
Obfuscation-based Non-black-box Simulation
and Four Message Concurrent Zero Knowledge

for NP

Omkant Pandey1,2,?,??, Manoj Prabhakaran1,?, and Amit Sahai2,??

1 University of Illinois at Urbana Champaign, {omkant,mmp}@uiuc.edu
2 UCLA and Center for Encrypted Functionalities, sahai@cs.ucla.edu

Abstract. We show the following result: Assuming the existence of
public-coin differing-input obfuscation (pc-diO) for the class of all poly-
nomial time Turing machines, then there exists a four message, fully
concurrent zero-knowledge proof system for all languages in NP with
negligible soundness error. This result is constructive: given pc-diO, our
reduction yields an explicit protocol along with an explicit simulator that
is “straight line” and runs in strict polynomial time. The obfuscation se-
curity property is used only to prove soundness.

Public-coin differing-inputs obfuscation is a notion of obfuscation closely
related to indistinguishability obfuscation. Most importantly for our re-
sult, pc-diO does not suffer from any known impossibility results: recent
negative results on standard differing-inputs obfuscation do not apply to
pc-diO. Furthermore, candidate constructions for pc-diO for the class of
all polynomial-time Turing Machines are known.

Our reduction relies on a new non-black-box simulation technique which
does not use the PCP theorem. We view the development of this new non-
black-box simulation technique as the main contribution of our work. In
addition to assuming pc-diO, our reduction also assumes (standard and
polynomial time) cryptographic assumptions such as collision-resistant
hash functions.

1 Introduction

Zero-knowledge and program obfuscation. Zero-knowledge proofs, intro-
duced by Goldwasser, Micali and Rackoff [GMR85] are the classical example of

? Research supported in part by the NSF Grant 1228856.
?? Research supported in part from a DARPA/ONR PROCEED award, NSF Frontier

Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276, a Xerox Fac-
ulty Research Award, a Google Faculty Research Award, an equipment grant from
Intel, and an Okawa Foundation Research Grant. This material is based upon work
supported by the Defense Advanced Research Projects Agency through the U.S. Of-
fice of Naval Research under Contract N00014-11- 1-0389. The views expressed are
those of the author and do not reflect the official policy or position of the Department
of Defense, the National Science Foundation, or the U.S. Government.

2

the simulation paradigm. They allow a prover to convince a verifier that a math-
ematical statement x ∈ L is true while giving no additional knowledge to the
verifier. Prior to 2001, all known zero-knowledge simulators used the (cheating)
verifier V ∗ as a black-box to produce their output (called the simulated view).
Barak [Bar01] demonstrated how to take advantage of verifier’s program to build
more powerful non-black-box simulation techniques.

Constructing and analyzing non-black-box simulators can be a challenging
task.The reason why taking advantage of verifier’s code is difficult is because
of the intriguing possibility of program obfuscation. Roughly speaking, program
obfuscation is a method to transform a computer program (say described as a
Boolean circuit) into a form that is executable but otherwise completely “unintel-
ligible.” In its strongest form, an obfuscated program leaks no information about
the program beyond its “functionality” or the “input-output behavior”. There-
fore, access to the obfuscated program is no better than having black box access
to it. This property, as formalized by Barak, Goldreich, Impagliazzo, Rudich, Sa-
hai, Vadhan, and Yang [BGI+01], is called the virtual black box (VBB) security.
It was shown in [BGI+01] that VBB-secure obfuscation is impossible in general.
In hindsight, this negative result shows why non-black-box (NBB) simulation
is possible, despite the possibility that program obfuscation could hide nearly
every useful aspect of the verifier’s code.

Zero-knowledge, in particular non-black-box simulation, is intimately con-
nected to program obfuscation. This connection has been explicitly studied in
the works of Hada [Had00], and Bitansky and Paneth [BP12b, BP12a, BP13a],
and alluded to in several other works, e.g., [HT99, Bar01]). In this work, we ex-
plore this line of research further, particularly in light of recent work showing the
first plausible constructions of general-purpose obfuscation schemes [GGH+13].
In particular, for the first time, we show that program obfuscation can be useful
for designing new non-black-box simulation strategies that yield constant-round
concurrent zero knowledge protocols.

General-purpose obfuscation. In 2013, Garg, Gentry, Halevi, Raykova, Sa-
hai, and Waters [GGH+13] presented the first candidate construction for general-
purpose obfuscation. Several formalizations for obfuscation have been proposed
as alternatives to the impossible-to-achieve notion of VBB obfuscation. A basic
definition, called indistinguishability obfuscation (iO) [BGI+01], roughly speak-
ing, guarantees that if two (same-size) programs C0, C1 are functionally equiva-
lent, then their obfuscations are computationally indistinguishable. A closely re-
lated notion is that of differing input obfuscation (diO) [BGI+01] which, roughly
speaking, guarantees that the obfuscations of C0 and C1 are computationally
indistinguishable provided that it is hard to find an input x such that C0(x) 6=
C1(x). Unfortunately, recently evidence was shown [BP13b, GGHW14] that the
notion of diO is impossible to achieve in general, due to the existence of problem-
atic contrived auxiliary inputs. However, very recently, Ishai, Pandey, and Sahai
[IPS15] formulated the notion of public-coin differing-inputs obfuscation (pc-diO)
in which no auxiliary input is allowed except for the random coins of the sampler.

3

This modification avoids the negative results of [BP13b, GGHW14], and indeed
all previous negative results on obfuscation using auxiliary input [GK05, GK13],
as all previous negative results using auxiliary input critically relied on the pos-
sibility of a secret being embedded within the auxiliary input. Because in pc-diO
the auxiliary input is only allowed to be public randomness, this possibility is
eliminated (please see [IPS15] for further details). Furthermore, [IPS15], building
on [ABG+13, BCP14], present candidate constructions of pc-diO for the class
of all polynomial-time Turing machines which can accept inputs of unbounded
polynomial length.

Our results. In this work we show how to use program obfuscation to build
a new non-black-box simulation strategy that works for fully concurrent zero-
knowledge. More specifically, we show that:

– If public-coin differing-input obfuscation (pc-diO) exists for the class of all
polynomial time Turing machines with unbounded inputs, then there exists
a constant round, fully concurrent zero knowledge protocol for NP with
negligible soundness error. The protocol has an explicit simulator;3 the sim-
ulator is “straight line” and runs in strict polynomial time. The security of
the obfuscation is used only prove the soundness of our protocol.

– We also show how to implement the core ideas of the above protocol in only
four rounds. That is, our new protocol requires sending only four messages
between the prover and the verifier.

Our protocol can be instantiated using the constructions of [BCP14, ABG+13,
IPS15] which obfuscates polynomial time Turing machines that can accept in-
puts of variable length (at most polynomial in the security parameter). We stress
that we are able to obtain an explicit simulator for our protocol irrespective of
the computational assumptions underlying the constructions of differing-inputs
obfuscation. This is because we use the security—i.e., the public-coin differing-
inputs security property—of obfuscation only in proving the soundness of our
protocol. The simulator only depends on the correctness or the functionality of
the obfuscated program, and hence can be described explicitly.

Other than pc-diO, our reduction only assumes standard (polynomial time
hardness) assumptions, namely injective one-way functions and collision-resistant
hash functions. Interestingly, our reduction does not explicitly depend on CS-
proofs or universal-arguments [Kil92, Mic94, Kil95, BG02]; in particular, if we
instantiate the constructions of [IPS15, ABG+13] using the SNARKs of Bitan-
sky et al. [BCCT13] based on bilinear maps (which do not rely on the PCP
theorem), we obtain an instantiation of our protocol that also does not rely on
the PCP theorem.

3 In some protocols, specifically those based on knowledge-type assumptions [HT99],
by virtue of the assumption that there exists an “extractor,” it is only possible to
obtain an existential result that a simulator exists; however, the actual program of
the simulator is not explicitly given in the security proofs.

4

The round complexity of our final protocol also sheds new light on the ex-
act (as opposed to asymptotic) round-complexity of concurrent zero-knowledge.
Even in the simpler case of stand alone zero knowledge, the best known con-
structions require at least four rounds [FS89], and historically, concurrent zero-
knowledge has always required more rounds than stand-alone zero-knowledge.4

Our four-round protocol, for the first time, closes the gap between the best
known upper bounds on round complexities of concurrent versus standalone
zero-knowledge protocols (whose simulators can be explicitly described).

In retrospect, the fact that obfuscation actually helps non-black-box simula-
tion can be perplexing. Indeed, in all prior works along this line [Had00, BP12b,
BP13a], the core ideas for simulation are of opposite nature: it is the inability to
obfuscate the “unobfuscatable functions” that helps the simulator. In our case,
similar to [BP12a], it is the ability to obfuscate programs that allows polyno-
mial time simulation. We believe that our method can be useful in other settings
as well where non-black-box simulation seems essential such as constant-round
leakage-resilient zero-knowledge [Pan14, GJS11] or CCA secure commitments in
sub-logarithmic rounds [CLP10, GLP+15].

Paper organization. We start by discussing how to use program obfuscation
to avoid the use of universal arguments in Barak’s protocol in Section 1.1. This
results in a stand alone ZK protocol with a “straight line” simulator. In Section 4,
we discuss why the simulator of this protocol fails in the concurrent setting, and
present a (substantially) different constant-round protocol which is concurrent
ZK along with main proof ideas. In Section 5, we present an overview of our four-
round concurrent-ZK protocol. The full details can be found in the full version
of this work [PPS15].

1.1 Technical Overview: Non-black-box Simulation via Pro-
gram Obfuscation

Let us start by considering the simplest approach to zero-knowledge from (the
possibility of) program obfuscation. For now, let us restrict ourselves to the case
of stand alone zero-knowledge for NP-languages. Let x ∈ L be the statement
and R be the witness-relation.

One simple approach is to have the verifier send an obfuscation of the fol-
lowing program Mx,s which contains a secret string s ∈ {0, 1}n: Mx,s(a) = s

if and only R(x, a) = 1 and Mx,s(a) = 0n otherwise. Let M̃x,s denote the iO-
secure obfuscation of Mx,s. The real prover can recover s by using a witness w
to x. Further, if x is false, Mx,s is identical to Mx,0n and therefore must hide s,

4 Barak’s (bounded-concurrent ZK) protocol [Bar01] and recent construction of
Chung, Lin, and Pass [CLP13b] require at least six rounds even after optimiza-
tions; the recent protocol of Gupta and Sahai [GS12b] requires five rounds and does
not have an explicit simulator.

5

ensuring the soundness.5 This gives us a two-message, honest verifier ZK proof.
However, this idea does not help the simulation against malicious verifiers.

To fix this, let us try to use Barak’s preamble (called GenStat [Bar01]) which
has the following three rounds: first, the verifier sends a collision-resistant hash
function h : {0, 1}∗ → {0, 1}n, then the prover sends a commitment c to 0n (using
a perfectly binding scheme Com), and then the verifier sends a string r ∈ {0, 1}n.
The transcript defines a “fake statement” λ = 〈h, c, r〉. A “fake witness” ω for
the statement λ consists of a pair (Π,u) such that c = Com(h(Π) ; u) and Π
is a program of length poly(n) which outputs the string r on input the string
c (say, in nlog logn steps). If h is a good collision-resistant hash function, then
it was shown in [Bar01, BG02], no efficient prover P ∗ can output a satisfying
witness ω to the statement λ (sampled in an interaction with the honest verifier).
However, a simulator can commit to h(V ∗) (instead of 0n) so that it will have a
valid witness to the resulting transcript λ.

Coming back to our protocol, we use this idea as follows. We modify our
first idea, and require the verifier to send a the obfuscation of a new program
Mλ,s (instead of Mx,s) where λ = 〈h, c, r〉 is the transcript of GenStat. The
new program Mλ,s outputs s if and only if it receives a valid witness ω to the
statement λ (as described earlier) and 0n on all other inputs. To prove the
statement x will be proven by proving the knowledge of either a witness w to
x or the secret s (using an ordinary witness-indistinguishable proof-of-knowledge
(WIPOK)). A simulator can “succeed” in the simulation as before: it commits to
verifier’s program in c to obtain (an indistinguishable statement) λ, then uses

the fake witness ω (which it now has) to execute the program M̃λ,s(ω) and learn
s and complete the WIPOK using s.

We now draw attention to some important points arising due to the use of
λ in the obfuscation (instead of x). First, the length of the fake witness ω that
the simulator has depends on the length of the program of V ∗. Since the pro-
tocol needs to take into account V ∗ of every polynomial length, the obfuscated
program M̃λ,s must accept inputs ω of arbitrary, a-priori unknown, polynomial

length. In other words, the obfuscated program M̃λ,s must be a Turing ma-
chine which accepts inputs of arbitrary, a-priori unknown, (polynomial) length.
Therefore, we will have to use program obfuscation for Turing machines.

Second, the statement λ = 〈h, c, r〉 is not a “false” statement since an all
powerful prover can always find collisions in h and obtain a satisfying input to
Mλ,s. The only guarantee we have is that if λ is sampled as above, then it would
be hard for any efficient prover—even those with a valid witness to x—to find a
satisfying input for Mλ,s. Therefore, unlike before (when x was used instead of

λ), obfuscations M̃λ,s and M̃λ,0n are not guaranteed to be indistinguishable if
we use an iO-secure obfuscation; this is because the Turing machines Mλ,s and
Mλ,0n are not functionally equivalent. Therefore, we will have to use diO-secure
obfuscation (since finding a differing input is still hard for these programs). The
security of diO is a subtle issue and we discuss it shortly.

5 By security of iO, M̃x,s
c
≈ M̃x,0n and M̃x,0n has no information about s.

6

By putting these ideas together, we actually a get a standalone ZK protocol
for NP (summarized below). The protocol needs to use some kind of reference to
s other than the obfuscated program. This is done by using a f(s) where f is a
one-way function. This protocol has a “straight line” simulator. Further, unlike
Barak’s protocol, this protocol does not use universal arguments (and hence the
PCP theorem).

Standalone Zero-Knowledge using Obfuscation. The protocol has three
stages.

1. Stage-1 is the 3 round preamble GenStat: V sends a CRHF h, P sends a
commitment c = Com(0n;u) and V sends a random r ← {0, 1}n.

2. In stage 2, V sends (f, s̃, M̃λ,s) where f is a one-way function, s̃ = f(s),

and M̃λ,s is the obfuscation of Turing machine Mλ,s described earlier and

λ = 〈h, c, r〉 is the transcript of stage-1. V also proves that (f, s̃, M̃λ,s)
are correctly constructed (using a standard ZK proof).

3. In stage-3 P provess, using a standard WIPOK, the knowledge of “either
a witness w to x or secret s such that s̃ = f(s).”

Standalone ZK of this protocol can be proven by following Barak’s simulator
which commits to the code of V ∗ and therefore has an ω for simulated statement
λ such that M̃λ,s(ω) = s within a polynomial number of steps; the simulator
computes s and uses it in the WIPOK. The soundness of the protocol relies on the
diO-security of obfuscation. Indeed, following [Bar01], for a properly sampled λ,
it is hard to find ω such that Mλ,s(ω) 6= Mλ,0n(ω), and therefore it is hard to

distinguish M̃λ,s from M̃λ,0n by diO-security of obfuscation. Now, soundness is
argued using three hybrid experiments: first use the simulator of the ZK protocol
in stage 2, then replace M̃λ,s from M̃λ,0n , and finally extract s from the WIPOK in
stage 3 and violate the hardness of one-way function f (since x is false, extraction
must yield s).

In Section 4, we will discuss why the simulator of this protocol fails in the
concurrent setting, and new ideas will be needed to obtain a concurrent ZK

protocol. In particular, we will make use of the DGS-oracle idea [DGS09].

Security of diO and the issue of auxiliary information. Continuing from
our discussion above, it is clear that for our approach to work obfuscations M̃λ,s

and M̃λ,0n should be indistinguishable to a cheating P ∗. However, this is not
all: in addition to one of these programs, P ∗ also has access to the statement λ,
which is auxiliary information about the two programs. Therefore, our approach
works if we have diO secure w.r.t. auxiliary information (distributed according
to λ).

Recent implausibility results of Garg et al. [GGHW14] cast serious doubts
about the existence of diO w.r.t. arbitrary auxiliary information. While their
result does not rule out the possibility of diO w.r.t. specific distributions, we
should be extra careful to not rely on auxiliary information which keeps some
“secret” such as an obfuscated code [GGHW14].

7

In our approach, the distribution of λ does not have to keep any secrets. In
the language of [IPS15], this is public-coin auxiliary information. We show that
our approach indeed works by only assuming that the obfuscation is public-coin
differing-input secure.

1.2 Related Work

Concurrent zero-knowledge. From early on, it was understood and explic-
itly proven in [FS90, GK96], that zero-knowledge is not preserved under parallel
repetition where multiple sessions of the protocol run at the same time. The
more complex notion of concurrent zero-knowledge (cZK) was introduced and
achieved by Dwork, Naor, and Sahai [DNS98] (assuming “timing constraints”
on the underlying network). A large body of research on cZK studied the round-
complexity of black-box concurrent ZK with improving lower bounds on the same
[KPR98, Ros00, CKPR03]. The state of art is the lower-bound is by Canetti,
Kilian, Petrank, and Rosen [CKPR03] who prove that black-box cZK requires
at least O (log n/ log log n) rounds where n is the length of the statements being
proven. Prabhakaran, Rosen, and Sahai [PRS02], building upon the prior works
of Richardson and Kilian [RK99] and Kilian and Petrank [KP01], presented a

cZK protocol for NP which has Õ(log n) rounds, matching the lower bound of
[CKPR03].

The central open question in this area is to construct a constant round cZK
protocol for NP languages based on standard (or at least reasonable) assump-
tions. Barak [Bar01] showed that in the bounded concurrent setting where there
is an a-priori upper bound on the number of sessions, there exists a constant
round non-black-box cZK protocol for NP; the protocol is based on the exis-
tence of collision-resistant hash functions [Bar01] and uses universal arguments
[Kil92, Mic94, Kil95, BG02]. The communication complexity of Barak’s protocol
depends on the a-priori bound on the sessions.

It has proven difficult to extend Barak’s NBB techniques to the setting of
fully concurrent ZK (i.e., to unbounded polynomially many sessions) in o(log n)
rounds. Nevertheless, NBB techniques have enjoyed great success resulting in
the construction of resettable protocols [BGGL01, DL07, DGS09, GM11], non-
malleable protocols [Bar02, PR05b, PR05a], leakage-resilient ZK [Pan14], bounded-
concurrent secure computation [PR03, Pas04], adaptive security [GS12a], and so
on. Bitanksy and Paneth [BP12a] showed that it is possible to perform non-
black-box simulation using oblivious transfer (instead of collision-resistant hash
functions and universal arguments). This eventually led to the construction of
resettablly-sound ZK under one-way functions [BP13a, CPS13, COPV13]. Goyal
[Goy13] presents a non-black-box simulation technique in the fully concurrent
setting and achieves the first public-coin cZK protocol in the plain model.6

6 The protocol requires poly(n) rounds. Canetti et al. [CLP13a] obtain a similar result,
albeit in the “global hash” model where a global hash function—which the simulator
cannot program—is known to all parties.

8

An alternative approach to construct round-efficient zero-knowledge proofs
is to use “knowledge assumptions” [Dam91, HT99, BP04]. The recent work of
Gupta and Sahai [GS12b] shows that such assumptions also yield a constant
round concurrent ZK protocol for NP. However, all known ZK protocols based on
knowledge-type assumptions do not yield an explicit simulator. This is because
the knowledge-type assumptions assume the existence of a special “extractor”
machine (which is not explicitly known); this extractor is used by the simulator
of ZK protocols and only provides an “existential” result.

Chung, Lin, and Pass [CLP13b] recently presented the first construction of
a constant-round fully concurrent ZK protocol which has an explicit simulator.
Their result is based on a new complexity-theoretic assumption, namely the
existence of so called “strong P-certificates.”

Another alternative proposed in the literature is to assume some kind of a
setup such as timing constraints, (untrusted) public-key infrastructure, and so on
[DNS98, DS98, CGGM00, Dam00, Gol02, PTV10, GJO+13] or switch to super-
polynomial time simulation [Pas03, PV08]. We will not consider such models
further in this work.

Program obfuscation. After the strong impossibility results of [BGI+01], re-
search in program obfuscation proceeded in two main directions. The first line
of research focussed on constructing obfuscation for specific functionalities such
as point functions and their variants, proxy re-encryption, encrypted signatures,
hyperplanes, conjunctions, and so on[Wee05, LPS04, HRSV07, Had10, CRV10,
BR13a]. The other line of research focussed on finding weaker definitions and al-
ternative models. Goldwasser and Rothblum [GR07] considered the notion of best
possible obfuscation (and is equivalent to iO when the obfusactor is polynomial
time); and Bitansky and Canetti [BC10] considered virtual grey box security.
Alternative models for obfuscation such as the hardware model were considered
in [GIS+10, BCG+11].

After [GGH+13], an improved construction of iO was presented by Barak et.
al. [BGK+13]. Further, in an idealized “generic encodings” model it is shown that
VBB-obfuscation for all circuits can be achieved [CV13, BR13b, BGK+13]. These
results often involve a “bootstrapping step”; Applebaum [App13] presents an
improved technique for bootstrapping obfuscation. Further complexity-theoretic
results appear in recent works of Moran and Rosen [MR13], and Barak et. al.
[BBC+14].

Sahai and Waters [SW13] show that indistinguishability obfuscation is a pow-
erful tool and use it to successfully construct several (old and new) cryptographic
primitives; further applications of iO appear in [HSW13, BZ13, BCP14, KRW13,
MO13]

Differing input obfuscation was studied by Ananth et. al. [ABG+13], who
present a candidate construction of diO for the class of polynomial time Tur-
ing machines and demonstrate new applications. Another variant of their con-
struction allows the Turing machines to accept variable length inputs. Concur-
rent work of Boyle, Chung, and Pass [BCP14] introduces a related notion of

9

extractability obfuscation and shows this notion (and diO) are implied by iO
when the programs differ only on polynomially many inputs. In addition, it also
presents obfuscation for the class of polynomial time Turing machines, building
upon the work of Brakerski and Rothblum [BR13a].Very recently, in concurrent
and independent works, construction for bounded-space RAM programs were
presented by relying on iO and OWFs [BGT14] and other additional assump-
tions [CHJV14, LP14].

The issue of auxiliary information in program obfuscation was first consid-
ered by Goldwasser and Kalai [GK05], and further explored in [GK13, BCPR13,
BP13b, GGHW14, IPS15]. The work of Bitansky, Canetti, Paneth, and Rosen
[BCPR13] shows that if iO exists then “extractability primitives” such as knowledge-
types assumptions and extractable one-way functions [CD09] cannot exist in the
presence of arbitrary auxiliary information. Boyle and Pass [BP13b] strengthen
this result further by showing a pair of (universal) distributions Z,Z’ on aux-
iliary information such that either extractable OWF w.r.t. Z do not exist or
extractability-obfuscations w.r.t. Z’ do not exist. The work of Garg, Gentry,
Halevi, and Wichs [GGHW14] shows that diO w.r.t. arbitrary auxiliary informa-
tion cannot exist if certain specific obfuscation assumption is true. Ishai, Pandey,
and Sahai [IPS15] formulate the notion of public-coin diO in which the auxiliary
is restricted to be merely the random coins of the sampler, and recover much of
the existing applications of diO under this new notion.

2 Preliminaries

We use standard notations which are recalled here. This section can be skipped
without affecting readability.

Notation. For a randomized algorithm A we write A(x; r) the process of eval-
uating A on input x with random coins r. We write A(x) the process of sampling
a uniform r and then evaluating A(x; r). We define A(x, y; r) and A(x, y) analo-
gously. We denote by N and R the set of natural and real numbers respectively.
The concatenation of two string a and b is denoted by a ‖ b.

We assume familiarity with interactive Turing machines (ITMs). For two
randomized ITMs A and B, we denote by [A(x, y) ↔ B(x, z)] the interactive
computation between A and B, with A’s inputs (x, y) and B’s inputs (x, z), and
uniform randomness; and [A(x, y; rA) ↔ B(x, z; rB)] when we wish to specify
randomness. We denote by VIEWP [A(x, y) ↔ B(x, z)] and OUTP [A(x, y) ↔
B(x, z)] the view and output of machine P ∈ {A,B} in this computation. Finally,
TRANS[A(x, y) ↔ B(x, z)] denotes the transcript of the interaction [A(x, y) ↔
B(x, z)] which consists of all messages exchanged in the computation.

We also assume familiarity with oracle Turing machines, which are ordinary
TMs with an extra tape called the oracle communication tape. An oracle TMs
A will be written as A〈·〉 to insist that it is an oracle TM; in addition, we write
AI when A’s oracle is fixed to I. Recall that each query to I counts as one step
towards the running time of AI .

10

Unless specified otherwise, all algorithms receive a parameter n ∈ N, called
the security parameter, as their first input. Often, the security parameter will not
be mentioned explicitly and dropped from the notation. With some exceptions,
all algorithms run in poly(n) steps and all inputs have poly(n) length. A function
negl : N→ R is negligible if it approaches zero faster than every polynomial.

Two ensembles {X\}n∈N and {Y\}n∈N are said to be computationally indistin-

guishable, denoted {X\}
c
≈ {Y\}, if for all non-uniform probabilistic polynomial

time (PPT) distinguishers D, sufficiently large n, and every advice string zn:
|Prx←Xn [Dn(x) = 1]− Pry←Yn [Dn(y) = 1]| ≤ negl(n), where we write Dn(a) to
denoted D(n, zn, a), and negl is a negligible function. The statistical distance
between two probability distributions X and Y over the same support S is
denoted by ∆(X,Y) = 1

2

∑
a∈S |Pr[X = a] − Pr[Y = a]|. We say that en-

sembles {Xn}n∈N and {Yn}n∈N are statistically indistinguishable (or statistically

close), denoted {Xn}
s
≈ {Yn}, if there exists a negligible function negl such that

∆ (Xn,Yn) ≤ negl(n) for all sufficiently large n.

Standard primitives. In this work, we will be using a family of injective
one-way functions. In addition, unless specified otherwise, we assume that all
functions f ∈ Fn in the family have an efficiently testable range membership:
i.e., there exists a polynomial time algorithm to test that y ∈ Range(f) where
Range(f) denotes the range of f .

We will also be using a family of collision resistant hash functions (CRHF)
{Hn} where h : {0, 1}∗ → {0, 1}poly(n) for h ∈ Hn; recall that {Hn} is a
CRHF family if there exists a negligible function negl such that for every non-
uniform PPT machines A, every sufficiently large n, and every advice string zn:
Prh←Hn

[h(x) = h(y) : (x, y)← A(zn, h)] ≤ negl(n).
Finally, we will also be using a non-interactive, perfectly binding commitment

scheme for committing strings of polynomial length. A commitment to a string
m using randomness u will be denoted by c = Com(m;u). Without loss of
generality, we assume that the message m committed to in c can be recovered
given the randomness u and the string c. We assume perfectly binding schemes
purely for the simplicity of exposition. One can replace Com by the 2-round
statistically-binding commitment scheme of Naor [Nao89] without affecting our
results.

2.1 Interactive Proofs, Proofs of Knowledge, and Witness
Indistinguishability

We recall the standard definitions of interactive proofs [GMR85], witness indis-
tinguishability [FS90], and proofs of knowledge [GMR85, TW87, FFS88, FS90,
BG92, PR05b].

Definition 1 (Interactive Proofs). A pair of probabilistic polynomial time
interactive Turing machines 〈P, V 〉 is called an interactive argument system for
a language L ∈ NP with witness relation R if there exists a negligible function
negl : N→ R such that the following two conditions hold:

11

– Completeness: for every x ∈ L, and every witness w such that R(x,w) = 1,
it holds that

Pr[OUTV [P (x,w)↔ V (x)] = 1] = 1.

– Soundness: for every x /∈ L, every interactive Turing machine P ∗ running
in time at most poly(|x|), and every y ∈ {0, 1}∗,

Pr[OUTV [P ∗(x, y)↔ V (x)] = 1] ≤ negl(|x|).

If the soundness condition holds for every (not necessarily PPT) machine P ∗

then 〈P, V 〉 is called an interactive proof system. �

The probability in the soundness condition is called the soundness error of the
system, and we say that the system has negligible soundness error since this
probability is at most negl(|x|). Although, traditionally soundness error is defined
in terms of the statement length |x|, in cryptographic contexts, it is convenient to
define it in terms of the security parameter n, and write negl(n). This is without
loss of generality, since in our setting since |x| = poly(n). Also, in this work, we
will use words “argument” and “proof” interchangeably throughout the paper.

Definition 2 (Proof of Knowledge). Let 〈P, V 〉 be an interactive proof sys-
tem for a language L ∈ NP with witness relation R. We say that 〈P, V 〉 is a
proof of knowledge (POK) for relation R if there exists a polynomial p and a
probabilistic oracle machine E (called the extractor) such that for every PPT
ITM P ∗, there exists a negligible function negl such that for every x ∈ L, and
every (y, r) ∈ {0, 1}∗ such that qx,y,r := Pr[OUTV [P ∗x,y,r ↔ V (x)] = 1] > 0
where P ∗x,y,r denotes the machine P ∗ whose common input, auxiliary input, and
randomness are fixed to x, y and r respectively and the probability is taken over
the randomness of V , the following conditions holds:

– the expected number of steps taken by EP
∗
x,y,r is bounded by p(|x|)

qx,y,r
, where

EP
∗
x,y,r is machine E with oracle access to P ∗x,y,r;

– except with negligible probability, EP
∗
x,y,r outputs w∗ such that R(x,w∗) = 1.

�

Definition 3 (Witness Indistinguishable Proofs). Let 〈P, V 〉 be an inter-
active proof system for a language L ∈ NP with witness relation R. We say
that 〈P, V 〉 is witness indistinguishable (WI) for relation R if for every PPT
ITM V ∗, every statement x ∈ L, every pair of witnesses (w1, w2) such that
R(x,wi) = 1 for every i ∈ {1, 2}, and every (advice) string z ∈ {0, 1}∗, it holds

that {VIEW(1)
|x|}

c
≈ {VIEW(2)

|x|} where {VIEW(i)
|x|} := VIEWV ∗ [P (x,wi)↔ V ∗(x, z)].

�

As before, w.l.o.g., we can replace |x| by the security parameter n in all defini-
tions above. We remark that there exists a WIPOK with strict polynomial time
extraction in constant rounds using non-black-box techniques [BL04] and in ω(1)
rounds using black-box techniques [GMR85, Blu87].

12

Three round, public-coin WIPOKand ZAPs. The classical protocols of [GMR85,
Blu87], based on the existence of non-interactive perfectly binding commitment
schemes, are 3-round witness indistinguishable, proof of knowledge (WIPOK) pro-
tocols (for every language in NP). We will use Blum’s protocol [Blu87] as a
building block and denote its three messages by 〈α, β, γ〉, where β is random
string of sufficient length.7

A ZAP for a language L, introduced by Dwork and Naor [DN00], is a two
round witness indistinguishable interactive proof for L. ZAPs can be constructed
from a variety of assumptions such as non-interactive zero-knowledge proofs
[BFM88, BSMP91] (which in turn can be based on trapdoor permutations [FLS99])
and verifiable random functions [MRV99]. In fact, even non-interarctive (i.e.,
one round) constructions for ZAPs for all of NP exist based on bilinear pairings
[GOS06] and derandomization techniques [BOV03].

We will use the two round construction of [DN00] based on NIZK as a build-
ing block and denote its two messages by 〈σ, π〉 where σ is a randomly string of
sufficient length. An important property of this construction is adaptive sound-
ness: the statement to be proven can be chosen after the string σ has been sent
by the verifier. We will rely on this property in our security proofs.

2.2 Concurrent Zero Knowledge

We now recall the notion of concurrent zero-knowledge [DNS98] in which one
considers a “concurrent adversary” V ∗ who interacts in many copies of P , prov-
ing adaptively chosen, possibly correlated, polynomially many statements. We
follow conventions established in [DNS98, PRS02, Ros04].

Concurrent attack. The concurrent attack on an interactive proof systems
〈P, V 〉 for language L ∈ NP with witness relation R considers an arbitrary
interactive TM V ∗ which opens at most m = m(n) sessions for an arbitrary
polynomial m with arbitrary auxiliary input z ∈ {0, 1}∗. Let x := {xi} ∈ Lm

be set of statements in L of length at most poly(n), and w := {wi}i∈[m] be such
that R(xi, wi) = 1. The attack proceeds by uniformly fixing the random coins
of V ∗ and initiating its execution on input the security parameter n ∈ N and
auxiliary input z. At each step, V ∗ either initiates a new session—in which case
a new prover instance P (xi, wi) with fresh randomness is fixed who interacts
with V ∗ in session i; or V ∗ schedules the delivery of a message of an existing
session in which the corresponding prover instance responds with corresponding
message. There is no restriction on how V ∗ schedules the messages of various
sessions. We say that V ∗ launches m-concurrent attack on 〈P, V 〉. The output

of the attack consists of the view of V ∗, denoted VIEW
〈P,V 〉
V ∗ (n,m,x,w, z).

7 We remark that this protocol has a black-box extractor whose expected running
time is proportional to the inverse of a cheating prover’s success probability. How-
ever, there also exist WIPOK with strict polynomial time extraction in constant
rounds using non-black-box techniques [BL04] and in ω(1) rounds using black-box
techniques [GMR85, Blu87].

13

Definition 4 (Concurrent Zero Knowledge). We say that an interactive
proof system 〈P, V 〉 for a language L ∈ NP (with witness relation R) is con-
current zero knowledge if for every polynomial m : N → N, every PPT ITM
V ∗ launching a m-concurrent attack, there exists a PPT machine SV ∗ such that
for every set x := {xi} ∈ Lm of statements of length at most poly(n), every
w := {wi}i∈[m] such that R(xi, wi) = 1, and every auxiliary input z ∈ {0, 1}∗ it
holds that {

SV ∗
(
n,x, z

)}
n∈N

c
≈

{
VIEW

〈P,V 〉
V ∗

(
n,m,x,w, z

)}
n∈N

.

Machine SV ∗ is called the simulator. �

In what follows, we will sometimes abuse the notation and write V ∗ to also mean
the description of the Turing machine V ∗. However, when we want to be explicit
about the description of a Turing machine M (including V ∗), we will actually
write desc(M). For the simulator, we may sometimes write SV ∗(·) := S(V ∗, ·) to
insist that the program of V ∗ is given as an explicit input to the simulator (and
drop n from the notation). Further, we will assume a (unique) session identifier
for each session represented by a string of length n; this session identifier can be
chosen by V ∗ so long as it is unique for every session. W.l.o.g. we assume that
the all-ones string 1n (not to be confused with the unary representation of the
security parameter) is never used as a session identifier and denotes a special
symbol.

3 Differing Input Obfuscation for Turing Ma-
chines

In this section, we recall the notion of public-coin differing input obfuscation (pc-
diO) for Turing machines [IPS15]. Let Steps(M,x) denote the number of steps
taken by a TM M on input x; we use the convention that if M does not halt
on x then Steps(M,x) is defined to be the special symbol ∞. Let M = {Mn}
denote a parameterized collection of polynomial size and polynomial time TMs,
i.e., there exists a global polynomial a such that for every n ∈ N, every M ∈Mn,
|M | ≤ a(n) and Steps(M,x) ≤ a(|x|) where x can be of arbitrary polynomial
length.

We say that a pair of TMs (M0,M1) in the classMn (for any n) is compatible
if they have the same size and for every x, Steps(M0, x) = Steps(M1, x).

Definition 5 (Compatible TMs). A pair of Turing machines (M0,M1) ∈
Mn ×Mn for n ∈ N is said to be compatible if |M0| = |M1| and for every
string x ∈ {0, 1}∗ it holds that Steps(M0, x) = Steps(M1, x).

We remark that the notion of compatible TMs allows the obfuscation to leak
the running time of the obfuscated TMs. This is standard requirement; we can
also use the convention of [ABG+13, IPS15] where the TMs also output their
running time in addition to the “official” output.

14

We now recall the notion of public-coin differing inputs sampler [IPS15].
Roughly speaking, Samp is public-coin differing-inputs sampler if, on input the
random coins z, it output a pair of compatible TMs (M0,M1) such that no PPT
adversary A having access to z can produce an x such that: M0(x) 6= M1(x).
We use a slightly different notation form [IPS15], and require that in addition
to outputting M0,M1, Samp also outputs its random coins. The randomness z
of Samp will then not be mentioned as an explicit input. The definition follows.

Definition 6 (Public-coin Differing-Inputs Sampler for TMs). We say
that a (possibly non-uniform) PPT Turing machine Samp is a public-coin differing-
inputs sampler for Turing machines if the following conditions hold:

1. the output of Samp(1n) is a triplet (z,M0,M1) such that z is the randomness
of Samp and (M0,M1) ∈Mn ×Mn is always a pair of compatible TMs;

2. for every (possibly non-uniform) PPT TM A there exists a negligible function
negl such that for all n ∈ N:

Pr
[
M0(x) 6= M1(x) : (z,M0,M1)← Samp(1n; z) ; A(z,M0,M1) = x

]
≤ negl(n).

For convenience, a public-coin differing-input sampler will also be referred to as
a nice sampler. �

Public-coin differing-input obfuscator. We now present the definition of
a public-coin differing input obfuscator for Turing machines. Roughly speaking,
the notion states that a machine O is a pc-diO if the following holds: if there
exists a PPT distinguisher D who distinguishes O(M0) from O(M1) when given
as auxiliary input the random coins z of the sampler who samples (M0,M1),
then it is easy to find an x (given z) such that M0(x) 6= M1(x). In other words,
if it is hard to find the “differing input” x then the two obfuscations are indis-
tinguishable.

Definition 7 (Public-coin Differing-Inputs Obfuscator for Turing Ma-
chines, [IPS15]). A uniform PPT machine O is called a public-coin differing
input obfuscator (pc-diO) for a class of Turing machines {Mn} if the following
conditions are satisfied:

1. Polynomial slowdown and functionality: there exists a polynomial adio such
that for every n ∈ N, every M ∈ Mn, every input x, and every M̃ ←
O(n,M), the following conditions hold:

– Steps(M̃, x) ≤ adio
(
n, Steps(M,x)

)
– M̃(x) = M(x)

Polynomial adio is called the slowdown polynomial of O.

2. Indistinguishability: for every public-coin differing-input (a.k.a. nice) sam-
pler Samp (i.e., satisfying definition 6), for every (possibly non-uniform)

15

PPT distinguisher D, there exists a negligible function negl such that for all
n: ∣∣∣∣Pr

[
D (z,O(n,M0)) = 1 : (z,M0,M1)← Samp (1n; z)

]
−Pr

[
D (z,O(n,M1)) = 1 : (z,M0,M1)← Samp (1n; z)

]∣∣∣∣ ≤ negl(n).

where the probability is taken over the randomness of both Samp and O. �

Candidate constructions. In [IPS15], a candidate construction of pc-diO for
all polynomial time TMs with variable length input of polynomial size is pre-
sented. The functionality of the construction allows the TMs to accept inputs
of any length, even larger than polynomial. The security states that if a PPT
machine distinguishes the obfuscation of the given TMs, there will exist an in-
put of polynomial size, which can be extracted, such that the two machines
will differ on that input. The assumptions underlying this construction are: pc-
diO for NC1 circuits, fully homomorphic encryption, and SNARKs for NP.
The construction of [GGH+13] is seen as a plausible candidate for pc-diO for
NC1 and existing implausibility results [GGHW14] are unlikely to have a conse-
quence to this assumption. Construction of diO with stronger forms of auxiliary
input—worst case in which the security must hold for all auxiliary strings µ, and
distributional where it holds for specific distributions of µ—were presented in
[ABG+13, BCP14].

4 Constant Round Concurrent Zero-knowledge

The simplest way to see why the protocol of previous section does not work in
the concurrent setting is to consider its execution in a recursively interleaved
schedule (described by Dwork, Naor, and Sahai [DNS98]). In the context of our
protocol, this schedule will have n sessions interleaved recursively as follows:
session n does not “contain” any messages of any other session, and all messages
of session i are contained between messages ci−1 and ri−1 of session i− 1 for
every i , starting from i = n. A pictorial representation of this scheduling is given
in the full version [PPS15]. The double-headed arrows marked by πi represent
the rest of the messages of the i-th session. Roughly speaking, the simulation
fails because of the following: in order to simulate session i, the simulator needs
to extract the secret si by running the program M̃λi,si ; however, the execution of

M̃λi,si contains an execution of M̃λi+1,si+1
and due to this recursion, simulator’s

total running time in session 1 is exponential in n.
Formally, let t3 ≥ 1 be the time taken by the verifier in computing r3 on

input the string c3. Then clearly, the time taken by the simulator in running
the obfuscated machine M̃λ3,s3 is T3 ≥ t3. Then, if t2 denotes the time taken by
the simulator to obtain string r2, we have that t2 ≥ t3 + T3 ≥ 2t3. Clearly, the
time taken by the simulator to extract s2 by running the program M̃λ2,s2 will
be at least T2 ≥ t2 ≥ 2t3. By repeating this argument for session 1, we have that

16

T1 ≥ t1 ≥ t2 + T2 ≥ 2t2 ≥ 22t3. Repeating this argument for n sessions in the
DNS schedule, the total time taken by the simulator will be ≥ 2n−1.

Avoiding recursive computation via DGS-oracle. It is clear that the
reason our stand-alone simulator runs in exponential time is because in order
to compute si for session i, the simulator runs (the obfuscation of) a program
which recursively runs such a program for every interleaved session between ci
and ri. That is, the program M̃λi,si ends up recomputing all of the secrets of the
interleaved sessions even though they have already been computed.

We can avoid this recomputation as follows. Let I be an oracle which takes
as input queries of the form (f, s̃)—where f is an injective one-way function
and s̃ is in the range of f—and returns the unique value s such that f(s) = s̃.8

Now consider an arbitrary program ΠI which has access to the inversion oracle
I. Clearly, if r is chosen randomly, then for any (fixed) program ΠI and any
fixed input a, the probability that ΠI(a) = r is at most 2−n. This is because
once the description of the oracle program Π〈·〉 is fixed, the output of ΠI(a) is
deterministically fixed (for any fixed input a chosen prior to seeing r) and r hits
this value with probability at most 2−n.

Our main point here is that it is hard to come up with a satisfying “fake
witness” ω to the transcripts λ = 〈h, c, r〉 even if the program committed in c
is given access to the inversion oracle I. On the other hand, the simulator can
still predict r as before. However, more importantly, by means of the oracle I we
can avoid the recursive re-computation of the secrets in the concurrent setting
as follows.

Consider an alternative simulator S〈·〉 which will be given access to the oracle
I. This simulator will have access to both, the program of the verifier V ∗ as well

as its own program, given as explicit inputs, collectively denoted as Π
〈·〉
S,V ∗ . The

simulator, on input a session index i, will work by initiating an execution of V ∗.

It will commit to program Π
〈·〉
S,V ∗(j) in session j (ignoring for the moment the

fact that simulator needs fresh randomness); finally, this simulator does not run
any obfuscated program to compute the secrets. Instead it queries the oracle I
on “well formed” (fj , s̃j) for every session j 6= i; when j = i it simply returns the
string ri. Then, if all goes well, observe that program Π〈·〉(i) predicts string ri in
polynomial time (given I) and this holds for every session i. In particular, there
is no recursive recomputation of the secrets since they can be fed to the program
directly once they have been computed. We note that such an oracle was first
used by Deng, Goyal, and Sahai [DGS09] to construct the first resettably-sound
resettable zero-knowlege protocol for NP.

It should be clear that the actual simulation will be performed by a “main”
simulator Smain which will not have access to any inversion oracle, and run
in (strict) polynomial time. The main simulator will run in the same manner
as the alternative simulator S〈·〉 except that instead of using I, it will run the

8 We assume that it is easy to test that f is injective and that s̃ is in the range of f .
These requirements are only for simplicity and the protocol works even if it is not
easy to test these properties.

17

obfuscated programs (only once for each session) to recover the secrets. To ensure
efficient simulation, once a session secret has been recovered, it will be stored in
a global table T (which will be used to simulate answers of I). Therefore the
“fake witness” will now have the form ω = 〈u,Π〈·〉, T), but the statements will
still have the same form λ = 〈h, c, r〉; and we require that ΠT outputs r within
finite steps (see details below).

Relation Rsim and the simple variant of our protocol. To formally cap-
ture the above mentioned requirement for the transcripts λ, we define a relation
Rsim in figure 1. The family of injective one-way functions is denoted by {Fn}n∈N
and that of collision-resistant hash functions by {Hn}n∈N. An important obser-
vation regrading Rsim is that since table T is not a part of the commitment
c (and it should not be), we must enforce that Π〈·〉 never makes any invalid
queries to T . This is because after seeing r, it is easy to design a “bad” table T
which will encode r by means of “bad” entries and “satisy” λ.

Relation Rsim allows us to prove that no efficient prover can compute ω
such that Rsim(λ, ω) = 1 with noticeable probability where λ is the transcript
of GenStat with an honest verifier. We prove this claim formally in lemma 1
under the collision-intractability of {Hn}. We note that Rsim is not decidable in
polynomial time in general, but this will not be an issue for our reductions since
we will ensure that it is checked only on “good” instances (which can be verified
in polynomial time).

Instance: A tuple 〈h, c, r〉 ∈ Hn × {0, 1}poly(n) × {0, 1}n where h :
{0, 1}∗ → {0, 1}n.

Witness: A tuple 〈u,Π〈·〉, T 〉 ∈ {0, 1}poly(n) × {0, 1}∗ × {0, 1}∗ where
Π〈·〉 is an oracle Turing machine, and T is a table containing entries of
the form (f, s̃, s) such that when queried on (f, s̃), T returns s, denoted
T (f, s̃) = s.

Relation: Rsim

(
〈h, c, r〉, 〈u,Π〈·〉, T 〉

)
= 1 if and only if all of the fol-

lowing conditions hold:

1. c = Com
(
h
(
Π〈·〉

)
; u
)

2. ∀ (f, s̃, s) ∈ T it holds that f ∈ Fn is an injective function and
f(s) = s̃

3. Program ΠT , takes no input, outputs the string r, and halts within
2n steps.

4. Program ΠT makes oracle queries of the form (f, s̃) such that:

∀ queries (f, s̃) ∃ s s.t. (f, s̃, s) ∈ T

Fig. 1. Relation Rsim based on a perfectly binding commitment Com.

18

We are now ready to describe the simpler variant of our protocol which is
constant round and concurrent zero-knowledge. The protocol has three stages:
in first stage λ is sampled, in second stage the verifier sends (f, s̃) and Turing

machine M̃λ,s (and also proves that is is a correctly generated), in stage 3, P
proves the knowledge of either a witness to x (the statement) or s s.t. f(s) = s̃.
The formal description of our protocol, named Simple-cZK, appears in figure 2.
In the protocol description, we have renamed the machine Mλ,s (which was only
informally stated earlier) to SimLockλ,s(·) := SimLock(λ, ·, s)9 where, formally:

SimLock(λ, ω, s):
• Test if Rsim(λ, ω) = 1, and if so output s; else, output 0n.

Inputs. The common input to P and V is a statement x ∈ L where
language L ∈ NP. The prover’s auxiliary input is a witness w such that
R(x,w) = 1. The security parameter n is an implicit input to both parties.

Protocol. The protocol proceeds in three stages.

Stage 1: P and V execute the GenStat protocol in which V sends the
first message h← Hn, P sends the second message c = Com(0n;u) for a
random u, and V sends the final message r ← {0, 1}n. Let λ = 〈h, c, r〉
be the transcript.

Stage 2: V samples an injective one-way functions f ← Fn, a random
input s ∈ {0, 1}n, and a sufficiently long random tape ζ ∈ {0, 1}poly(n)
and computes:

s̃ = f(s), M̃λ,s ← O (SimLockλ,s ; ζ) (1)

V sends (f, s̃, M̃λ,s), and proves using a constant round ZK protocol (say
ΠZK) that there exist (s, ζ) satisfying equation (1) above.

Stage 3: P proves to V , using a 3-round WIPOK (say ΠWIPOK) the knowl-
edge of either:

– w such that R(x,w) = 1; OR
– s such that f(s) = s̃.

Verifier’s output: V accepts if the proof in stage 3 succeeds; otherwise,
it rejects.

Fig. 2. The simpler variant of our protocol: Simple-cZK.

Relation Ra
sim, language Lasim. Relation Rsim is undecidable in polynomial

in general. We define a polynomial time decidable version of Rsim. For a poly-
nomial a : N → N, relation Ra

sim is defined as follows: Ra
sim is identical to Rsim

9 SimLock stands for “simulator’s lock,” i.e., only the simulator will be able to “unlock”
the secret s from this program.

19

except that the witness (u,Π〈·〉, T) satisfies following additional constraints: (1)∣∣T ∣∣ ≤ a(n), and (2) ΠT halts in at most a(n) steps.
We define Lsim and Lasim to be the languages corresponding to Rsim and Ra

sim

respectively. Note that for every polynomial a, it holds that Lasim ∈ NP. We say
that Z = {Zn} is a hard distribution over the statements of Lasim if there exists a
negligible function negl such that for every non-uniform PPT algorithm A∗ and
every sufficiently large n it holds that Pr[λ ← Zn;ω ← A∗(1n, λ); Ra

sim(λ, ω) =
1] ≤ negl(n).

The main result of this section is the following theorem.

Theorem 1. Assume the existence of collision-resistant hash functions and in-
jective one-way functions. Further, public-coin differing-inputs obfuscation (pc-
diO) for the class of all polynomial-size Turing machines that halt in a polyno-
mial number of steps.10 Then, there exists a constant round, fully concurrent
zero-knowledge protocol with negligible soundness, for all languages in NP.

We prove the above theorem by proving that protocol Simple-cZK is a fully
concurrent zero-knowledge protocol with negligible soundness error. It is clear
that the protocol has constant rounds and perfect completeness. We have already
discussed briefly the main ideas for proving the soundness and concurrent ZK of
this protocol. We discuss a few more points here and provide the full proofs in
[PPS15].

To prove the soundness, we start by proving some claims about the obfusca-
tion of Turing machine SimLockλ,s. In Section 6 we prove that it is hard for any
(non-uniform) prover P ∗ to write a “fake witness” ω to the statements λ sampled
using the preamble GenStat (see lemma 1). Using this lemma, we show that a
sampling algorithm that outputs the pair of machines (SimLockλ,s,SimLockλ,0n)
is a nice sampler for Turing machines—which, roughly speaking, means that
it is hard to produce an input y such that SimLockλ,s(y) 6= SimLockλ,0n(y).
Therefore, by security of pc-diO, the obfuscation of SimLockλ,s will be indistin-
guishable from that of SimLockλ,0n . This however requires some care since we
have to ensure that λ can indeed be correctly sampled using public-coins. But
λ consists of (h, r) which are completely random strings, and c is the output
of P ∗ which is a publicly known deterministic TM. Therefore we can actually
sample λ and still ensure hardness of finding a differing-input given (h, r). Now,
the soundness follows by considering three hybrids as before and violating the
hardness of one-way functions (similar to the soundness of standalone ZK in
section 1.1). The full proof appears in [PPS15].

To prove concurrent ZK we consider two simulators. The first one is called
the internal simulator which requires access to an inversion oracle I for (injec-
tive) one-way functions. The second is the main simulator which essentially runs
exactly as the internal simulator (by committing its description in c) and ex-
tracting the secrets using the obfuscated programs. The full descriptions of both

10 We note that we actually do not need obfuscation for the class of all PPT Turing
machines. Instead, we only need obfuscation for those Turing machines of the form
SimLocka where a is a polynomial and SimLocka is the same as SimLock except that
it runs for at most a(|x|) steps on input x.

20

the simulators as well as the full proof of indistinguishability of simulation are
given in [PPS15].

An important issue that we did not discuss relates to the randomness used
in the simulation. For the simulation to work, it is essential the internal simu-
lator and the main simulator must use identical randomness in computing the
messages that are “fed” to the verifier. This creates a circularity in the security
proof: how can the commitments sent by the main simulator be “secure” when
the message in the commitment (i.e., the program of the internal simulator) is
correlated to the randomness used to create the commitment. We address this
issue as follows: we do not include the randomness as part of the internal simu-
lator’s description in the “plain;” instead, we include it in the “committed” form
using a perfectly binding commitment which can be recovered using the inversion
oracle I—e.g., using commitments based on hard-core bits [GL89].

5 The Four Round Construction

In the previous section, we presented a reduction from constant round, concur-
rent zero-knowledge to diO based on standard cryptographic assumptions. In
this section, we present a similar reduction for four message concurrent zero-
knowledge.

Let us start by optimizing the number of rounds in our constant round pro-
tocol of previous section. The standalone ZK protocol used in stage 2 has at least
four rounds.11 Since the last message of this ZK protocol must come from the
verifier, our resulting protocol will have at least five rounds even after optimiza-
tions.

We consider two approaches to obtain a four round protocol. First, we can
use a two-round ZK protocol with super polynomial time simulation[Pas03]. This
approach gives us a reduction where the soundness of the resulting protocol must
assume sub-exponential hardness assumptions. The second approach is to use a
WI protocol to prove the correctness of the obfuscated program. However, in
typical applications of WI, to get any useful security we must somehow ensure
that the statement being proven has at least two witnesses.

The standard approach in such cases is to consider two independently sam-
pled statements, in this case, two obfuscated programs M̃λ,s and M̃λ,s′ ; and
prove that at least one of them is correctly constructed using a WI proof. How-
ever, this approach actually fails for a very interesting reason. Although it does
hide one of the secrets s, s′, it actually breaks the simulation. Indeed, the internal
simulator committed to in the preamble, will have no efficient way of knowing
which of these two programs is actually correctly prepared. In particular, it will
have to ask for the inversion of two challenges per session but the main simulator
might be able to return only one of them (since one of the obfuscated programs
could have been maliciously prepared). Attempting to overcome this subtle issue
actually breaks the hardness of Rsim.

11 To keep our reduction from concurrent ZK to obfuscation free from “knowledge
assumptions,” we cannot use 3-round ZK protocols based on such assumptions.

21

We therefore use a different approach; we set up an “intermediate statement”
which is selected by the prover, and require the prover to provide a WIPOK of its
correctness. The verifier then proves that either this intermediate statement is
true or the obfuscated program is correctly prepared. The intermediate statement
is prepared in such a way that it is possible to make it false and succeed (using
the real witness for x) without the verifier noticing. This allows us to ensure
that the obfuscated program must be correctly prepared and simulation still
continues to go through. For the soundness, roughly speaking, we can extract
the witness corresponding to the “intermediate statement” by using the extractor
of WIPOK; we then use it to simulate the WI proof that comes from verifier’s side.
This allows us to again enforce the ideas we developed to prove the soundness
of the Simple-cZK protocol.

To setup the “intermediate statement” we use perfectly binding commitments
to specially prepared strings. In the final proof, we will need to actually extract
the secret s to violate the hardness of one-way functions. We get around this
difficulty by using a combination of the WIPOK used by the prover and a ZAP

proof. We now present a sketch of our four round protocol below. The formal
description of the protocol appears [PPS15].

Four round protocol for concurrent zero-knowledge. The protocol has
four components whose messages will be sent in parallel:

1. The first component is the GenStat protocol, producing statements of the
form λ = 〈h, c, r〉.

2. The second component is a three round WIPOK given by the prover to the
verfier. The prover prepares two commitments, namely t̃1 = Com(0 ‖ t1; v1)
and t̃2 = Com(0 ‖ t2; v2) and proves that either (t̃1, t̃2) are correctly prepared
or x is true. The 3 messages of this WIPOK will be denoted by 〈α, β, γ〉.

3. The final component is a ZAP for a specially prepared statement, which will
let us extract either a witness to x or the secret s in the proof of soundness.
The special statement is prepared as follows.
The prover creates two commitments τ1, τ2 such that τ1 uses string t1 (de-
fined above in item 2) as its randomness; likewise τ2 uses t2. Further, the
value committed to in one of them is the witness w for statement x. The
prover then proves, using a ZAP, that there exists i ∈ {1, 2} such that τi is
a commitment to w using ti. The two messages of this ZAP are denoted by
〈σ′, π′〉.

To get four rounds, the messages of these components are piggy backed with
each other. The main result of this section is the following theorem.

Theorem 2. Assume the existence of collision-resistant hash functions and trap-
door one-way permutations (alternatively, injective one-way functions and ZAP

proofs for NP). Further, for every polynomial a : N → N, and every hard dis-
tribution Z over the statements of Lasim, assume the existence of Z-auxiliary
differing-input obfuscation (diO) for the class of all polynomial-size Turing ma-
chines that halt in a polynomial number of steps. Then, there exists a four mes-

22

sage, fully concurrent zero-knowledge protocol with negligible soundness, for all
languages in NP.

We have already discussed main ideas behind the proof of soundness and con-
current zero-knowledge of this protocol. The full details are given in [PPS15].

References

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark
Zhandry. Differing-inputs obfuscation and applications. IACR Cryptology
ePrint Archive, 2013, 2013.

[App13] Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom
functions. Cryptology ePrint Archive, Report 2013/699, 2013. http:

//eprint.iacr.org/2013/699.pdf.
[Bar01] B. Barak. How to go beyond the black-box simulation barrier. In FOCS,

pages 106–115, 2001.
[Bar02] Boaz Barak. Constant-round coin-tossing with a man in the middle or

realizing the shared random string model. In FOCS, 2002.
[BBC+14] Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer Paneth,

and Amit Sahai. Obfuscation for evasive functions. In TCC, 2014. Prelim-
inary version on Eprint 2013: http://eprint.iacr.org/2013/668.pdf.

[BC10] Nir Bitansky and Ran Canetti. On strong simulation and composable point
obfuscation. In CRYPTO, pages 520–537, 2010.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recur-
sive composition and bootstrapping for snarks and proof-carrying data. In
STOC, pages 111–120, 2013.

[BCG+11] Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman
Kalai, and Guy N. Rothblum. Program obfuscation with leaky hardware.
In ASIACRYPT, pages 722–739, 2011.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. Extractable obfuscation
and applications. In TCC, 2014. Preliminary version on Eprint 2013:
http://eprint.iacr.org/2013/650.pdf.

[BCPR13] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. More on the
impossibility of virtual-black-box obfuscation with auxiliary input. Cryp-
tology ePrint Archive, Report 2013/701, 2013. http://eprint.iacr.org/
2013/701.pdf.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In STOC, pages 103–
112, 1988.

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In
CRYPTO, pages 390–420, 1992.

[BG02] Boaz Barak and Oded Goldreich. Universal arguments and their applica-
tions. In Annual IEEE Conference on Computational Complexity (CCC),
volume 17, 2002. Preliminary full version available as Cryptology ePrint
Archive, Report 2001/105.

[BGGL01] B. Barak, O. Goldreich, S. Goldwasser, and Y. Lindell. Resettably-sound
zero-knowledge and its applications. In FOCS 2001, pages 116–125, 2001.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang. On the (im)possibility of obfuscating programs. In Crypto
’01, pages 1–18, 2001.

23

[BGK+13] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit
Sahai. Protecting obfuscation against algebraic attacks. IACR Cryptology
ePrint Archive, 2013:631, 2013.

[BGT14] Nir Bitansky, Sanjam Garg, and Sidharth Telang. Succinct randomized
encodings and their applications. Cryptology ePrint Archive, Report
2014/771, 2014. http://eprint.iacr.org/.

[BL04] Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation and
extraction. SIAM Journal on Computing, 33(4):783–818, August 2004.
Extended abstract appeared in STOC 2002.

[Blu87] Manuel Blum. How to prove a theorem so no one else can claim it. In
Proceedings of the International Congress of Mathematicians, pages 1444–
1451, 1987.

[BOV03] Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in
cryptography. In CRYPTO, pages 299–315, 2003.

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assump-
tions and 3-round zero-knowledge protocols. In CRYPTO, pages 273–289,
2004.

[BP12a] Nir Bitansky and Omer Paneth. From the impossibility of obfuscation to
a new non-black-box simulation technique. In FOCS, pages 223–232, 2012.

[BP12b] Nir Bitansky and Omer Paneth. Point obfuscation and 3-round zero-
knowledge. In TCC, pages 190–208, 2012.

[BP13a] Nir Bitansky and Omer Paneth. On the impossibility of approximate ob-
fuscation and applications to resettable cryptography. In STOC, pages
241–250, 2013.

[BP13b] Elette Boyle and Rafael Pass. Limits of extractability assumptions with dis-
tributional auxiliary input. Cryptology ePrint Archive, Report 2013/703,
2013. http://eprint.iacr.org/2013/703.pdf.

[BR13a] Zvika Brakerski and Guy N. Rothblum. Obfuscating conjunctions. In
CRYPTO (2), pages 416–434, 2013.

[BR13b] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for
all circuits via generic graded encoding. Cryptology ePrint Archive, Report
2013/563, 2013. http://eprint.iacr.org/2013/563.pdf.

[BSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano.
Noninteractive zero-knowledge. SIAM J. Comput., 20(6):1084–1118, 1991.

[BZ13] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor
tracing, and more from indistinguishability obfuscation. Cryptology ePrint
Archive, Report 2013/642, 2013. http://eprint.iacr.org/.

[CD09] Ran Canetti and Ronny Ramzi Dakdouk. Towards a theory of extractable
functions. In TCC, pages 595–613, 2009.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Reset-
table zero-knowledge. In Proc. 32th STOC, pages 235–244, 2000.

[CHJV14] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan.
Indistinguishability obfuscation of iterated circuits and ram programs.
Cryptology ePrint Archive, Report 2014/769, 2014. http://eprint.iacr.
org/.

[CKPR03] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concur-
rent zero-knowledge requires (almost) logarithmically many rounds. SIAM
Journal on Computing, 32(1):1–47, February 2003. Preliminary version in
STOC ’01.

24

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and com-
posable security in the plain model from standard assumptions. In FOCS,
pages 541–550, 2010. Full version: http://www.cs.cornell.edu/~rafael/
papers/ccacommit.pdf.

[CLP13a] Ran Canetti, Huijia Lin, and Omer Paneth. Public-coin concurrent zero-
knowledge in the global hash model. In TCC, pages 80–99, 2013.

[CLP13b] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent
zero knowledge from p-certificates. In FOCS, 2013.

[COPV13] Kai-Min Chung, Rafail Ostrovsky, Rafael Pass, and Ivan Visconti. Simul-
taneous resettability from one-way functions. In FOCS, pages 231–240,
2013.

[CPS13] Kai-Min Chung, Rafael Pass, and Karn Seth. Non-black-box simulation
from one-way functions and applications to resettable security. In STOC,
pages 231–240, 2013.

[CRV10] Ran Canetti, Guy N. Rothblum, and Mayank Varia. Obfuscation of hy-
perplane membership. In TCC, pages 72–89, 2010.

[CV13] Ran Canetti and Vinod Vaikuntanathan. Obfuscating branching programs
using black-box pseudo-free groups. IACR Cryptology ePrint Archive,
2013:500, 2013.

[Dam91] Ivan Damg̊ard. Towards practical public key systems secure against chosen
ciphertext attacks. In CRYPTO, pages 445–456, 1991.

[Dam00] Ivan Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string
model. In EUROCRYPT, pages 418–430, 2000.

[DGS09] Yi Deng, Vipul Goyal, and Amit Sahai. Resolving the simultaneous reset-
tability conjecture and a new non-black-box simulation strategy. In FOCS,
2009.

[DL07] Yi Deng and Dongdai Lin. Instance-dependent verifiable random functions
and their application to simultaneous resettability. In EUROCRYPT, pages
148–168, 2007.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In Proc. 41st
FOCS, pages 283–293, 2000.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero knowledge.
In Proc. 30th STOC, pages 409–418, 1998.

[DS98] Cynthia Dwork and Amit Sahai. Concurrent zero-knowledge: Reducing the
need for timing constraints. In CRYPTO, pages 442–457, 1998.

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity.
Journal of Cryptology, 1(2):77–94, 1988. Preliminary version in STOC
1987.

[FLS99] Feige, Lapidot, and Shamir. Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM Journal on Computing, 29, 1999.

[FS89] U. Feige and A. Shamir. Zero knowledge proofs of knowledge in two rounds.
In CRYPTO, pages 526–545, 1989.

[FS90] U. Feige and A. Shamir. Witness indistinguishable and witness hiding
protocols. In Proc. 22nd STOC, pages 416–426, 1990.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In FOCS, 2013.

[GGHW14] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the im-
plausibility of differing-inputs obfuscation and extractable witness encryp-
tion with auxiliary input. In Advances in Cryptology - CRYPTO 2014

25

- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August
17-21, 2014, Proceedings, Part I, pages 518–535, 2014.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Ak-
shay Wadia. Founding cryptography on tamper-proof hardware tokens. In
TCC, pages 308–326, 2010.

[GJO+13] Vipul Goyal, Abhishek Jain, Rafail Ostrovsky, Silas Richelson, and Ivan
Visconti. Concurrent zero knowledge in the bounded player model. In
TCC, pages 60–79, 2013.

[GJS11] Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage resilient zero
knowledge. In Advances in Cryptology – CRYPTO, 2011. Full version
at: http://www.cs.ucla.edu/~abhishek/papers/lrzk.pdf.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-
knowledge proof systems. SIAM Journal on Computing, 25(1):169–192,
February 1996. Preliminary version appeared in ICALP’ 90.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfus-
cation with auxiliary input. In FOCS, pages 553–562, 2005.

[GK13] Shafi Goldwasser and Yael Tauman Kalai. A note on the impossibility
of obfuscation with auxiliary input. Cryptology ePrint Archive, Report
2013/665, 2013. http://eprint.iacr.org/2013/665.pdf.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In Proc. 21st STOC, pages 25–32, 1989.

[GLP+15] Vipul Goyal, Huijia Lin, Omkant Pandey, Rafael Pass, and Amit Sahai.
Round-efficient concurrently composable secure computation via a robust
extraction lemma. In TCC, 2015. Full version of this work available as
IACR Eprint Report 2012/652.

[GM11] Vipul Goyal and Hemanta K. Maji. Stateless cryptographic protocols. In
FOCS, pages 678–687, 2011.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof-systems. In Proc. 17th STOC, pages 291–304, Providence,
1985. ACM.

[Gol02] Oded Goldreich. Concurrent zero-knowledge with timing, revisited. In
Proc. 34th STOC, pages 332–340, 2002.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and
new techniques for nizk. In CRYPTO, pages 97–111, 2006.

[Goy13] Vipul Goyal. Non-black-box simulation in the fully concurrent setting. In
STOC, pages 221–230, 2013.

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In
TCC, pages 194–213, 2007.

[GS12a] Sanjam Garg and Amit Sahai. Adaptively secure multi-party computation
with dishonest majority. In CRYPTO, pages 105–123, 2012.

[GS12b] Divya Gupta and Amit Sahai. On constant-round concurrent zero-
knowledge from a knowledge assumption. CoRR, abs/1210.3719, 2012.

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In AsiaCrypt ’00,
pages 443–457, 2000.

[Had10] Satoshi Hada. Secure obfuscation for encrypted signatures. In EURO-
CRYPT, pages 92–112, 2010.

[HRSV07] Susan Hohenberger, Guy N. Rothblum, Abhi Shelat, and Vinod Vaikun-
tanathan. Securely obfuscating re-encryption. In TCC, pages 233–252,
2007.

26

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random
oracle: Full domain hash from indistinguishability obfuscation. Cryptology
ePrint Archive, Report 2013/509, 2013. http://eprint.iacr.org/2013/

509.pdf.
[HT99] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-

knowledge protocols. Cryptology ePrint Archive, Report 1999/009, 1999.
http://eprint.iacr.org/.

[IPS15] Yuval Ishai, Omkant Pandey, and Amit Sahai. Public Coin Differing-Inputs
Obfuscation. In TCC, 2015. Cryptology Eprint Archive Report 2014/942.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (ex-
tended abstract). In Proc. 24th STOC, pages 723–732, 1992.

[Kil95] Joe Kilian. Improved efficient arguments (preliminary version). In Crypto
’95, pages 311–324, 1995.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in
poly-logarithm rounds. In STOC, pages 560–569, 2001.

[KPR98] J. Kilian, E. Petrank, and C. Rackoff. Lower bounds for zero knowledge
on the Internet. In Proc. 39th FOCS, pages 484–492, 1998.

[KRW13] Venkata Koppula, Kim Ramchen, and Brent Waters. Separations in cir-
cular security for arbitrary length key cycles. Cryptology ePrint Archive,
Report 2013/683, 2013. http://eprint.iacr.org/2013/683.pdf.

[LP14] Huijia Lin and Rafael Pass. Succinct garbling schemes and applications.
Cryptology ePrint Archive, Report 2014/766, 2014. http://eprint.iacr.
org/.

[LPS04] Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and tech-
niques for obfuscation. In EUROCRYPT, pages 20–39, 2004.

[Mic94] S. Micali. CS proofs. In Proc. 35th FOCS, pages 436–453, 1994.
[MO13] Antonio Marcedone and Claudio Orlandi. Obfuscation ==¿ (ind-cpa secu-

rity =/=¿ circular security). Cryptology ePrint Archive, Report 2013/690,
2013. http://eprint.iacr.org/2013/690.pdf.

[MR13] Tal Moran and Alon Rosen. There is no indistinguishability obfuscation
in pessiland. Cryptology ePrint Archive, Report 2013/643, 2013. http:

//eprint.iacr.org/2013/643.pdf.
[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random

functions. In FOCS, pages 120–130, 1999.
[Nao89] Moni Naor. Bit commitment using pseudo-randomness (extended ab-

stract). In CRYPTO, pages 128–136, 1989.
[Pan14] Omkant Pandey. Achieving constant round leakage-resilient zero-

knowledge. In TCC, 2014. Preliminary version on Eprint 2012: http:

//eprint.iacr.org/2012/362.pdf.
[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to

protocol composition. In Eurocrypt ’03, 2003.
[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with a

dishonest majority. In Proc. 36th STOC, pages 232–241, 2004.
[PPS15] Omkant Pandey, Manoj Prabhakaran, and Amit Sahai. Obfuscation-based

non-black-box simulation and four message concurrent zero knowledge for
np. In TCC, 2015. Full version of this work available as Cryptology ePrint
Archive Report 2013/754.

[PR03] Rafael Pass and Alon Rosen. Bounded-concurrent secure two-party com-
putation in a constant number of rounds. In Proc. 44th FOCS, 2003.

[PR05a] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In
FOCS, 2005.

27

[PR05b] Rafael Pass and Alon Rosen. New and improved constructions of non-
malleable cryptographic protocols. In STOC, 2005.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowl-
edge with logarithmic round-complexity. In FOCS, 2002.

[PTV10] Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkita-
subramaniam. Eye for an eye: Efficient concurrent zero-knowledge in the
timing model. In TCC, pages 518–534, 2010.

[PV08] Rafael Pass and Muthuramakrishnan Venkitasubramaniam. On constant-
round concurrent zero-knowledge. In TCC, pages 553–570, 2008.

[RK99] R. Richardson and J. Kilian. On the concurrent composition of zero-
knowledge proofs. In Eurocrypt ’99, pages 415–432, 1999.

[Ros00] Alon Rosen. A note on the round-complexity of concurrent zero-knowledge.
In Crypto ’00, pages 451–468, 2000.

[Ros04] Alon Rosen. The Round-Complexity of Black-Box Concurrent Zero-
Knowledge. PhD thesis, Department of Computer Science and Applied
Mathematics, Weizmann Institute of Science, Rehovot, Israel, 2004.

[SW13] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
Deniable encryption, and more. IACR Cryptology ePrint Archive, 2013:454,
2013.

[TW87] M. Tompa and H. Woll. Random self-reducibility and zero-knowledge in-
teractive proofs of possession of information. In Proc. 28th FOCS, pages
472–482, 1987.

[Wee05] Hoeteck Wee. On obfuscating point functions. In STOC, pages 523–532,
2005.

6 Hardness of GenStat and A Nice Sampler

In this section, we prove that a randomly sampled transcript of GenStat is a hard
distribution over the statements of Lasim for every polynomial a. Recall that Z =
{Zn} is a hard distribution over the statements of Lasim if there exists a negligible
function negl such that for every non-uniform PPT algorithm A∗ and every
sufficiently large n it holds that Pr[λ ← Zn;ω ← A∗(1n, λ); Ra

sim(λ, ω) = 1] ≤
negl(n). The preamble GenStat, is recalled below. For convenience, we use a non-
interactive perfectly binding commitment scheme; the two-round statistically-
binding commitment scheme of [Nao89] also works.

6.1 Preamble GenStat

Statement generation protocol. Let {Hn} be a family of collision-resistant
hash functions (CRHF) h ∈ Hn such that h : {0, 1}∗ → {0, 1}n and Com be a
non-interactive perfectly-binding commitment scheme for {0, 1}n. The statement
generation protocol GenStat := 〈P1, V1〉 is a three round protocol between P1 and
V1 which proceeds as follows:

Protocol GenStat := 〈P1, V1〉:
1. V1 sends a random h← Hn
2. P1 sends a commitment c = Com(0n;u) where u is a randomly chosen
3. V1 sends a random string r ← {0, 1}n

The transcript of the protocol is λ := 〈h, c, r〉. �

28

6.2 Hardness of GenStat with respect to relation Rsim

We defined Rsim in figure 1. Recall that Rsim is undecidable in polynomial
time in general. But our analysis will ensure that Rsim is tested only on inputs
on which ΠT does halt (and in fact halts in a polynomial number of steps).
To capture this, we defined a bounded variant of this relation, namely Ra

sim for
every polynomial a : N→ N.

Relation Ra
sim: Let a : N→ N be a polynomial; relation Ra

sim is identical
to Rsim except that the witness (u,Π〈·〉, T) satisfies following additional
constraints:

1.
∣∣T ∣∣ ≤ a(n),

2. ΠT halts in at most a(n) steps.

Note that Ra
sim can be tested in time poly(a(n)) = poly(n). Lsim (resp. Lasim) is

the language corresponding to relation Rsim (resp., Ra
sim) and Lasim ∈ NP.

The following lemma states that it is hard for any PPT machine P ∗1 to com-
pute a witness ω to statements λ when λ is the transcript of GenStat between
P ∗1 and an honest V1. The proof follows [Bar01].

Lemma 1 (Hardness of GenStat). Assume that {Hn} is a family of collision-
resistant hash functions against (non-uniform) PPT algorithms. There exists a
negligible function negl such that for every (non-uniform) PPT Turing machine
P ∗1 , the probability that P ∗1 , after interacting with an honest V1 in protocol
GenStat, writes a string ω on its (private) output tape such that Rsim(λ, ω) = 1
is at most negl(n), where λ is the transcript of interaction between P ∗1 and V1,
and the probability is taken over the randomness of both P ∗1 and V1.

Remark. We note that since P ∗1 is polynomial time, it can only write a ω of
polynomial length. However, since we have to consider all polynomial time P ∗1 , it
is not known in advance how large ω will be even though it will be of polynomial
size.

Proof of lemma 1. Assume, on the contrary, that there exist polynomials p, q
and a prover P ∗1 such that P ∗1 takes at most p(n) steps and writes a string ω on
its private output tape such that for infinitely many values of n, δ(n) ≥ 1/q(n)
where δ(n) is the probability that Rsim(λ, ω) = 1 (where λ is sampled as defined
in the lemma). Now consider the machine P ∗1 in an execution of GenStat and let
(h, c) be the first two messages in this interaction. Let the machine P ∗1,h,c denote
the machine P ∗1 whose state has been frozen up to the point where c is sent in this
execution. By a standard averaging argument, it follows that with probability
at least δ/2 over the sampling of (h, c) in this interaction, the probability that
P ∗1,h,c writes a valid witness ω at the end of the interaction is at least δ/2. We
call such (h, c) “good.”

The following procedure finds collisions in h provided (h, c) are good: the
procedure chooses two random strings r1, r2 each of length n, feeds P ∗1 with r1
and then with r2 separately; let ωi = (ui, Π

〈·,〉
i , Ti) be the contents of the private

29

output tape of P ∗1,h,c when fed with string ri for i ∈ {1, 2}. The procedure
outputs (Π1, Π2) as the potential collision on h.

We claim that the procedure finds collisions in h with noticeable probability
as follows. Note that since (h, c) is good, with probability δ2/4, it holds that
Rsim(λi, ωi) = 1 where λi = (h, c, ri). Hence, ΠTii = ri and h(Π1) = h(Π2)
w.h.p. since c is perfectly binding.

Now, define I to be an inversion oracle which on input a query of the form
(f, s̃) for f ∈ Fn and s̃ ∈ Range(f) outputs s = f−1(s̃). Then, by definition of
Rsim (in particular, due to condition 4 in figure 1), we have that the output of
ΠTii is the same as that of ΠIi . I.e., ΠIi outputs ri. Since ΠIi is a deterministic
computation, it holds that Π1 and Π2 are different programs whenever r1 6= r2
(which happens with prob. 1−2−n). Further, since P ∗1 runs in time at most p(n),
programs Π1, Π2 are of size at most p(n). Therefore, Π1 and Π2 are collisions

in h, found with probability at least δ2

4 · (1− 2−n) ≥ δ2/8.
It follows that collisions can be found for a noticeable (specifically, at least

δ/2) fraction of functions in {Hn} with noticeable probability (specifically, δ2/8).
This concludes the proof.

6.3 A Nice Sampler for TM

Protocol GenStat allows us to build a (non uniform) sampling algorithm Samp
which will be nice according to definition 6. Samp uses the following simple TM,
which was defined earlier:

SimLock(λ, ω, s):
Test if Rsim(λ, ω) = 1, and if so output s;
Else, output the empty string 0n.

Also, for a fixed (λ, s), define SimLockλ,s(·) := SimLock(λ, ·, s). Machine
SimLockλ,s essentially tests whether the input is a valid witness to λ, and if
so outputs the fixed value s, and nothing otherwise. Note that it is possible that
SimLock takes 2n steps on some inputs. However, no such inputs will be returned
by any PPT adversary who uses (an obfuscation of) SimLock. Also, w.l.o.g., we
assume that Steps(SimLockλ,s1 , ω) = Steps(SimLockλ,s2 , ω) for every λ, ω and
(s1, s2) ∈ {0, 1}n × {0, 1}n.

The sampler. The sampling algorithm, SampP∗1 is defined with respect to an
arbitrary PPT interactive TM P ∗1 . ITM P ∗1 follows the instructions of GenStat
protocol and interacts with algorithm V1.

SampP∗1 (1n; z).

– z is of the form (h, r, s) ∈ Hn × {0, 1}n × {0, 1}n.
– Sample a random transcript λ of GenStat by interacting with P ∗1 honestly

by sending h as the first message and r as the third message. Let c be
the output of P ∗1 so that λ = (h, c, r).

– Output
(
z, SimLockλ,s, SimLockλ,0n

)

30

When the third component of z is fixed to a specific s, we will denote the sampler
by Samps,P∗1 to emphasize a fixed s. The following lemma is essentially a corollary
of lemma 1. It proves a stronger claim by directly about Samps,P∗1 ; it is easy to
see that the claim will trivially follow for a random s since it follows for each
one of them.

Lemma 2. For every non-uniform PPT TM P ∗1 , and every s ∈ {0, 1}n, Samps,P∗1
is a nice sampler for Turing machines (according to definition 6).

Proof. Observe that the pair (SimLockλ,s, SimLockλ,0n) is always a pair of com-
patible TMs, by definition of SimLock. Now suppose that the second property
of definition 6 is not satisfied. Then there exists an A, running in time a(n) for
some polynomial a, which outputs an x with noticeable probability such that
SimLockλ,s(x) 6= SimLockλ,0n(x), and |x| ≤ a(n); here the probability is taken
over the sampling of λ.It follows, from the definition of SimLockλ,s, that x must
be a witness to λ and therefore A is a PPT machine which finds witnesses to
statements λ ∈ Lasim with noticeable probability. We can use A to violate lemma
1 as follows.

Consider the machine B∗1,s which incorporates P ∗1 and A. It then samples λ
by routing messages between P ∗1 and an external (honest) V1, and returns the
output of A

(
z,SimLockλ,s,SimLockλ,0n

)
. It is straightforward to see that B∗1,s

violates lemma 1 (for every fixed s).

