at the time
of being asked, we would know that the answer to this query will be of
the form

∑
i∈[k] ai · ti for integers ai. Before seeing why this is the case,

let ai = (ai,1, . . . , ai,k) be the vector of integer coefficients (of the labels
t1, t2, . . . ) for the answer s that is returned to the i’th query of learning



phase 1. We add (ai → s) to QB for the returned label. To see why such
vectors exist, let (s1, s2) be an addition query asked during this phase,
and let s ∈ {s1, s2}. If the label s is obtained previously during learning
phase 1, then the linear form s =

∑
i∈[k] ai · ti is already stored in QB .

On the other hand, if s is a new label discovered during an addition (i.e.,
type two) oracle query which just made T = (t1, . . . , tj−1, tj = s) have
length j, then s = ai · ti for aj = 1. Finally, if the linear forms for both
of (s1, s2) in an addition oracle query are known, the linear form for the
answer s to this query would be the summation of these vectors.7

3. Learning phase 2 (zero vectors): This step does not involve executing B
anymore and only generates a set W = W (QB) ⊆ Gk of polynomial size. At
the beginning of this learning phase let W = ∅. Then for all (a1 → s1) ∈ QB
and (a2 → s2) ∈ QB , if s1 = s2, let a = a1− a2, and add ρG(a) to W where
ρG(a) is defined in Lemma 9.

4. The output of the obfuscation algorithm will be B̂ = (B,QB ,W, T, r) where
T is the current sequence of discovered labels (t1, t2, . . . ) as described in
Lemma 9, and r is a sufficiently large sequence of random bits that will be
used as needed when we run the obfuscated code B̂ = (B,QB ,W, T, r) in
the plain model.8

How to Execute In this section we describe how to execute B̂ on an input x
using (B,QB ,W, T, r).

9 Before describing how to execute the obfuscated code,
we need to define the following algebraic problem.

Definition 19. [Integer Solutions to Linear Equations over Abelian Groups (iLEAG)]
Let G be a finite abelian group. Suppose we are given G (e.g., by describing its
decomposition factors according to Theorem 7) an n × k matrix A with compo-
nents from G and a vector b ∈ Gk. We want to find an integer vector x ∈ Zn
such that xA = b.

Remark 20 (Integer vs. Ring Solutions). Suppose instead of searching for an
integer vector solution x ∈ Zn we would ask to find x ∈ Gn and define multi-
plication in G according to Definition 8 and call this problem G-LEAG. Then
any solution to iLEAG can be directly turned into a solution for G-LEAG by

7 Note that although the sequence T grows as we proceed in learning phase 1, we
already now that this sequence will not have length more than d since all of these
labels that are discovered while executing the obfuscated code has to be generated by
the obfuscator, due to the assumption that the sequential execution of the obfuscator
followed by the obfuscated code is in generic form. Therefore we can always consider
ai to be of dimension k.

8 Note that even though W (QB) could always be derived from QB , and even T could
be derived from an ordered variant of QB (in which the order in which QB has grown
is preserved) we still choose to explicitly represent these elements in the obfuscated

B̂ to ease the description of the execution of B̂.
9 Note that we do not have access to the set Qσ that was used for consistent lazy

evaluation of σ(·).



mapping any integer coordinate xi of x into G by mapping ρG(xi) of Lemma 9.
The converse is true also for G = Zn, since any g ∈ Zn is also in Z and it holds
that ρG(g) = g ∈ G. However, the converse is not true in general for general
abelian groups, since there could be members of G that are not in the range of
ρG(Z). For example let G = Zp2 × Zp for prime p > 2 and let g = (2, 1). Note
that there is no integer a such that a mod p2 = 2 but a mod p = 1.

Executing B̂. The execution of B̂ = (B,QB ,W, T, r) on x will be done identically
to to the “next” execution during the learning phase 1 of the obfuscation (as if
x is the (m+ 1)’st execution of this learning phase) and even the sets QB ,W =
W (QB) will grow as the execution proceeds, with the only difference described
as follows.10 Suppose we want to answer an addition (i.e., type two) oracle query
(s1, s2) where for b = {1, 2} we inductively know that sb =

∑
i∈[k] ab,i · ti. For

b = {1, 2} let ab = (ab,1, . . . , ab,k) and let a = a1 + a2.

– Do the following for all (b→ s) ∈ QB . Let c = a−b and let c = ρG(c) ∈ Gk
as defined in Lemma 9. Let A be a matrix whose rows consists of all vectors
in W . Run the polynomial time algorithm of Theorem ?? to see if there is
any integer solution v for vA = c as an instance of the iLEAG problem
defined in Definition 19. If an integer solution v exists, then return s as the
result (recall (b→ s) ∈ QB), break the loop, and continue the execution of

B̂. If the loop ended and no such (b→ s) ∈ QB was found, choose a random
label s not in QB as the answer, add (a→ s) to QB and continue.

Completeness and the Soundness In this section we prove the completeness
and soundness of the construction of Section 3.2.

Size of S. In the analysis below, we will assume w.l.o.g. that the set of labels
S has superpolynomial size |S| = nω(1). This would immediately hold if the
labeing of G is sparse, since it would mean even |S|/|G| ≥ nω(1). Even if the
labeling is not sparse, we will show that w.l.o.g. we can assume that G itself
has super-polynomial size (which means that S will be so too). That is because
otherwise all the labels in G can be obtained by the obfuscator, the obfuscated
code, and the adversary and we will be back to the plain model. More formally,
for this case Theorem 15 could be proved through a trivial construction in which
the new obfuscator simply generates all the labels of G and plants all of them
in the obfuscated code and they will be used by the obfuscated algorithm. More
precisely, when the size of G (as a function of security parameter n) is neither of
polynomial size |G| = nO(1) nor super-polynomial size |G| = nω(1) we can still
choose a sufficiently large polynomial γ(n) and generate all labels of G when
|G| < γ(n), and otherwise use the obfuscation of Section 3.2.

10 We even allow new labels ti to be discovered during this execution to be appended
to T , even though that would indirectly lead to an abort!



Completeness: approximate functionality. Here we prove the the following claim.

Claim. Let B̂ = (B,QB ,W, T, r) be the output of the obfuscator Ô given input

circuit C with input length α. If we run B̂ over a random input according to the
algorithm described in Section 3.2, then it holds that

Pr
x←{0,1}α,B̂←Ô(C)

[
B̂(x) 6= C(x)

]
≤ Pr
x←{0,1}α,B←OI[G7→S](C)

[
BI[G 7→S](x) 6= C(x)

]
+δ

over the randomness of I[G 7→ S], random choice of x and the randomness of
the obfuscators.

Proof. As a mental experiment, suppose we let the learning phase 1 always runs
for exactly `+1 = 1+[d3 ·k · log(|G|)/δe] rounds but only derive the components
(QB ,W (QB), T ) based on the first m executions. Now, let xi be the random
input used in the i’th execution and yi be the output of the i’th emulation
execution the learning phase 1. Since all the executions of the learning phase 1
are perfect simulations, for every i ∈ [`], and in particular i = m, it holds that

Pr[BI[G 7→S](x) 6= C(x)] = Pr[yi 6= C(x)]

where probability is over the choice of inputs x, xi as well as all other randomness
in the system. Thus, to prove claim 3.2 it will suffice to prove that

|Pr[yi 6= C(x)]− Pr[B̂(xi) 6= C(x)]| < δ.

We will indeed do so by bounding the statistical distance between the execution
of B̂ vs the m + 1’st execution of the learning phase 1 over the same input xi.
Here we will rely on the fact that m is chosen at random from [`].

Claim. For random [`] the statistical distance between the m+ 1’st execution of

the learning phase 1 (which we call B′) and the execution of B̂ over the same
input xi is ≤ 2δ/3 + negl(n).

To prove the above claim we will define three type of bad events over a joint
execution of B′ = Bm+1 and B̂ when they are done concurrently and using the
same random tapes (and even the input xi). We will then show that (1) as long
as these bad events do not happen the two executions proceed identically, and
(2) the total probability of these bad events is at most 2δ/3 + negl(n). In the

following we suppose that the executions of B′ and B̂ (over the same random
input) has proceeded identically so far. Suppose we want to answer an addition
(i.e., type two) oracle query (s1, s2) where for b = {1, 2} we inductively know
that sb =

∑
i∈[k] ab,i · ti. Several things could happen:

– If the execution of B̂ finds (b→ s) ∈ QB such that when we take c = a−b
and let c = ρG(c) ∈ Gk and let A be a matrix whose rows are vectors in (the
current) W , there is an integer solution v to the iLEAG instance vA = c.

If this happens the execution of B̂ will use b as the answer. We claim that



this is the “correct” answer as B′ would also use the same answer. This is
because by the definition of W and Lemma 9 for all w ∈ W it holds that
w = (w1, . . . , wk) is a “zero vector in Gk” in the sense that summing the
(currently discovered labels in) T with coefficients w1, . . . , wk (and multipli-
cation defined according to Definition 8) will be zero. As a result, vA = c
which is a linear combination of vectors in W with integer coefficients will
also be a zero vector. Finally, by another application of Lemma 9 it holds
that (c1, . . . , ck) = c = a−b is a “zero vector in Zk in the sense that summing
the (currently discovered labels in) T with integer coefficients c1, . . . , ck (and
multiplication defined according to Definition 8) will also be zero. Therefore
the answer to the query defined by vector a is equal to the answer defined
by vector b which is s.

– If the above does not happen (and no such (b → s) ∈ QB is found) then
either of the following happens. Suppose the answer returned for (s1, s2) in
execution of B′ is s′:

• Bad event E1: s
′ is equal to one of the labels in QB . Note that in this

case the executions will diverge because B̂ will choose a random label.
• Bad event E2: s

′ is equal to one of the labels discovered in the emulation
of OI(C) (but not present in the current QB).

• Bad event E3: s
′ is a new label, but the label chosen by B̂ is one of

the labels used in the emulation of OI(C). (Note that in this case the

execution of B̂ will not use any previously used labels in QB .

It is easy to see that as long as none of the events E1, E2, E3 happen, the exe-
cution of B′ and B̂ proceeds statistically the same. Therefore, to prove Claim 3.2
and so Claim 3.2 it is sufficient to bound the probability of the events E1, E2, E3

as we do below.

Claim. Pr[E3] < negl(n).

Proof. This is because (as we described at the beginning of this subsection above)
the size of S is nω(1) but the number of labels discovered in the obfuscation phase
is at most k = poly(n). Therefore the probability that a random label from S
after excluding labels in QB (which is also of polynomial size) hits one of at most
k possible labels is ≤ k/(|S| − |QB |) = negl(n). Therefore, the probability that

E3 happens for any of the oracle quries in the execution of B̂ is also negl(n).

Claim. Pr[E2] < δ/(3 log |G|) < δ/3.

Proof. We will prove this claim using the randomness of m ∈ [`]. Note that
every time that a label u is discovered in learning phase 1, this label u cannot be
discovered “again”, since it will be in QB from now on. Therefore, the number of
possible indexes of i ∈ [`] such that during the i’th execution of the learning phase
1 we discover a label out of QB is at most k. Therefore, over the randomness
of m← [`] the probability that the m+ 1’st execution discovers any new labels
(generated in the obfuscation phase) is at most k/` ≤ δ/(3 log |G|).

Claim. Pr[E1] < δ/3.



Proof. Call i ∈ [`] a bad index, if event E3 happens conditioned on m = i
during the execution of B′ (which is the (m+1)’s execution of learning phase 1).
Whenever E3 happens at any moment, it means that the vector c is not currently
in W (QB), but it will be added W just after this query is made. We will show
(Lemma 21 below) that the size of spanZ(W ) will at least double after this oracle
query for some set spanZ(W ) that depends on W and that spanZ(W ) ⊆ Gk, and
so |spanZ(W )| ≤ |G|k. As a result the number of bad indexes i will be at most
log |G|k = k log |G|. Therefore, over the randomness of m ∈ [`] the probability
that m+ 1 is a bad index is at most k log |G|/` ≤ δ/3

Lemma 21. Let W ⊆ Gk for some abelian group G. Let spanZ(W ) = {
∑

w∈W aww |
aw ∈ Z} be the module spanned by W using integer coefficients. If c 6∈ spanZ(W ),
then it holds that

|spanZ(W ∪ {c})| ≥ 2 · |spanZ(W )|.

Proof. Let A = spanZ(W ) and let B = {c + w | w ∈ spanZ(W )} be A shifted
by c. It holds that |A| = |B| and A ∪ B ⊂ spanZ(W ∪ {c}). It also holds that
A ∩ B = ∅, because otherwise then we would have: ∃i, j : w + c = w′ for
w,w′ ∈ spanZ(W ) which would mean c = w − w′ ∈ spanZ(W ) which is a
contradiction. Therefore |spanZ(W ∪ {c})| ≥ |A|+ |B| = 2 · |spanZ(W )|

Soundness: VBB Simulatability. To derive the soundness we apply Lemma 5 as
follows. O will be the obfuscator in the ideal model and Ô will be our obfuscator
in the plain model where z′ = QB ,W, T, r is the extra information output by Ô.
The algorithm U will be a similar algorithm to Ô but only during its learning
phase 1 and 2 starting from an already obfuscated B. However, U will continue
generating z′ using the actual oracle I[G 7→ S] instead of inventing the answers
through lazy evaluation. Since the emulation of the oracle during the learning
phases, and that all of QB ,W, T,R could be obtained by only having B (and no
secret information about the obfuscation phase are not needed) the algorithm U
also has the properties needed for Lemma 5.

Remark 22 (General abelian vs Zn.). Note that when G = Zn is cyclic, the
mapping ρG : Z 7→ G of Lemma 9 will be equivalent to simply mapping every
a ∈ Z to (a mod n) ∈ G. Therefore, Definition 8 generalizes the notion of
Zn as a ring to general abelian groups, since the multiplication x · y mod n
in Zn is the same as a multiplication in which x is interpreted from Z (as in
Definition 8) which is equivalent to doing the multiplication inside G according
to by Lemma 9.

3.3 Degree-O(1) Graded Encoding Model

We adapt the following definition from [Pas15] restricted to the degree-d poly-
nomials. For simplicity, as in [Pas15] we also restrict ourselves to the setting
in which only the obfuscator generates labels and the obfuscated code only
does zero tests, but the proof directly extends to the more general setting of
[BGK+14,BR14]. We also use only one finite ring R in the oracle (whose size



could in fact depend on the security parameter) but our impossibility result
extends to any sequence of finite rings as well.

Definition 23 (Degree-d Ideal Graded Encoding Model). The oracleMd
R =

(enc, zero) is stateful and is parameterized by a ring R and a degree d and works
in two phases. For each l ∈ [d], the oracle enc(·, l) is a random injective function
from the ring R to the set of labels S = {0, 1}3·|R|.

1. Initialization phase: In this phase the oracle answers enc(v, l) queries and
for each query it stores (v, l, h) in a list LO.

2. Zero testing phase: Suppose p(·) is a polynomial whose coefficients are explic-
itly represented in R and its monomials are represented with labels h1, . . . , hm
obtained through enc(·, ·) oracle in phase 1. Given any such query p(·) the
oracle answers as follows:

(a) If any hi is not in LO (i.e., it is not obtained in phase 1) return false.
(b) If the degree of p(·) is more than d then return false.
(c) Let (vi, li, hi) ∈ LO. If p(v1, . . . , vm) = 0 return true; otherwise false.

Remark 24. Remarks 13 and 14 regarding the stateful vs stateless oracles and
the sparsity of the encoding in the context of generic group model apply to
the graded encoding model as well. Therefore, as long as the encoding is sparse
(which is the case in the definition above whenever |R| is of size nω(1)) the
probability of obtaining any valid label h = enc(v, l) through any polynomial
time algorithm without it being obtained from the oracle previously (by the
same party or another party) becomes negligible, and so the model remains
essentially equivalent (up to negligible error) even if the oracle does not keep
track of which labels are obtained previously through LO.

We prove the following theorem generalizing a similar result by Pass and
shelat [Pas15] who proved this for any finite field; here we prove the theorem for
any finite ring.

Theorem 25. Let R be any ring of size at most 2poly(n). Let O be any ε-
approximate VBB obfuscator for general circuits in the ideal degree-d graded
encoding model Md

R for d = O(1) where the initialization phase of Md
R happens

during the obfuscation phase. Then for any δ = 1/ poly(n) there is an (ε + δ)-

approximate obfuscator Ô for poly-size circuits in the plain model.

See Section 3.3 for the proof of Theorem 25. As in previous sections, the
following corollary is obtained from Theorem 25 by taking δ = ε/2.

Corollary 26. If TDPs exist, then there exists no (1/2− ε)-approximate VBB
obfuscator O for general circuits in the ideal degree-d graded encoding model
Md

R for any finite ring R of at most exponential size |R| ≤ 2poly(n) and any
constant degree d, assuming the initialization phase of Md

R happens during the
obfuscation phase.



[Pas15] state their theorem in a more general model where a sequence of
fields of growing size are accessed. For simplicity, we state a simplified variant
for simplicity of presentation where only one ring is accessed but we let the size
of ring R to depend on the security parameter n. Our proof follows the footsteps
of [Pas15] but will deviate from their approach when R 6= Zp by using some of
the ideas employed in Section 3.

Proving Theorem 25 Here we sketch the proof assuming the reader is familiar
with the proof of Theorem 15 from previous section. The high level structure of
the proof remains the same.

Construction. The new obfuscator Ô will have these phases:

– Emulating obfuscation. Ô emulates OM
d
R(C) to get circuit B.

– Learning heavy subspace of space of zero vectors: The learning phase here
will be rather simpler than those of Section 3.2 and will be just one phase.
Here we repeat the learning phase m times where m is chosen at random
from ` = [dk · log(|G|)/δe]. The variables W and T will be the same as in
Section 3.2 with the difference that W will consist of the vector of coefficients
for all polynomials whose zero test answer is true.

– The returned obfuscated code will be B̂ = (B,W, T, r) where r is again the
randomness needed to run the obfuscated code.

– Executing B̂. To execute B̂ on input x, we answer zero test queries as follows.
For any query vector (of coefficients) a we test whether a ∈ spanZ(W ).11 If
a ∈ spanZ(W ) then return true, otherwise return false.

Completeness and Soundness.

– The completeness follows from the same argument given for the soundness
of Construction 3.2. Namely, the execution of B̂ is identical to the execution
of the m+ 1’s learning phase (as if it exists) up to a point where we return
a wrong false answer to an answer that is indeed a zero polynomial. (Note
that the converse never happens). However, when such event is about to
happen, the size of spanZ(W ) will double. Since the size of spanZ(W ) is at
most |R|k, if we choose m at random from [`] the probability of the bad event
(of returning a wrong false in m+ 1’st execution) is at most k log |R|/` = δ.

– The soundness follows from Lemma 5 similarly to the way we proved the
soundness of the construction of Section 3.2.

Extension to avoid initialization. In Theorem 25 we have a restriction which
says that the initialization phase must happen during the obfuscation phase
only. We can extend the proof of Theorem 25 to the case that we don’t have this
restriction. This entails allowing the obfuscator O and the obfuscated circuit

11 Note that we do not solve a system of equations in R and rather search only integer
solutions to xW = a as we did in Section 3.2.



B to ask any type of query (be it initialization phase queries or zero-testing
queries) during their execution. The reason that we can avoid this restriction
is that, whenever the obfuscated circuit B asks an initialization phase query
enc(v, l), we can treat it as a polynomial containing v. enc(1, l) and using that
we can find out whether we should answer this query randomly or using one of
the previous labels. This is very similar to the method that we employed in the
learning and execution phases of generic group model case.

Claim. Let R be any ring of size at most 2poly(n). Let O be any ε-approximate
VBB obfuscator for general circuits in the ideal degree-d graded encoding model
Md

R for d = O(1), Then for any δ = 1/poly(n) there is an (ε+ δ)-approximate

obfuscator Ô for poly-size circuits in the plain model.

Proof. Suppose that obfuscated circuit is B, and let {hi = enc(vi, li)}n1 be the
obfuscator’s queries. We already know that n is less than the running time of
obfuscator. We might learn some pair of (hi, vi) during the learning phase.

Construction. The new ε-approximate obfuscator Ô will have these phases:

– Emulating obfuscation. same as previous case.
– Learning obfuscator’s queries and heavy subspace of space of zero vectors:

We do exactly what we did in previous learning phase. Also if obfuscated
circuit asked initialization phase queries, we memorize it.

– The returned obfuscated code will be B̂ = (B,W, T, r) where r is again the
randomness needed to run the obfuscated code.

– Executing B̂. To execute B̂ on input x, we do as follows. If we saw query
enc(v, l): First we check, if we memorized query enc(v, l) before, we answer it
using memorized queries list otherwise we answer it randomly. Also we treat
enc(v, l) as a polynomial v.enc(1, l). We answer zero test queries as follows.
For any query vector (of coefficients) a we test whether a ∈ spanZ(W ).12 If
a ∈ spanZ(W ), return true, otherwise return false.

Completeness and Soundness.

– The proof of completeness is same as previous case. The only difference
is that here we need to be sure that we answer initialization phase query
correctly (call it event E). Let ji be the index such that we saw the query
enc(vi, li) for the first time. E happens if we hit one of the index ji. Since
we chose m at random, we can always bound pr(E) by choosing the right l.

– The soundness is same as previous case.

Remark 27. Note that our proof of Theorem 25 does not assume any property
for the multiplication (even the associativity!) other than assuming that it is
distributive. Distributivity is needed by the proof since we need to be able to
conclude that the summation of the vectors of the coefficients of two zero poly-
nomials is also the vector of the coefficients of a zero polynomial; the latter is
implied by distributivity.
12 Note that we do not solve a system of equations in R and rather search only integer

solutions to xW = a as we did in Section 3.2.



4 Impossibility of VBB in the Random TDP Model

In this section we formally prove Theorem 3 showing that any obfuscator O with
access to a random trapdoor permutation oracle T can be transformed into a
new obfuscator Ô in the plain model (no access to an ideal oracle) with some
loss in correctness. We start by defining the random trapdoor permutation model
and TDP query tuples followed by the formalization of Theorem 3.

Definition 28 (Random Trapdoor Permutation). For any security param-
eter n, a random trapdoor permutation (TDP) oracle Tn consists of three sub-
routines (G,F, F−1) as follows:

– G(·) is a random permutation over {0, 1}n mapping trapdoors sk to a public
indexes pk.

– F [pk](x): For any fixed public index pk, F [pk](·) is a random permutation
over {0, 1}n.

– F−1[sk](y): For any fixed trapdoor sk such that G(sk) = pk, F−1[sk](·) is
the inverse permutation of F [pk](·), namely F−1[sk](F [pk](x)) = x.

Definition 29 (TDP query tuple). Given a random TDP oracle Tn = (G,F, F−1),
a TDP query tuple consists of three query-answer pairs (VG, VF , VF−1) where:

– VG = (sk, pk) represents a query to G on input sk and its corresponding
answer pk

– VF = ((pk, x), y) represents a query to F [pk] on input x and its corresponding
answer y

– VF−1 = ((sk, y), x′) represents a query to F−1[sk] on y and its corresponding
answer x′

We say that a TDP query tuple (VG, VF , VF−1) is consistent if x = x′.

Definition 30 (Partial TDP query tuple). A partial TDP query tuple is
one where one or more of the elements of the tuple are unknown and we denote
the missing elements with a period. For example, we say a query set Q contains
a TDP query tuple (·, VF , ·) if it contains the query-answer pair VF = ((pk, x), y)
but is missing the query-answer pairs VG = (sk, pk) and VF−1 = ((sk, y), x′).

Theorem 31 (Theorem 3 formalized). Let O be an ε-approximate obfus-
cator for poly-size circuits in the random TDP oracle model. Then, for any
δ = 1/ poly(n), there exists an (ε + δ)-approximate obfuscator Ô in the plain
model for poly-size circuits.

Before proving Theorem 31, we state a corollary of this theorem to rule out
approximate VBB obfuscation in the ideal TDP model. Since [BP13] showed
that assuming TDPs exist, (1/2 − 1/ poly)-approximate VBB obfuscator does
not exist for general circuits, we obtain the following corollary by taking δ = ε/2.

Corollary 32. If TDPs exist, then there exists no (1/2− ε)-approximate VBB
obfuscator O for general circuits in the ideal random TDP model for any ε =
1/ poly(n).



The proof of Theorem 31 now follows in the next two sections. We will first
describe the algorithm of the obfuscator in the plain model, and then will analyze
its completeness and soundness.

4.1 The Construction

We first describe how the new obfuscator Ô generates some data B̂, and then
we will show how to use B̂ to run the new obfuscated circuit in the plain model.
We also let lO, lB = poly(n), respectively, be the number of queries asked by the
obfuscator O and the obfuscated code B to the random trapdoor permutation
oracle T . Note that, for simplicity of exposition, we assume the adversary only
asks the oracle for queries of size n (i.e. the domain of the permutations in T
are of fixed size n). However, as mentioned in Section 1.2, we can easily extend
the argument to handle O(log(n))-size or ω(log(n))-size queries to T .

How to Obfuscate

The new obfuscator Ô in plain model. Given an ε-approximate obfuscator O in
the random TDP model, we construct a plain-model obfuscator Ô such that,
given a circuit C ∈ {0, 1}n, works as follows:

1. Emulation phase: Emulate OT (C). Let QO represent the set of queries asked
by OT and their corresponding answers. We initialize QO = ∅. For every
query q asked by OT (C), we would answer the query uniformly at random
conditioned on the answers to previous queries.

2. Canonicalize B: Let the obfuscated circuit B be the output of O(C). Modify
B so that, before asking any query of the form F−1[sk](y), it would first ask
G(sk) to get some answer pk followed by F−1[sk](y) to get some answer x
then finally asks F [pk](x) to get the expected answer y.

3. Learning phase: Set QB = ∅. Let the number of iterations to run the learning
phase be m = 2lBlO/δ where lB ≤ |B| represents the number of queries
asked by B and lO ≤ |O| represents the number of queries asked by O. For
i = {1, ...,m}:
– Choose xi

$←− D|C|
– Run B(xi). For every query q asked by B(xi):
• If (q, a) ∈ QO ∪QB for some answer a, answer consistently with a
• Otherwise, answer q uniformly at random and conditioned on the

answers of previous related queries in QO ∪QB
• Let a be the answer to q. If (q, a) /∈ QB , add the pair (q, a) to QB

4. The output of the obfuscation algorithm will be B̂ = (B,QB , R) where
R = {r1, ..., r|B|} is a set of (unused) oracle answers that are generated
uniformly at random.

How to Execute To execute B̂ on an input x using (B,QB , R) we simply
emulate B(x). For every query q asked by B(x), if (q, a) ∈ QB for some a then
return a. Otherwise, answer randomly with one of the answers a in R and add
(q, a) to QB .



4.2 Completeness and Soundness

Completeness: Approximate functionality. Consider two separate experiments
(real and ideal) that construct the plain-model obfuscator exactly as described

in section 4.1 but differ when executing B̂. Specifically, in the real experiment,
B̂ emulates B(x) on a random input x using QB and R, whereas in the ideal

experiment, we execute B̂ and answer B(x)’s queries using the actual oracle
T instead. In essence, in the real experiment, we can think of the execution as

BT̂ (x) where T̂ is the TDP oracle simulated by B̂ using QB and R as the oracle’s
answers (without knowing QO, which is part of oracle T ). We will contrast the
real experiment with the ideal experiment and show that the statistical distance
between these two executions is at most δ. In order to achieve this, we will

identify the events that differentiate between the executions BT (x) and BT̂ (x),
and to that end we will make use of the following two lemmas:

Lemma 33 ([GKLM12]). Let B be a canonical oracle-aided algorithm that
asks t queries to a TDP oracle T . Let EG be the event that B asks a query of the
form VG = (sk, pk) after asking either query VF = ((pk, x), y) and/or VF−1 =
((sk, y), x) from the TDP query tuple (VG, VF , VF−1). Then Pr[EG] ≤ O(t2/2n).

Lemma 34 ([GKLM12]). Let B be an oracle-aided algorithm that asks t queries
to a TDP oracle T and let Q be the set of queries that B have issued. Then for
any new query x, the answer is either (1) determined completely by Q or (2) is
drawn from a distribution with a statistical distance of O(t/2n) away from the
uniform distribution.

Now let q be a new query that is being asked by BT̂ (x). We present a case-
by-case analysis of all possible queries to identify the cases that can cause dis-
crepancies between the real and ideal experiments:

– Case 1: If q is determined by the queries in QB in the real experiment then
it is also determined by QB in the ideal experiment.

– Case 2: If q is not determined by QB ∪QO in the ideal experiment then it is
also not determined by QB in the real experiment. In the ideal experiment
the query will be answered randomly and consistently with respect to QB ∪
QO whereas in the real experiment the query will be answered randomly and
consistently with respect to QB . By Lemma 34, the answers will be from a
distribution that is statistically close to uniform.

– Case 3: If q is not determined by QB in the real experiment then, depending
on the queries in QO, it may or may not be so the ideal experiment:
• Case 3a: The query q is in QO. In that case, in the real experiment, the

answer would be random whereas in the ideal experiment it would use
the correct answer from QO.

• Case 3b: The query q is of type VG = (sk, pk) and the corresponding
partial TDP query tuple (., VF , VF−1) is in QO

• Case 3c: The query q is of type VF = ((pk, x), y) and the corresponding
partial TDP query tuple (VG, ., VF−1) is in QO



• Case 3d: The query q is of type VF−1 = ((sk, y), x) and the correspond-
ing partial TDP query tuple (VG, VF , .) is in QO

• Case 3e: The query q is of type VF = ((pk, x), y) and VG = (sk, pk) is
in QB , but VF−1 = ((sk, y), x) is in QO

• Case 3f : The query q is of type VF−1 = ((sk, y), x) and VG = (sk, pk)
is in QB , but VF = ((pk, x), y) is in QO

• Case 3g: The query q is of type VF = ((pk, x), y) and VF−1 = ((sk, y), x)
is in QB , but VG = (sk, pk) is in QO

• Case 3h: The query q is of type VF−1 = ((sk, y), x) and VF = ((pk, x), y)
is in QB , but VG = (sk, pk) is in QO

We note that the bad events that can cause any differences between the real
and ideal experiments are case 2 and parts of case 3. For case 2, Lemma 34
ensures that this event happens with negligible probability. For case 3a, learning
heavy queries would diminish the effect of this event. For cases 3b, 3e, and 3f ,
Lemma 33 ensures that this event happens with negligible probability since VG
was issued after VF and/or VF−1 was asked. For cases 3c and 3d, the remaining
query from the tuple would have been defined in QO and is thus captured during
the learning of heavy queries. For case 3g, if VG and VF−1 were asked during
the emulation or learning phases, then VF would also be defined and thus can
be learned. However, if VF−1 was asked during the execution phase then, due
the canonicalization of B, it would have to ask VG ∈ QO which reduces to case
3a. Similarly, for case 3h, due the canonicalization of B, we would have to ask
VG ∈ QO and this reduces to case 3a once again.

For any x, define Ek(x) to be the event that case k happens and let event
E(x) = (E2(x) ∨ E3a(x) ∨ E3b(x) ∨ E3e(x) ∨ E3f (x)). Assuming that event E

does not happen, the output distributions of BT (x) and BT̂ (x) are identical.

More formally, the probability of correctness for Ô is:

Pr
x

[BT̂ (x) 6= C(x)] = Pr
x

[BT̂ (x) 6= C(x) ∧ ¬E(x)] + Pr
x

[BT̂ (x) 6= C(x) ∧ E1(x)]

≤ Pr
x

[BT̂ (x) 6= C(x) ∧ ¬E(x)] + Pr
x

[E(x)]

By the approximate functionality of O, we have that:

Pr
x

[OT (C)(x) 6= C(x)] = Pr
x

[BT (x) 6= C(x)] ≤ ε(n)

Therefore,

Pr
x

[BT̂ (x) 6= C(x) ∧ ¬E(x)] = Pr
x

[BT (x) 6= C(x) ∧ ¬E(x)] ≤ ε

We are thus left to show that Pr[E(x)] ≤ δ. By Lemma 34, Pr[E2(x)] ≤ negl(n)
and by Lemma 33, Pr[E3b ∨ E3e(x) ∨ E3f (x)] ≤ negl(n) via a union bound.
The probability of event E3a was already given in [CKP15], but for the sake of
completeness we show our version of the analysis here. As a result, we get that
Pr[E(x)] ≤ δ/2 + negl(n) ≤ δ.



Claim. It holds that Prx[E3a(x)] ≤ δ/2.

Proof. Let (q1, ..., qlB ) be the sequence of queries asked by BT̂ (x) where lB ≤ |B|,
and let qi,j be the jth query that is asked by BT (xi) during the ith iteration of

the learning phase. We define Ej3a(x) to be the event that the jth query of B(x)
is in QO but not in QB . We also define pq,j to be the probability that qj = q for
any query q and j ∈ [lB ]. We can then write the probability of E3a as follows:

Pr
x

[E3a(x)] ≤ Pr
x

[E1
3a(x) ∨ ... ∨ ElB3a (x)]

=

lB∑
j=1

Pr
x

[¬E1
3a(x) ∧ ... ∧ ¬Ej−13a (x) ∧ Ej3a(x)]

≤
lB∑
j=1

∑
q∈QO

Pr
x

[qj = q ∧ (q1,j 6= q ∧ ... ∧ qm,j 6= q)]

=

lB∑
j=1

∑
q∈QO

pq,j(1− pq,j)m ≤
lB∑
j=1

∑
q∈QO

1

m
≤

lB∑
j=1

lO
m

=
lBlO
m

.

Thus, given that m = 2lBlO/δ, we get Pr[E3a(x)] ≤ δ/2.

Soundness: VBB Simulatability. To show that the security property is satisfied,
it suffices to provide a PPT algorithm UT in the ideal TDP model that takes as
input OT (C) for some circuit C and outputs a distribution that is statistically

close to the output distribution of Ô. If that is the case, we can invoke Lemma 5
and conclude that Ô is also VBB-secure.

The description of U is precisely the same as Steps 2-4 of the procedure
detailed in Section 4.1 except that queries made by B = OT (C) are answered
using oracle T instead of being randomly simulated. If we let (B,QB , R) be the
output of UT (OT (C)) then we can easily see that it is identically distributed to

the output distribution of Ô since, in both cases, QB has query-answers with
consistent and random TDP query tuples. They differ only by how these query
answers are generated (UT answers them using T , while Ô simulates them using

lazy evaluation with respect to some oracle T̂ distributed the same as T ).

4.3 Extension to hierarchical random TDP

In this section, we reason that the proof for the ideal TDP case can be extended
to hierarchical TDP oracles as well. We start by defining how the oracle for the
random hierarchical trapdoor permutation primitive changes from Definition 28.

Definition 35 (Random Hierarchical Injective Trapdoor Functions).
For any security parameter n and l = poly(n), an l-level random hierarchi-
cal injective trapdoor function (HTDF) oracle T ln consists of 2l + 3 subroutines
({Ji}l+1

i=1, {Ki}l+1
i=0) defined as follows:



– Ki[IDi−2, idi−1](tdi): An injective function, indexed by identity vector IDi−2 =
(id0, ..., idi−2) and idi−1, that accepts as input an i-level trapdoor tdi ∈
{0, 1}m and outputs a randomly chosen identity idi ∈ {0, 1}n where m = 10nl
if i ∈ [1, l] and m = n (i.e. it is a permutation) if i = {0, l + 1}.

– Ji[IDi−2, tdi−1](idi): An injective function, indexed by identity vector IDi−2 =
(id0, ..., idi−2) and tdi−1 that, given the identity idi ∈ {0, 1}n, outputs the
corresponding trapdoor tdi ∈ {0, 1}m where m = 10nl if i ∈ [1, l] and m = n
(i.e. it is a permutation) if i = {0, l + 1}.

Note that, for any fixed IDi−2, if tdi = Ji[IDi−2, tdi−1](idi) and idi−1 =
Ki−1[IDi−3, idi−2](tdi−1) then idi = Ki[IDi−2, idi−1](tdi). In other words, we
can think of Ki as the inverse of Ji only if the indices of the two functions
match (that is, the trapdoor tdi−1 indexing Ji corresponds to the identity idi−1
indexing Ki).

Remark 36. It is also crucial to note that we used (sparse) injective functions for
generating the intermediate levels of trapdoor. Such a change was made in order
to obtain interesting primitives from this oracle, such as fully-secure hierarchical
identity-based encryption (HIBE). If permutations were used instead, we would
only achieve HIBE with security against adversaries that do not choose an iden-
tity for the permutation F to attack. Furthermore, removing Ki for i ∈ [1, l]
as a way to prevent this attack’s capability hinders our ability to perform the
canonicalization procedure for the obfuscated circuit.

Remark 37. For the special case of 1-level HTDF (i.e. TDP), we only have
three permutations: K0,K1[id0] and J1[td0], which correspond to permutations
G,F [pk], and F−1[sk], respectively in the language of TDP that we used in Def-
inition 28. Note that here, we would refer to 0-level identities as master public
keys and 0-level trapdoors as master secret keys.

We also present a variant of TDP query tuples that generalizes Definition 29 to
work with hierarchical injective trapdoor functions.

Definition 38 (HTDF query tuple). Given a random l-level HTDF oracle
T ln = ({Ji}l+1

i=1, {Ki}l+1
i=0), an i-level HTDF query tuple consists of three (possi-

bly) related query-answer pairs (VKi−1
, VKi , VJi) where, for any fixed IDi−2 =

(id0, ..., idi−2):

– VKi−1
= (tdi−1, idi−1) represents a query to Ki−1[IDi−3, idi−2] on input

tdi−1 and its corresponding answer idi−1
– VKi = ((idi−1, tdi), idi) represents a query to Ki[IDi−2, idi−1] on input tdi

and its corresponding answer idi
– VJi = ((tdi−1, idi), td

′
i) represents a query to Ji[IDi−2, tdi−1] on input idi

and its corresponding answer td′i

We say that an i-level HTDF query tuple is consistent if tdi = td′i.



Remark 39. For the purposes of comparison, we note that, for the special case of
1-level HTDF (i.e. TDP), we only have TDP query tuples of the form (VK0

, VK1
, VJ1) =

(VG, VF , V
−1
F ). Thus, VG = (sk, pk) represents a query to G on sk = td0 and the

answer pk = id0, VF = ((pk, x), y) represents a query to Fpk on x = td1 and the
answer y = id1, and VF−1 = ((sk, y), x′) represents a query to F−1sk on y and the
answer x′, which should be x if the tuple is consistent.

Extension of the proof. The extension of the impossibility result to random
HTDF is straightforward, so we will outline the main differences between the
TDP case and describe how to resolve the issues that are related to this oracle.
First, we still perform the normalisation procedure on Ô and B where the query
behaviour of these algorithms are modified such that for any query q of the
form Ji[IDi−2, tdi−1](idi), we first ask Ki−1[IDi−3, idi−2](tdi−1) to get idi−1.
This allows us to discover whether we have a query Ki[IDi−2, idi−1](tdi) whose
answer is idi, in which case we can answer q with tdi. This procedure ensures
that all query tuples that contain Ji queries are consistent.

We now turn to verifying whether the proof of approximate functionality
for TDP holds in this case as well and, in particular, focus on the event E(x)
that was defined Section 4.2. The main issue that we have to consider, which is
unique to the HTDF case, is the possibility that different consistent TDP query
tuples can be related to each other, and an overlap between these queries may
cause an inconsistency in one of the tuples. Specifically, an i-level TDP query
tuple of the form (VKi−1 , ·, ·) might overlap with an (i−1)-level TDP query tuple
(·, ·, VJi−1) from QO, where the answer of VKi−1 is inconsistent with that of VJi−1 .
However, our normalisation procedure prevents precisely this issue as any TDP
query tuple that contains VJi−1

must also have VKi−1
, which means that the

queries should not overlap otherwise event E1 occurs leading to a contradiction
to our initial assumption.

Acknowledgement. We thank Victor Shoup and Hendrik W. Lenstra
for pointing us out to the literature on solving linear equations over the ring Zn.

References

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit
Sahai, Salil Vadhan, and Ke Yang. On the (im) possibility of obfuscating
programs. In CRYPTO 2001, pages 1–18. Springer, 2001.

[BGK+13] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit
Sahai. Protecting obfuscation against algebraic attacks. IACR Cryptology
ePrint Archive, 2013:631, 2013.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit
Sahai. Protecting obfuscation against algebraic attacks. In Advances in
Cryptology–EUROCRYPT 2014, pages 221–238. Springer, 2014.

[BP13] Nir Bitansky and Omer Paneth. On the impossibility of approximate
obfuscation and applications to resettable cryptography. In Proceedings of
the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC
’13, pages 241–250, New York, NY, USA, 2013. ACM.



[BR14] Zvika Brakerski and Guy N Rothblum. Virtual black-box obfuscation for
all circuits via generic graded encoding. In Theory of Cryptography, pages
1–25. Springer, 2014.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide
all partial information. In Advances in CryptologyCRYPTO’97, pages 455–
469. Springer, 1997.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. J. ACM, 51(4):557–594, 2004.

[CKP15] Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On obfuscation with
random oracles. Cryptology ePrint Archive, Report 2015/048, 2015. http:
//eprint.iacr.org/.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps
from ideal lattices. In Eurocrypt, volume 7881, pages 1–17. Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Anant Sa-
hai, and Brent Waters. Candidate indistinguishability obfuscation and
functional encryption for all circuits. In Foundations of Computer Science
(FOCS), 2013 IEEE 54th Annual Symposium on, pages 40–49. IEEE, 2013.

[GKLM12] Vipul Goyal, Virendra Kumar, Satya Lokam, and Mohammad Mahmoody.
On black-box reductions between predicate encryption schemes. In Ronald
Cramer, editor, Theory of Cryptography, volume 7194 of Lecture Notes in
Computer Science, pages 440–457. Springer Berlin Heidelberg, 2012.

[HL02] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryp-
tion. In LarsR. Knudsen, editor, Advances in Cryptology EUROCRYPT
2002, volume 2332 of Lecture Notes in Computer Science, pages 466–481.
Springer Berlin Heidelberg, 2002.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In ACM Symposium on Theory of Com-
puting (STOC), pages 44–61. ACM Press, 1989.

[LPS04] Benjamin Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results
and techniques for obfuscation. In Advances in Cryptology-EUROCRYPT
2004, pages 20–39. Springer, 2004.

[McC90] Kevin S. McCurley. The discrete logarithm problem. In Proc. of the
AMS Symposia in Applied Mathematics: Computational Number Theory
and Cryptography, pages 49–74. American Mathematical Society, 1990.

[MMN+15] Mohammda Mahmoody, Ameer Mohammed, Soheil Nematihaji, Rafael
Pass, and abhi shelat. Lower bounds on assumptions behind indistin-
guishability obfuscation. In In Submission, 2015.

[Pas15] Rafael Pass and abhi shelat. Impossibility of vbb obfuscation with ideal
constant-degree graded encodings. Cryptology ePrint Archive, Report
2015/383, 2015. http://eprint.iacr.org/.

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility
between cryptographic primitives. In Theory of Cryptography, First Theory
of Cryptography Conference, TCC 2004, volume 2951 of Lecture Notes in
Computer Science, pages 1–20. Springer, 2004.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, Advances in Cryptology EUROCRYPT 97, volume
1233 of Lecture Notes in Computer Science, pages 256–266. Springer Berlin
Heidelberg, 1997.

[Wee05] Hoeteck Wee. On obfuscating point functions. In Proceedings of the thirty-
seventh annual ACM symposium on Theory of computing, pages 523–532.
ACM, 2005.


