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Abstract. Cryptographic protocols with adaptive security ensure that
security holds against an adversary who can dynamically determine which
parties to corrupt as the protocol progresses—or even after the protocol
is finished. In the setting where all parties may potentially be corrupted,
and secure erasure is not assumed, it has been a long-standing open
question to design secure-computation protocols with adaptive security
running in constant rounds.
Here, we show a constant-round, universally composable protocol for
computing any functionality, tolerating a malicious, adaptive adversary
corrupting any number of parties. Interestingly, our protocol can com-
pute all functionalities, not just adaptively well-formed ones. The pro-
tocol relies on indistinguishability obfuscation, and assumes a common
reference string.

1 Introduction

When designing and analyzing protocols for secure computation, there are sev-
eral different adversarial models one can consider. The original definitions of
security assume a static adversary who decides which parties to corrupt before
execution of the protocol begins. Subsequently [3, 11], researchers began to con-
sider the more challenging setting in which the adversary may adaptively decide
which parties to corrupt as the protocol progresses—or even after the proto-
col ends. It is easy to come up with examples of protocols that are secure in a
static-corruption model, but that are trivially insecure in the adaptive setting.

Even in a setting where adaptive corruptions are considered, there are dif-
ferent assumptions one can make. Initial work on adaptive security [3] made the
assumption that honest parties can securely erase local data (e.g., randomness
or other internal state) when no longer needed. Later work, led by Canetti et
al. [11], sought to avoid this assumption, arguing that it is unwise to rely on other
parties to erase data (since there is no way such erasure can be verified) and that
it is generally difficult—even for an honest party who intends to erase data—to
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ensure that all traces of data are gone. Whether or not erasure is assumed has a
significant impact on the complexity of adaptively secure protocols; for example,
adaptively secure public-key encryption is fairly simple and efficient [3] if erasure
is assumed, but much more complicated (and much less efficient) [11, 2, 18, 16]
without this assumption. Similarly, adaptively secure two-party computation is
much easier with the assumption of secure erasure [30] than without [14].

Designing protocols without the assumption of secure erasure is difficult, in
part, due to the need to deal with post-execution corruption (PEC), whereby
an adversary can corrupt parties (and hence obtain the randomness they used)
even after execution of the protocol has concluded. Handling PEC is inherent
to the setting of universal composability (UC) [9], and is important for ensuring
sequential composition even in the stand-alone setting [8]. If secure erasure is
assumed, the definition of adaptive security does not change whether or not PEC
is allowed [10], but without erasure the requirement of dealing with PEC adds
significant additional complications.

Prior work. We are interested in adaptive security, with PEC, in a model where
secure erasure is not assumed. Some prior protocols for secure computation in
this setting (e.g., [11, 2]) assume a majority of the parties remain uncorrupted.
Other work [28, 27, 22, 25], including concurrent work of [19], allows all but one
of the parties to be corrupted. While it may seem strange to worry about cor-
ruption of all parties, consideration of this case is important when a protocol
Πouter invokes some protocol Πinner (not involving all parties running Πouter) as a
subroutine. In this case, all parties running Πinner may eventually be corrupted,
and security of Πouter should still be guaranteed.

To the best of our knowledge, all prior work giving adaptively secure protocols
for general functionalities (without erasure), and tolerating an arbitrary number
of corruptions, are based on the Goldreich-Micali-Wigderson [23] paradigm for
semi-honest computation, and thus have round complexity linear in the depth
of the circuit being computed. These include protocols in the common reference
string model [14], the “sunspots” model [15], the key-registration model [1],
and, more generally, based on adaptively secure UC puzzles [17]. In addition, all
prior work in this setting handles only “adaptively well-formed functionalities”
(see [14] for a definition).

1.1 Our Result

We show a constant-round, universally composable protocol for multiparty com-
putation of arbitrary functionalities, with security against a malicious, adaptive
adversary corrupting any number of parties. We highlight that our protocol can
be used to securely compute all functionalities, not just adaptively well-formed
ones. Our protocol relies on indistinguishability obfuscation, and assumes a com-
mon reference string.

Overview of our techniques. The main difficulty in our setting is to construct
a constant-round protocol with security against a semi-honest, adaptive adver-
sary corrupting any number of parties. Given any such protocol, we can compile
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it as in [14] to obtain a universally composable protocol with security against
a malicious, adaptive adversary, and still running in constant rounds. We may
also assume secure channels, which can be implemented using adaptively secure
encryption.

Our protocol in the semi-honest setting relies on a common reference string
(CRS). While it would be more elegant to avoid this assumption, a CRS—or
some other form of setup—is anyway needed [12] in order to obtain universally
composable computation in the presence of malicious adversaries corrupting half
or more of the parties, even in a static-corruption model. Thus, as far as our final
result (i.e., our protocol with security in the malicious setting) is concerned, some
form of setup is unavoidable. Moreover, results of Garg and Sahai [22] indicate
that a CRS (or some other form of setup) is needed to obtain constant-round,
universally composable, multiparty protocols with adaptive security even in the
semi-honest case; see further discussion below.

At its core, our protocol relies on the ability to make arbitrary algorithms
explainable, an idea we explain in more detail now. Fix some randomized algo-

rithm Alg. Informally, an explainable version of Alg is an algorithm Ãlg along with
an associated explain algorithm Explain such that, for any input, (1) the distri-

butions over the outputs of Alg(input) and Ãlg(input) are statistically close, and

(2) choosing random coins r, computing output := Ãlg(input; r), and outputting
(output, r) is computationally indistinguishable from choosing random coins r,

computing output := Ãlg(input; r), and then outputting (output,Explain(input,
output)). That is, the Explain algorithm provides the ability to sample random

coins for Ãlg that “explain” any given input/output pair. (A related notion was
considered by Ishai et al. [26], though without any construction being given.)

Sahai and Waters [31] introduced the notion of explainability for the specific
case of public-key encryption schemes, in the context of constructing a deniable
encryption scheme. We observe that their techniques can be suitably generalized
to give an explainable version of arbitrary algorithms based on indistinguishabil-
ity obfuscation for general circuits (and one-way functions). We refer the reader
to Section 3 for a formal statement of this result.

Let C be a circuit taking n-bit inputs.1 Consider the following functional-
ity NextMsg that (essentially) computes the next-message function for a two-
round secure-computation protocol for C based on garbled circuits: NextMsg
takes as input a sequence of first-round messages OT1,1, . . . ,OT1,n for a two-
round, adaptively secure, oblivious-transfer (OT) protocol (e.g., the protocol
of [14]); it then (1) computes a garbled circuit GC corresponding to C, along
with input-wire labels {(yi,0, yi,1)}ni=1, and (2) computes a sequence of OT re-
sponses OT2,1, . . . ,OT2,n. (These responses allow the party that generated OT1,i

using input bit b to recover yi,b while learning nothing about yi,1−b.) The output

of NextMsg is (GC,OT2,1, . . . ,OT2,n). The CRS for our protocol will be ˜NextMsg,

1 We assume for simplicity here that C is deterministic. Randomized functionalities
are handled in Section 4.
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an explainable version of NextMsg.2 We note that, in contrast to [31], in the real-
world execution no parties have access to the Explain algorithm corresponding

to ˜NextMsg.
Our multiparty protocol computing C can now be described quite simply.

The protocol proceeds in four rounds. Say we have n parties P1, . . . , Pn holding
inputs x1, . . . , xn, respectively. These parties generate first-round OT messages
OT1,1, . . . ,OT1,n (with the party who is supposed to provide the ith input gen-

erating OT1,i), and send these to Pn. Party Pn then runs ˜NextMsg(OT1,1, . . . ,
OT1,n) to obtain GC,OT2,1, . . . ,OT2,n, and sends OT2,i to the corresponding
party (which might be itself). Each party Pi then locally recovers yi, the label
for the ith input wire of the garbled circuit, and sends yi to Pn. Finally, Pn eval-
uates the garbled circuit GC using the provided input-wire labels to obtain the
output z, and sends z to all the other parties.3 Only the third- and fourth-round
messages need to be sent via a secure channel.

We now describe the simulator informally. Our simulator begins by generating
˜NextMsg along with its associated Explain algorithm, and letting ˜NextMsg be

the CRS. It simulates OT1,1, . . . ,OT1,n and OT2,1, . . . ,OT2,n using the simulator
for the OT protocol (recall the OT protocol is adaptively secure), and uses
these for the first two rounds of the protocol. Upon corruption of party Pi, the
simulator corrupts that party in the ideal world and learns its input xi and the
output z. Then:

– If this is the first corruption, the simulator generates a simulated garbled
circuit GC consistent with output z, along with n input-wire labels y1, . . . , yn.
It also uses the Explain algorithm to generate random coins r∗ consistent with

running ˜NextMsg on input OT1,1, . . . ,OT1,n and obtaining output GC,OT2,1,
. . . ,OT2,n.

– The simulator uses the simulator for the OT protocol to generate internal
state for Pi consistent with input xi and output yi, and returns this to the
adversary. In addition, if P = Pn then it returns r∗ to the adversary.

Notably, our simulator is “corruption oblivious” [4]. Roughly, this means the
behavior of the simulator upon corruption of a party is independent of the ideal
state learned previously. By [4, Theorem 1.2], this means our protocol is also the
first leakage-tolerant protocol with arbitrary leakage for general functionalities
under semi-honest corruption. Moreover, by [5, Theorem 1], we also obtain the
first construction of a 2-component OCL compiler (see [5] for a definition).

Impossibility results? We briefly mention two impossibility results regarding
(constant-round) adaptively secure computation, and explain why they do not
apply in our setting.

2 As described, the CRS depends on the circuit C. However, by taking C to be a
universal circuit, the CRS can be fixed independently of the “actual” function f the
parties wish to compute (other than the size of a circuit for f).

3 As described, all parties learn the output of the computation. Standard techniques
can be used to handle the general case in which each party learns a possibly different
function of the inputs.
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First, our protocol can compute arbitrary randomized functionalities, not
just adaptively well-formed ones. (We refer to [14] for a definition of this term.)
This may seem somewhat surprising in light of an impossibility result of Ishai et
al. [26] showing that adaptively secure computation of functionalities that are
not adaptively well-formed is impossible. A closer examination of their result,
however, reveals that it does not hold in the CRS model.

Second, Garg and Sahai [22] show that no constant-round, adaptively secure,
multiparty protocol can be proven secure using black-box techniques; although
they only claim this result for protocols with security against malicious adver-
saries, their proof appears to extend to the case of semi-honest adversaries as
well. Again, however, their impossibility result only applies to the “plain” model
with no setup, whereas we assume a CRS.

Concurrent work. Independent of our work, two other groups of researchers
have also studied the problem of constant-round adaptively secure computa-
tion. Canetti et al. [13] give a protocol that is similar in spirit to ours, but
works only for the two-party case and requires sub-exponentially hard indistin-
guishability obfuscation. Garg and Polychroniadou [21], though also relying on
indistinguishability obfuscation, follow a different approach. They give a round-
optimal, adaptively secure protocol for the multiparty setting. We remark that
both these other works only consider adaptively well-formed functionalities.

1.2 Organization of the Paper

We review some standard cryptographic background and primitives in Section 2.
In Section 3, we introduce the notion of an explainable algorithm, and show how
the Sahai-Waters compiler [31] can be used to make any algorithm explain-
able. Finally, in Section 4 we present a constant-round multiparty computation
protocol tolerating a semi-honest, adaptive adversary corrupting any number
of parties. Applying the compiler of Canetti et al. [14] yields a constant-round
protocol tolerating a malicious, adaptive adversary corrupting any number of
parties.

2 Preliminaries

We let λ denote the security parameter. We refer to previous work [8, 10, 30] for
definitions of secure computation in the adaptive-corruption setting (with PEC).

2.1 Garbled Circuits

We rely on the standard notion of garbled circuits [32]. However, we use slightly
non-standard notation that we introduce here. Let C be a randomized circuit
taking n-bit inputs and using λ bits of randomness. We abstract the construc-
tion/evaluation of a garbled circuit for C via algorithms GenGC,EvalGC with
the following properties. GenGC is a randomized algorithm that takes as input
1λ and C, and outputs a garbled circuit GC along with 2n input-wire labels
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y1,0, y1,1, . . . , yn,0, yn,1 ∈ {0, 1}λ and 2λ random-wire labels w1,0, w1,1, . . . , wλ,0,
wλ,1 ∈ {0, 1}λ. Deterministic algorithm EvalGC takes as input GC and n + λ
labels y1, . . . , yn, w1, . . . , wλ, and outputs a value z.

Correctness requires that for any GC,
(
{yi,0, yi,1}ni=1, {wi,0, wi,1}λi=1

)
output

by GenGC(1λ, C), any x ∈ {0, 1}n and any r ∈ {0, 1}λ, we have

EvalGC
(
GC, {yi,xi}ni=1, {wi,ri}λi=1

)
= C(x; r).

Security requires an efficient simulator SimGC such that for all x, r, the dis-
tribution {(

GC, {(yi,0, yi,1)}ni=1, {(wi,0, wi,1)}λi=1

)
← GenGC(1λ, C) :(

GC, {yi,xi}ni=1, {wi,ri}λi=1

)}
is computationally indistinguishable from the output of SimGC(1λ, C, C(x; r)).

2.2 Adaptively Secure Oblivious Transfer

Our protocol uses a two-round, semi-honest, adaptively secure OT protocol as
a building block. A suitable construction can be found in [14].

A two-round OT protocol ΠOT comprises three algorithms: a receiver algo-
rithm ROT, a sender algorithm SOT, and an evaluation algorithm EOT. Algo-
rithm ROT takes as input a bit b and random coins rR, and outputs initial mes-
sage OT1. Algorithm SOT takes as input an initial message OT1, a pair of λ-bit
strings (y0, y1), and randomness rS , and outputs message OT2. The evaluation
algorithm EOT takes as input b, rR, and OT2 and outputs the λ-bit string yb.

For our purposes we require the following property that is implied by semi-
honest, adaptive security of ΠOT. There is exist an efficient simulator SimOT =
(SimOT1,SimOT2), where SimOT2 is deterministic, such that (1) SimOT1 out-
puts a transcript (OT1,OT2) along with state st and (2) SimOT2, given as input
b, y, and st, outputs coins rR for the receiver consistent with (OT1,OT2) and the
receiver holding input b and obtaining output y; for any b, y0, y1, the distribution{

rR, rS ← {0, 1}∗;OT1 := ROT(b; rR) :
(
rR, OT1, SOT(OT1, y0, y1; rS)

)}
is computationally indistinguishable from{

(OT1,OT2, st)← SimOT1(1λ);
rR := SimOT2(1λ, b, yb, st)

: (rR,OT1,OT2)

}
.

That is, we only require “one-sided security” [25] for adaptive corruption of the
receiver.

If we define algorithm SimOT′1(1λ) to run SimOT1(1λ) and output only
(OT1, st), and define the algorithm SimOT′2(1λ, b, st) to simply run SimOT2(1λ, b,

0λ, st), then for any b the distribution
{
rR ← {0, 1}∗ :

(
rR, ROT(b; rR)

)}
is com-

putationally indistinguishable from{
(OT1, st)← SimOT′1(1λ);
rR := SimOT′2(1λ, b, st)

: (rR,OT1)

}
.
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2.3 Indistinguishability Obfuscation

We use an indistinguishability obfuscator as a building block. A ppt machine
iO is an indistinguishability obfuscator for a circuit class {Cλ} if the following
conditions are satisfied:

Correctness. For all λ, and all C ∈ Cλ, it holds that C and iO(1λ, C) compute
the same function.

Polynomial slowdown. There is a polynomial p(·) such that |iO(1λ, C)| ≤
p(λ) · |C| for all C ∈ Cλ.

Indistinguishability. For any sequence {(Cλ,0, Cλ,1, auxλ)}λ where Cλ,0, Cλ,1 ∈
Cλ, Cλ,0 ≡ Cλ,1, and |Cλ,0| = |Cλ,1|, and any ppt distinguisher D, there is
a negligible function negl such that:∣∣Pr[D(iO(1λ, Cλ,0), auxλ) = 1]− Pr[D(iO(1λ, Cλ,1), auxλ) = 1]

∣∣ ≤ negl(λ).

When clear from the context, we will often omit the security parameter 1λ as
an input to iO and as a subscript for C.

iO is an indistinguishability obfuscator for P/poly if there is a polynomial p
such that iO is an indistinguishability obfuscator for {Cλ}, where Cλ contains
all circuits of size at most p(λ). Garg et al. [20] have shown the first candidate
construction of indistinguishability obfuscators for P/poly.

3 Explainability Compilers

Sahai and Waters [31] define a notion of explainability for public-key encryption,
and show a compiler that transforms any public-key encryption scheme into
an explainable version. Here, we generalize the notion of explainability for an
arbitrary algorithm Alg, and show that the Sahai-Waters compiler can be used

to transform any algorithm Alg into an explainable version Ãlg.
At a high level, an explainability compiler takes as input (a description of) a

randomized algorithm Alg, and outputs two algorithms Ãlg,Explain. The first of
these is a randomized algorithm computing the same functionality as Alg. The
second algorithm, roughly speaking, takes an input/output pair input, output

and produces random coins r consistent with running Ãlg(input) and obtain-
ing the result output. That is, the algorithm “explains” the input/output pair
input, output. We now give a formal definition.

Definition 1. A ppt algorithm Comp is an explainability compiler if for every
efficient, randomized circuit Alg, the following hold:

Polynomial slowdown. There is a polynomial p(·) such that, for any (Ãlg,

Explain) output by Comp(1λ,Alg) it holds that |Ãlg| ≤ p(λ) · |Alg|.
Statistical functional equivalence. With overwhelming probability over choice

of (Ãlg, ?) as output by Comp(1λ,Alg), the distribution of Ãlg(input) is sta-
tistically close to the distribution of Alg(input) for all input.
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Alg

Hardwired constants: Keys K1, K2, and K3.
Input: Input input and randomness u = (u[1], u[2]).

1. Let input′, output′, r′) := F3(K3, u[1])⊕u[2]. If it is the case that input =
input′ and u[1] = F2(K2, (input

′, output′, r′)), then output output :=
output′ and end.

2. Else let x := F1(K1, (input, u)) and output output := Alg(input;x).

Fig. 1. Program Alg

Explainability. The success probability of every non-uniform, polynomial-time
adversary A in the following experiment is negligibly close to 1/2:
1. A(1λ) outputs input∗ of its choice.

2. Comp(1λ,Alg) is run to obtain (Ãlg,Explain).

3. Choose uniform coins r0 ∈ {0, 1}∗ and compute output∗ := Ãlg(input∗; r0).
4. Compute r1 ← Explain(input∗, output∗).

5. Choose a uniform bit b and give Ãlg, output∗, rb to A.
6. A outputs a bit b′, and succeeds if b′ = b.

We highlight one key difference between our definition and the correspond-
ing one from [31]: in our case input∗ is an arbitrary length value (depending on
the domain of Alg) chosen by the adversary, whereas in [31] the input to the ex-
plainable algorithm is a single bit chosen uniformly (and given to the adversary).
Because of this, and due to the way the explainability compiler is constructed,
we require the adversary to choose input∗ “non-adaptively,” i.e., before being

given Ãlg. This definition of explainability suffices for our eventual protocol.

3.1 Constructing an Explainability Compiler

Following [31], we now show how to construct an explainability compiler. As
in [31], we rely on an indistinguishability obfuscator, iO, for P/poly and three
different pseudorandom function (PRF) variants (cf. Appendix A):

– A puncturable, extracting PRF F1(K1, ·) that accepts inputs of length `1 +
`2 + `in, and outputs strings of length `r. It is extracting when the input
min-entropy is greater than `r + 2λ + 4, with statistical closeness less than
2−(λ+1). Observe that `in+`1+`2 ≥ `r+2λ+4, and thus if one-way functions
exist then such a PRF exists by Theorem 4.

– A puncturable, statistically injective PRF F2(K2, ·) that accepts inputs of
length 2λ + `in + `out, and outputs strings of length `1. Observe that `1 ≥
2 · (2λ+ `in + `out) + λ, and thus if one-way functions exist then such a PRF
exists by Theorem 3.

– A puncturable PRF F3(K3, ·) that accepts inputs of length `1 and outputs
strings of length `2. If one-way functions exist, then such a PRF exists by
Theorem 2.



Title Suppressed Due to Excessive Length 9

We define Comp(1λ,Alg) as follows. Let Alg : {0, 1}`in × {0, 1}`r → {0, 1}`out
be an algorithm with domain {0, 1}`in , range {0, 1}`out , and randomness length

`r. Our compiled program Ãlg will take input input ∈ {0, 1}`in and randomness
u = (u[1], u[2]) of length `1 + `2, where |u[1]| = `1 = 5λ + 2(`in + `out) + `r
and |u[2]| = `2 = 2λ + `in + `out. Our compiler first samples keys K1, K2, and
K3 for PRFs F1, F2, and F3, respectively. It then defines algorithms Alg and

Explain as in Figures 1 and 2, respectively. Finally, it computes Ãlg ← iO(Alg)

and Explain← iO(Explain), and outputs (Ãlg,Explain).
The proofs of security for our compiler, given for completeness in Appendix B,

follow closely along the lines of the analogous proofs in [31]. Specifically, the proof
of statistical functional equivalence closely follows the proof used by Sahai and
Waters to establish IND-CPA security of their deniable encryption scheme, and
the proof of explainability follows the Sahai-Waters proof establishing explain-
ability of their deniable encryption scheme. We highlight, however, that in our
proof of explainability a difference arises because in our case the input input∗ is
an arbitrary length value (depending on the domain of Alg), whereas in [31] the
input is just a single bit. We are able to adapt the proof to this case because we

do not allow input∗ to depend on Ãlg.

4 A Semi-Honest, Adaptively Secure Protocol

We describe here a protocol for secure computation of a randomized circuit C
by a set of parties P1, . . . , Pn. We assume for simplicity that all parties learn the
output of C; using standard techniques, we can handle the general case in which
each party learns a possibly different function of the inputs. For ease of notation,
we assume that the domain of C is {0, 1}n with party Pi providing the ith input
xi ∈ {0, 1}. (One can easily verify that our protocol and proof generalize to the
case of arbitrary-length inputs.) We also assume without loss of generality that
C uses λ random bits.

The CRS of our protocol is an “explainable” version ˜NextMsg of the algo-
rithm NextMsg defined in Figure 3. That is, the CRS is generated by computing

( ˜NextMsg,Explain) ← Comp(1λ,NextMsg) and letting the CRS be ˜NextMsg. As
described, the CRS depends on C (since NextMsg does); however, by letting C

Explain

Hardwired constants: Keys K2 and K3.
Input: input, output, and randomness r ∈ {0, 1}λ.

1. Set α := F2(K2, (input, output,PRG(r))) and let β := F3(K3, α) ⊕
(input, output,PRG(r)).
Output (α, β).

Fig. 2. Program Explain
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NextMsg

Inputs: OT1,1, . . . ,OT1,n; randomness r1, . . . , rλ ∈ {0, 1} and
rGC, rS,1, . . . , rS,n ∈ {0, 1}∗.

1. Run GenGC(1λ, C; rGC) to produce the garbled circuit GC along with n
pairs of input-wire labels {(yi,0, yi,1)}ni=1 and λ pairs of random-wire
labels {(wi,0, wi,1)}λi=1.

2. For i ∈ [n], run SOT on input OT1,i and (yi,0, yi,1) using random-
ness rS,i, to obtain OT2,i.

3. Output GC, OT messages {OT2,i}ni=1, and random-wire labels
w1,r1 , . . . , wλ,rλ .

Fig. 3. Algorithm NextMsg. The security parameter 1λ and circuit C are hardwired.

be a universal circuit the CRS can be fixed independently of the “actual” func-
tion the parties wish to compute. We note that we allow the environment Z to
choose the parties’ inputs depending on the CRS.

Let ΠOT = (ROT, SOT, EOT) be a two-round, semi-honest, adaptively secure
OT protocol (cf. Section 2.2). Our secure-computation protocol Π is defined
in Figure 4. We describe the protocol assuming the existence of secure chan-
nels; these can be instantiated using any adaptively secure public-key encryption
scheme.

Theorem 1. Assume Comp is an explainability compiler, and GenGC and ΠOT

satisfy the definitions from Sections 2.1 and 2.2, respectively. Then protocol Π in
Figure 4 UC-realizes functionality C in the presence of a semi-honest, adaptive
adversary corrupting any number of parties.

Proof. Let SimGC, SimOT denote appropriate simulators as defined in Section 2.
Fix an environment Z and a dummy adversary A attacking protocol Π. Recall
that we allow the environment Z to adaptively choose the inputs of all parties
after seeing the common reference string. Without loss of generality, we assume
Z first observes the entire protocol transcript (which, since we use secure chan-
nels in rounds 3 and 4, consists only of the messages sent in the first two rounds)
before corrupting any parties. Our simulator Sim for this adversary proceeds as
follows:

1. Compute ( ˜NextMsg,Explain)← Comp(1λ,NextMsg), and give ˜NextMsg to Z
as the CRS.

2. Run SimOT1(1λ) a total of n times to obtain {(OT1,i,OT2,i, sti)}ni=1. Give
OT1,1, . . . ,OT1,n−1 to Z as the first-round message, and OT2,1, . . . ,OT2,n−1
to Z as the second-round message.

3. When Z requests to corrupt party Pi, corrupt Pi in the ideal world to learn
its input xi and the output z. Then:

– If this is the first party to be corrupted, compute (GC, {yi}ni=1, {wi}λi=1)
← SimGC(1λ, C, z) and r∗n ← Explain ((OT1,1, . . . ,OT1,n), (GC,OT2,1, . . . ,
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Semi-Honest, Adaptively Secure Multiparty Computation

Common input:

– CRS = ˜NextMsg.
– Description of a randomized circuit C.

Private inputs: Every party Pi has private input xi ∈ {0, 1}.

Each Pi: Compute first-round OT messages:

– Sample random coins rR,i ← {0, 1}∗ of appropriate length.
– Compute OT1,i := ROT(xi; rR,i) and, for i ∈ [n− 1], send OT1,i to Pn.

Pn: Compute garbled circuit and second-round OT messages:

– Sample random coins rn ← {0, 1}∗ of appropriate length.
– Compute

(GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ) := ˜NextMsg(OT1,1, . . . ,OT1,n; rn).

– For i ∈ [n− 1], send OT2,i to Pi.

Each Pi: Recover OT output :

– Compute yi := EOT(xi, rR,i,OT2,i) and, for i ∈ [n − 1], send yi to Pn
over a secure channel.

Pn: Evaluate garbled circuit and broadcast output :

– Compute z := EvalGC(GC, {yi}ni=1, {wi}λi=1).
– For i ∈ [n− 1], send z to Pi over a secure channel.

Output: Each party Pi outputs z.

Fig. 4. Protocol Π for computing randomized circuit C.

OT2,n, w1, . . . , wn)). Store these values to be used, as needed, in the rest
of the simulation.

– In any case, compute rR,i := SimOT2(1λ, xi, yi, sti) and give xi, z, yi, and
rR,i to Z. In addition, if i = n give {yi}n−1i=1 and r∗n to Z.

4. Output whatever Z outputs.

We prove that the output of Z when interacting with A and parties in a
real-world execution of protocol Π is indistinguishable from the output of Z
when interacting with Sim and the functionality C in an ideal-world execution
of the protocol. We do so by considering a sequence of hybrid experiments, be-
ginning with the real-world execution and ending with the ideal-world execution,
and showing that each experiment is computationally indistinguishable from the
preceding one.

Hybrid 0. This corresponds to the real-world execution of the protocol. We
write the experiment in a format convenient for the proof. This experiment
proceeds via the following steps:
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1. Compute ( ˜NextMsg,Explain)← Comp(1λ,NextMsg), and give ˜NextMsg to Z
as the CRS. Z chooses inputs x1, . . . , xn.

2. For i ∈ [n], sample coins rR,i and compute OT1,i := ROT(xi; rR,i). Give the
sequence of values OT1,1, . . . ,OT1,n−1 to Z as the first-round message.

3. Sample coins rn and compute

(GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ) := ˜NextMsg(OT1,1, . . . ,OT1,n; rn).

Give OT2,1, . . . ,OT2,n−1 to Z as the second-round message.
4. When Z requests to corrupt party Pi, compute yi := EOT(xi, rR,i,OT2,i)

and give xi, z, yi, and rR,i to Z. In addition, if i = n then compute yi :=
EOT(xi, rR,i,OT2,i) for i ∈ [n− 1] and give {yi}n−1i=1 and rn to Z.

Hybrid 1. This experiment is similar to the previous one, except that the OT1

messages and the random coins {rR,i} are generated by the simulator for the
OT protocol (cf. Section 2.2). That is, the experiment proceeds via the following
steps:

1. Compute ( ˜NextMsg,Explain)← Comp(1λ,NextMsg), and give ˜NextMsg to Z
as the CRS. Z chooses inputs x1, . . . , xn.

2. Run SimOT′1(1λ) a total of n times to obtain {(OT1,i, sti)}ni=1. Give the
sequence of values OT1,1, . . . ,OT1,n−1 to Z as the first-round message.

3. Sample coins rn and compute

(GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ) := ˜NextMsg(OT1,1, . . . ,OT1,n; rn).

Give OT2,1, . . . ,OT2,n−1 to Z as the second-round message.
4. When Z corrupts party Pi, compute rR,i := SimOT′2(1λ, xi, sti) and yi :=
EOT(xi, rR,i,OT2,i), and give xi, z, yi, and rR,i to Z. In addition, if i = n then
for i ∈ [n − 1] compute rR,i := SimOT′2(1λ, xi, sti) and yi := EOT(xi, rR,i,
OT2,i), and give {yi}n−1i=1 and rn to Z.

It follows immediately by security of the OT protocol (and a straightforward
hybrid argument) that this experiment is computationally indistinguishable from
the previous one.

Hybrid 2. This experiment is similar to the previous one, except that we now use
the Explain algorithm to generate the random coins rn. That is, the experiment
proceeds as follow:

1. Compute ( ˜NextMsg,Explain)← Comp(1λ,NextMsg), and give ˜NextMsg to Z
as the CRS. Z chooses inputs x1, . . . , xn.

2. Run SimOT′1(1λ) a total of n times to obtain {(OT1,i, sti)}ni=1. Give the
sequence of values OT1,1, . . . ,OT1,n−1 to Z as the first-round message.

3. Sample coins rn and compute

(GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ) := ˜NextMsg(OT1,1, . . . ,OT1,n; rn).

In addition, let input∗ = (OT1,1, . . . ,OT1,n) and output∗ = (GC,OT2,1, . . . ,
OT2,n, w1, . . . , wλ), and compute r∗n ← Explain(input∗, output∗).
Give OT2,1, . . . ,OT2,n−1 to Z as the second-round message.
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4. When Z corrupts party Pi, compute rR,i := SimOT′2(1λ, xi, sti) and yi :=
EOT(xi, rR,i,OT2,i), and give xi, z, yi, and rR,i to Z. In addition, if i = n then
for i ∈ [n − 1] compute rR,i := SimOT′2(1λ, xi, sti) and yi := EOT(xi, rR,i,
OT2,i), and give {yi}n−1i=1 and r∗n to Z.

Computationally indistinguishability of this experiment from the previous
one follows from the definition of explainability (cf. Definition 1), and the fact
that Comp is an explainability compiler. To see this, say there is an efficient
adversary Z and a non-uniform, polynomial-time distinguisher D that distin-
guishes the outcome of Hybrid 1 from that of Hybrid 2. We show how to use
this to construct an attacker A′ violating explainability. A′ works as follows: it
runs SimOT′1(1λ) a total of n times to obtain {(OT1,i, sti)}ni=1, and outputs the

value input∗ = (OT1,1, . . . ,OT1,n). Given ˜NextMsg, output∗, r in response, where
output∗ = (GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ), it then does:

1. Give ˜NextMsg to Z as the CRS. Z chooses inputs x1, . . . , xn.
2. Give OT1,1, . . . ,OT1,n−1 to Z as the first-round message, and OT2,1, . . . ,

OT2,n−1 to Z as the second-round message.
3. When Z corrupts party Pi, compute rR,i := SimOT′2(1λ, xi, sti) and yi :=
EOT(xi, rR,i,OT2,i), and give xi, z, yi, and rR,i to Z. In addition, if i = n then
for i ∈ [n − 1] compute rR,i := SimOT′2(1λ, xi, sti) and yi := EOT(xi, rR,i,
OT2,i), and give {yi}n−1i=1 and r to Z.

Finally, run D on the output of Z and output the result. It is easy to see that

if the coins r are those used to run ˜NextMsg, then the view of Z when run as a
subroutine by A′ corresponds to Hybrid 1, whereas if the coins r are those output
by Explain, then the view of Z when run as a subroutine by A′ corresponds to
Hybrid 2. Indistinguishability of the two experiments follows.

Hybrid 3. This is similar to the previous experiment, except that NextMsg and

Explain are used in place of ˜NextMsg. That is, the experiment proceeds as follows:

1. Compute ( ˜NextMsg,Explain)← Comp(1λ,NextMsg), and give ˜NextMsg to Z
as the CRS. Z chooses inputs x1, . . . , xn.

2. Run SimOT′1(1λ) a total of n times to obtain {(OT1,i, sti)}ni=1. Give the
sequence of values OT1,1, . . . ,OT1,n−1 to Z as the first-round message.

3. Compute

(GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ)← NextMsg(OT1,1, . . . ,OT1,n).

In addition, let input∗ = (OT1,1, . . . ,OT1,n) and output∗ = (GC,OT2,1, . . . ,
OT2,n, w1, . . . , wλ), and compute r∗n ← Explain(input∗, output∗).
Give OT2,1, . . . ,OT2,n−1 to Z as the second-round message.

4. When Z corrupts party Pi, compute rR,i := SimOT′2(1λ, xi, sti) and yi :=
EOT(xi, rR,i,OT2,i), and give xi, z, yi, and rR,i to Z. In addition, if i = n then
for i ∈ [n − 1] compute rR,i := SimOT′2(1λ, xi, sti) and yi := EOT(xi, rR,i,
OT2,i), and give {yi}n−1i=1 and r∗n to Z.
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Indistinguishability of this experiment from the previous one follows by sta-

tistical equivalence of NextMsg and ˜NextMsg.

Hybrid 4. In this experiment, we first make explicit the steps of NextMsg.
(This is just a syntactic rewriting, and does not affect the experiment.) In ad-
dition, we now set yi = yi,xi instead of computing yi using the OT-evaluation
algorithm EOT. This experiment proceeds as follows:

1. Compute ( ˜NextMsg,Explain)← Comp(1λ,NextMsg), and give ˜NextMsg to Z
as the CRS. Z chooses inputs x1, . . . , xn.

2. Run SimOT′1(1λ) a total of n times to obtain {(OT1,i, sti)}ni=1. Give the
sequence of values OT1,1, . . . ,OT1,n−1 to Z as the first-round message.

3. Compute (GC, {(yi,0, yi,1)}ni=1, {(wi,0, wi,1)}λi=1) ← GenGC(1λ, C) and set
yi = yi,xi for all i. For i ∈ [n], run OT2,i ← SOT(OT1, yi,0, yi,1). Choose uni-
form r1, . . . , rλ ∈ {0, 1}, and let input∗ = (OT1,1, . . . ,OT1,n) and output∗ =
(GC,OT2,1, . . . ,OT2,n, wr1 , . . . , wrλ). Compute r∗n ← Explain(input∗, output∗).
Give OT2,1, . . . ,OT2,n−1 to Z as the second-round message.

4. When Z corrupts party Pi, compute rR,i := SimOT′2(1λ, xi, sti). Give xi, z, yi,
and rR,i to Z. In addition, if i = n then give {yi}n−1i=1 and r∗n to Z.

Computational indistinguishability of this experiment from the previous one
follows from security of the OT protocol.

Hybrid 5. In the previous experiment the OT2 messages were generated hon-
estly as part of NextMsg. Here, we have the OT simulator output them instead.
That is, we now do:

1. Compute ( ˜NextMsg,Explain)← Comp(1λ,NextMsg), and give ˜NextMsg to Z
as the CRS. Z chooses inputs x1, . . . , xn.

2. Run SimOT1(1λ) a total of n times to obtain {(OT1,i,OT2,i, sti)}ni=1. Give
the sequence of values OT1,1, . . . ,OT1,n−1 to Z as the first-round message,
and give OT2,1, . . . ,OT2,n−1 to Z as the second-round message.

3. Compute (GC, {(yi,0, yi,1)}ni=1, {(wi,0, wi,1)}λi=1) ← GenGC(1λ, C) and set
yi = yi,xi for all i. Choose uniform values r1, . . . , rλ ∈ {0, 1}, and let input∗ =
(OT1,1, . . . ,OT1,n) and output∗ = (GC,OT2,1, . . . ,OT2,n, wr1 , . . . , wrλ). Com-
pute r∗n ← Explain(input∗, output∗).

4. When Z corrupts party Pi, compute rR,i := SimOT2(1λ, xi, yi, sti). Give
xi, z, yi, and rR,i to Z. In addition, if i = n then give {yi}n−1i=1 and r∗n to Z.

Again, computational indistinguishability between this experiment and the
previous one follows by security of the OT protocol.

Hybrid 6. Here we use the garbled-circuit simulator (cf. Section 2.1) instead of
the garbled-circuit generation algorithm. Thus, the experiment now proceeds as
follows:

1. Compute ( ˜NextMsg,Explain)← Comp(1λ,NextMsg), and give ˜NextMsg to Z
as the CRS. Z chooses inputs x1, . . . , xn.
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2. Run SimOT1(1λ) a total of n times to obtain {(OT1,i,OT2,i, sti)}ni=1. Give
OT1,1, . . . ,OT1,n−1 to Z as the first-round message, and OT2,1, . . . ,OT2,n−1
to Z as the second-round message.

3. Compute (GC, {yi}ni=1, {wi}λi=1)← SimGC(1λ, C, z). Let input∗ = (OT1,1, . . . ,
OT1,n) and output∗ = (GC,OT2,1, . . . ,OT2,n, wr1 , . . . , wrλ). Compute r∗n ←
Explain(input∗, output∗).

4. When Z corrupts party Pi, compute rR,i := SimOT2(1λ, xi, yi, sti). Give
xi, z, yi, and rR,i to Z. In addition, if i = n then for i ∈ [n− 1] give {yi}n−1i=1

and r∗n to Z.

Computational indistinguishability between this experiment and the previous
one follows from security of garbled circuits.

We conclude the proof by noting that Hybrid 6 is simply a syntactic rewriting
of the ideal-world execution involving the simulator originally defined.

5 Conclusions and Open Questions

In this work we have shown the first constant-round, universally composable
protocol tolerating a malicious, adaptive adversary that can corrupt any number
of parties, in a setting where secure erasure is not assumed. In addition, we have
shown the first adaptively secure protocol, regardless of round complexity, that
can compute arbitrary functionalities (and not only adaptively well-formed ones)
in the presence of any number of corruptions and without erasures.

Several interesting open questions remain. Although a CRS (or some other
form of setup) is necessary if we wish to obtain a universally composable protocol
with security against malicious adversaries corrupting an arbitrary number of
parties, it is still possible that the CRS can be avoided in the semi-honest case,
or in the stand-alone setting. Moreover, our protocol assumes that the CRS
depends on the circuit C being computed or, if we let C be a universal circuit
(cf. footnote 2), an a priori bound on the size of the circuit being computed. It
would be interesting to see if this can be avoided.
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A Puncturable PRFs

Puncturable PRFs are a type of constrained PRF [6, 7, 29] whereby it is pos-
sible to generate a key that defines the function everywhere except on some
polynomial-size set of inputs:

Definition 2. A puncturable family of PRFs is defined by polynomials n(·) and
m(·) and a triple of Turing machines KeyF , PunctureF , and EvalF satisfying the
following conditions:

Functionality preserved under puncturing. For all polynomial-size sets S
⊆ {0, 1}n(λ) and all x ∈ {0, 1}n(λ) \S, we have:

Pr
[
K ← KeyF (1λ);KS = PunctureF (K,S) : EvalF (K,x) = EvalF (KS , x)

]
= 1.
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Pseudorandom at punctured points. For every ppt adversary (A1, A2) such
that A1(1λ) outputs a set S ⊆ {0, 1}n(λ) and state σ, consider an experiment
where K ← KeyF (1λ) and KS = PunctureF (K,S). Then we have∣∣∣Pr

[
A2(σ,KS , S,EvalF (K,S)) = 1

]
− Pr

[
A2(σ,KS , S, Um(λ)·|S|) = 1

]∣∣∣
≤ negl(λ)

where EvalF (K,S) is the concatenation of EvalF (K,x1), . . . ,EvalF (K,xk),
and S = {x1, . . . , xk} denoted the elements of S in lexicographic order.

For ease of notation, we write F (K,x) to represent EvalF (K,x). We also repre-
sent the punctured key PunctureF (K,S) by K(S).

As observed by [6, 7, 29], the GGM construction [24] of PRFs from one-way
functions yields puncturable PRFs. Thus:

Theorem 2. [6, 7, 29] Assuming one-way functions exist, for all polynomials
n(λ),m(λ) there is a puncturable PRF family that maps n(λ) bits to m(λ) bits.

We follow [31] for the following definitions of puncturable PRFs with en-
hanced properties:

Definition 3. A statistically injective (puncturable) PRF family with failure prob-
ability ε(·) is a family of (puncturable) PRFs F such that with probability 1−ε(λ)
over the random choice of key K ← KeyF (1λ), we have that F (K, ·) is injective.

Definition 4. An extracting (puncturable) PRF family with error ε(·) for min-
entropy k(·) is a family of (puncturable) PRFs F mapping n(λ) bits to m(λ)
bits such that for all λ, if X is any distribution over n(λ) bits with min-entropy
greater than k(λ), then the statistical distance between (K ← KeyF (1λ), F (K,X))
and (K ← KeyF (1λ), Um(λ)) is at most ε(λ).

The following results were proved in [31]:

Theorem 3 ([31]). If one-way functions exist, then for all efficiently com-
putable functions n(λ), m(λ), and e(λ) such that m(λ) ≥ 2n(λ) + e(λ), there
exists a puncturable statistically injective PRF family with failure probability
2−e(λ) that maps n(λ) bits to m(λ) bits.

Theorem 4. If one-way functions exist, then for all efficiently computable func-
tions n(λ), m(λ), k(λ), and e(λ) such that n(λ) ≥ k(λ) ≥ m(λ) + 2e(λ) + 2,
there exists an extracting puncturable PRF family that maps n(λ) bits to m(λ)
bits with error 2−e(λ) for min-entropy k(λ).
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B Proof of Security for Our Explainability Compiler

In this section we prove security of our explainability compiler. We must show
two properties: statistical functional equivalence and explainability. (Polynomial
slowdown is obvious.) The proof of statistical functional equivalence is largely
identical to the analogous proof in [31], and is omitted. Instead, we focus on
explainability.

We first state the following lemma, whose proof is the same as in [31].

Lemma 1. Except with negligible probability over the choice of key K2, the fol-
lowing hold:

1. For any fixed u[1] = α, there exists at most one pair (input, β) such that the
input input with randomness u = (α, β) will cause the Step 1 check of Alg to
be satisfied.

2. There are at most 22λ+`in+`out values for the randomness u that can cause the
Step 1 check of Alg to be satisfied.

Given the above, we prove:

Theorem 5. If F1, F2, F3 are PRFs that satisfy the properties specified in Sec-
tion 3.1, and iO is an indistinguishability obfuscator for P/poly, then our con-
struction Comp(·, ·) satisfies explainability.

Proof. Recall the explainability experiment from Definition 1:

1. A(1λ) outputs input∗ of its choice.

2. Comp(1λ,Alg) is run to obtain (Ãlg,Explain).

3. Choose random coins r0 ← {0, 1}∗, and compute output∗ ← Ãlg(input∗; r0).
4. Compute r1 ← Explain(input∗, output∗).

5. Choose a uniform bit b and give Ãlg, output∗, rb to A.
6. A outputs a bit b′, and succeeds if b′ = b.

Let ExplAlg,A be a random variable set to 1 if A succeeds in outputting b′ = b

in the above experiment. Security of Comp(1λ,Alg) requires that for every ppt A
and for every efficient algorithm Alg, we have Pr[ExplAlg,A = 1] ≤ 1/2 + negl(λ).

Assume towards a contradiction that there is some ppt adversary A and
some efficient algorithm Alg such that Pr[ExplAlg,A = 1] ≥ 1/2 + ε(λ), for non-
negligible ε(·). We derive a contradiction via a sequence of hybrid experiments.
The change between each experiment and the previous one will be denoted by
underlined text.

Original experiment. We consider the probability that b′ = b in the following
experiment:

1. b← {0, 1}.
2. input∗ ← A(1λ).
3. Choose K1,K2,K3 at random.
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Alg

Constants: Keys K1, K2, and K3.
Input: Input input, randomness u = (u[1], u[2]).

1. If F3(K3, u[1]) ⊕ u[2] = (input′, output′, r′) for (proper length)
strings output′, r′, input′, and input′ = input, and u[1] =
F2(K2, (input

′, output′, r′)), then output output = output′ and end.
2. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Fig. 5. Program Alg

4. Select u∗ and r∗ at random.
5. If F3(K3, u[1])⊕u[2] = (input′, output′, r′) for (proper length) strings output′,
r′, input′, and input′ = input∗, and u[1] = F2(K2, (input

′, output′, r′)), then
let output∗ = output′ and jump to the next step. Otherwise, let x∗ =
F1(K1, (input

∗, u∗)) and output∗ = Alg(input∗;x∗).
6. Set α∗ = F2(K2, (input

∗, output∗,PRG(r∗))). Let β∗ = F3(K3, α
∗)⊕ (input∗,

output∗,PRG(r∗)), and set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 1. Let Explain ← iO(Explain) for
Explain as in Figure 2.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗). If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Hybrid 0. Next, we eliminate the check in Step 1 from the Alg program when
preparing the outputs of the fixed challenge input∗. Hybrid 0 is statistically close
to the original experiment by Lemma 1. Consider the probability that b′ = b in
the following experiment:

1. b← {0, 1}.
2. input∗ ← A(1λ).
3. Choose K1,K2,K3 at random.
4. Select u∗ and r∗ at random.
5. If F3(K3, u[1])⊕u[2] = (input′, output′, r′) for (proper length) strings output′,
r′, input′, and input′ = input∗, and u[1] = F2(K2, (input

′, output′, r′)), then
let output∗ = output′ and jump to the next step. Otherwise, let x∗ =
F1(K1, (input

∗, u∗)) and output∗ = Alg(input∗;x∗).
6. Set α∗ = F2(K2, (input

∗, output∗,PRG(r∗))). Let β∗ = F3(K3, α
∗)⊕ (input∗,

output∗,PRG(r∗)), and set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 5. Let Explain ← iO(Explain) for
Explain as in Figure 6.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗). If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Hybrid 1. Here, we modify the Alg program as follows: First, we add constants
input∗, output∗, u∗, e∗ to the program. Then, we add an “if” statement at the
start that outputs output∗ if the input is either (input∗, u∗) or (input∗, e∗), as
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Explain

Constants: Keys K2 and K3.
Input: Input input, output output, randomness r ∈ {0, 1}λ.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α) ⊕
(input, output,PRG(r)). Output e = (α, β).

Fig. 6. Program Explain

Alg

Constants: input∗, output∗, u∗, e∗ and PRF keys
K1((input∗, u∗), (input∗, e∗)), K2, and K3.
Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.

2. If F3(K3, u[1]) ⊕ u[2] = (input′, output′, r′) for (proper length)
strings output′, r′, input′, and input′ = input, and u[1] =
F2(K2, (input

′, output′, r′)), then output output = output′ and end.
3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Fig. 7. Program Alg

this is exactly what the original Alg program would do by our choice of u∗, e∗.
Because this “if” statement is in place, we know that F1 cannot be evaluated
at either (input∗, u∗) or (input∗, e∗) within the program, and therefore we can
safely puncture K1 at those two positions.

By construction, the new Alg program is functionally equivalent to the origi-
nal Alg program. Therefore, indistinguishability of Hybrid 0 and Hybrid 1 follows
by the security of iO. Thus, the difference in the probabilities that A outputs
b′ = b in Hybrid 0 and Hybrid 1 is negligible.

1. b← {0, 1}.
2. input∗ ← A(1λ).
3. Choose K1,K2,K3 at random.
4. Select u∗ and r∗ at random.
5. Let x∗ = F1(K1, (input

∗, u∗)) and let output∗ = Alg(input∗;x∗).
6. Set α∗ = F2(K2, (input

∗, output∗,PRG(r∗))). Let β∗ = F3(K3, α
∗)⊕ (input∗,

output∗,PRG(r∗)), and set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 7. Let Explain ← iO(Explain) for
Explain as in Figure 8.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗). If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Hybrid 2. Here, the value x∗ is chosen uniformly instead of as the output of
F1(K1, (input

∗, u∗)). Pseudorandomness of F1 thus implies that the difference in
the probabilities that A outputs b′ = b in Hybrid 1 and Hybrid 2 is negligible.
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Explain

Constants: PRF keys K2, and K3.
Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α) ⊕
(input, output,PRG(r)). Output e = (α, β).

Fig. 8. Program Explain

1. b← {0, 1}.
2. input∗ ← A(1λ).
3. Choose K1,K2,K3 at random.
4. Select u∗ and r∗ at random.
5. Choose uniform x∗ and let output∗ = Alg(input∗;x∗).
6. Set α∗ = F2(K2, (input

∗, output∗,PRG(r∗))). Let β∗ = F3(K3, α
∗)⊕ (input∗,

output∗,PRG(r∗)), and set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 9. Let Explain ← iO(Explain) for
Explain as in Figure 10.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗). If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Alg

Constants: input∗, output∗, u∗, e∗ and PRF keys
K1((input∗, u∗), (input∗, e∗)), K2, and K3.
Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.
2. If F3(K3, u[1]) ⊕ u[2] = (input′, output′, r′) for (proper length)

strings output′, r′, input′, and input′ = input, and u[1] =
F2(K2, (input

′, output′, r′)), then output output = output′ and end.
3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Fig. 9. Program Alg
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Explain

Constants: PRF keys K2, and K3.
Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α) ⊕
(input, output,PRG(r)). Output e = (α, β).

Fig. 10. Program Explain

Hybrid 3. Here, instead of choosing uniform r∗ and applying a PRG to it, a
value r̃ is chosen uniformly from the range of the PRG. Security of the PRG
implies that the difference in the probabilities that A outputs b′ = b in Hybrid 2
and Hybrid 3 is negligible.

1. b← {0, 1}.
2. input∗ ← A(1λ).
3. Choose K1,K2,K3 at random.
4. Select u∗ and r̃ at random.
5. Choose uniform x∗ and let output∗ = Alg(input∗;x∗).
6. Set α∗ = F2(K2, (input

∗, output∗, r̃)). Let β∗ = F3(K3, α
∗)⊕(input∗, output∗,

r̃), and set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 11. Let Explain ← iO(Explain) for
Explain as in Figure 12.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗). If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Alg

Constants: input∗, output∗, u∗, e∗ and PRF keys
K1((input∗, u∗), (input∗, e∗)), K2, and K3.
Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.
2. If F3(K3, u[1]) ⊕ u[2] = (input′, output′, r′) for (proper length)

strings output′, r′, input′, and input′ = input, and u[1] =
F2(K2, (input

′, output′, r′)), then output output = output′ and end.
3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Fig. 11. Program Alg

Hybrid 4. Here, the Alg and Explain programs are modified as shown below.
In Lemma 2, (proven below), we argue that except with negligible probability
over choice of constants, these modifications do not alter the functionality of
either program. Thus, the iO security property implies that the difference in the
probabilities that A outputs b′ = b in Hybrid 3 and Hybrid 4 is negligible.
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Explain

Constants: PRF keys K2, and K3.
Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α) ⊕
(input, output,PRG(r)). Output e = (α, β).

Fig. 12. Program Explain

1. b← {0, 1}.
2. input∗ ← A(1λ).
3. Choose K1,K2,K3 at random.
4. Select u∗ and r̃ at random.
5. Choose uniform x∗ and let output∗ = Alg(input∗;x∗).
6. Set α∗ = F2(K2, (input

∗, output∗, r̃)). Let β∗ = F3(K3, α
∗)⊕(input∗, output∗,

r̃), and set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 13. Let Explain ← iO(Explain) for
Explain as in Figure 14.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗). If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Alg

Constants: input∗, output∗, u∗, e∗ and PRF keys
K1((input∗, u∗), (input∗, e∗)), K2, and K3(u∗[1], e∗[1]).
Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.
2. If u[1] = e∗[1] or u[1] = u∗[1], then skip this step. If F3(K3, u[1]) ⊕

u[2] = (input′, output′, r′) for (proper length) strings output′, r′, input′,
and input′ = input, and u[1] = F2(K2, (input

′, output′, r′)), then output
output = output′ and end.

3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Fig. 13. Program Alg

Hybrid 5. Here, the value e∗[2], denoted β∗, is chosen at random instead of
being chosen as β∗ = F3(K3, α

∗)⊕ (input∗, output∗, r̃). Pseudorandomness of F3

thus implies that the difference in the probabilities that A outputs b′ = b in
Hybrid 4 and Hybrid 5 is negligible.

1. b← {0, 1}.
2. input∗ ← A(1λ).
3. Choose K1,K2,K3 at random.
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Explain

Constants: PRF keys K2, and K3(u∗[1], e∗[1]).
Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α) ⊕
(input, output,PRG(r)). Output e = (α, β).

Fig. 14. Program Explain

4. Select u∗ and r̃ at random.
5. Choose uniform x∗ and let output∗ = Alg(input∗;x∗).
6. Set α∗ = F2(K2, (input

∗, output∗, r̃)). Choose uniform β∗, and set e∗ = (α∗,
β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 15. Let Explain ← iO(Explain) for
Explain as in Figure 16.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗). If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Alg

Constants: input∗, output∗, u∗, e∗ and PRF keys
K1((input∗, u∗), (input∗, e∗)), K2, and K3(u∗[1], e∗[1]).
Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.
2. If u[1] = e∗[1] or u[1] = u∗[1], then skip this step. If F3(K3, u[1]) ⊕

u[2] = (input′, output′, r′) for (proper length) strings output′, r′, input′,
and input′ = input, and u[1] = F2(K2, (input

′, output′, r′)), then output
output = output′ and end.

3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Fig. 15. Program Alg

Hybrid 6. First we modify the Alg program to add a condition to the check
in Step 2 to determine if (input′, output′, r′) = (input∗, output∗, r̃) and, if so, to
skip this check. This does not change the functionality of the program, because
e∗[1] = F2(K2, (input

∗, output∗, r̃)), and therefore the check cannot be satisfied
if (input′, output′, r′) = (input∗, output∗, r̃), since Step 2 is skipped entirely if
u[1] = e∗[1]. Furthermore, both the Alg and Explain programs are modified to
have K2 punctured at the points (input∗, output∗, r̃). This puncturing does not
change the functionality of the Alg program because of the new “if” condition
just added. With overwhelming probability, r̃ is not in the image of the PRG and
therefore this puncturing also does not change the functionality of the Explain
program. Thus, the difference in the probabilities that A outputs b′ = b in
Hybrid 5 and Hybrid 6 is negligible.
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Explain

Constants: PRF keys K2, and K3(u∗[1], e∗[1]).
Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α) ⊕
(input, output,PRG(r)). Output e = (α, β).

Fig. 16. Program Explain

1. b← {0, 1}.
2. input∗ ← A(1λ).
3. Choose K1,K2,K3 at random.
4. Select u∗ and r̃ at random.
5. Choose uniform x∗ and let output∗ = Alg(input∗;x∗).
6. Set α∗ = F2(K2, (input

∗, output∗, r̃)). Choose uniform β∗, and set e∗ =
(α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 17. Let Explain ← iO(Explain) for
Explain as in Figure 18.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗). If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Alg

Constants: input∗, output∗, u∗, e∗, r̃ and PRF keys
K1((input∗, u∗), (input∗, e∗)), K2((input∗, output∗, r̃)), and K3(u∗[1], e∗[1]).
Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.
2. If u[1] = e∗[1] or u[1] = u∗[1], then skip this step.

If F3(K3, u[1]) ⊕ u[2] = (input′, output′, r′) for (proper
length) strings output′, r′, input′, and input′ = input, and
(input′, output′, r′) 6= (input∗, output∗, r̃), then also check if u[1] =

F2(K2, (input
′, output′, r′)), then output output = output′ and end.

3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Fig. 17. Program Alg

Hybrid 7. Finally, we modify e∗[1], denoted α∗, to be uniform, instead of being
computed as α∗ = F2(K2, (input

∗, output∗, r̃)). Pseudorandomness of F2 implies
that the difference in the probabilities that A outputs b′ = b in Hybrid 6 and
Hybrid 7 is negligible.

1. b← {0, 1}.
2. input∗ ← A(1λ).
3. Choose K1,K2,K3 at random.
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Explain

Constants: PRF keys K2((input∗, output∗, r̃)), and K3(u∗[1], e∗[1]).
Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α) ⊕
(input, output,PRG(r)). Output e = (α, β).

Fig. 18. Program Explain

4. Select u∗ and r̃ at random.
5. Choose uniform x∗ and let output∗ = Alg(input∗;x∗).
6. Choose uniform α∗ and β∗, and set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 19. Let Explain ← iO(Explain) for
Explain as in Figure 20.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗). If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Alg

Constants: input∗, output∗, u∗, e∗, r̃ and PRF keys
K1((input∗, u∗), (input∗, e∗)), K2((input∗, output∗, r̃)), and K3(u∗[1], e∗[1]).
Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.
2. If u[1] = e∗[1] or u[1] = u∗[1], then skip this step. If F3(K3, u[1]) ⊕

u[2] = (input′, output′, r′) for (proper length) strings output′, r′, input′,
and input′ = input, and, (input′, output′, r′) 6= (input∗, output∗, r̃), then
also check if u[1] = F2(K2, (input

′, output′, r′)), then output output =
output′ and end.

3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Fig. 19. Program Alg

In Hybrid 7 we observe that the variables e∗, u∗ are now uniform and inde-
pendent. Thus, the inputs to A are distributed identically regardless of whether
b = 0 or b = 1 are identical, and so b = b′ with probability exactly 1/2. The
lemma below thus concludes the proof.

The proof above relies on the following lemma showing that the programs
obfuscated in Hybrid 3 are equivalent to the corresponding programs in Hybrid 4.

Lemma 2. Except with negligible probability over the choice of u∗[1] and e∗[1],
the Alg and Explain programs in Hybrid 4 are equivalent to the Alg and Explain
programs in Hybrid 3.
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Explain

Constants: PRF keys K2((input∗, output∗, r̃)), and K3(u∗[1], e∗[1]).
Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α) ⊕
(input, output,PRG(r)). Output e = (α, β).

Fig. 20. Program Explain

Proof. We consider below each change to the programs.
First, an “if” statement is added to Step 2 of the Alg program, to skip the

check in Step 2 if either u[1] = e∗[1] or u[1] = u∗[1]. To see why this change does
not affect the functionality of the program, let us consider each case in turn. By
Lemma 1, if u[1] = e∗[1], then the only way the Step 2 check can be satisfied
is if input = input∗ and u[2] = e∗[2]. But this case is already handled in Step 1;
therefore, skipping Step 2 if u[1] = e∗[1] does not affect the functionality of the
program. On the other hand, recall that u∗[1] is chosen at random, and therefore
the probability that u∗[1] is in the image of F2(K2, ·) is negligible. Thus, with
overwhelming probability over the choice of constants u∗[1], the check in Step 2
cannot be satisfied if u[1] = u∗[1]. Therefore, the addition of this “if” statement
does not alter the functionality of the Alg program.

Also, the key K3 is punctured at u∗[1], e∗[1] in both the Alg and Explain
programs. The new “if” statement above ensures that F3(K3, ·) is never called
at these values in the Alg program. Recall that the Explain program only calls
F3(K3, ·) on values computed as F2(K2, (input, output,PRG(r))) for some bit
input and strings output and r. Furthermore, F2 is statistically injective with
a very sparse image set, by our choice of parameters. Since every u∗[1] is ran-
domly chosen, it is very unlikely to be in the image of F2(K2, ·). Since every e∗[1]
is chosen based on a random r̃ value instead of a PRG output, it is very un-
likely to correspond to F2(K2, (input, output,PRG(r))) for any (input, output, r).
Thus, these values are not called by the Explain program, except with negligible
probability over the choice of these constants u∗[1] and e∗[1].


