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Abstract. Graded multilinear encodings have found extensive appli-
cations in cryptography ranging from non-interactive key exchange
protocols, to broadcast and attribute-based encryption, and even to
software obfuscation. Despite seemingly unlimited applicability, essen-
tially only two candidate constructions are known (GGH and CLT).
In this work, we describe a new graph-induced multilinear encoding
scheme from lattices. In a graph-induced multilinear encoding scheme
the arithmetic operations that are allowed are restricted through an
explicitly defined directed graph (somewhat similar to the “asymmetric
variant” of previous schemes). Our construction encodes Learning With
Errors (LWE) samples in short square matrices of higher dimensions.
Addition and multiplication of the encodings corresponds naturally to
addition and multiplication of the LWE secrets. Security of the new
scheme is not known to follow from LWE hardness (or any other “nice”
assumption), at present it requires making new hardness assumptions.
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1 Introduction

Cryptographic multilinear maps are an amazingly powerful tool: like homomor-
phic encryption schemes, they let us encode data in a manner that simultaneously
hides it and permits processing on it. But they go even further and let us
recover some limited information (such as equality) on the processed data
without needing any secret key. Even in their simple bi-linear form (that only
supports quadratic processing) they already give us pairing-based cryptography
[28, 39, 5], enabling powerful applications such as identity- and attribute-based
encryption [6, 40, 26], broadcast encryption [8] and many others. In their general
form, cryptographic multilinear maps are so useful that we had a body of work
examining their applications even before we knew of any candidate constructions
to realize them [9, 37, 35, 38]. Formally, a non-degenerate map between order-q
algebraic groups, e : Gd Ñ GT , is d�multilinear if for all a1, . . . , ad P Zq and
g P G,

epga1 , . . . , gadq � epg, . . . , gqa1�...�ad .
We say that the map e is “cryptographic” if we can evaluate it efficiently and at
least the discrete-logarithm in the groups G,GT is hard.



In a recent breakthrough, Garg, Gentry and Halevi [19] gave the first
candidate construction that “approximate” multilinear maps from ideal lattices,
followed by a second construction by Coron, Lepoint and Tibouchi [16] over
the integers. (Some optimizations to the GGH scheme were proposed in [30]). In
these constructions there are no explicit algebraic groups, and the transformation
a ÞÑ ga is replaced by some (randomized) encoding function. These constructions
are called graded encoding schemes, where the “graded” adjective refers to the
ability to carry out intermediate computations. One way to think of these
intermediate computations is as a sequence of levels (or groups) G1, . . . , Gd and
a set of maps eij such that for all gai P Gi, g

b
j P Gj (satisfying i � j ¤ d),

eijpgai , gbjq � gabi�j . Asymmetric variant of graded encoding schemes provides
additional structure on how these encodings can be combined. Each encoding
is assigned with a set of levels S � rN s. Given two encodings gaS , g

b
S1 the map

allows to compute gabSYS1 only if S X S1 � H.
Both [19] and [16] constructions begin from some variant of homomorphic

encryption and use public-key encryption as the encoding method. The main
new ingredient, however, is that they also publish a defective version of the secret
key, which cannot be used for decryption but can be used to test if a ciphertext
encrypts a zero. (This defective key is called the “zero-test parameter”.) Over the
last two years, the applications of (graded) multilinear maps have expanded much
further, supporting applications such as witness encryption, general-purpose
obfuscation, functional encryption, and many more [21, 20, 18, 7, 11].

1.1 Our Results

We present a new “graph-induced” variant of multilinear maps. In this variant,
the multilinear map is defined with respect to a directed acyclic graph. Namely,
encoded value are associated with paths in the graph, and it is only possible
to add encoding relative to the same paths, or to multiply encodings relative
to “connected paths” (i.e., one ends where the other begins) Our candidate
construction of graph-induced multilinear maps does not rely on ideal lattices
or hard-to-factor integers. Rather, we use standard random lattices such as
those used in LWE-based cryptography. We follow a similar outline to the
previous constructions, except our instance generation algorithm takes as input a
description of a graph. Furthermore, our zero-tester does not include any secrets
about the relevant lattices. Rather, in our case the zero-tester is just a random
matrix, similar to a public key in common LWE-based cryptosystems.

Giving up the algebraic structure of ideal lattices and integers could
contribute to a better understanding of the candidate itself, reducing the
risk of unforeseen algebraic crypt-analytical attacks. On the flip side, using
our construction is sometimes harder than previous construction, exactly
because we give up some algebraic structure. In terms of security, we were
not able so far to reduce any of our new construction to “nice” hardness
assumptions, currently they are all just candidate constructions, that withstood
our repeated cryptanalytic attempts at breaking them. Still we believe that
our new construction is a well needed addition to our cryptographic toolbox,



providing yet another avenue for implementing multilinear maps. This is
particularly important in light of the new techniques for attacking these schemes
[15]. For more discussion see Section 4.2.

Our Techniques Our starting point is the new homomorphic encryption (HE)
scheme of Gentry, Sahai and Waters [25]. The secret key in that scheme is a
vector a P Zmq , and a ciphertext encrypting µ P Zq is a matrix C P Zm�mq

with small entries such that C � a � µ � a � e for some small error vector e.
In other words, valid ciphertexts all have the secret key a as an “approximate
eigenvector”, and the eigenvalue is the message. Given the secret eigenvector a,
decoding arbitrary µ’s becomes easy.

This HE scheme supports addition and multiplication, but we also need a
public equivalent of the approximate eigenvector for zero-testing. The key idea is
to replace the “approximate eigenvector” with an “approximate eigenspace” by
increasing the dimensions. Instead of having a single approximate eigenvectors,
our “approximate eigenspace” is described by n vectors A P Zm�nq . The
approximate eigenvalues will not merely be elements of Zq, but rather matrices
S P Zn�nq with small entries. An encoding of S is a matrix C P Zm�m with small
entries such that

C �A � A � S�E

for small noise matrix E P Zm�nq . In other words, C is a matrix that maps any
column vector in A to a vector that is very close to the span of A. In that sense,
A is an approximate eigenspace. In the HE scheme, a was a secret key that
allowed us to easily recover µ. However, for the eigenspace setting, assuming A
is just a uniformly random matrix and S is a random small matrix, A �S�E is
an LWE instance that looks uniform even when given A.

Overview of Our Construction. Our construction is parametrized by a directed
acyclic graph G � pV,Eq. For each node v P V , we assign a random matrix
Av P Zm�nq . Any path u v (which can be a single edge) can be assigned with
an encoding D P Zm�mq of some plaintext secret S P Zn�nq satisfying

D �Au � Av � S�E (1)

for some small error E P pχqm�n.

Adding and multiplying encodings corresponds to addition and multiplication
of matrices. Addition of encodings can only be performed relative to the same
path u v. For example, given encodings D1,D2 at path u v, we have that:

pD1 �D2q �Au � Av � S1 �Av � S2 � Av � pS1 � S2q.

Multiplication of encodings can only be performed when they form a complete
path. That is, given encodings D1 and D2 relative to paths u  v and v  w



respectively, we have:

D2 �D1 �Au � D2 � pAv � S1 �E1q
� pAw � S2 �E2q � S1 �D2 �E1

� Aw � S2 � S1 �E2 � S1 �D2 �E1loooooooooomoooooooooon
E1

(2)

where E1 is small since the errors and matrices S1,D2 have small entries.
Furthermore, it is possible to compare two encodings with the same sink node.
That is, given D1 and D2 relative to paths u v and w  v, it is sufficient to
check if D1 �Au �D2 �Aw is small since if S1 � S2, then we have

D1 �Au �D2 �Aw � pAv � S1 �E1q � pAv � S2 �E2q � E1 �E2 (3)

Hence, the random matrices Au,Aw P Zq, which are commonly available in the
public parameters, is sufficient for comparison and zero-testing.

As we explain in Section 3, generating the encoding matrices requires knowing
a trapdoor for the matrices Ai. But for the public-sampling setting, it is possible
to generate encodings of many random matrices during setup, and later anyone
can take a random linear combinations of them to get “fresh” random encodings.

We remark that since S needs to be small in Eqn. (2), our scheme only
supports encoding of small plaintext elements, as opposed to arbitrary plaintext
elements as in previous schemes.3 Another difference is that in the basic
construction our plaintext space is a non-commutative ring (i.e. square matrices).
We extend to the commutative setting in Section 3.2.

Variations and parameters. One standard way of improving parameters is to
switch to a ring-LWE setting, where scalars are taken from a large polynomial
ring (rather than being just integers), and the dimension of vectors and matrices
is reduced proportionally. In our context, we can also use the same approach to
move to a commutative plaintext space, see Section 3.2.

1.2 Applications

Our new constructions support many of the known cryptographic uses of graded
encoding. Here we briefly sketch two of them.

Non-interactive Multipartite Key-Exchange. Consider k-partite key-exchange.
We design a graph in a star topology with k-branches each of length k�1 nodes,
where each player is associated with one of these branches. All branches meet at
the common sink node A0. For each branch, we associate encodings of small LWE
secrets t1, . . . , . . . , tk in a specific order, where the same values are used in all the

3 The only exception is that the leftmost plaintext matrix S in a product could encode
a large element, as Eqn. (2) is not affected by the size of S1. Similarly the rightmost
encoding matrix D in a product need not be small. We do not use these exceptions
in the current paper, however.



branches, but in different order. The public parameters consists of the encoding of
many such plaintext values. Each player then takes random linear combinations
of these encodings so as to obtain the encoding of the same plaintext value
relative to one edge on each branch. The player stores the encoding along its
own branch as its secret key and broadcasts the rest of to other players. Assume
some canonical ordering of the players. Each player computes the k� 1 product
of the other players’ encodings along its own branch and multiplied also by its
secret encoding. This yields an encoding D of T� �±

iPrks si, satisfying

D �Aj,1 � A0 �
¹
iPrks

si � noise

And the players obtain the shared secret key by applying a randomness extractor
on the most significant bits.

Branching-program obfuscation. Perhaps the “poster application” of crypto-
graphic graded encodings is to obtain general-purpose obfuscation [20], [12, 4,
36, 23], with the crucial step being the use of graded encoding to obfuscate
branching programs . These branching programs are represented as a sequence
of pairs of encoded matrices, and the user just picks one matrix from each pair
and then multiply them all in order.

This usage pattern of graded encoding fits very well into our graph-induced
scheme since these matrices are given in a pre-arranged order. We describe a
candidate obfuscation construction from our multilinear map based on a path
graph. Informally, to obfuscate a length-L matrix branching program tBi,bu, we
first perform Kilian’s randomization and then encode values R�1

i�1Bi,0Ri and

R�1
i�1Bi,1Ri relative to the edge i. The user can then compute an encoding of a

product of matrices corresponding to its input. If the product
±
iPrLs Bi,xvari � I,

then the user obtains an encoding D satisfying:

D �A0 � AL � I� noise

Given AL � I � noise1 in the public parameters (or its encoding), the user can
then learn the result of the computation by a simple comparison. We note
that our actual candidate construction is more involved as we deploy additional
safeguards from the literature (See Section 5.2).

1.3 Organization

In Section 2, we provide some background and present the syntax of graph-
induced multilinear maps. In Section 3, we describe our basic construction in
the non-commutative variant. In Subsection 3.2 we show how to extend our
basic construction to commutative variant. In Section 4, we analyze the security
of our construction. In Section 5 we present applications of our construction to
key-exchange and obfuscation.
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2 Preliminaries

Notation. For any integer q ¥ 2, we let Zq denote the ring of integers modulo
q and we represent Zq as integers in p�q{2, q{2s. We let Zn�mq denote the set of
n�m matrices with entries in Zq. We use bold capital letters (e.g. A) to denote
matrices, bold lowercase letters (e.g. x) to denote vectors.

If A1 is an n�m matrix and A2 is an n�m1 matrix, then rA1|A2s denotes
the n�pm�m1q matrix formed by concatenating A1 and A2. Similarly, if A1,A2

have dimensions n � m and A2 is an n1 � m, respectively, then we denote by
pA1{A2q the pn � n1q �m matrix formed by putting A1 on top of A2. Similar
notations apply to vectors. When doing matrix-vector multiplication we usually
view vectors as column vectors.

A function fpnq is negligible if it is opn�cq for all c ¡ 0, and we use neglpnq
to denote a negligible function of n. We say that fpnq is polynomial if it is Opncq
for some c ¡ 0, and we use polypnq to denote a polynomial function of n. An
event occurs with overwhelming probability if its probability is 1� neglpnq. The
notation txs denotes the nearest integer to x, rounding toward 0 for half-integers.

The `8 norm of a vector is denoted by }x} � maxi |xi|. We identify
polynomials with their representation in some standard basis (e.g., the standard
coefficient representation), and the norm of a polynomial is the norm of the
representation vector. The norm of a matrix, }A}, is the norm of its largest
column.

Extractors. An efficient pn,m, `, εq-strong extractor is a poly-time algorithm
Extract : t0, 1un Ñ t0, 1u` such that for any random variable W over t0, 1un with
min-entropy m, it holds that the statistical distance between pExtractαpW q, αq
and pU`, αq is at most ε. Here, α denotes the random bits used by the extractor.
Universal hash functions [14, 41] can extract ` � m� 2 log 1

ε � 2 nearly random
bits, as given by the leftover hash lemma [27]. This will be sufficient for our
applications.

2.1 Lattice Preliminaries

Gaussian Distributions For a real parameter σ ¡ 0, define the spherical
Gaussian function on Rn with parameter σ as ρσpxq � expp�π||x||n{σ2q for all
x P Rn. This generalizes to ellipsoid Gaussians, where we replace the parameter
σ P R by the (square root of the) covariance matrix Σ P Rn�n: For a rank-
n matrix S P Rm�n, the ellipsoid Gaussian function on Rn with parameter
S is defined by ρSpxq � expp�πxT pSTSq�1xq for all x P Rn. The ellipsoid
discrete Gaussian distribution with parameter S over a set L � Rn is DL,Spxq �
ρSpxq{ρSpLq, where ρSpLq denotes

°
xPL ρSpxq and serves as just a normalization



factor. The same notations also apply the to spherical case, DL,σp�q, and in
particular DZn,r denotes the n-dimensional discrete Gaussian distribution.

It follows from [33] that when L is a lattice and σ is large enough relative to
its “smoothing parameter” (alternatively its λn or the Gram-Schmidt norm of
one of its bases), then for every point c P Rn we have

Pr
� }x� c} ¡ σ

?
n : x

RÐ DL,σ,c

� ¤ neglpnq.
Also under the same conditions, the probability for a random sample from DZm,σ

to be 0 is negligible.

Trapdoors for Lattices

Lemma 1 (Lattice Trapdoors [3, 24, 32]). There is an efficient randomized
algorithm TrapSampp1n, 1m, qq that, given any integers n ¥ 1, q ¥ 2, and
sufficiently large m � Ωpn log qq, outputs a parity check matrix A P Zm�nq and
some ‘trapdoor information’ τ that enables sampling small solutions to rA � u
pmod qq.

Specifically, there is an efficient randomize algorithm PreSample such that for
large enough s � Ωp?n log qq and with overwhelming probability over pA, τq Ð
TrapSampp1n, 1m, qq, the following two distributions are within neglpnq statistical
distance:

– D1rA, τ s chooses a uniform u P Znq and uses τ to solve for rA � u pmod qq,

D1rA, τ s def�  pu, rq : u Ð Znq ; r Ð PreSamplepA, τ,u, sq( .
– D2rAs chooses a Gaussian r Ð DZm,s and sets u :� rA mod q,

D2rAs def� tpu, rq : r Ð DZm,s; u :� rA mod qu .
We can extend PreSample from vectors to matrices by running it k times
on k different vectors u and concatenating the results, hence we write R Ð
PreSamplepA, τ,U, sq.

We also note that any small-enough full rank matrix T (over the integers)
such that TA � 0 pmod qq can be used as the trapdoor τ above. This is relevant
to our scheme because in many cases an “encoding of zero” can be turned into
such a trapdoor (see Section 4).

2.2 Graded Multilinear Encodings

The notion of graded encoding scheme that we relaize is similar (but not exactly
identical) to the GGH notion from [19]. Very roughly, a graded encoding scheme
for an algebraic “plaintext ring R” provides methods for encoding ring elements
and manipulating these encodings. Namely we can sample random plaintext
elements together with their encoding, can add and multiply encoded elements,
can test if a given encoding encodes zero, and can also extract a “canonical
representation” of a plaintext element from an encoding of that element. k



Syntax of Graph-Induced Graded Encoding Schemes There are several
variations of graded-encoding systems in the literature, such as public/secret
encoding, with/without re-randomization, symmetric/asymmetric, etc. Below
we define the syntax for our scheme, which is still somewhat different than all
of the above. The main differences are that our encodings are defined relative
to edges of a directed graph (as opposed to levels/sets/vectors as in previous
schemes), and that we only encode “small elements” from the plaintext space.
Below we provide the relevant definitions, modifying the ones from [19].

Definition 1 (Graph-Induced Encoding Scheme). A graph-based graded
encoding scheme with secret sampling consists of the following (polynomial-time)
procedures, Ges � pPrmGen, InstGen,Sample,Enc, add, neg,mult,ZeroTest,Extractq:

– PrmGenp1λ, G, Cq: The parameter-generation procedure takes the security
parameter λ, underlying directed graph G � pV,Eq, and the class C of
supported circuits. It outputs some global parameters of the system gp, which
includes in particular the graph G, a specification of the plaintext ring R and
also a distribution χ over R.
For example, in our case the global parameters consists of the dimension n
of matrices, the modulus q and the Gaussian parameter σ.

– InstGenpgpq: The randomized instance-generation procedure takes the global
parameters gp, and outputs the public and secret parameters sp, pp.

– Samplepppq: The sampling procedure samples an element in the the plaintext
space, according to the distribution χ.

– Encpsp, p, αq: The encoding procedure takes the secret parameters pp, a path
p � u  v in the graph, and an element α P R from the support of the
Sample procedure, and outputs an encoding up of α relative to p. 4

– negppp, uq, addppp, u, u1q, multppp, u, u1q. The arithmetic procedures are de-
terministic, and they all take as input the public parameters and use them
to manipulate encodings.
Negation takes an encoding of α P R relative to some path p � u  v and
outputs encoding of �α relative to the same path. Addition takes u, u1 that
encode α, α1 P R relative to the same path p, and outputs an encoding of
α � α relative to p. Multiplication takes u, u1 that encode α, α1 P R relative
to consecutive paths p � u  v and p1 � v  w, respectively. It outputs an
encoding of α � α1 relative to the combined path u w.

– ZeroTestppp, uq: Zero testing is a deterministic procedure that takes the public
parameters pp and an encoding u that is tagged by its path p. It outputs 1 if
u is an encoding of zero and 0 if it is an of a non-zero element.

– Extractppp, uq: The extraction procedure takes as input the public parameters
pp and an encoding u that is tagged by its path p. It outputs a λ-bit string that
serves as a “random canonical representation” of the underlying plaintext
element α (see below).

4 See the description below for the meaning of “up is an encoding of α relative to p”,
formally up is just a bit string, which is tagged with its path p.



Correctness The graph G, in conjunction with the procedures for sampling,
encoding, and arithmetic operations, and the class of supported circuits,

implicitly define the set SG of “valid encodings” and its partition into sets S
pαq
G

of “valid encoding of α”.
Namely, we consider arithmetic circuits whose wires are labeled by paths in G

in a way that respects the permitted operations of the scheme (i.e., negation and
addition have all the same labels, and multiplication has consecutive input paths
and the output is labeled by their concatenation). Then SG consists of all the
encoding that can be generated by running the sampling/encoding procedures
to sample plaintext elements and compute their encoding, then computing the
operations of the scheme according to Π, and finally collecting the encoding at

the output of Π. An encoding u P SG belongs to S
pαq
G if there exists such circuit

Π and inputs for which Π outputs α when evaluated on plaintext elements. Of

course, to be useful we require that the sets S
pαq
G form a partition of SG.

We can also sub-divide each S
pαq
G into S

pαq
G,p for different paths p in the graph,

depending on the label of the output wire of Π (but here it is not important

that these sets are disjoint), and define SG,p �
�
αPR S

pαq
G,p.

Note that the sets S
pαq
G,p can be empty, for example in our construction the

sampling procedure only outputs “small” plaintext values α, so a “large” β

would have S
pβq
G,p � H. Below we denote the set of α’s with non-empty encoding

sets (relative to path p) by SMALLG,p
def� tα P R : S

pαq
G,p � Hu, and similarly

SMALLG
def� tα P R : S

pαq
G � Hu.

We assume for simplicity that the sets SMALL depend only on the global
parameters gp and not the specific parameters sp, pp. (This assumption holds for
our construction and it simplifies the syntax below.)

We can now state the correctness conditions for zero-testing and extraction.
For zero-testing we require that ZeroTestppp, uq � 1 for every u P Sp0q (with
probability one), and for every α P SMALLG, α � 0 it holds with overwhelming
probability over instance-generation that ZeroTestppp, uq � 0 for every encoding

u P SpαqG .
For extraction,we roughly require that Extract outputs the same string on all

the encodings of the same α, different strings on encodings of different α’s, and
random strings on encodings of “random α’s.” Formally, we require the following
for any global parameters gp output by PrmGen:

– For any plaintext element α P SMALLG and path p in G, with overwhelming
probability over the parameters psp, ppq Ð InstGenpgpq, there exists a single

value x P t0, 1uλ such that Extractppp, uq � x holds for all u P SpαqG,p.
– For any α � α1 P SMALLG and path p in G, it holds with overwhelming

probability over the parameters psp, ppq Ð InstGenpgpq that for any u P SpαqG,p

and u1 P Spα1qG,p , Extractppp, uq � Extractppp, u1q.
– For any path p in G and distribution D over SMALLG,p with min-entropy

3λ or more, it holds with overwhelming probability over the parameters



psp, ppq Ð InstGenpgpq that the induced distribution tExtractppp, uq : α Ð
D, u P Spαqd u is nearly uniform over t0, 1uλ.

In some applications these conditions can be weakened. For example we often
only need them to hold for some paths in G rather than all of them (e.g., we
only care about source-to-sink paths).

Variations

No Re-Randomization. In some applications one may want to re-randomize a
given encoding, obtaining a “fresh” encoding of the same value. The common
way of obtaining this functionality is by providing encoding of zeros in the public
parameter and adding a subset-sum of them. For our construction this turns
out to be insecure, see Section 4. Hence this construction does not support re-
randomization.

Public sampling of encoded elements. Another useful variation allows a public
sampling procedure that takes as input pp rather than sp and outputs both a
plaintext α and its encoding up relative to some path p. The common way of
implementing it is to add to the public parameters many plaintext-encoding pairs
pαi, uiq (e.g., wrt the edges in G). Then a public sampling procedure can just use
a subset sum of these tuples as a new sample. (One can make the distribution of
these new samples “nice”, e.g., by using the leftover-hash over Gaussians from
[2, 1].) In our construction this is sometimes insecure, specifically when applied
to our commutative variant, see Section 4. We do not know of attacks on public
sampling in the non-commutative case, but the fact that the commutative case
is insecure seems worrisome.

3 Our Graph-Induced Multilinear Maps

The plaintext space in our basic scheme is the non-commutative ring of matrices
R � Zn�nq , later in Section 3.2 we describe a commutative variant. In this section
we only deal with correctness of these schemes, their security is discussed in
Section 4.

As sketched in the introduction, for the basic scheme we have an underlying
directed acyclic graph G � pV,Eq, we identify a random matrix Av P Zm�nq

with each node v P V , and encodings in the scheme are defined relative to
paths. A small plaintext matrix S P R is encoded wrt to the path u  v via
another small matrix D P Zm�mq such that D � Au � Av � S. In more detail,
we have the following graded encoding scheme Ges � pPrmGen, InstGen,Sample,
Enc, add, neg,mult,ZeroTest,Extractq:

– PrmGenp1λ, G, Cq: On input the security parameter λ, an underlying DAG
G � pV,Eq, and class C of supported circuits, we compute:

1. LWE parameters n,m, q and error distribution χ � DZ,s.



2. A Gaussian parameters σ for PreSample.
3. Another parameter t for the number of most significant bits used for

zero-test and extraction.

The constraints that dictate these parameters are described in Appendix A.
The resulting parameters for a DAG of diameter d are n � Θpdλ logpdλqq,
q � pdλqΘpdq, m � Θpnd log qq, s � ?

n, σ � a
npd� 1q log q, and t �

tplog qq{4u�1. These global parameters gp (including the graph G) are given
to all the procedures below.

– InstGenpgpq: Given the global parameters, instance-generation proceeds as
follows:

1. Use trapdoor-sampling to generate |V | matrices with trapdoors, one for
each node.

@v P V, �
Av, τv

�Ð TrapSampp1n, 1m, qq
2. Choose the randomness-extractor seed β from a pairwise-independent

function family, and a uniform “shift matrix” ∆ P Zm�nq .

The public parameters are pp :� �tAv : v P V u, β,∆�
and the secret

parameters include also the trapdoors tτv : v P V u.
– Samplepppq: This procedure just samples an LWE secret S Ð pχqn�n as the

plaintext.
– Encpsp, p,Sq: On input the matrices Au,Av, the trapdoor τu, and the small

matrix S, sample an LWE error matrix Ei Ð pχqm�n, set V � Av � S �
E P Zm�nq , and then use the trapdoor τu to compute the encoding Dp s.t.
Dp �Au � V, Dp Ð PreSamplepAu, τu,V, σq. The output is the plaintext S
and encoding Dp.

– The arithmetic operations are just matrix operations in Zm�mq :

negppp,Dq :� �D, addppp,D,D1q :� D�D1, and multppp,D,D1q :� D�D1.

To see that negation and addition maintain the right structure, let D,D1 P
Zm�mq be two encodings reltive to the same path u  v. Namely D �Au �
Av � S�E and D1 �Au � Av � S1 �E1, with the matrices D,D1,E,E1,S,S1

all small. Then we have

�D �Au � Av � p�Sq � p�Eq,
and pD�D1q �Au � pAv � S�Eq � pAv � S1 �E1q � Av � pS� S1q � pE�E1q,

and all the matrices �D,�S,�E, D � D1, S � S1, E � E1 are still small.
For multiplication, consider encodings D,D1 relative to paths v  w and
u v, respectively, then we have

pD �D1q �Au � D � �Av � S1 �E1
�

� �
Aw � S�E

� � S1 �D �E1 � Aw � pS � S1q � pE � S1 �D �E1qlooooooooomooooooooon
E2

,

and the matrices D �D1, S � S1, and E2 are still small.



Of course, the matrices D,S,E all grow with arithmetic operations, but our
parameter-choice enures that for any encoding relative to any path in the
graph u  v (of length ¤ d) we have D �Au � Av � S � E where E is still
small, specifically }E}   q3{4 ¤ q{2t�1.

– ZeroTestppp,Dq. Given an encoding D relative to path u v and the matrix
Au, our zero-test procedure outputs 1 if and only if }D �Au}   q{2t�1.

– Extractppp,Dq: Given an encoding D relative to path u v, the matrix Au

and shift-matrix ∆, and the extrator seed β, we compute D �A0�∆, collect
the t most-significant bits from each entry (when mapped to the interval
r0, q � 1s), and apply the randomness extractor, outputting

w :� RandExtβ
�
msbtpD �Au �∆q�

3.1 Correctness

Correctness of the scheme follows from our invariant, which says that encoding
of some plaintext matrix S relative to any path u  v of legnth ¤ d satisfies
D �Au � Av � S�E for }E}   q{2t�1.

Correctness of Zero-Test. An encoding of zero satisfies D � Au � E, hence
}D �Au}   q{2t�1. On the other hand, since Av is uniform then for any nonzero
S we only get }Av � S} ¤ q{2t with exponentially small probability, and since
}E}   q{2t�1 then

}D �Au} ¥ }Av � S} � }E} ¡ q{2t � q{2t�1 ¥ q{2t�1.

Hence with overwhelming probability over the choise of Av, our zero-test will
output 0 on all the encoding of S.

Correctness of Extraction. We begin by proving that for any plaintext matrix
S and any encoding D of S (relative to u v), with overwhelming probability
over the parameters we have that msbtpD �Au �∆q � msbtpAv � S�∆q.

Since the two matrices M � Av �S�∆ and M1 � D �Au �∆ differ in each
entry by at most q{2t�1 modulo q, they can only differ in their top t bits due to
the mod-q reduction, i.e., if for some entry we have rMsk,` � 0 but rM1sk,` � q
or the other way around. (Recall that here we reduce mod-q into the interval
r0, q � 1s.) Clearly, this only happens when M � M1 � 0 pmod qq, in particular
we need

�   q{2t�1   rAvS�∆sk,`   q{2t�1.

For any S and Av, the last condition occurs only with exponentially small
probability over the choise of ∆. We conclude that if all the entries of |Av �S�∆|
are larger than q{2t�1 (modulo q), which happens with overwhelming probability,
then for all level-i encodings D of S, the top t bits of D �Au agree with the top
t bits of Av �S. We call a plaintext matrix S “v-good” if the above happens, and
denote their set by GOODv. With this notation, the arguments above say that
for any fixed S, v, we have S P GOODv with overwhelming probability over the
instance-generation randomness.



Same input implies same extracted value. For any plaintext matrix S P
GOODv, clearly all its encodings relative to u  v agree on the top t bits
of D � Au (since they all agree with Av � S). Hence they all have the same
extracted value.

Different inputs imply different extracted values. If D,D1 encode differ-
ent plaintext matrices then D � D1 is an encoding of non-zero, hence
}pD �D1q �Au} " q{2t except with negligible probability, D �Au �∆ and
D1 �Au�∆ must differ somewhere in their top t bits. Since we use universal
hashing for our randomness extractor, then with high probability (over the
hash function β) we get RandExtβ

�
msbtpD �Au�∆q� � RandExtβ

�
msbtpD1 �

Au �∆q�.
Random input implies random extracted value. Fix some high-entropy

distribution D over inputs S. Since for every S we have PrrS P GOODvs �
1 � neglpλq then also with overwheling probability over the parameters we
have PrSÐDrS P GOODvs � 1� neglpλq. It is therefore enough to show that
RandExtβpmsbtpAv � S�∆qq is nearly uniform on S Ð D.
We observe that the function HpSq � Av �S�∆ is itself pairwise independent
on each column of the output separately, and therefore so is the function
H 1pSq � msbtpHpSqq. 5 We note that H 1 has very low collision probability,
its range has many more than 6λ bits in every column, so for every S � S1

we get PrH1rH 1pSq � H 1pS1qs ! 2�6λ. Therefore H 1 is a good condenser,
i.e., if the min-entropy of D is above 3λ, then with overwhelming probability
over the choise of H, the min-entropy of H 1pDq is above 3λ � 1 (say). By
the extraction properties of RandExt, this implies that RandExtβpH 1pDqq is
close to uniform (whp over β).

3.2 A Commutative Variant

In some applications it may be convenient or even necessary to work with a
commutative plaintext space. Of course, simply switching to a commutative
sub-ring of the ring of matrices (such as s � I for a scalar s and the identity I)
would be insecure, but we can make it work by moving to a larger ring.

Cyclotomic rings. We switch from working over the ring of integers to working
over polynomial rings, R � Zrxs{pF pXqq and Rq � R{qR for some degree n
irreducible integer polynomial F pXq P ZrXs and an integer q P Z. Elements
of this ring correspond to degree-pn � 1q polynomials, and hence they can be
represented by n-vectors of integers in some convenient basis. The norm of a
ring element is the norm of its coefficient vector, and this can be extended as
usual for norm of vectors and matrices over R. Addition and multiplication are
just polynomial addition and multiplication modulo F pXq (and also modulo q
when talking about Rq).

5 If q is not a power of two then H 1 does not produce uniformly random t-bit strings.
But still its outputs on any two S1 � S are independent, and each has almost full
(min-)entropy, which sufficies for our purposes.



As usual, we need a ring where the norm of a product is not much larger
than the product of the norms, and this can be achieved for example by using
F � ΦM pXq, the M ’th cyclotomic polynomial (of degree n � φpMq). All the
required operations and lemmas that we need (such as trapdoor and pre-image
sampling etc.) can be extended also to this setting, see e.g. [31].

The construction remains nearly identical, except all operations are now
performed over the rings R and Rq and the dimensions are changed to match. We
now have the “matrices” Av P Rm�1

q with only one column (and similarly the

error matrices are E P Rm�1
q ), and the plaintext space is Rq itself. An encoding

of plaintext element s P Rq relative to path u v is a small matrix D P Rm�mq

such that
D �Au � Av � s�E

where E1 is some small error term. As before, we only encode small plaintext
elements, i.e., the sampling procedure draws s from a Gaussian distribution with
small parameter. The operations all remain the same as in the basic scheme.

We emphasize that it is the plaintext space that is commutative, not the
space of encoding. Indeed, if we have D,D1 that encode s, s1 relative to paths
v  w and u v, respectively, we can only multiply them in the order D �D1.
Multiplying in the other order is inconsistent with the graph G and hence is
unlikely to yield a meaningful result. What makes the commutative scheme useful
is the ability to multiply the plaintext elements in arbitrary order. For example
for D,D1 that encode s, s1 relative to paths u w and v  w, we can compute
either D � Au � s1 or D1 � Av � s and the results will both be close Av � ss1 (and
hence also close to each other).

3.3 Public Sampling and Some Other Variations

As mentioned in Section 2.2, for the non-commutative version we can provide a
public sampling procedure relative to any desired path p � u v by publishing
with the public parameters a collection of pairs generated by the secret sampling
procedure above, tpSk,Dkq : k � 1, . . . , `u (for some large enough `). The public
sampling procedure then takes a random linear combination of these pairs as a
new sample, namely it chooses r Ð DZ`,σ1 and compute the encoding pair as:

pS,Dq :�
�°

iPr`s riSi ,
°
iPr`s riDi



. It is easy to see that the resulting D

encodes S relative to the edge e. Also by the leftover-hash over Gaussians [2, 1],
the plaintext matrix S is distributed according to a Gaussian distribution whp.
We again caution that adding these encodings is insecure in the commutative
case, as noted in Section 4.

Some Safeguards. Since our schemes are graph-based, and hence the order of
products is known in advance, we can often provide additional safeguards using
Kilian-type randomization [29] “on the encoding side”. Namely, for each internal
node v in the graph we choose a random invertible m�m matrix modulo q Rv,
and for the sinks and sources we set Rv � I. Then we replace each encoding C
relative to the path u v by the masked encoding C1 :� R�1

v �C �Ru.



Clearly, this randomization step does not affect the product on any source-
to-sink path in the graph, but the masked encodings relative to any other path
no longer consist of small entries, and this makes it harder to mount the attacks
from Section 4.

Other safeguards of this type includes the observations that encoding
matrices relative to paths that end at a sink node need not have small entries
since the size of the last matrix on a path does not contribute to the size of the
final error matrix. Similarly plaintext elements encoded on paths that begin at
source nodes need not be small, for the same reason.

We remark that applying the safeguards from above comes with a price tag:
namely the encoding matrices no longer consist of small entries, hence it takes
more bits to represent them.

Finally, we observe that sometimes we do not need to give explicitly the
matrices Au corresponding to source nodes, and can instead “fold them” into
the encoding matrices. That is, instead of providing both A and C such that
B � D�A � A1 �S, we can publish only the matrix B and keep A,D hidden. This
essentially amounts to shortening the path by one, starting it at the matrix B.
(Of course, trying to repeat this process and further process the path will lead
to exponential growth in the number of matrices that we need to publish.)

3.4 Hardness Assumptions

One can verify that the hardness of some simple tasks related to the construction
above follows from the hardness of standard LWE. For example, when the graph
has just a single edge A1 Ñ A0 then given A0, A1 and C it is hard to determine
whether C is a valid encoding relative to this edge: The reduction begins with
pA0, Bq (where either B � A0S � E or B is random), then chooses A1 with a
trapdoor and samples C as a small solution to CA1 � B. For the same reason,
given A0, A1 and a valid encoding C on the edge A1 Ñ A0, it is hard to recover
the plaintext S which is encoded by C (assuming the hardness of search-LWE).

However, such simple hardness assumptions do not seem too useful, since in
most applications we presumably need an underlying set of plaintext matrices
and some expression that evaluates to zero in them (so that we can use the
zero-test). Hence it appears that useful hardness assumptions would have to
argue about the hardness of a collection of LWE instances with related secrets.
Moreover, in settings where we have multiple secrets encoded on each edge, we
do not know how to generate these encodings without knowing trapdoors for all
the non-sink matrices, which makes it impossible to reduce hardness to LWE
instances involving these matrices.

Below we describe one type of “almost useful” hardness assumption for our
scheme. (This is almost what we need in our key-exchange protocol for n � 2, but
without the commutativity.) Although this assumption is neither necessary nor
sufficient for any application that we know of, it may still be interesting to study
as an instrument for gaining better understanding of the security properties of
this scheme.



The underlying graph has two chains of length two edges each that end at a
common sink, A Ñ B Ñ C Ð B1 Ð A1, and there are four underlying random
plaintext matrices S1, S2, T1 and T2. The adversary gets the source matrices
A,A1, an encoding of S1 relative to the two edges A Ñ B and C Ð B1, an
encoding of S2 relative to the two edges B Ñ C and B1 Ð A1, an encoding of T1
relative to C Ð B1 and an encoding of T2 relative to B Ñ C. The adversary also
gets an encoding of two plaintext matrices U,U 1 relative to the paths Aù C
and C ø A1, respectively, and needs to distinguish the case U � T2T1, U 1 �
T1T2 from the case where U,U 1 are random.6

4 Cryptanalysis

Below we describe several attacks and “near attacks” on some variations of our
scheme, these attacks guided our choices in designing these scheme.

4.1 Encoding of Zero is a Weak Trapdoor

The main observation in this section is that an encoding of zero relative to a path
u  v can sometimes be used as a weak form of trapdoor for the matrix Au.
Recall from [3, 24] that a full-rank m�m matrix T with small entries satisfying
TA � 0 pmod qq can be used as a trapdoor for the matrix A as per Lemma 1.
An encoding of zero relative the path u v is a matrix C such that CAu � E
pmod qq for a small matrix E. This is not quite a trapdoor, but it appears close
and indeed we show that it can often be used as if it was a real trapdoor.

Let us denote by A1
u � pAu{Iq the pm � nq � n matrix whose first m rows

are those of Au and whose last n rows are the n� n identity matrix. Given the
matrices Au and C as above, we can compute the small matrix E � CAu mod q,
then set C1 � rC|p�Eqs to be the m � pm � nq matrix whose first m columns
are the columns of C and whose last n columns are the negation of the columns
of E. Clearly C1 is a small matrix satisfying C1A1

u � 0 pmod qq, but it is not a
trapdoor yet because it has rank m rather than m� n.

However, assume that we have two encodings of zero, relative to two (possibly
different) paths that begin at the same node u. Then we can apply the procedure
above to get two such matrices C1

1 and C1
2, and now we have 2m rows that are

all orthogonal to A1
u mod q, and it is very likely that we can find m� n among

them that are linearly independent. This gives a full working trapdoor T1
u for

the matrix A1
u, what can we do with this trapdoor?

Assume now that the application gives us, in addition to the zero encodings
for path that begin with u, also an encoding of a plaintext elements S � 0
relative to some path that ends at u, say w  u. This is a matrix D such
that DAw � AuS � E, namely B � DAw mod q is an LWE instance relative
to public matrix Au, secret S, and error term E. Recalling that the plaintext
S in our scheme must be small, it is easy to convert B into an LWE instance

6 Note that the encoded Si’s do not seem to play much of a role here, but nontheless
their presence hinders reduction to LWE.



relative to matrix A1
u � pAu{Iq, for which we have a trapdoor: Simply add n

zero rows at the bottom, thus getting B1 � pB{0q, and we have B1 � A1
uS�E1,

with E1 � pE{p�Sqq a small matrix.7 Given B1 and A1
u, in conjunction with the

trapdoor T1
u, we can now recover the plaintext S.

We note that a consequence of this attack is that in our scheme it is unsafe for
the application to allow computation of zero-encoding, except perhaps relative
to source-nodes in the graph. As we show in Section 5, it is possible to design
applications that get around this problem.

Extensions. The attacks from above can be extended even to some cases where
we are not given encodings of zero. Suppose that instead we are given pairs
tpCi,C

1
iqui, where the two encodings in each pair encode the same plaintext

Si relative to two paths with a common end point, u  v and u1  v. In
this case we can use the same techniques to find a “weak trapdoor” for the
concatenated matrix A1 � pAu{Au1q of dimension 2m � n, using the fact that
rCi|p�C1

iqs �A1 � pAvSi �Eiq � pAvSi �E1
iq � Ei �E1

i.
If we are also given a pair pD,D1q that encodes the same element S relative

to two paths that end at u, u1, respectively, then we can use these approximate
trapdoors to find S, since pD,D1q (together with the start points of these paths)
yield an LWE instance relative to public matrix A1 and the secret S.

Corollary 1: No Re-randomization. A consequence of the attacks above is
that in our scheme we usually cannot provide encoding-of-zero in the public
parameters. Hence the re-randomization technique by adding encodings of zero
usually cannot be used in our case.

Corollary 2: No Commutative plaintext/encoding pairs. Another consequence
of the attacks above is that at least in the commutative case it is not safe to
provide many pairs psi, Ciq s.t. Ci is an encoding of the scalar si along a path
u v. The reason is that given two such pairs ps1, C1q, ps2, C2q we can compute
an encoding of zero along the path u v as s1C2 � s2C1.

4.2 The Cheon et al. Attacks

Very recently, Cheon, Han, Lee, Ryu, and Stehlé described in [15] a serious attack
on the CLT encoding scheme, and their techniques were shown to extend also
to other settings [10, 22, 17]. This attack leverages a large number of expressions
that evaluate to zero — multiplied by the zero-test parameter — in order to
setup a system of euqations in the secret parameters of the scheme. That system
of equations is over the integers without any modular reduction, and it is often
possible to use linear-algebra tools to extract from it useful information and
break the scheme.

7 B1 does not have the right distribution for an LWE instance, but using the trapdoor
we can solve the worst-case BDD, not just the average-case LWE, so the attack still
stands.



In principle, the techniques used in these attacks may be applicable also
to our new scheme, since here too we obtain small values after multiplying by
the zero-test parameter (and hence get a system of equations without modular
reduction). But so far we were not able to find any actual case where this line
of attacks is applicable to our scheme. The main reason is that the attacks from
above are often more powerful: in many cases where the Cheon et al. attacks
could be applied we get an easier break using the encoding-of-zero-as-trapdoor
technique from above. Another reason why it may be harder to apply these
attacks is that the quantities of interest here are matrices rather than single
elements (at least in the non-commutative case), which could make solving the
equations harder.

4.3 Recovering Hidden Av’s.

As we noted earlier, in many applications we only need to know the matrices Au

for source nodes u and there is no need to publish the matrices Av for internal
nodes. This raises the possibility that we might get better security by withholding
the Av’s of internal nodes.

Trying to investigate this possibility, we show below two “near attacks” for
recovering the public matrices of internal nodes from those of source nodes in
the graph. The first attack applies to the commutative setting, and is able to
recover an approximate version of the internal matrices (with the approximation
deteriorating as we move deeper into the graph). The second attack can recover
the internal matrices exactly, but it requires a full trapdoor for the matrices of the
source nodes (and we were not able to extend it to work with the “approximate
trapdoors” that one gets from an encoding of zero).

The conclusion from these “near attacks” is uncertain. Although is still
possible that withholding the internal-node matrices helps security, it seems
prudent to examine the security of candidate applications that use our scheme
in a setting where the Av’s are all public.

Recovering the Av’s in the commutative setting. For this attack we are given
a matrix Au, and many encodings relative to the path u  v, together with
the corresponding plaintext elements (e.g., as needed for the public-encoding
variant). Namely, we have Au, small matrices C1, . . . ,Ct (for t ¡ 1) and small
ring elements s1, . . . , st such that Cj � Au � Av � sj � Ej holds for all j, with
small Ej ’s. Our goal is to find Av.

We note that the matrix Av and the error vectors Ej are only defined
upto small additive factors, since adding 1 to any entry in Av can be offset
by subtracting the sj ’s from the corresponding entry in the Ej ’s. Hence the best
we can hope for is to solve for Av upto a small additive factor (resp. for the Ej ’s
upto a small additive multiple of the sj ’s). Denoting Bj :� Cj �Au � Av �sj�Ej ,
we compute for j � 1, . . . , t� 1,

Fj :� Bj � sj�1 �Bj�1 � sj
� pAv � sj �Ejq � sj�1 � pAv � sj�1 �Ej�1q � sj � Ej � sj�1 �Ej�1 � sj .



This gives us a non-homogeneous linear system of equations (with the sj ’s and
Fj ’s as coefficients), which we want to solve for the small solution Ej ’s. Writing
this system explicitly we have

�
����
rs2s r�s1s

rs3s r�s2s
. . .

. . .

rsts r�st�1s

�
���

�
������

X1

X2

...
Xt�1

Xt

�
�����
�

�
����

F1

F2

...
Ft�1

�
���,

where rss denotes the m�m matrix Im�m � s. Clearly this system is partitioned
into m independent systems, each of the form

�
����
s2 �s1

s3 �s2
. . .

. . .

st �st�1

�
���

�
������

x1,`
x2,`

...
xt�1,`

xt,`

�
�����
�

�
����
f1,`
f2,`

...
ft,`

�
���,

with xj,`, fj,` being the `’th entries of the vectors Xj ,Fj , respectively. These
systems are under-defined, and to get the Ei’s we need to find small solutions
for them. Suppressing the index `, we denote these systems in matrix form by
Mx � f , and show how to find small solutions for them.

At first glance this seems like a SIS problem so one might expect it to be hard,
but here we already know a small solution for the corresponding homogeneous
system, namely the solution xj � sj for all j. Below we assume that the sj do
not all share a prime factor (i.e., that GCDps1, s2, . . . , stq � 1), and also that at
least one of them has a small inverse in the field of fractions of R. (These two
conditions hold with good probability, see discussion in [19, Sec 4.1].)

To find a small solution for the inhomogeneous system, we begin by
computing an arbitrary solution for it over the ring R (not modulo q). We note
that a solution exists (in particular the Ej ’s solve this system over R without
mod-q reduction), and we can use Gaussian elimination in the field of fractions
of R to find it. Denote that solution that was found by g P R, namely we have
Mg � f . 8 Since over R this is a pt � 1q � t system then its solution space
is one-dimensional. Hence every solution to this system (and in particular the
small solution that we seek) is of the form e � g � s � k for some k P R. 9

Choosing one index j such that the element 1{sj in the field of fractions
is small, we compute a candidate for the scalar k simply by rounding, k1 :�
� tgj{sjs, where division happens in the field of fractions. We next prove that
indeed the vector e1 � g � s � k1 is a small vector over R. Clearly e1 P Rt since

8 Using Gaussian elimination may yield a fractional solution g1, but we can “round
it” to an integral solution by solving for k1 the equation g1�s �k1 � 0 pmod 1q, then
setting g � g1 � s � k1.

9 In general the scalar k may be fractional, but if GCDps1, s2, . . . , stq � 1 then k must
be integral.



k1 P R and g, s P Rt, we next prove that it must be small by showing that “the
right scalar k” must be close to the scalar k1 that we computed. First, observe
that e1j � gj � sj � k1 must be small, since

e1j � gj � sj � k1 � gj � tgj{sjs � sj � gj � pgj{sj � εjq � sj � �εj � sj ,

with εj the rounding error. Since both εj and sj are small, then so is e1j .
Now consider the “real value” ej , it too is small and is obtained as gj � sj � k

for some k P R. It follows that ej � e1j � sj � pk� k1q is small, and since we know
that 1{sj is also small then it follows that so is k � k1 � pej � e1jq{sj . We thus
conclude that e1 � g � k1 � s � e� pk � k1q � e is also small.

Repeating the same procedure for all the m independent systems, we get a
small solution tE1

j , j � 1, . . . , tu to the system Bj � Av �sj�E1
j . Subtracting the

E1
j ’s from the Bj ’s and dividing by the sj ’s give us (an approximation of) Av.

Recovering the Av’s using trapdoors. Suppose that we are given Au, encodings
Cj and the corresponding plaintext matrices Sj , s.t. Bj :� Cj �Au � Av �Sj�Ej

pmod qq for small errors Ej . Suppose that in addition we are also given a full
working trapdoor for the matrix Av, say, in the form of a small full-rank matrix
T over R s.t. T �Av � 0 pmod qq. We can then use T to recover the errors Ej

from the LWE instances Bj , which can be done without knowing Av: Let T�1

be the inverse of T over R, we compute Ej Ð T�1 � pT � Bj mod qq. Once we
have the error matrices Ej we can subtract them and get the set of equations
Bj � Ej � Av � Sj pmod qq, where the entries of Av are the unknowns. With
sufficiently many of these equations, we can then solve for Av.

We note that so far we were unable to extend this attack to using the “weak
trapdoor” that one gets from an encoding of zero wrt paths of the form v  w.
Indeed the procedure from Section 4.1 for recovering a stronger trapdoor from
the weak one relies on knowing Av.

5 Applications

5.1 Multipartite Key-Agreement

For our first application, we describe a candidate construction for a non-
interactive multipartite key-agreement protocol using the commutative variant
of our graph-based encoding scheme. As is usual with multipartite key-agreement
from multilinear maps, each party i is contributing an encoding of some secret si
and the shared secret is derived from an encoding of the product s � ±

i si.
However in our case we need to use extra caution to protect against the “weak
trapdoor attacks” from Section 4.1.

To that end, we design our graph to ensure that the adversary is never given
encodings of the same element on two paths with a common end-point, and also
is not given an encoding and the corresponding plaintext on any edge. For an
k-partite protocol we use a graph topology of k directed chains that meet at a
common point, where the contribution of any given party appears at different



edges on different chains (i.e. the first edge on one chain, the second edge on
another, the third edge on a third chain, etc.)

That is, each player i has a directed path of matrices, Ai,1, . . . ,Ai,k�1, all
sharing the same end-point, i.e., Ai,k�1 � A0 for all i. Note that every chain
has k edges, and for the chain “belonging” to party i we will broadcast on its
edges encodings of all the secrets sj , j � i, but not an encoding of si, that last
encoding will only be known to party i. Party i will multiply these encodings
(the one that only it knows, and all the ones that are publicly available) to get
an encoding of

±
i sj relative to the path Ai,1  A0. Namely, a matrix Di such

that Di �Ai,1 � A0 �
±
i sj . The shared secret is then obtained by applying the

extraction procedure to this Di.
The assignment of which secret is encoded on what edge of what chain is

done in a “round robin” fashion. Specifically, the i’th secret si is encoded on
the j’th edge of the chain belonging to party i1 � j � i� 1. In other words, the
secret that we encode on the edge Ai,j Ñ Ai,j�1 in the graph is sj�i�1, with
index arithmetic modulo k. An example of the assignment of secrets to edges for
a 4-partite protocol is depicted in Figure 1.

Of course, we must publish encodings that would allow the parties to choose
their secrets and provide encodings for them. This means that together with
the public parameters we also publish encodings of many plaintext elements
tti,` : i � 1, . . . , k, ` � 1, . . . , Nu (for a sufficiently large N), for each ti,` we
publish encoding of it relative to all the edges Ai1,i�i1�1 Ñ Ai1,i�i1 for all i, i1

(index arithmetic modulo k� 1). Party i then chooses random small coefficients
ri,` and computes its encoding relative to each edge Ai1,i�i1�1 Ñ Ai1,i�i1 as the
linear combination of the encodings on that edge with the coefficient ri,`. We are
now ready to describe our scheme NMKE � pKE.Setup,KE.Publish,KE.Keygenq.

A0

A1,4A1,3A1,2A1,1

A2,4A2,3A2,2A2,1

A3,4 A3,3 A3,2 A3,1

A4,4 A4,3 A4,2 A4,1

s1 s2 s3

s4

s4 s1 s2 s3

s3s4s1

s2

s2s3s4s1

Fig. 1. Graph for a 4-partite key-agreement protocol.

– KE.Setupp1λ, kq: The setup algorithm takes as input the security parameter
1λ and the total number of players k.

1. Run the parameter-generation and instance-generation of our graph-
based encoding scheme for the graph consisting of k chains with a
common end-point, each of length k edges. Let ei,j denote the j’th edge
on the i’th chain.

2. Using the secret parameters, run the sampling procedure of the encoding
scheme to choose random plaintext elements ti,` for i � 1, . . . , k and



` � 1, . . . , N , and for each ti,` compute also an encoding of it relative to
all the edges ei1,j for j � i� i1 pmod kq. Denote the encoding of ti,` on
chain i1 (relative to edge ei1,i�i1 mod k) by Ci,`,i1 .

The public parameters of the key-agreement protocol include the public
parameters of the encoding scheme (i.e., the matrices for all the source nodes
Ai,1), and also the encoding matrices tCi,`,i1 : i, i1 � 1, . . . , k, ` � 1, . . . , Nu .

– KE.Publishppp, iq : The i’th party chooses random small plaintext elements
ri,` Ð χ for ` � 1, . . . , N and then sets Di,i1 Ð

°
` Ci,`,i1 � ri,` for all i1. It

keeps Di,i as its secret and broadcast all the other Di,i1 ’s.
– KE.Keygenppp, i, ski, tpubjuj�iq : Party i collects all the matrices Di1,i

(encoding the secrets si1 relative to “its chain” i) and orders them according
to j � i � i1. Namely, it sets Fj,i � Di�j mod k,i for j � 1, . . . k, then

computes the product F�
i � p±k

j�1 Fj,iq � Ai,1. Finally, party i applies the
extraction procedure of the encoding scheme to obtain the secret key, setting
ssk � Extract

�
F�
i

�
.

Security. Unfortunately, we were not able to reduce the security of this candidate
scheme to any “nicer” assumption. As such, at present the only evidence of
security that we can offer is the failure of our attempts to cryptanalyze it.

The basic attack from Section 4.1 does not seem to apply here since the
public parameters do not provide any encoding of zero (not even relative to A0).
Similarly, the extended attacks do not seem to apply since the only common end-
point in the graph is A0, and no two paths that end at A0 include an encoding
of the same element.

We note that the attacker can use the public parameters to compute an
approximate trapdoors for concatenated matrices of the form pA0 � ti,`,i1{p�A0qq
(or similar), but the broadcast messages of the parties do not provide LWE
instances relative to these matrices.

Finally, we note that as for any other application of this encoding scheme,
it seems that security would be enhanced by applying the additional safeguards
that were discussed at the end of Section 3. That is, we can use Kilian-style
randomization on the encoding side, by choosing k invertible matrices for each
chain, Ri,1, . . . ,Ri,k, where the first and last are set to the identity and the
others are chosen at random. Then we can replacing each encoding matrix C
in the public parameters by C1 :� R�1 � C � R1 using the randomizer matrices
R,R1 belonging to the two adjacent nodes. We can also choose the first encoding
matrix in each chain to have large entries.

This has no effect on the product of all the encoding matrices along the i1-th
chain, but the new matrices C1 no longer have small entries, which seems to aid
security. On the down side, this increases the size of the encodings roughly by a
log q{ log n factor.

5.2 Candidate Branching-Program Obfuscation

We next describe how to adapt the branching-program obfuscation constructions
from previous work [18, 13, 4, 36] to use our encoding schemes. We remark that



on some level this is the simplest type of constructions to adapt to our setting,
since we essentially need only a single chain and there almost no issues of
providing zero-encoding in the public parameters (or encodings of the same
plaintext relative to different nodes in the graph).

Roughly speaking, previous works all followed a similar strategy for obfus-
cating branching programs. Starting from a given oblivious branching program,
encoded as permutation matrices, they all applied Kilian’s randomization
strategy to randomized these matrices, then added some extra randomization
steps (mostly multiplication by random scalars) to protect against partial-
evaluation and mixed-input attacks, and finally encoded the resulting matrices
relative to specially-designed sets/levels. The specific details of the extra
randomization steps are somewhat different between the previous schemes, but
all these techniques have their counterparts in our setting. Below we explain how
to adapt the randomization techniques from previous work to our setting, and
then describe one specific BP-obfuscation candidate.

Matrices vs. individual elements. Our scheme natively encodes matrices, rather
than individual elements. This has some advantages, for example we need
not worry about attacks that mix and match encoded elements from different
matrices. At the same time it also poses some challenges, in particular some
of the prior schemes worked by comparing to zero one element of the resulting
matrix at the end of evaluation, an operation which is not available in our case.

To be able to examine sub-matrices (or single elements), we adopt the
“bookend encoding” trick from [18]. That is, we add to our chain a new source
u� and a new sink v�, with edges from u� to the old source and from the old
sink to v�. On the edge from u� we encode a matrix T which is only nonzero
in the columns that we want to examine, and on the edge to v� we encode a
matrix S which is only nonzero in the rows that we wish to examine. This way,
we should have the matrix T �U �S encoded relative to a path u�  v�, and that
matrix is only nonzero in the sub-matrix of interest. In the candidate below we
somewhat improve on this by folding the source matrix Au� into the encoding of
T, publishing instead the matrix Au� �T (and in fact making T a single column
vector).

Only small plaintexts. In our scheme we can only encode “small plaintext
elements”, not every plaintext element. This is particularly relevant for Kilian
randomization technique, since it requires that we multiply by both R and R�1

for each randomizer matrix R. One way to get randomizer matrices with both R
and R�1 small matrices with four quadrants consisting of I,R,0, I (in any order
that yields determinant 1). Multiplying a sequence of these types of matrices
above yields a high-entropy distribution of randomizer matrices with the desired
property, and seemingly without obvious algebraic structure. Another family
of matrices where both the matrix and its inverse are small are permutation
matrices (and of course we can mix and match these families). Concretely, we



speculate that a randomizer of the form

R � Π1 �
�

0 I
I R1



�Π2 �

�
I 0
R2 I



�Π3 �

�
R3 I
I 0



�Π4 �

�
I R4

0 I



�Π5 (4)

(with the Πi’s random permutations and the Ri’s random small matrices) has
sufficient entropy and lack of algebraic structure to serve as randomizers for our
scheme.

We note that although these randomizers are far from uniform, there may
still be hope of using some of the tools developed in [13, 4, 36] (where the analysis
includes a reduction to Kilian’s information-theoretic argument). This is because
the matrices before randomization are permutation matrices, and hence the
random permutations Πi can be used to perfectly randomize them. In this
way, one can view the Ri’s are merely “safeguards” to protect against possible
weaknesses in the encoding scheme, and the Πi’s are “ideal model randomizers”
than can be used in an ideal-model analysis. So far we did not attempt such
analysis, however.

Another way to introduce Kilian-type rerandomization in our setting is the
aforementioned option of applying it “on the encoding side,” i.e., choosing
random m�m invertible matrices P modulo q and set C1 Ð P�1 �C �P1.

Multiplicative binding and sraddling sets. Another difference between our setting
and that of GGH or CLT is that the previous schemes support encoding relative
to arbitrary subsets of a universe set, so there are exponentially many potential
sets to use. In our scheme the encoding is relative to edges of a given graph, and
there can be only polynomial many of them. This difference seems particularly
critical in the design of sraddling sets [4, 36].

On a second look, however, this issue is more a question of modeling, rather
than a real difference. The different encoding sets in the “asymmetric variants”
of [19, 16] are obtained just by multiplying by different random secret constants
(e.g., the zi’s from GGH), and we can similarly multiply our encoding matrices by
such random constants mod q (especially when working over a large polynomial
ring). We use that option in the candidate scheme that we describe below.

We note that similar effects can be obtained by the multiplicative binding
technique of [18]. Roughly speaking, the main difference between multiplicative
binding and sraddling sets is that the former multiplies by constants “on the
plaintext side” while the latter multiplies “on the encoding side.” In our setting
we can do both, and indeed it seems prudent to do so.

A Concrete BP-Obfuscation Candidate For our concrete candidate below
we work over a large polynomial ring of dimension k, and we will use small-
dimension matrices over this ring (roughly as high as the dimension of the
underlying branching program).

Let Sympwq be the set of w�w permutation matrices and consider a length-n
branching program over ` bit inputs:

BP � tpindpiq,Bi,0,Bi,1 : i P rns, indpiq P r`s,Bi,b P Sympwqu



For a bit position j P r`s, let Ij be the steps in the branching program that
examines j’th input bit: Ij � ti P rns : indpiq � ju. We obfuscate BP as follows:

– Following the original construction of [20] we embed the Bi,σ’s inside higher-
dimension matrices with random elements on the diagonal, but in our case
it is sufficient to have only two such random entries (so the dimension only
grows form w to w � 2). Denote the higher-dimension matrices by B1

i,σ.
We also follow the original construction of [20] by applying the same
transformation to a “dummy program” DP of the same length that consists of
only the identity matrices, let D1

i,σ be the higher-dimension dummy matrices.
– We proceed to randomize these branching programs a-la-Kilian “on the

plaintext side,” by choosing randomizing matrices Ri’s as per the form
of Eqn. (4) such that both Ri and R�1

i are small, and setting B2
i,σ �

Ri�1B
1
i,σR�1

i . The dummy program is randomized similarly.
– We then prepare pw� 2q � pw� 2q “bookend matrices” S,S1, and “bookend

column vectors” t, t1. S is random and small except the first row which
is zero, t is random and small except the second entry which is zero, and
similarly for S1 and t1, subject to S1 � t1 � S � t. Then we set S̃ � SR�1

0 and
t̃ � Rnt, and similarly S̃1 � S1R�1

0 and t̃1 � Rnt1.
– Next we use our encoding scheme to encode these matrices relative to a graph

with two chains with a common end-point, each of length n� 2. Namely we
have A1 Ñ . . .Ñ An�2 and A1

1 Ñ . . .Ñ A1
n�1 Ñ An�2.

For each i P rns, we encode the two matrices B2
n�i�1,b relative to the edge

Ai Ñ Ai�1, i.e., we have

Cn�i�1,b �Ai � Ai�1 �B2
n�i�1,b �Ei,b

for some small error Ei,b. Similarly we encode the dummy program with the
two matrices D2

n�i�1,b encoded relative to the edge A1
i Ñ A1

i�1, i.e.,

C1
n�i�1,b �A1

i � A1
i�1 �D2

n�i�1,b �E1
i,b

– Encode S̃, S̃1 relative to the edges leading to the common sink, i.e. compute
the encoding matrices CS ,C

1
S1 such that

CS �An�1 � An�2 � S̃�ES and C1
S1 �A1

n�1 � An�2 � S̃1 �E1
S1

– Compute the encoded bookend vectors, folded into the two sources A1 and
A1

1, namely a � A1 � t̃� et and a1 � A1
1 � t̃1 � e1t.

– We next apply both the multiplicative bundling and the the Kilian-style
randomization also on the encoding side. Namely we sample random full-
rank matrices P0, . . . ,Pn and P1

0, . . . ,P
1
n, and also random scalars modulo q

tβi,0, βi,1, β1i,0, β1i,1 : i P rnsu, subject to constraints
±
iPIj

βi,0 �
±
iPIj

β1i,0 �±
iPIj

βi,1 �
±
iPIj

β1i,1 � 1.

We then set Ĉi,σ � P�1
i�1 �Ci,σ �Pi � βi,σ and Ĉ1

i,σ � P1�1
i�1 �C1

i,σ �P1
i � β1i,σ,

and also ĈS � CS �P0 and Ĉ1
S1 � C1

S1 �P1
0 and â � P�1

n a and â1 � P1�1
n a1.



– The obfuscation consists of all the matrices and vectors above, namely

OpBPq �
�"

ĈS ,
 
Ĉi,σ : i P rns, σ P t0, 1u(, â

*
,

"
Ĉ1

S1 ,
 
Ĉ1

i,σ : i P rns, σ P t0, 1u(, â1
*


Evaluation. On input x P t0, 1u` the user choose the appropriate encoding

matrices Ĉi,0 or Ĉi,1 depending on the relevant input bit (and the same for

Ĉ1
i,0 or Ĉ1

i,1) and then multiply in order setting

y � ĈS � p
n¹
i�1

Ĉi,xrindpiqsq � a � An�2 �
�
S � p

n¹
i�1

B2
i,xrindpiqsq � t

�� e

and

y1 � Ĉ1
S1 � p

n¹
i�1

Ĉ1
i,xrindpiqsq � a1 � An�2 �

�
S1 � p

n¹
i�1

D2
i,xrindpiqsq � t1

�� e1,

The output is 1 if }y � y1}   q3{4 and 0 otherwise. Note that indeed if±n
i�1 Di,xrindpiqs � I then both y and y1 are roughly equal to An�2 � S � t �

p±n
i�1 αi,xrindpiqsq, as needed.

Security. As before, this is merely a candidate and we do not know how to
reduce its security to any “nice” assumption. However the type of attacks that
we know against these scheme do not seem to apply to this candidate.
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A Parameter Selection

We now describe the parameter-generation procedure PrmGen, showing how to
choose the parameters for our scheme. The procedure takes as input the security
parameter λ, a DAG G with diameter d, and the class C of supported circuits.
It outputs n,m, q and the Gaussian parameters s, σ. The constraints that these
parameters need to satisfy are the following:

– It should be possible to efficiently sample from the input/error distribution
χ � DZ,s, and the LWE problem with parameters n,m, q, χ should be hard.
This means that we need (say) s � ?

n and q{s   2n{λ.
– It should possible to generate trapdoor for the Av’s, that enables sampling

from PreSample with parameter σ. By Lemma 1, this means that we need
m � Ωpn log qq and σ � Ωp?n log qq.

– For any supported circuit, the size of the error E at the output of the circuit
must remain below q3{4. Namely if the output is an encoding D of the
plaintext matrix S relative to path u v, then we need }rDAu�AbSsq}  
q3{4.

Let us now analyze the error size in the system. We assume here that we
use truncated Gaussian distributions, i.e. we condition DZ,s on the output

being smaller than b
def� s

?
λ (which only affect the distribution negligibly.)

We similarly condition PreSample on the output being shorter than B
def� σ

?
λ.

With our settings, we get b ¤ n and B ¤ n
?

log q. Hence the sample procedure
always outputs pS,C,Dq with the plaintext satisfying }S}   b and the encoding
matrices satisfying }C}, }D}   B.

To analyze the noise development, recall that when multiplying A P Zu�v
by B P Zv�w we have }AB} ¤ }A} � }B} � v. This means in particular that
multiplying i encoding matrices we get an encoding matrix D P Zm�mq with

}D}   Bimi�1 and similarly multiplying i plaintext matrices we get a plaintext
matrix S P Zn�nq with }S}   bini�1. Regarding the error, one can show by
induction that the product of i encoding matrices has an error E P Zm�nq with

}E}   b �
i�1̧

j�0

Bjmjbd�1�jnd�1�j   b � i �Bi�1mi�1.



Given a class C of permitted circuits, we consider the canonical representation
of the polynomials in this class as sums of monomials. Let D be a bound on the
degree of these polynomials, R be a bound on the size of the coefficients, and N
be a bound on the number of monomials. Note that in our setting, the degree-
bound D cannot be larger than the diameter of the graph G (since G is acyclic
and hence cannot have directed paths longer than d). The size of the error in
this case could grow as much as N � R � b � D � BD�1mD�1. With b ¤ n and
B ¤ n

?
log q, we thus have the constraint

q3{4 ¡ N �R � n �D � �nalog q
�D�1

mD�1

� N �R � nD �mD�1 �D � � log q
�pD�1q{2

. (5)

Substituting m � Θpn log qq, and q � 2n{λ, we can use Eqn. (5) to solve for
n in terms of λ,N,R and D. With D ¤ d and assuming the (typical) case of
R � polypλq and N   dd, it can be verified that this bound is satisfied using
n � Θpdλ logpdλqq. This setting yields q � 2n{λ � 2Θpd logpdλqq � pdλqΘpdq and
m � Θpn log qq � Θpd2λ2 log2pdλqq.

Note that with this setting, each matrix Av P Zm�nq is of size mn log q �
Θpd4λ2 log4pdλqq bits. The public parameters typically contain just one or a
handful of such matrices (corresponding to the source nodes in G), but the secret
parameters contain all of them. Hence the secret parameters are of size Θp|V | �
d4λ2 log4pdλqq � Ωpd5λ2 log4pdλqq bits. (We have |V | ¡ d since the diameter of
G is d.) The encoding matrices are of dimension m � m, but their entries are
small, so they can be represented by roughly m2 log n � Θpd4λ2 log5pdλqq bits.

Working over a larger ring. As usual, we can get better parameters by working
over larger rings, and let n denote the extension degree of the ring. In this case
the matrices A are m � 1 column vectors over the larger ring, and we can find
trapdoors for these matrices already for m � Θplog qq, and also the plaintext
elements are now scalars (or constant-degree matrices).

This only affects Eqn. (5) or the solution n � Θpdλ logpdλqq by a constant
factor, and hence shaves only a constant factor from the number of bits in q �
2Θpd logpdλqq, but now we have m � Θplog qq � Θpd logpdλqq. With each scalar
in Rq represented by n log q bits, it takes mn log q � Θpd3λ log3pdλqq bits to
represent each matrix Av P Rm�1

q , and Θpm2 log nq � Θpd3λ log4pdλqq bits to
represent each encoding matrix with small entries.


