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Abstract. Adaptively secure Multi-Party Computation (MPC) first stud-
ied by Canetti, Feige, Goldreich, and Naor in 1996, is a fundamental no-
tion in cryptography. Adaptive security is particularly hard to achieve in
settings where arbitrary number of parties can be corrupted and honest
parties are not trusted to properly erase their internal state. We did not
know how to realize constant round protocols for this task even if we
were to restrict ourselves to semi-honest adversaries and to the simpler
two-party setting. Specifically the round complexity of known protocols
grows with the depth of the circuit the parties are trying to compute.
In this work, using indistinguishability obfuscation, we construct a UC
two-round Multi-Party computation protocol secure against any active,
adaptive adversary corrupting an arbitrary number of parties.

1 Introduction

The notion of secure computation is central in cryptography. Introduced in the
seminal work of [41, 30] secure multiparty computation (MPC) allows several
mutually distrustful parties P1, . . . , Pn to compute a joint function f on their
private inputs (x1, . . . , xn), in a way that ensures that honest parties obtain
the correct outputs and no group of colluding malicious parties learns anything
beyond their own inputs and the prescribed output. For this problem, we are
interested in the natural setting where the attacker can on-the-fly decide on
which parties to corrupt. This model of adaptive corruption was first studied by
Canetti et al. [9]. In this paper we consider adaptive adversaries that are allowed
to corrupt arbitrary number of honest parties. Additionally we only consider non-
erasure protocols, specifically the protocols whose security does not depend on
having honest parties erase any of their internal state. We refer the reader to [9,
Section 1] for discussion on the importance of considering adaptive adversaries.
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One fundamental complexity measure of an MPC protocol is its round com-
plexity. For the static setting, Yao’s original two-party secure computation proto-
col [41] was already round-optimal. Analogous results for the multi-party setting
were obtain recently [1, 22].

However achieving similar results in the adaptive setting has remained open.
In the case where all but one of the parties can be corrupted, [36, 34] and [35,
27] including the concurrent work of [18], propose constant round two-party
and multi-party protocols, respectively. On the other hand, round complexity
of all know adaptively secure protocols secure against an arbitrary number of
corruptions grows (see, e.g. [14, 27, 16]) linearly in the depth of the circuit that
the parties are trying to compute. We stress that for this problem, this limitation
holds for essentially every special case of interest — namely, even if we were to
restrict to semi-honest/passive adversaries or to the special case of two-party
protocols. In this work we ask the following fundamental question:

Is it possible to construct a constant round protocol secure against
adaptive corruption of arbitrary number of parties?

1.1 Our Result

We answer the above question in the affirmative and show how to obtain a
two-round adaptively secure MPC protocol. Specifically:

Theorem 1 (informal). Assuming sub-exponentially secure indistinguishabil-
ity obfuscation and other standard assumptions, we show that arbitrary functions
can be UC-securely [8] computed in the presence of adaptive, active corruption
of arbitrary number of parties with just two rounds of broadcast messages.

We stress that in the above claim we are in the setting where security holds
against an adversary corrupting any arbitrary number of parties. Furthermore,
honest parties in our case are not required to erase anything. Also note that
our results are for the strongest notion of security, the UC security. This means
that our protocol remains secure even when multiple instances of our protocol
are executed simultaneously. Since it is impossible to achieve UC security for
dishonest majority without assuming trusted setup assumptions [10, 12, 37], we
base our construction in the common reference string model.

In our results we consider an asynchronous multi-party network3 where the
communication is open (i.e. all the communication between the parties is seen
by the adversary) and delivery of messages is not guaranteed. For simplicity,
we assume that the delivered messages are authenticated. This can be achieved
using standard methods.

3 The fact that the network is asynchronous means that the messages are not neces-
sarily delivered in the order which they are sent.



1.2 Independent Work

In two very recent concurrent and independent works, [15, 11] construct constant
round protocols with security against a semi-honest, adaptive adversary corrupt-
ing any number of parties. Both works can obtain a constant round malicious
version of their protocols by applying the [14] compiler.

In our paper we construct a two-round multi-party protocol with security
against a malicious, adaptive adversary corrupting any number of parties. In
contract, the protocols of [15] and [11] require more rounds. Furthermore, the
construction of [11] solves the problem only for the special case of two parties.
Note that the reduction in our result and the result of [11] involves a sub-
exponential loss of security.

Last but not least, our protocol and the protocol of [11] are also leakage
tolerant. The semi-honest version of [11] is also incoercible with respect to one
of the parties.

1.3 Technical Difficulties and New Ideas

The key technical tool that we use in our construction is obfuscation so let us
start by recalling it briefly.

Obfuscation. Obfuscation was first rigorously defined and studied by Barak et
al. [4]. Most famously, they defined the notion of virtual black box (VBB) ob-
fuscation, and proved that this notion is impossible to realize in general — i.e.,
there exist functions, though a bit unnatural, that are VBB unobfuscatable.

Barak et al. also defined a weaker notion of indistinguishability obfuscation
(iO), which avoids their impossibility results. Indistinguishability obfuscation
requires that for any two circuits C0, C1 of similar size that compute the same
function, it is hard to distinguish an obfuscation of C0 from an obfuscation of C1.
In a recent result, Garg et al. [23] proposed a construction of iO for all circuits,
basing security on assumptions related to multilinear maps [21].

Starting point — Garg et al. [22] construction. In a recent work, Garg et al. [22]
constructed a two-round multiparty computation protocol secure against static
adversaries. Though our goal is to realize a protocol secure in the adaptive setting
it would be illustrative to see how Garg et al.’s construction works.

With the goal of explaining intuition [22] better we will describe the ideas
assuming we have access to VBB obfuscation, rather than just indistinguishabil-
ity obfuscation. We start by noting that two rounds of interaction are essential
for realizing multiparty secure computation. This is because a 1-round protocol
is inherently susceptible to the “residual function” attack in which a corrupted
party could repeatedly evaluate the “residual function” with the inputs of the
honest parties fixed on many different inputs of its own (e.g., see [33]). This
attack can be circumvented by having two rounds of interaction — where in
the first round the parties commit to their inputs and the output is generated



only in the second round. The first round commitments help guarantee that the
“residual function” attack can not be performed in this setting.

The key idea of the Garg et al. construction is to have every party commit
to its input along with its randomness in the first round. The second round
of the Garg et al. protocol is actually a simple compiler: it takes any (possibly
highly interactive) underlying MPC protocol, and has each party obfuscate their
“next-message” function in that protocol, providing one obfuscation for each
round. This enables each party to independently evaluate the obfuscations one
by one, generating messages of the underlying MPC protocol and finally obtain
the output. Party i’s next-message circuit for round j in the underlying MPC
protocol depends on its input xi and randomness ri (which are hard-coded in
the obfuscation). This circuit takes as input the transcript through round j − 1,
and it produces as output the next broadcast message.

However, there is another complication. Unlike the initial interactive protocol
being compiled, the obfuscations are susceptible to a “reset” attack – i.e., they
can be evaluated on multiple inputs. To prevent such an attack, we need to limit
the obfuscations to be used for evaluation only on a unique set of values – namely,
values consistent with the inputs and randomness that the parties committed to
in the first round, and the current transcript of the underlying MPC protocol.
Note that this would implicitly fix the transcript to a unique value. To ensure this
consistency, Garg et al. [22] use non-interactive zero-knowledge (NIZK) proofs.
Since the NIZKs apply not only to the committed values of the first round,
but also to the transcript as it develops in the second round, the obfuscations
themselves must also generate these NIZKs “on the fly”. In other words, the
obfuscations are now augmented to perform not only the next-message function,
but also to prove that their output is consistent with their input, randomness and
transcript so far. Also, obfuscations in round j of the underlying MPC protocol
verify NIZKs associated to obfuscations in previous rounds before providing any
output.

Garg et al. show that this construction can be adapted so that security can
be based on indistinguishability obfuscation alone but we will not delve into
that. Instead we will argue that this approach is fundamentally problematic for
achieving the task at hand.

Our approach – starting afresh. Note that the above intuitive description uses
multiple obfuscations that are generated by honest parties. This however only
works in the static setting and our goal is adaptive security. The challenge in
proving adaptive security is that, a simulator would have a hard time explaining
these obfuscations as being honestly generated. Towards solving this problem we
first would like to limit the use of obfuscation in our construction; specifically
not requiring honest parties to generate any obfuscations.

Still assuming we have access to VBB obfuscation, we need a fresh direction to
solve the above problem. Here is our first stab at the problem: assume the parties
had access to a trusted third party. In this case each party could encrypt its input
and deliver it to the trusted party. The trusted party could then decrypts these
values to obtain the inputs of all the parties, compute the function on the inputs



and then deliver the output back to the parties. Our idea is to have an obfuscated
program given out as part of the CRS implement this trusted party. Just like
the Garg et al. construction, in order to make this construction secure against
“residual function” attack we will need to consider a setting with two rounds. In
the first round, we will have all parties commit to their inputs and then in the
second round we will have them provide encryptions of the openings previously
committed.

Making this construction adaptively secure seems more amenable — specifi-
cally, by using adaptive commitments for the first round and a deniable encryp-
tion scheme for the second. We actually need the first round commitments to be
simulation extractable. This allows our simulator to extract the values commit-
ted to by the adversary on behalf of corrupted parties, even as it equivocates on
its own commitments. Once the simulator has access to the inputs of the cor-
rupted outputs it can force the output by including it in its own second round
encryption.

Basing it on Indistinguishability Obfuscation. The protocol described so far re-
lies on VBB and we would like to instantiate our construction based on iO. The
CRS of the scheme includes an obfuscation that takes as input encryptions of
inputs of all the parties and computes the desired functionality on their decryp-
tions. A reader might have observed that this bears resemblance with functional
encryption or even multi-input functional encryption [31]. One might wonder if
the use of “two key trick” can help us realize this construction using just in-
distinguishability obfuscation — in a way similar to the functional encryption
construction of Garg et al. [23]. In particular the idea would be that each party
encrypts its input along with the opening twice under two different keys and at-
tach along with them a NIZK proof proving that they indeed encrypt the same
value.

Unfortunately, this solution is fundamentally problematic as we are in the
adaptive setting. Even if we were to use an adaptively secure NIZK the problem
is that NIZKs given on deniable encryptions are useless. This is because the
encryption scheme is deniable. The deniability of the encryption scheme allows
the adversary to encrypt two different plaintexts under the two public keys but
still succeed in explaining them as encrypting the same message. This also allows
the attacker to successfully prove that the two ciphertexts indeed encrypt the
same message.

In summary, what we really need is a system with two ciphertexts and a proof
proving that the two ciphertexts encrypt the same message with the property
that only valid proofs exists. Additionally we need the property that both the
ciphertexts and the proof can be denied upon in the proof of security. These
requirements indeed seem to be in conflict with each other. For example, simul-
taneously achieving perfect soundness for NIZK and the ability to explain the
simulated proofs as though they were honestly generated seems like a bottleneck.

Our solution to this seemingly paradoxical problem is to first construct a core
two key encryption scheme which comes attached with a NIZK and then build
deniability on top of it. In particular, the underlying core encryption scheme con-



sists of two copies of a perfectly correct encryption scheme along with a NIZK
proving that the two ciphertexts encrypt the same message and it is combined
with a language which also binds it with the commitments of the first round.
The NIZK we use will have statistical soundness. This underlying encryption
scheme is then made deniable using the Sahai and Waters [40] Universal De-
niable Encryption (UDE) transformation. Briefly, UDE takes any encryption
scheme and converts it to deniable so that ciphertexts are still indistinguishable
from the usual ciphertexts of the underlying core encryption. Hence, our result-
ing encryption is deniable in a very strong sense — specifically, it allows the
encryptor to deny not just on the two ciphertexts but also on the NIZK directly.
However, interestingly proofs for invalid statements do not exist.

Finally various other technical challenges arise in the security proof. For ex-
ample, in the proof of security the simulator needs to hardcode the output that
the adversary gets as part of its ciphertext in a way that remains indistinguish-
able from an honest execution. In order to force the output, the core encryption
scheme which is plugged into the UDE transformation is combined with the
language which implicitly includes a trapdoor mode. In its trapdoor mode, the
simulator can in particular plant the output of the function inside the encryp-
tions it generates on behalf of honest parties. Then the obfuscation checks for
such a trapdoor and acts accordingly. We refer the reader to the full construction
and proof for details on how we resolve this and other issues.

1.4 Application to Leakage Tolerant Protocols

As another application of our techniques, we observe that our adaptively secure
protocol is also leakage tolerant in a way that previous protocols failed to be.
The study of leakage tolerant protocols was initiated by Bitansky et al. [5] and
Garg et al. [25]. Very roughly, leakage tolerant protocols preserve security even
when the adversary can obtain arbitrary leakage on the entire internal state of
honest parties, however only up to the leaked information.

One limitation of known leakage tolerant secure computation protocols [7]
(see also [17]) from the literature is that the leakage in the ideal world queries
needs to depend on the inputs of all honest parties rather than just on the input
of the party being leaked upon. Our adaptively secure protocol also turns out
to be leakage resilient further avoiding this limitation. Another advantage of our
protocol is that it is much simpler than the Boyle et al. [7] construction.

In a recent result, Garg et al. [24] show an alternative way of avoiding this
limitation, without using indistinguishability obfuscation. However their result
is restricted to a setting where at least one of the parties is never leaked on. We
do not make such an assumption.

2 Preliminaries

In this section we recall preliminary notions needed in this work. We will start
by recalling notions of indistinguishability obfuscation and non-interactive zero-



knowledge. Next we recall the notion of publicly deniable encryption scheme
that we adapt from [40].

2.1 Notation

Throuhgout the paper λ ∈ N will denote the security parameter. We say that a
function f : N→ R is negligible if ∀c ∃ nc such that if n > nc then f(n) < n−c.
We will use negl(·) to denote an unspecified negligible function. We often use
[n] to denote the set {1, ..., n}. The concatenation of a with b is denoted by
a||b. Moreover, we use d ← D to denote the process of sampling d from the
distribution D or, if D is a set, a uniform choice from it. If D1 and D2 are two
distributions, then we denote that they are statistically close by D1 ≈s D2; we
denote that they are computationally indistinguishable by D1 ≈c D2; and we
denote that they are identical by D1 ≡ D2.

2.2 Indistinguishability Obfuscators

We will start by recalling the notion of indistinguishability obfuscation (iO)
recently realized in [23] using candidate multilinear maps [21].

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT ma-
chine iO is called an indistinguishability obfuscator for a circuit class {Cλ} if
the following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

– For any (not necessarily uniform) PPT distinguisher D, there exists a neg-
ligible function α such that the following holds: For all security parameters
λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x)
for all inputs x, then∣∣∣Pr

[
D(iO(λ,C0)) = 1

]
− Pr

[
D(iO(λ,C1)) = 1

]∣∣∣ ≤ negl(λ)

2.3 Non-Interactive Zero-Knowledge Proofs

Let R be an NP-relation. For pairs (x,w) ∈ R we call x the statement and w the
witness. Let L be the language consisting of statements in R. A Non-Interactive
Zero Knowledge (NIZK) Proof system [6, 19] consists of three PPT algorithms
(K,P, V ), a common reference string generation algorithm K, a prover P and a
verifier V .

– K(1λ) expects as input the unary representation of the security parameter
λ and outputs a common reference string σ of length Ω(λ).

– P (σ, x, w) takes as input a common reference string σ, a statement x together
with a witness w such that R(x,w) and produces a proof π.



– V (σ, x, π) takes as input a common reference string σ, a statement x, a proof
π and outputs 1 if the proof is accepting and 0 otherwise.

We call (K,P, V ) a non-interactive proof system for R if it satisfies the
following properties.

Perfect completeness. A proof system is complete if an honest prover with
a valid witness can convince an honest verifier. Formally, ∀x ∈ L, ∀w witness of
x

Pr
[
σ ← K(1λ);π ← P (σ, x, w) : V (σ, x, π) = 1

]
= 1.

Statistical soundness. A proof system is sound if it is infeasible to convince
an honest verifier when the statement is false. Formally, we have

Pr
[
σ ← K(1λ); ∃(x, π) : x 6∈ L ∧ V (σ, x, π) = 1

]
< negl(λ).

Computational zero-knowledge. We say a non-interactive proof (K,P, V )
is computational zero-knowledge if there exists a PPT simulator S = (S1, S2),
where S1 returns a simulated common reference string σ together with a simu-
lation trapdoor τ that enables S2 to simulate proofs without having access to
the witness. For all non-uniform PPT adversaries A = (A1,A2) the following
quantity is upper bounded by a negligible function:

∣∣∣∣∣Pr
[
σ ← K(1λ); (x, state)← A1(σ);π ← P (σ, x, w) : A2(x, σ, π, state) = 1

]
−

Pr
[
(σ, τ)← S1(1λ); (x, state)← A1(σ);π ← S2(σ, τ, x) : A2(x, σ, π, state) = 1

]∣∣∣∣∣.
2.4 Double Key Encryption and its Deniable Variant

Our protocol will use a special publicly deniable encryption scheme that we
construct by first describing a core public-key encryption scheme that we then
transform to its deniable variant using the Universal Deniable Encryption (UDE)
transformation of [40].

Let (Setup,Enc,Dec) be a perfectly correct IND-CPA secure public-key en-
cryption scheme and let (K,P , V ) be a NIZK proof system with statistical sound-
ness and computational zero-knowledge. The core encryption scheme we consider
is very similar to the Naor-Yung CCA [39] secure encryption scheme. Recall that
in the Naor-Yung construction a ciphertext consists of encryptions of a message
under two different public keys and a NIZK proof certifying that the two cipher-
texts indeed encrypt the same message. In our encryption scheme a ciphertext
will also consist of two ciphertexts under the two public keys but the NIZK proof
will be used to certify a more sophisticated requirement. More formally:



Definition 2 (Double Key Encryption Scheme). Let (Setup,Enc,Dec) be
a IND-CPA secure encryption scheme with perfect correctness. Let (K,P , V )
be a NIZK proof system for an NP -Language L. A Double Key encryption
scheme, parametrised by a language L, consists of three algorithms DKL =
(SetupDK,EncDK,DecDK).

– SetupDK(1λ, 1`) is a polynomial time procedure that takes as input the unary
representation of the security parameter λ, the description of length of mes-
sages encrypted 1`. It computes (pk0, sk0), (pk1, sk1) ← Setup(1λ) and the
common reference string σ ← K(1λ) for the NIZK proof. It outputs the
public key PK = (pk0, pk1, σ) and the secret key SK = (sk0, sk1).

– EncDK(PK,m0,m1, aux, w; r): This polynomial time procedure takes as in-
put public key PK = (pk0, pk1, σ), messages m0,m1 ∈ {0, 1}`, auxiliary
information aux and some w which will be used as part of the witness for
the language L. It generates c = Enc(pk0,m0; s0) and c′ = Enc(pk1,m1; s1)
and outputs (c, c′, π), where π ← P (σ, (c, c′, aux), (m0,m1, s0, s1, w)) for the
language L.

– DecDK(PK,SK, (c, c′, π), aux)): is a polynomial time procedure that takes as
input PK = (pk0, pk1, σ), SK = (sk0, sk1), ciphertext (c, c′, π) and auxiliary
information aux. Outputs ⊥, in case that V (σ, (c, c′, aux), π) = 0 else output
(Dec(sk0, c),Dec(sk1, c

′)).

Double Key Deniable Encryption Scheme. Next we want to transform the above
core public key encryption into its deniable variant using the UDE transfor-
mation of Sahai and Waters [40, Section 4.2]. In particular, once we plug the
above DKL double key encryption scheme in the UDE transformation, we ob-
tain a double key deniable encryption scheme DDKL = (SetupDDK,EncDDK,
DecDDK,DenEncDDK,ExplainDDK) parametrized by the language L with associate
relation RL where the procedures EncDDK and DecDDK are same as EncDK and
DecDK. Here SetupDDK is obtained by augmenting the procedure SetupDK to ad-
ditionally output a public denying key DK generated using UniversalSetup(PK)
as defined in [40, Section 4.2] which is going to be included in PK. Further the
scheme is augmented with the following two procedures where PK = (σ, pk0, pk1,
DK).

– DenEncDDK(PK,m0,m1, aux, w; r) is a polynomial time procedure that takes
as input PK which includes the public denying key DK, m0,m1 ∈ {0, 1}`,
auxiliary information aux and witness w and uses random coins r. It then
outputs (c, c′, π).

– ExplainDDK(PK, (c, c′, π), (m0,m1, aux, w);u): This polynomial time proce-
dure takes as input public key PK which includes the public denying key
DK, messages m0,m1 ∈ {0, 1}`, auxiliary information aux and witness w. It
also takes as input a value (c, c′, π) and outputs a string e, that is the same
size as the randomness r taken by DenEncDDK above.

This new scheme has the following two additional properties.



Indistinguishability of source of ciphertext. We say that the scheme has in-
distinguishability of source of ciphertext if for any λ and any PPT adversary
A = (A1,A2) the following quantity can be upper bounded by a negligible func-
tion:∣∣∣∣∣∣∣∣∣Pr


(PK,SK)← SetupDDK(1λ, 1`),

(m0,m1, aux, w)← A1(PK),

ct = EncDDK(PK,m0,m1, aux, w; r)

A2(PK, ct) = 1

 − Pr


(PK,SK)← SetupDDK(1λ, 1`),

(m0,m1, aux, w)← A1(PK),

ct = DenEncDDK(PK,m0,m1, aux, w; r)

A2(PK, ct) = 1


∣∣∣∣∣∣∣∣∣

Indistinguishability of explanation. We say that the scheme has indistinguisha-
bility of explanation if for any λ and any PPT adversary A = (A1,A2) the
following quantity can be upper bounded by a negligible function:∣∣∣∣∣∣∣∣∣∣∣∣
Pr


(PK,SK)← SetupDDK(1λ, 1`),

(m0,m1, aux, w)← A1(PK),

ct = DenEncDDK(PK,m0,m1, aux, w; r)

A2(PK, ct, r) = 1

 − Pr


(PK,SK)← SetupDDK(1λ, 1`),

(m0,m1, aux, w)← A1(PK),

ct = DenEncDDK(PK,m0,m1, aux, w; r)

e = ExplainDDK(PK, ct, (m0,m1, aux, w);u)

A2(PK, ct, e) = 1



∣∣∣∣∣∣∣∣∣∣∣∣
We remark that the [40] deniable encryption scheme immediately implies a

deniable encryption scheme for multi-bit messages of any polynomial length k
bits by creating a ciphertext for a k-bit message as a sequence of k single bit
encryptions. Our construction cannot support the above bit-by-bit encryption
since every single encryption takes longer messages. However the Sahai-Waters
construction is selectivly secure and the security can be amplified to the adaptive
setting (as defined above) at the cost of a sub-exponential loss in the security.
In other words we can realize the above definition assuming sub-exponential
hardness on the assumptions made by Sahai-Waters.

2.5 Equivocal and Extractable Commitments

An Equivocal and Extractable Commitment scheme COM consists of a tuple
of PPT algorithms (SetupbindCom,Setup

equiv
Com ,Com,Extr,Equiv). We will describe our

definitions for the setting of bit commitment and note that they extend to the
setting of strings in a natural way.

– SetupbindCom(1λ) expects as input the unary representation of the security pa-
rameter λ and outputs a public parameter CK together with a trapdoor µ
(used for extraction).

– SetupequivCom (1λ) expects as input the unary representation of the security pa-
rameter λ and outputs a public parameter CK together with trapdoors µ
and ν (used for extraction and equivocation).

– Com(CK, b; r) takes as input CK, a bit b ∈ {0, 1} and randomness r ∈
{0, 1}λ and outputs a commitment β.



Let us define the following language (the extraction procedure Extr is defined
below):

LCom = {(β, b) | ∃t : β = Com(CK, b; t) ∨ b = Extr(CK, t, β)}.

We note that the language naturally extends to a setting where commitments
are defined over strings instead of just bits. Also we defined associated relation
RCom. The above commitment scheme should satisfy the following properties.

Indistinguishability of Public Parameters. We require that:∣∣∣Pr
[
(CK,µ)← SetupbindCom(1λ) : A(CK,µ) = 1

]
−

Pr
[
(CK,µ, ν)← SetupequivCom (1λ) : A(CK,µ) = 1

]∣∣∣ < negl(λ).

Computational Hiding. Hiding means that no computationally bounded ad-
versary can distinguish as to which bit is locked in the commitment. LetA be any
non-uniform adversary running in time poly(λ). We say that the commitment
scheme is computationally hiding if:

Pr

[
b = b′

∣∣∣∣ b← {0, 1}; (CK,µ)← SetupbindCom(1λ);
β = Com(CK, b; r); b′ ← A(β)

]
=

1

2
+ negl(λ) .

The same applies to the setup algorithm SetupequivCom .

Perfectly Binding. Intuitively speaking, binding requires that no (even un-
bounded) adversary can open the commitment in two different ways. Here, we
define the strongest variant known as perfectly binding. Formally we require
that for all (CK,µ) ← SetupbindCom(1λ) there exists no values (r0, r1) such that
Com(CK, 0; r0) = Com(CK, 1; r1). For perfectly binding we require that either
(c, 0) ∈ LCom or (c, 1) ∈ LCom, but not both.

Polynomial equivocality. The setup algorithm SetupequivCom generates pub-
lic parameters together with trapdoors µ and ν such that Equiv using ν is
able to produce polynomially many fake commitments, using the same CK,
which can then be explained to either 0 and 1. More formally, Equiv can be
viewed as a pair of PPT algorithms (Equiv1,Equiv2) such that the following

holds. Let (CK,µ, ν) ← SetupequivCom (1λ) then (β, state) ← Equiv1(CK, ν) and
rb ← Equiv2(CK, ν, β, state, b) such that Com(CK, b; rb) = β. Furthermore we
require that for b ∈ {0, 1} the distribution of {(CK, β, rb)} generated in this way
is computationally indistinguishable from the distribution {(CK, β, rb)} where
β = Com(CK, b; rb).

Simulation extractability. We require that the commitment remains bind-
ing for any adversary A, even after A obtains polynomially many equivocal
commitments generated by Equiv along with their openings. More formally, the
following quantity is negligible:



Pr

[
b 6= b′

∣∣∣∣ (CK,µ, ν)← SetupequivCom (1λ); (β, b, r)← AEquiv∗(CK,ν)(CK);
Com((CK, b, r) = β ∧ Extr(CK,µ, β) = b′

]
where Equiv∗ is either invoked as Equiv1 without revealing the state, or as

Equiv2 which only expects as input fake commitments generated by previous
invocations of Equiv1.

In this paper, we use the non-interactive equivocal and extractable com-
mitment scheme of [14] (CLOS commitment) which assumes the existence of
enhanced trapdoor permutations. At the heart of their commitment scheme is
the Feige-Shamir trapdoor commitment scheme [20], which they transform to
obtain a UC Commitment scheme secure against adaptive adversaries.

3 Our Protocol

In this section we will present our adaptively secure two-round MPC protocol,
described in Figure 1. For simplicity, we assume that the delivered messages are
authenticated. Also for simplicity of exposition, in the sequel, we will assume
that random coins are an implicit input to the commitment and encryption
functions, unless specified explicitly.

Theorem 2. Let f be any deterministic poly-time function with n inputs and
single output. Assume the existence of an Indistinguishability Obfuscator iO, a
Double Key Deniable encryption scheme DDKL = (SetupDDK,EncDDK,DecDDK,
DenEncDDK,ExplainDDK) and an adaptively secure Commitment scheme COM =

(SetupbindCom,Setup
equiv
Com ,Com,Extr,Equiv). Then the protocol Π presented in Fig-

ure 1 UC-securely realizes the ideal functionality Ff in the FCRS-hybrid model
with computational security against any adaptive, active adversary corrupting
an arbitrary number of parties in two rounds of broadcast.

Corollary 1. Assume the existence of a sub-exponentially secure indistinguisha-
bility obfuscation and doubly enhanced trapdoor permutation then any ideal func-
tionality Ff can be UC-securely realized in the FCRS- model against any adap-
tive, active adversary corrupting an arbitrary number of parties. Furthermore
this protocol involves only two rounds of broadcast.

We start by noting that the protocol is correct. Observe that if all the parties
behave honestly then the protocol ends us executing the circuit f on the inputs
of all parties, leading to the correct output. Security is proved via a simulator
provided in Section 4 and indistinguishability is argued in Section 5.

3.1 Extensions

Now we give some natural extensions of our protocol and remove assumptions
that were made to simplify exposition.



Protocol Π

Protocol Π uses an Indistinguishability Obfuscator iO, a Double Key De-
niable encryption scheme DDKL = (SetupDDK,EncDDK,DecDDK,DenEncDDK,
ExplainDDK) based on the scheme (Setup,Enc,Dec) with perfect correctness,
where the relation L is defined below, and an adaptively secure Commitment
scheme COM = (SetupbindCom,Com).a Let f : ({0, 1}`in)n → {0, 1}`out be the cir-
cuit parties want to evaluate on their private inputs.
Private Inputs: Party Pi for i ∈ [n], receives its input xi.
CRS: Output (PK,CK, oP ) as the common reference string generated as fol-
lows:
– Generate (PK,SK)← SetupDDK(1λ, 1`in+`out) where
PK = (σ, pk0, pk1, DK) and SK = (sk0, sk1)

– Generate (CK,µ)← SetupbindCom(1λ).
– Let oP = iOProgsk0,PK,CK,f

be the obfuscation of the program
Progsk0,PK,CK,f , described in Figure 2.

Round 1: Each party Pi generates βi = Com(CK, xi;ωi) and broadcasts it to
all parties.
Round 2: Each party Pi generates (ci, c

′
i, πi) = DenEncDDK(PK, xi||φ`out ,

xi||φ`out , (i, {βj}j∈[n]), (0n·`in , 0`out , {tj}j∈[n]); ri) where φ is a special fixed
symbol and ti = ωi and tj = 0∗ for all j ∈ [n] such that j 6= i. It then
broadcasts (ci, c

′
i, πi) to all parties.

Output phase: Each party Pi outputs oP ({βj}j∈[n], {cj , c′j , πj}j∈[n]).

Language L for the Double Key deniable encryption scheme DDKL:
Recall LCom as the language defined in Section 2.5, and let RCom be the asso-
ciated relation. We have that (c, c′, (i, {βj}j∈[n])) ∈ L if (c, c′, (i, {βj}j∈[n])) ∈
L1 ∨ L2 defined as follows:b

L1 =

(c, c′, (i, {βj}j∈[n]))

∣∣∣∣∣∣∣∣∣∣
∃ (m0,m1, s0, s1, ({xj}j∈[n], out, {tj}j∈[n])) s.t.

c = Enc(pk0,m0; s0) ∧ c′ = Enc(pk1,m1; s1)

∧ m0 = m1 = xi||φ`out

∧ RCom((βi, xi), ti)



L2 =


(c, c′, (i, {βj}j∈[n]))

∣∣∣∣∣∣∣∣∣∣∣∣

∃ (m0,m1, s0, s1, ({xj}j∈[n], out, {tj}j∈[n])) s.t.

c = Enc(pk0,m0; s0) ∧ c′ = Enc(pk1,m1; s1)

∧ m0 = xi||φ`out ∧m1 = φ`in ||out
∧ ∀j ∈ [n],RCom((βj , xj), tj)

∧ out = f({xj}j∈[n])


a We note that COM provides more procedures but we note that they only affect

the proof. Hence for simplicity of exposition we skip mentioning them here.
b Changes in L2 from L1 are highlighted in red.

Fig. 1. The Π Protocol.



Program ProgSKb,PK,CK,f

Input: ({βj}j∈[n], {cj , c′j , πj}j∈[n]).
Description:
1. If there exists j ∈ [n] such that DecDDK(PK,SKb, (cj , c

′
j , πj), {βj}j∈[n]) =⊥

then output ⊥.
2. Parse cj as dj,0||ej,0 where dj,0 is the encryption of the first `in bits and

ej,0 is the encryption of the rest of the bits. Similarly parse c′j as dj,1||ej,1.
If ∃j ∈ [n] such that Dec(skb, ej,b) 6= φ`out , then let i be the first such j. If
this is the case then output Dec(skb, ei,b).

3. Otherwise for each j ∈ [n], let xj = Dec(skb, dj,b) and output f({xj}j∈[n]).

Fig. 2. The Program ProgSKb,PK,CK,f
.

General Functionality. Our basic MPC protocol as described in Figure 1, only
considers deterministic functionalities where all the parties receive the same
output. We would like to generalize it to handle randomized functionalities and
individual outputs (just as in [2]). First, the standard transformation from a
randomized functionality to a deterministic one (See [29, Section 7.3]) works
for this case as well. In this transformation, instead of computing some ran-
domized function g(x1, . . . xn; r), the parties compute the deterministic function

f((r1, x1), . . . , (rn, xn))
def
= g(x1, . . . , xn;⊕ni=1ri). We note that this computation

does not add any additional rounds. We note that since we are in the setting of
adaptive security we can only realize adaptively well-formed [14] functionalities,
which reveals its randomness if all the parties are corrupted.

Next, we move to individual outputs. Again, we use a standard transforma-
tion (See [38], for example). Given a function g(x1, . . . , xn) → (y1, . . . , yn), the
parties can evaluate the following function which has a single output:

f((k1, x1), . . . , (kn;xn)) = (g1(x1, . . . , xn)⊕ k1|| . . . ||gn(x1, . . . , xn)⊕ kn)

where gi indicates the ith output of g, and ki is randomly chosen by the ith

party. Then, the parties can evaluate f , which is a single output functionality,
instead of g. Subsequently every party Pi uses its secret input ki to recover
its own output. The only difference is that f has one additional exclusive-or
gate for every circuit-output wire. Again, this transformation does not add any
additional rounds of interaction.

Making CRS independent of the circuit being computed. Note that in our con-
struction the obfuscation oP that is given as part of the CRS depends on the
circuit f parties are trying to compute on their joint inputs. We can remove this
dependence by using a universal circuit. Then the parties can feed in the uni-
versal circuit the actual circuit that they want along with their private inputs.
However, the CRS will still depend on the size of the circuit. This is also the
case for the protocols in [11, 15]. We can avoid this by setting a priori bound
on the size of the circuit being computed. It would be interesting to remove the
dependence of the CRS on the size of the circuit.



4 Description of our Simulator

Let A be an active, adaptive adversary that interacts with parties running the
protocol Π from Figure 1 in the FCRS-hybrid model. We construct a simulator
S (the ideal world adversary) with access to the ideal functionality Ff , which
simulates a real execution of Π with A such that no environment Z can distin-
guish the ideal world experiment with S and Ff from a real execution of Π with
A.

Recall that S interacts with the ideal functionality Ff and with the environ-
ment Z. The ideal adversary S starts by invoking a copy of A and running a
simulated interaction of A with the environment Z and the parties running the
protocol. Our simulator S proceeds as follows:

Simulated CRS: The common reference string is chosen by S in the following
manner (recall that S chooses the CRS for the simulated A as we are in the
FCRS-hybrid model):

1. S runs the setup algorithm SetupDDK(1λ, 1`in+`out) of the Double Key de-
niable encryption scheme, but replaces its internal call to the algorithm K
with S = (S1, S2) of the NIZK proof system. More specifically, S generates
(pk0, sk0), (pk1, sk1) ← Setup(1λ), (σ, τ) ← S1(1λ), along with the public
denying key DK. It sets the public key PK = (pk0, pk1, σ,DK).

2. S runs the algorithm SetupequivCom (1λ) of the adaptively secure commitment
scheme COM and obtains (CK,µ, ν).

3. S computes oP = iOProgsk1,PK,CK,f
where the latter is the obfuscation of the

program Prog, as described in Figure 2, parameterized with the key sk1.

S sets the common reference string equal to (PK,CK, oP ) and locally stores
(SK, τ, µ, ν).

Looking ahead, the trapdoor µ will be used to extract the inputs of the
corrupted parties and ν to equivocate on the commitment S provides on behalf
of honest parties. The trapdoor τ for the simulated σ will be used to generate
simulated proofs.

Simulating the communication with Z: Every input value that S receives from
Z is written on A’s input tape. Similarly, every output value written by A on
its own output tape is directly copied to the output tape of S.

Simulating actual protocol messages in Π: Note that there might be multiple
sessions executing concurrently. Let sid be the session identifier for one spe-
cific session. We will specify the simulation strategy corresponding to this spe-
cific session. The simulator strategy for all other sessions will be the same. Let
P = {P1, . . . , Pn} be the set of parties participating in the execution of Π corre-
sponding to the session identified by the session identifier sid. Also let PA ⊆ P
be the set of parties corrupted by the adversary A at any time. Recall that we
are in the setting of adaptive corruption so more parties could be added to this
set as the protocol proceeds. At any point S only generates messages on behalf



of parties P\PA. In the following, if at the end of some round all parties are
corrupted then S does not need to go to do anything else.

Round 1 Messages S → A: In the first round S must generate messages on behalf
of the honest parties, i.e. parties in the set P\PA. For each party Pi ∈ P\PA
our simulator proceeds as:

1. Generate a fake commitment (βi, statei)← Equiv1(CK, ν).

It then sends βi to A on behalf of party Pi and it internally saves statei.

Round 1 Messages A → S: Also in the first round the adversary A generates
the messages on behalf of corrupted parties in PA. For each party Pi ∈ PA our
simulator proceeds as follows:

1. Extracting inputs of corrupted parties: Let βi be the commitment that
A sends on behalf of Pi. Our simulator S runs the extraction algorithm
Extr(CK,µ, βi) in order to obtain xi.
Note that it is possible that A sends a commitment βi on behalf of Pi such
that it is not well-formed, or in other words extraction using the function
Extr fails. In this case S sets xi = ⊥ and proceeds to the next step. (Looking
ahead, we note that in this case the adversary will not be able to generate a
valid second round message.)

2. Next S sends (input, sid,P, Pi, xi) to Ff on behalf of the corrupted party Pi.

Simulating corruption of parties in Round 1: WhenA corrupts a real world party
Pi, then S first corrupts the corresponding ideal world party Pi and obtains
its input xi. Next S prepares the internal state on behalf of Pi such that it
will be consistent with the commitment value βi that it had provided to A
earlier. Specifically S computes Equiv2(CK, ν, βi, statei, xi) in order to obtain
randomness ωi such that βi = Com(CK, βi;ωi). S provides ωi as the randomness
of party Pi to A. Note that S can do this at any point during 1st round.

Completion of Round 1: After S has submitted the inputs of all the corrupted
parties to Ff then it responds by sending back the message (output, sid,P, out)
where out = f({xj}j∈[n]). Note that in case S had failed to extract an input for
some player Pi then it would have sent ⊥ to Ff and would have received ⊥ as
the output from the ideal functionality.

Round 2 Messages S → A: In the second round S generates messages on behalf
of the honest parties, i.e. parties in the set P\PA as follows:

1. For each party Pi ∈ P\PA, S generates ci = Enc(pk0, φ
`in ||out), c′i =

Enc(pk1, φ
`in ||out) and generates πi as a simulated proof for the statement

(ci, c
′
i, (i, {βj}j∈[n])). More specifically it generates πi ← S2(σ, τ, (ci, c

′
i, (i,

{βj}j∈[n]))).

S sends (ci, c
′
i, πi) to A on behalf of Pi.



Round 2 Messages A → S: In the second round the adversary A generates the
messages on behalf of corrupted parties in PA. For each party Pi ∈ PA our
simulator proceeds as:

1. Let (ci, c
′
i, πi) be the message that A sends on behalf of party Pi. S checks

to see if V (σ, (ci, c
′
i, (i, {βj}j∈[n])), πi) = 1 for each Pi ∈ PA.

If all the proofs verify then S sends the message (generateOutput, sid,P) to the
ideal functionality Ff .

Simulating corruption of parties during/at the end of Round 2: When A corrupts
a party Pi in the real word, then S corrupts the corresponding party Pi in the
ideal world and obtains its input xi. Next S prepares the internal state on behalf
of Pi such that it will be consistent with messages it had sent on behalf of Pi. As
explained before, S generates randomness ωi that explains the commitment βi
to the value xi running the algorithm ωi = Equiv2(CK, ν, βi, statei, xi). Next S
needs to explain the second round message (ci, c

′
i, πi). S has to explain the mes-

sage (ci, c
′
i, πi) by computing the randomness as ψi = ExplainDDK(PK, (ci, c

′
i, πi),

(xi||φ`out , xi||φ`out , (i, {βj}j∈[n]), (0n·`in , 0`out , {tj}j∈[n]);u) where ti = ωi and
tj = 0∗ for all j ∈ [n] such that j 6= i. S provides ωi||ψi as the randomness
of party Pi to A. Note that S can do this at any point during or after the round
2 of the protocol.

This completes the description of the simulator.

5 Proof of Security

In this section, via a sequence of hybrids, we will prove that no environment Z
can distinguish the ideal world experiment with S and Ff (as defined above) from
a real execution of Π with A. We will start with the real world execution in which
the adversary A interacts directly with the honest parties holding their inputs
and step-by-step make changes till we finally reach the simulator as described in
Section 4. At each step we will argue that the environment cannot distinguish
the change except with negligible probability.

Hybrid 0. This hybrid corresponds to the Z interacting with the real world
adversary A and honest parties that hold their private inputs.

We can restate the above experiment with the simulator as follows. We re-
place the real world adversary A with the ideal world adversary S. The ideal
adversary S starts by invoking a copy of A and running a simulated interaction
of A with the environment Z and the honest parties. S forwards the messages
that A generates for it environment directly to Z and vice versa (as explained
in the description of the simulator S). In this hybrid the simulator S holds the
private inputs of the honest parties and generates messages on their behalf using
the honest party strategies as specified by Π.



Hybrid 1. In this hybrid, we change how the internal randomness of the cor-
rupted party is explained to A on being adaptively corrupted. Specifically
we change the randomness that is used to explain the ciphertext S generates
on behalf of parties in round 2 of protocol Π.
Recall that in the second round S on behalf of an honest party Pi generates
the second message as (ci, c

′
i, πi) = DenEncDDK(PK, xi||φ`out , xi||φ`out , (i,

{βj}j∈[n]), (0n·`in , 0`out , {tj}j∈[n]); ri) where ti is the randomness used in gen-
erating commitment βi and tj = 0∗ for all j ∈ [n] such that j 6= i. So if A
corrupts Pi then the randomness ri would be reveal toA. In Hybrid 1, instead
we provide ψi = ExplainDDK(PK, (ci, c

′
i, πi), (xi||φ`out , xi||φ`out , (i, {βj}j∈[n]),

(0n·`in , 0`out , {tj}j∈[n]);u) where tj values are as before.

Lemma 1. Hybrid0 ≈c Hybrid1.

Proof. The indistinguishability of Hybrid1 from Hybrid0 follows from the
indistinguishability of explanation property of the Double Key deniable en-
cryption scheme.

Hybrid 2. In this hybrid we change the way S generates the message (ci, c
′
i, π)

on behalf of the honest parties.
Recall that in the second round in Hybrid 1, S on behalf of an honest party Pi
generates the second message as (ci, c

′
i, πi) = DenEncDDK(PK, xi||φ`out , xi||

φ`out , (i, {βj}j∈[n]), (0n·`in , 0`out , {tj}j∈[n]); ri) where ti is the randomness
used in generating commitment βi and tj = 0∗ for all j ∈ [n] such that j 6= i.
We will change this by generating the ciphertexts directly using procedures
Enc and the prover P .
Specifically, ci = Enc(pk0, xi||φ`out ; si0) and c′i = Enc(pk1, xi||φ`out ; si1) and
outputs (ci, c

′
i, πi), where πi ← P (σ, (ci, c

′
i, {i, {β}j∈[n]}), (xi||φ`out , xi||φ`out ,

si0, s
i
1, (0

n·`in , 0`out , {tj}j∈[n]))) where ti is the randomness used in generating
commitment βi and tj = 0∗ for all j ∈ [n] such that j 6= i.

Lemma 2. Hybrid1 ≈c Hybrid2.

Proof. The indistinguishability of Hybrid2 from Hybrid1 follows immediately
from the indistinguishability of source of ciphertext property of the Double
Key deniable encryption scheme.

Hybrid 3. In this hybrid, we change how σ, which is a part of PK, and the
proofs πi for every Pi ∈ P\PA are generated.
More specifically, S runs the setup algorithm SetupDDK(1λ, 1`in+`out) of the
Double Key deniable encryption scheme, but replaces its internal call to the
algorithm K with S = (S1, S2) of the NIZK proof system. More specifically,
S generates (pk0, sk0), (pk1, sk1) ← Setup(1λ), (σ, τ) ← S1(1λ), along with
the public denying key DK. It sets the public key PK = (σ, pk0, pk1, DK).
We also generate fake proofs πi using trapdoor τ . Specifically we generate
πi ← S2(σ, τ, (ci, c

′
i, (i, {βj}j∈[n]))).

Lemma 3. Hybrid2 ≈c Hybrid3.



Proof. The indistinguishability of Hybrid3 from Hybrid2 follows immediately
from the computational zero-knowledge property of the NIZK proof system.

Hybrid 4. We don’t change anything in the output of the hybrid itself. We
just use knowledge of µ to extract the inputs A commits to in the 1st round
messages that it sends on behalf of the corrupted parties.
More specifically, S for every Pi ∈ PA obtains xi = Extr(CK,µ, βi). If
extraction fails then it sets xi = ⊥.

Hybrid 5. In this hybrid, we change how the simulator S generates c′i in the
second round message (ci, c

′
i, πi) on behalf of honest parties Pi ∈ P\PA. In

particular, S instead of computing the ciphertext c′i = Enc(pk1, xi||φ`out ; si1),
generates c′i = Enc(pk1, φ

`in ||out; si1), where out is the output computed as
f({xj}j∈[n]) using the inputs xi of the honest parties, that the simulator has
access to, and extracted inputs of the malicious parties.

Lemma 4. Hybrid4 ≈c Hybrid5.

Proof. We base the indistinguishability between hybrids Hybrid4 and Hybrid5

on the semantic security of the encryption scheme (Setup,Enc,Dec).

Hybrid 6. In this hybrid we essentially reverse the change that was made in
going from Hybrid 2 to Hybrid 3. In particular we change the σ so that it is
sampled from the honest distribution and generate the proof honestly. Note
that since now we have changed the ciphertext c′i the proof will have to be
generated with respect to language L2.
More specifically, S uses K to generate σ instead of S1. Also for every Pi ∈
P\PA, S generates πi ← P (σ, (ci, c

′
i, (i, {βj}j∈[n])), (xi||φ`out , φ`in ||out, si0,

si1, ({xi}i∈[n], out, {tj}j∈[n]))) where tj is the witness that βj ∈ LCom .

Lemma 5. Hybrid5 ≈c Hybrid6.

Proof. The indistinguishability of Hybrid5 from Hybrid6 follows immediately
from the computational zero-knowledge property of the NIZK proof system.

Hybrid 7. In this hybrid we change how oP , the obfuscated program in the
CRS is generated. More specifically, oP is generated as an obfuscation of
Progsk1,PK,CK,f instead of Progsk0,PK,CK,f .
In the following we show that the program Prog is equivalent under sk0
and sk1 with overwhelming probability. This allows us to conclude that the
Hybrid 6 and Hybrid 7 are indistinguishable based on indistinguishability
obfuscation.

Lemma 6. Progsk0,PK,CK,f ≡ Progsk1,PK,CK,f .

Proof. Recall that the underlying language L of the Double Key deniable
encryption scheme consists of two languages, namely L1 and L2. Note that
since the NIZK has statistical soundness with overwhelming probability over
the choices of σ we have that all ciphertexts with an accepting proof must



be from one of the two languages. We refer to the two types of ciphertexts
corresponding to the language L1 and L2, as Type-1 and Type-2 ciphertext,
respectively.
Recall that the program Prog takes {βj}j∈[n] and {cj , c′j , πj}i∈[n] as input.
Recall from Figure 2 that in Step 1, Prog checks to see that all the proofs πi
are accepting and otherwise it outputs ⊥. This means that for the program to
do anything interesting all the proofs must be valid. Next we will show that
in such cases the output of the program is identical regardless of whether
sk0 or sk1 is used.

All ciphertexts are of Type-1: In this case, cj and c′j for j ∈ [n] encrypted
under pk0 and pk1 respectively, encrypt the same value. Hence, regardless
of whether sk0 is used or sk1 is used the program outputs the exact same
value f({xj}j∈[n]).

There is at least one Type-2 ciphertext: Note that, in case sk0 is used then
we have that Step 2 of Prog is never invoked. On the other hand in case sk1
is used then we have that Step 2 of Prog is necessarily invoked.
In other words if sk0 is used then the xj values are decrypted and output is
calculated. On the other hand if sk1 is used then a hard-coded out value is
generated. We will argue that in both cases the output generated by Prog
is identical. We argue this by showing that the only acceptable value for
the hard-coded value out is f({xj}j∈[n]), where xj are the inputs parties
commit to in the first round. Recall that the commitment scheme is perfectly
binding, meaning that for every commitment βi there is exactly one xi such
that (βi, xi) ∈ LCOM. This proves our claim. ut

Hybrid 8. In this hybrid we do the same change that was made in going from
Hybrid 2 to Hybrid 3. In this hybrid, we change how σ, which is a part of
PK, and the proofs πi for every Pi ∈ P\PA are generated.
More specifically, S runs the setup algorithm SetupDDK(1λ, 1`in+`out) of the
Double Key deniable encryption scheme, but replaces its internal call to the
algorithm K with S = (S1, S2) of the NIZK proof system. More specifically,
S generates (pk0, sk0), (pk1, sk1) ← Setup(1λ), (σ, τ) ← S1(1λ), along with
the public denying key DK. It sets the public key PK = (σ, pk0, pk1, DK).
We also generate fake proofs πi using trapdoor τ . Specifically, it generates
πi ← S2(σ, τ, (ci, c

′
i, (i, {βj}j∈[n]))).

Lemma 7. Hybrid7 ≈c Hybrid8.

Proof. The indistinguishability of Hybrid7 from Hybrid8 follows immediately
from the computational zero-knowledge of the NIZK proof system.

Hybrid 9. In this hybrid, we change how the simulator S generates cj in the
second round message (cj , c

′
j , πj) on behalf of honest parties Pj ∈ P\PA.

More specifically, S instead of computing cj = Enc(pk0, xi||φ`out), it com-
putes cj = Enc(pk0, φ

`in ||out) where out = f({xj}j∈[n]).



Lemma 8. Hybrid8 ≈c Hybrid9.

Proof. We base the indistinguishability between hybrids Hybrid8 and Hybrid9

on the semantic security of the encryption scheme, (Setup,Enc,Dec).

Hybrid 10. In this hybrid we change the way the public parameters of the
commitment scheme COM are generated. In particular, S runs the setup
algorithm SetupequivCom (1λ) (instead of SetupbindCom(1λ)) of the adaptively secure
commitment scheme COM and obtains (CK,µ, ν) where the trapdoor µ is
still being used for extraction of adversary’s inputs.

Lemma 9. Hybrid9 ≈c Hybrid10.

Proof. Indistinguishability between hybrids Hybrid9 and Hybrid10 follows
from the indistinguishability of the public parameters of the commitment
scheme COM.

Hybrid 11. In this hybrid we change the way S generates the commitments
on behalf of the honest parties. In particular we will remove the inputs
and make these commitments equivocal. More specifically, for every party
Pi ∈ P\PA the first round message is computed by S running (βi, statei)←
Equiv1(CK, ν). If the party later gets corrupted then S will produce ran-
domness ωi to equivocate the commitment βi to the prescribed input xi. To
this end, S will run ωi = Equiv2(CK, ν, βi, statei, xi).

Lemma 10. Hybrid10 ≈c Hybrid11.

Proof. We base the indistinguishability between hybrids Hybrid10 and Hybrid11

on the polynomial equivocality of the adaptively secure commitment scheme
COM.

Note that Hybrid11 is identical to the simulation strategy described in Section
4. This concludes the proof.

6 Extending to Leakage Tolerant Secure Computation

The adaptively secure protocol presented in this paper also turns out to be
leakage tolerant. The model of leakage can be found in the full version [26].

Lemma 11. Assume the existence of indistinguishability obfuscation and dou-
bly enhanced trapdoor permutation then any ideal functionality Ff can be UC-
securely realized in the FCRS- model against any adaptive, active adversary cor-
rupting an arbitrary number of parties and allowed with arbitrary leakage. Fur-
thermore this protocol involves only two rounds of broadcast.

This lemma follows immediately from our construction and proof except for
some syntactic differences. We explain this next. We will only describe how
our simulator for adaptive security (from Section 4) can be converted into a



simulator for the setting of leakage tolerance. The proof of indistinguishability
for the adaptive simulator was already provided in Section 5.

Recall that that the simulator for arguing adaptive security, on corruption
of an honest party, uses the honest party’s input alone in order to explain the
messages it had previously sent on behalf of the honest party. In the setting
of leakage, we note that this method of explanation can directly be expressed
by a circuit that on input the input of the honest party outputs the internal
secret state of that party. Furthermore note that the way in which the simulator
explains its first round messages of honest parties remains the same even after
it has sent the second round messages.

Using this explanation procedure as a translation method, allows us to im-
mediately conclude that any leakage query of the real-world adversary can be
reduced directly to a leakage query in the ideal-world.
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