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Abstract. A celebrated result by Barak et al. (Crypto’01) shows the im-
possibility of general-purpose virtual black-box (VBB) obfuscation in the
plain model. A recent work by Canetti, Kalai, and Paneth (TCC’15) ex-
tends this impossibility result to the random oracle model (assuming
trapdoor permutations).
In contrast, Brakerski-Rothblum (TCC’14) and Barak et al. (EuroCrypt’14)
show that in idealized graded encoding models, general-purpose VBB ob-
fuscation indeed is possible; these constructions require graded encoding
schemes that enable evaluating high-degree (polynomial in the size of the
circuit to be obfuscated) polynomials on encodings.
We show a complementary impossibility of general-purpose VBB obfus-
cation in idealized graded encoding models that enable only evaluation
of constant-degree polynomials (assuming trapdoor permutations).

1 Introduction

The goal of program obfuscation is to “scramble” a computer program in or-
der to hide its implementation details (making it hard to “reverse-engineer”)
while preserving its functionality (i.e, input/output behavior). The most de-
sirable notion of security—virtual black-box security (VBB) [BGI+01]—requires
that any bit of information an attacker can learn from the obfuscated code can
be simulated using only black-box access to the functionality.3 The celebrated
result of Barak et al. [BGI+01], however, demonstrates a strong impossibility
result regarding VBB obfuscation: they show the existence of families of func-
tions { fs} for which black-box access to fs (for a randomly chosen s) does not
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leak any advantage in guessing even a single bit of s, but the code of any pro-
gram that computes fs allows recovery of the entire secret s. The idea behind
their impossibility result is to consider a function fs that satisfies two prop-
erties 1) the function is not learnable (thus given black-box access to it, it is
hard to find a concise representation of it), but 2) on input a program Π that
computes the function fs, fs(Π) reveals some secret. The code of the obfus-
cated program is thus an input on which the function releases the secret, yet
the secret cannot be recovered using just black-box access to the function.

This impossibility result, however, only applies in the plain model in which
the obfuscated code is a standard circuit that does not make oracle calls to ex-
ternal functionalities (or else, we cannot feed this code as an input to the func-
tion). In contrast, Canetti and Vaikuntanathan [CV13] show an obfuscator for
NC1 circuits in an idealized composite-order group with special pseudo-free
properties. More recently, Brakerski and Rothblum [BR14] and Barak, Garg,
Kalai, Paneth and Sahai [BGK+

14], following the breakthrough obfuscation
construction of Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+

13b]4,
demonstrate VBB obfuscation for all polynomial-size circuits in the idealized
graded encoding [GGH13a] (a.k.a. “approximate” multilinear map [BS03,Rot13])
model.

In the idealized graded encoding model [BR14,BGK+
14], players have black-

box access to a field Fp (where p is a prime), but they can only perform cer-
tain restricted operations on field elements and determine whether an expres-
sion evaluates to zero. For instance, the simplest form of graded encodings
of [GGH13a] enables computing all polynomials of some (a-priori) bounded
polynomial degree, and determine whether the polynomial evaluates to zero;
this is referred to as a “zero-test query”5. Note that a generic group [Sho97]
model for Z∗p where p is a prime can be viewed as a special-case of an ide-
alized graded encoding model in which operations are restricted to be linear
(i.e., degree 1 polynomials). Degree two graded encodings capture idealized
groups with bilinear maps.

A natural question is whether weaker idealized models such as the generic
group model or idealized groups with bilinear maps suffice for obtaining VBB
obfuscation for polynomial-size circuits. This question was first addressed by
Lynn, Prabhakaran and Sahai [LPS04] who showed positive obfuscation re-
sults for specific functions in the Random Oracle model [BR93] where both
the obfuscator and the evaluator have oracle access to a truly random func-
tion; they left open the question of whether general-purpose obfuscation in
the Random Oracle model is possible. This open question was recently an-
swered in an elegant work by Canetti, Kalai and Paneth [CKP15] who show
that the impossibility result of [BGI+01] also extends to the Random Oracle
Model. [CKP15] in turn left open the questions of whether general-purpose

4 The construction of [GGH+
13b] was proved to satisfy the weaker notion of indistin-

guishability obfuscation in an idealized “matrix-multiplication” model.
5 The constructions in [BR14,BGK+

14] require certain additional “set-based” restric-
tions on polynomials; we return to this in Section 2.2.



VBB obfuscation in more sophisticated idealized models (such as the generic
group model) is possible.

Our Results In this work, we show impossibility of VBB obfuscation in ideal-
ized graded encoding models that restrict zero-tests to degree-d polynomials,
where d is a constant.

Theorem 1 (Informally stated) Assuming the existence of trapdoor permutations,
there exists a family of functions F for which there do not exist VBB obfuscators for F
in idealized degree-d graded encoding models, where d is a constant.

Our theorem stands in contrast with the results of [BR14] and [BGK+
14] which

indeed show feasibility of general-purpose VBB obfuscation in an idealized
graded encoding model that allows for high-degree (polynomial in the size of
the circuit being obfuscated) zero-test queries.

The obfuscator construction of [BGK+
14] also satisfies subexponential VBB

security (that is security holds also with respect to subexponential-size attack-
ers). Our main theorem extends to rule out general-purpose VBB obfuscation
with subexponential security in idealized graded encoding models that allow
for nα-degree zero-test queries (where α < 1 and n is the description length of
the function being obfuscated).

Follow-up Work We note that our proof directly generalizes to any graded en-
coding scheme that operates on elements in a ring (as opposed to Fp) as long
as a) there exists an efficient method for determining the row-rank of a ma-
trix of this ring, and) the row-rank of a matrix is polynomially bounded by
the column-rank. In follow-up work, Mahmoody, Mohammed, and Nemati-
haji [MMN15] have extended our techniques to apply to more general rings.

2 Definitions and Preliminaries

2.1 Virtual Black-box ObfuscatAion

We recall the definition of approximate VBB obfuscation from Barak et al.
[BGI+01], and Canetti, Kalai, and Paneth [CKP15], and generalize it for any
family of oracles M that are indexed by a security parameter.

Definition 1 (ε-Approximate VBB Obfuscation in an Oracle model [CKP15,BGK+14])
For a function ε : N → {0, 1}, an obfuscator O is a secure ε-approximate virtual
black-box (VBB) obfuscation for the family F in the M-oracle model if it satisfies the
following properties:

– Approximate Functionality: for all n ∈N, k ∈ {0, 1}n:

Pr
[
OM|k|(k)(x) 6= Fk(x)

]
≤ 1− ε(n)

where the probability is over the choice of x and the coins of M and O.



– Virtual Black-Box (VBB): for every poly-size adversary A, there exists a poly-size
simulator S and a negligible function µ such that for every k ∈ {0, 1}∗:∣∣∣Pr

[
AM|k|(OM|k|(k)) = 1

]
− Pr

[
SFk (1|k|) = 1

]∣∣∣ ≤ µ(|k|)

where the probability it taken over the coins of M, O, adversary A and the simu-
lator S.

We simply say that O is a secure VBB obfuscator if ε = 1. We further say that O is a
secure (ε-approximate) obfuscation in the plain model for the family F if it is a secure
(ε-approximate) obfuscation for the family F in the ⊥-oracle model where the ⊥-oracle
returns ⊥ on every query.

We finally say that O is subexponentially-secure if the VBB condition holds with
respect to any subexponential-size6 A and a subexponential-size S.

Our definition of subexponentially-secure VBB obfuscation is incomparable
to the definition of VBB obfusaction: it is stronger in that we require simulation
of subexponential-size attackers, but it is weaker in that we allow the simulator
to be subexponential size (even if the attacker is polynomial in size).

We use the following theorem by Bitansky and Paneth [BP13] and its exten-
sion which follows by relying on stronger trapdoor permutations. We choose
specific constants for simplicity of notation; the theorem holds for any con-
stants.

Theorem 2 ([BP13]) Assuming the existence of trapdoor permutations, there exists
a family of polynomial-time computable functions F such that a polynomial-size 0.8-
approximate VBB obfuscator for F does not exist.

Theorem 3 (scaled version of [BP13]) Assuming the existence of sub-exponentially
secure7 trapdoor permutations, there exists a family of polynomial-time computable
functions F such that a subexponential-size 0.8-approximate subexponentially-secure
VBB obfuscator for F does not exist.

2.2 Idealized Graded Encodings

We now define the ideal level-d graded encoding oracle. For simplicity of nota-
tion, we consider an oracle that has the size of the field hard-coded. Our model,
inspired by the formalism from [PST14,BR14,BGK+

14,Sho97], considers a sim-
ple idealized graded encoding oracle which enables players to a) encode an
element v under a “label” l, and receive a random “handle” h in return, and
b) to make “legal” zero-test queries on these encodings: a zero-test query is a
formal polynomial p on variables h, which evaluates to true if and only if

6 That is, whose circuit size is bounded by T(n) = poly(2nα
) for any 0 < α < 1.

7 That is, security holds against all circuits whose size is bounded by T(n) = poly(2nα
)

for any 0 < α < 1.



p(v) = 0, where for every i, vi is the value encoded under handle hi. The le-
gality of a query is determined by a legality-predicate g: g(p, l) outputs 1 if the
query is deemed legal, where l are the labels corresponding to the handles h.
In this work we consider a natural class of “well-formed” legality predicates,
which, as we shall discuss shortly, generalize all previously used notions of
legality.

Definition 2 (Well-formed legality predicate) Given a set of multi-sets (legal la-
bel sets) S define the predicate gS(p, l) = 1 if and only if for every monomial xj1 · · · xjd
of p, it holds that the multi-set {lj1 , . . . , ljd} ∈ S. We say that a legality predicate g is
well-formed if there exists a set S such that g = gS.

For instance, to capture:

– idealized groups [Sho97] (where we do not allow any multiplications), con-
sider the predicate gS corresponding to the set S = {{1}} (and requiring
that all encodings are made under the label 1).

– “simple” d-level graded encodings of [GGH13a], consider the predicate gS
corresponding to the set S where {lj1 , . . . , ljm} ∈ S if and only if ∑i∈[m] lji =

d (and requiring that all encodings are made under a label l ∈ [d] that
represents the element’s “level”).

– “set-based” d-level graded encodings [GGH13a,BR14,BGK+
14], consider

the predicate gS corresponding to the set S where {lj1 , . . . , ljm} ∈ S if and
only if the disjoint union of labels lji where i ∈ [m] is the set {1, 2, . . . , d},
i.e. ti∈[d]lji = [d] (and requiring that all encodings are made under a label
l that is a subset of [d]).

Additionally, to capture secret-key encodings in which only the obfuscator
can create new encodings, we follow [BGK+

14] and require that encodings
can only occur once upon initialization; after initialization no more encodings
can be performed. (In contrast to [BGK+

14], however, these encodings can be
performed adaptively.)

Definition 3 (Ideal graded encoding oracle) The oracle Mg
q = (enc, zero) is a

stateful oracle, parameterized by integer q and a legality predicate g, that responds to
queries in the following manner:

1. Upon initialization and only then, the activator may adaptively make any num-
ber of queries of the form enc(v, l); for each such query, Mg

q picks a uniformly
random “handle” h ∈ {0, 1}3|q|, stores the tuple (v, l, h) in a list LO and returns
h.8 This initialization phase ends if any algorithm other than the activating al-
gorithm makes any query to Mq, or if the activator makes a non enc query. Any
subsequent enc(·, ·) queries will be answered with ⊥.

8 In particular, even if the same value v is encoded twice (under the same label), in-
dependently random handles are returned for the two encodings. This model thus
considers randomized graded encodings. Our results also apply to deterministic ran-
domized encodings where the oracle keeps state also during the encoding phase and
always returns the same handle for an encoding of the value v under the label l.



2. On input query zero(p) where p is a formal polynomial over variables h1, . . . , hm,
each of which is represented as a string of length 3|q| (corresponding to some
handle), Mg

q does the following:
(a) For each i ∈ [m], retrieve a tuple (vi, li, hi) from the state LO; if no such tuple

exists, it returns false.
(b) (Illegal query) If all tuples are retrieved, return false if g(p, l) 6= 1
(c) (Zero test) Finally, return true iff p(v1, . . . , vn) = 0 mod q, and false

otherwise.
3. (All other queries are answered with ⊥).

We say that M is an ideal graded encoding oracle if M = {Mg1
q1 , Mg2

q2 , . . .}, and
for every n ∈ N, qn is a prime, |qn| > n and gn is a well-formed legality predicate.
Finally, we say that M is a degree-d(·) ideal graded encoding oracle if for all n ∈ N,
gn(p, l) returns false when deg(p) > d(n).

A Remark on the Model Following [PST14], for simplicity of notation, we do
not directly allow players to create new encodings by adding and multiplying
old ones as in the definitions of [BR14,BGK+

14]. This restriction is without
loss of generality since a) an obfuscator “knows” all values it has previously
encoded (since it needs to explicitly provide them to the encoding oracle) so
instead of operating on old encodings, it can simply operate on the actual
values and simply create a new encoding of the resulting value9, and b) when
evaluating the obfuscated code, operations on encodings can be simulated by
“bogus” independently random handles10, and emulating zero-test queries by
appropriately modifying the zero-test polynomial p to take into account the
previously performed operations.

Feasibility of VBB obfuscation in idealized graded encoding models The results
of [BR14,BGK+

14] demonstrate feasibility of VBB obfuscation in idealized
“set-based” graded encoding models that allow zero-test queries with super-
constant degree.

Theorem 4 ( [BR14,BGK+14]) Under the LWE assumption11, for every polyno-
mial p(·), there exists a (polynomial-time computable) sequence of well-formed le-
gality predicates g1, g2, . . ., such that for any ideal graded encoding oracle M =

9 To make this argument it is important that we allow adaptive encodings during the
initialization phase, as opposed to a single non-adaptive encoding query as in the
definition of [BGK+

14].
10 For this emulation with “bogus” random handles to work, it is important that we

consider a model of randomized graded encodings (where multiple encodings of the
same value are given fresh random handles). In case the encoding is deterministic
(and thus encodings of the same value need to be given the same handle) the simu-
lation fails: if the result of the operation yields a value that was previously encoded
we should output that handle instead. Nevertheless, as we point out at the end of
Section 3, our results extend to deal also with deterministic encodings where players
can perform operations on the encodings.

11 [BGK+
14] present unconditionally secure obfuscators for NC1; the LWE assumption

is needed to bootstrap up to polynomial-size circuits.



{Mg1
q1 , Mg2

q2 , . . .}, there exists a polynomial-size obfuscator O12 such that O is a VBB
obfuscator for the class of p(·)-sized circuits in the M model.

Their construction also satisfies subexponential VBB security assuming an ap-
propriate subexponential strengthening of LWE.

3 Impossibility of VBB Obfuscation

Theorem 5 Assuming the existence of trapdoor permutations, there exists a family of
functions F such that for every constant d and every degree-d ideal graded encoding
oracle M, a polynomial-size 0.9-approximate VBB obfuscator for F does not exist in
the M oracle model.

We briefly review the approach of [CKP15] as we will follow the same
high-level structure. Their first step is to show that any VBB obfuscator in the
Random Oracle model can be transformed into an approximate VBB obfusca-
tor in the plain. They next rely on Theorem 2 to conclude their impossibility
result. The first step is achieved by running the original VBB obfuscator in the
Random Oracle model by simulating all random oracle queries (with truly ran-
dom answers). Additionally, to ensure consistency between answers to queries
in the obfuscation phase and answers in the execution of the obfuscated code,
the obfuscator performs a learning phase in which most heavy oracle queries
(i.e. oracle queries that are made with high probability when running the ob-
fuscated code on random inputs) are discovered; the answers to the heavy
queries are hard-coded into the obfuscated code. This ensures that when the
obfuscated code is run on a random input, except with inverse polynomial
probability (proportional to the number of random inputs used in the learning
phase), the obfuscated code will not make any random oracles queries that
were not made during the learning phase (i.e. that are not hard-coded), and
as a consequence, the obfuscated code correctly computes the function with
high probability. Furthermore, the only difference between the the new (plain-
model) obfuscator and the original (random-oracle-model) obfuscator is that
the former leaks the set of heavy queries; since this leak is something that can
be learned by running the obfuscated code of the random-oracle-model obfus-
cator, VBB security ensures that the same heavy set can be simulated using
only black-box access to the function.

As mentioned, we follow the same high-level approach. Our main result
(Lemma 6 below) shows how to transform any VBB obfuscator in the constant-
degree graded encoding model into an approximate VBB obfuscator in the
plain model. The proof of Theorem 5 is then concluded by applying Theorem 2.
Just as [CKP15], we run the original (graded-encoding-model) obfuscator and
simulate its oracle queries. But it no longer suffices to simply learn all the
heavy queries: the obfuscated code may only ask “light” queries (i.e., each
query has negligible probability) yet the answer to those queries are correlated

12 The only non-uniform advice needed is the prime qn.



(in fact, even determined by) the queries made during the obfuscation phase.
For instance, assume that the obfuscator encodes two elements v1 and v2, and
later the evaluator makes a zero-test query of the form p(v1, v2) = av1 + bv2
where a and b are chosen from some distribution with high min-entropy.

Rather, we show that by running the obfuscated code on sufficiently many
random inputs and honestly emulating answers to oracle queries, we can re-
cover a set of linearly independent polynomials in the values v1, . . . , v` en-
coded during the obfuscation phase such that, except with inverse polyno-
mial probability, when the obfuscated code is run on a random input, every
zero-test query can be correctly emulated by simply determining whether the
zero-test polynomial is a linear combination of polynomials in the stored set.
Since the oracle is restricted to answering constant-degree d polynomials, there
can be at most (`+ 1)d monomials in the values v1, . . . , v`, and thus at most
(` + 1)d linearly independent polynomials in those values. If we record all
zero-test polynomials that evaluate to zero, then after sufficiently many sam-
ples, we have either recovered the full basis (which allows one to correctly
answer all remaining zero-test queries), or it is unlikely that a new sample
will add another linearly independent polynomial, which in turn means that
when the obfuscated code is run on a random input, our emulation only fails
with small probability. We finally observe that, just as in [CKP15], leaking the
set of linearly independent polynomials does not challenge VBB security be-
cause this set (just as the set of heavy random oracle queries in the case of
[CKP15]) can be learned from just observing the obfuscated code and can thus
be simulated.

We now turn to state and formally prove our main lemma, which combined
with Theorem 2 directly concludes our main result (i.e, Theorem 5).

Lemma 6 (Main) For every constant d and every degree-d ideal graded encoding ora-
cle M, if a family of functions F indexed by k has a polynomial-size ε(|k|)-approximate
VBB obfuscator in the M oracle model, then there exists a polynomial-size (ε(|k|) +
1/|k|)-approximate13 VBB obfuscator for F in the plain model.

Proof. Let M = {Mg1
q1 , Mg2

q2 , . . .} be a degree-d ideal graded encoding oracle for
some constant d. Let O be an ε-approximate obfuscator for family F in the M
oracle model that requests encodings of at most `(|k|) elements where k is the
index for family F; we assume without loss of generality that `(n) ≥ 1. We
construct a (non-uniform14) polynomial-size (ε(n) + 1/n)-approximate VBB
obfuscator O′ for F in the plain model below.

New obfuscator O′(k):
13 1/|k| can be replaced by any inverse polynomial by appropriately adjusting the pa-

rameters in our proof.
14 The non-uniformity in our construction is to encode the sequence of primes q1, q2, . . .

that is implicit in the oracle Mg. If we model the oracle M with a uniform algorithm
that picks the field for each security parameter, then our construction below can also
be uniform.



1. On input k, run O(k) and simulate the queries to Mgk
q|k| (i.e., answer the

initial enc queries by creating a list LO of encoded elements as in the defi-
nition of Mgk

q|k| , and answer zero(p) queries by evaluating the polynomial p
on the “decoded” elements) to compute the obfuscated program Ck.

2. If O(k) did not make any initial encoding queries, simply modify the code
of Ck to honestly emulate the M oracle with some hard-coded uniformly
chosen randomness (to generate handles), output this modified code, and
halt.

3. Otherwise, set Lc to empty.
4. Repeat until there have been L = (`(|k|)+ 1)d|k| iterations without any new

additions to Lc:
(a) Sample random input xj.
(b) Run Ck(xj) while simulating zero-test queries to M using the list of

encoded elements LO from Step 1.
(c) Additionally, whenever a zero-test query zero(p) evaluates to true,

record the formal polynomial p if it is linearly independent with all
previously stored polynomials in Lc. Testing whether p is a linear com-
bination of polynomials in Lc can be performed efficiently through
Gaussian elimination (by viewing each monomial as a separate vari-
able).

5. Output a new circuit C′k that does the following:
(a) On input y, run Ck(y).
(b) If Ck(y) makes a zero(p) query to M, answer true if p is a linear com-

bination of the polynomials in Lc and otherwise answer false.

Claim. Obfuscator O′ runs in (non-uniform) polynomial time.

Proof. Recall that `(|k|) is an upper bound on the number of encodings. As
a consequence, there are at most (`(|k|) + 1)d degree-d monomials in the en-
codings; thus, there can be at most (`(|k|) + 1)d linearly independent zero-test
polynomials. Since O continues iterating until there have been L consecutive
iterations with no new additions to Lc, it follows that there can be at most
L · (`(|k|) + 1)d iterations, each of which can be implemented in polynomial
time.

Proposition 1. The obfuscator O′ is (ε(n) + 1/n)-approximately correct.

Proof. Consider a hybrid obfuscator Õ′ that proceeds just as O′ except that it
always outputs a program C̃′k that honestly simulates the Mg oracle using the
state LO from Stage 1.

Let Expk denote the experiment that consists of running Ck ← O(k), picking
a uniformly random input x∗ ← {0, 1}|k|, and outputting 1 iff Ck(x∗) = Fk(x∗)
(and 0 otherwise). Define Exp′k and Ẽxp′k in exactly the same way but using O′
and Õ′ respectively.

Since O is ε(n)-approximately correct, for every k ∈ {0, 1}n, we have

Pr[Expk = 0] ≤ ε(n)



We also observe that by construction, for every k ∈ {0, 1}n,

Pr[Expk = 0] = Pr[Ẽxp′k = 0]

This directly follows from the observation that the only difference between
these experiments is that in Ẽxp, the obfuscator hard-codes the randomness of
Mg (needed to generate handles) in the obfuscated code in the event that O
did not make any initial encoding queries. But since in the experiment we only
evaluate the obfuscated code on a single input, the outputs of the experiments
are identically distributed.

Our goal is now to prove that for k ∈ {0, 1}n,

Pr[Exp′k = 0] ≤ Pr[Ẽxp′k = 0] + 1/n

which concludes the proof of the proposition.
Note that there is only one difference between the program C̃′k produced

by Õ′ and the program C′k produced by O′ when run on the input x∗ in the
above experiments:

– C′k(x∗) may make a zero-test query zero(p, h) that should evaluate to true,
but p is not in the span of Lc (and thus C′k emulates the answer as false,
whereas C̃k honestly emulates the answer as true.) Let badi denote the
event that this happens for the first time when |Lc| = i.

Let us note that C′k(x∗) can never err in the other direction; that is, it never
answers a zero-test query as true when the answer in fact should be false.
This follows from the fact that if p is in the span of Lc, then a) all input handles
to p correspond to some encoding, and p necessarily evaluates to zero given
the encoded value corresponding to those handles, and b) by the wellformed-
ness condition of g, g(p, l) necessarily evaluates to true (as p cannot use any
monomials not already in use by the polynomials in Lc).

It follows by construction that conditioned on badi not happening for any
i, experiments Exp′k and Ẽxp′k proceed identically.

The proof is concluded by the following two claims which show that the
probability of any bad event is small. In the following we focus on experiment
Exp′ but the same arguments straighforwardly hold for Ẽxp′.

Claim. For every i, Pr[badi] ≤ 1/L.

Proof. For every bad random tape for the experiment that induces event badi,
we identify at least L unique good random tapes obtained by swapping the
final run on input x∗ with one of the (at least L) sampled iterations (using xi);
furthermore, we show that any two distinct bad executions lead to disjoint sets
of good executions. We conclude the claim based on the fact that the fraction
of bad tapes is at most 1/L and each random tape is equally likely.

Let us now formally specify the mapping Φ from bad tapes to good tapes,
and specify an inverse mapping Φ−1 that given a good tape in the range of Φ



recovers the bad tape it was generated from. The existence of such an inverse
map shows that any two distinct bad tapes lead to distinct sets of good tapes,
as desired.

Recall that by the proof of Claim 3, m = L · (`(n) + 1)d is a bound on the
number of iterations in step 4. We define a random tape for the experiment
Expk as (ρ, x1, . . . , xm, x∗) where (x1, . . . , xm) are the inputs sampled to be used
in step (4a) of O′ (note that not all of those samples may be used), x∗ is the
final input chosen in the experiment, and ρ is the remaining randomness (i.e.,
the randomness of underlyingO and randomness ofO′ in the event thatO did
not make the initial encoding queries). Let q(R) denote the number of samples
made in step 3 given the random tape R; by construction L ≤ q(R) ≤ m.

We say that a random tape R = (ρ, x1, . . . , xm, x∗) is bad if Exp′k(R) induces
event badi; that is, a) in the evaluations of C′k(xj) for j ∈ [q(R)− L, . . . , q(R)],
there are no linearly independent zero-test polynomials that evaluate to 0, b)
the evaluation of C′k(x∗) leads to such a linearly independent polynomial that
evaluates to 0, and c) the size of Lc is i.

Define the mapping Φ(R) as the set of L random tapes Φ(R) = {Rj}j∈[L]
where Rj is constructed by swapping the tth random sample xt, where t =
(q(R)− j + 1), with the last sample x∗ as follows:

Rj = (ρ, x1, . . . , xt−1, x∗, xt+1, . . . , xm, xj)

Note that Exp′k(Rj) does not induce badi since the experiment finds at least
i + 1 linearly independent polynomials that evaluate to zero (and thus Lc > i).

Finally, let Φ−1(·) be an inverse map that on input a tape R, swaps the
last sample in the tape with the first sample xt that leads to i + 1 linearly
independent polynomials in the set Lc (and if no such xt exists simply outputs
R). It follows directly by construction that for every bad R, Φ−1(Φ(R)) = R.
(Note that in our definition of the inverse map, we make use of the fact that
the event badi is parameterized by i.)

By a union bound, it follows from Claim 3 that,

Pr
[
∃i s.t. badi

]
= Pr

[
bad1 ∨ · · · ∨ bad`

′(n)d
]
≤ `′(n)d

L
=

`′(n)d

`′(n)dn
= 1/n

where `′(n) = `(n) + 1 since as noted in the proof of Claim 3, the maximum
size of Lc is `′(n)d = (`(n) + 1)d. This concludes that O′ is ε(n) + 1/n approx-
imately correct.

Proposition 2. Obfuscator O′ satisfies the virtual-black box property.

Proof. This proof is essentially identical to the one given in [CKP15] for a simi-
lar statament. We include it here to be self-contained. Fix an index k. Given an
adversary A′ for the new obfuscator O′, we construct a new adversary AM for
the OM obfuscator as follows. The new adversary AM(Ck), on input a circuit
Ck produced by the obfuscation OM algorithm, simulates steps 2,3, and 4 of



the O′ algorithm by answering all queries using its oracle M (whose answers
will be consistent with the oracle used by OM to produce Ck).15 At the end
of this simulation, A thus produces a circuit C′k with exactly the same distri-
bution as the output of O′. Adversary AM then runs A′(C′k) (which does not
make any oracle queries) and returns the same output. It therefore follows by
construction that

Pr
[

AM|k|(OM|k|(k)) = 1
]
= Pr

[
A′(O′(k)) = 1

]
By the approximate VBB security property of O for family F, it follows that
there exists a simulator S and a negligible function µ such that

Pr
[

AM|k|(OM|k|(k)) = 1
]
− Pr

[
SFk (|k|) = 1

]
≤ µ(|k|)

which immediately implies that

Pr
[
A′(O′(k)) = 1

]
− Pr

[
SFk (|k|) = 1

]
≤ µ(|k|)

and concludes the proposition since S is also a good simulator for A′.

We conclude that O′ is a secure ε(n) + 1/n-approximate VBB obfuscator for F
(in the plain model). This finishes the proof of Lemma 6.

Remark (extension to “sparse” high-degree zero-test polynomials) This proof uses
the constant-degree restriction on the zero-test queries to argue that the num-
ber of monomials in encoded values is polynomial. The theorem thus extends
to high-degree polynomials as long as the legality predicate restricts these
polynomials to be “sparse” in the sense that the total number of monomials
over which any legal zero-test query is formed must be (a-priori) polynomi-
ally bounded. Note that it does not suffice to require that each zero-test query
has a small number of monomials. Rather, we require that there exists a small
set of monomials that suffices to represent all legal zero-test queries.

Remark (extension to “multi-slot” graded encodings) Our result directly extend to
“multi-slot” graded encodings (as in [AB15]), which are a model of composite-
order graded encodings. In this model, an encoding is a vector of elements;
operations on elements are performed component-wise and finally a zero-test
can be performed which determines whether the whole vector is 0. Our proof
directly extends also to this setting (by simply viewing each component as a
separate variable).

15 Step 2 (i.e., checking whether the initial encoding queries have been made) can be
simulated by making a “dummy” enc(0, 0) query and checking whether M returns
⊥.



Remark (extension to deterministic encodings) Our graded encoding oracle mod-
els an idealized randomized graded encodings scheme: even if the same value
v is encoded twice (under the same label), we get independently random han-
dles for the two encodings. Our proof, however, works in exactly the same
way also for deterministic randomized encodings, where the oracle keeps state
also during the encoding phase and always returns the same handle for an
encoding of the value v under the label l. This trivially follows since our ora-
cle does not allow players to perform any operations on encodings but simply
zero-test queries. As previously mentioned, for the case of randomized graded
encodings, it is without loss of generality since operations on encodings can
be simulated by “bogus” independently random handles. For the case of de-
terministic encodings, however, this simulation no longer works: if the result
of the operation yields a value that was previously encoded we should out-
put that handle instead. But for the purpose of our proof, we can make the
simulation work: Modify the learning phase to keep track of also all handles h
“seen”, adding them to Lc; additionally, for every operation, make a zero-test
query to check whether the value to be encoded after the operation equals the
value encoded under any previously stored handle. Next, during the evalua-
tion of the obfuscated code, emulate operations on encodings by first checking
(using a zero-test query, which is emulated as before) whether the value to be
encoded after the operation equals the value encoded under any previously
stored handle, and, if so, outputting this handle, and otherwise outputting a
random handle. It follows using the same argument as above that this emula-
tion only fails with inverse polynomial probability.

Remark (extension to rings) We note that our proof directly generalizes to any
graded encoding scheme that operates on elements in a ring (as opposed to
Fp) as long as a) there exists an efficient method for determining the row-
rank of a matrix of this ring, and) the row-rank of a matrix is polynomially
bounded by the column-rank. Property a) is needed to test whether we get a
linearly independent polynomial (we used Gaussian elimination for the case
of Fp) , and property b) is needed to ensure that the maximum number of
linearly independent polynomials is polynomially bounded by the number of
monomials (for the case of Fp row-rank equals column-rank, and thus the
number of linearly independent polynomials is bounded by the number of
monomials).

4 Impossibility of Subexponential VBB security

We now consider sub-exponential VBB security and rule out constructions that
use nα-degree zero-test queries for any 0 < α < 1.

Theorem 7 Assuming the existence of exponentially-secure trapdoor permutations,
there exists a family of polynomial-time computable functions F such that for every
0 < α < 1, every degree-nα ideal graded encoding oracle M, a polynomial-size 0.9-
approximate VBB obfuscator for F does not exist in the M oracle model.



Recall that, in contrast, Barak et al. [BGK+
14] show that for every family F of

polynomial-time functions, subexponentially-secure VBB obfuscation is possi-
ble using p(n)-degree ideal graded encodings where p is a polynomial (under
appropriate cryptographic hardness assumptions).

We follow the proof of Theorem 5 and prove the following lemma which
combined with Theorem 3 proves the theorem.

Lemma 8 For every α < 1 and degree-nα ideal graded encoding oracle M, if a family
of functions F indexed by k has a polynomial-size ε(n)-approximate subexponentially-
secure VBB obfuscator in the M oracle model, then there exists a subexponential-size
(ε(n) + 1/n)-approximate subexponentially-secure VBB obfuscator for F in the plain
model.

Proof. (Sketch) The construction is identical to the one in the proof of Lemma
6, except that we set d = nα (instead of it being a constant), where n = |k|.

By the same proof, the size of the new (plain-model) obfuscator is polyno-
mial in `(n)nα

= 2nα log `(n), where `(n) is a bound on the number of encoding
queries made by the original obfuscator. It follows that the size of the obfusca-
tor is subexponential.

Approximate correctness follows as per the proof of Lemma 6. Finally,
subexponential VBB simulation follows in exactly the same way as Lemma 6

by appealing to subexponential VBB security of the original VBB obfuscator.
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