
Obfuscation of Probabilistic Circuits and
Applications

Ran Canetti1, Huijia Lin2, Stefano Tessaro2, and Vinod Vaikuntanathan3

1 Boston University and Tel Aviv University
2 UC Santa Barbara

3 MIT CSAIL

Abstract. This paper studies the question of how to define, construct,
and use obfuscators for probabilistic programs. Such obfuscators compile
a possibly randomized program into a deterministic one, which achieves
computationally indistinguishable behavior from the original program as
long as it is run on each input at most once. For obfuscation, we propose
a notion that extends indistinguishability obfuscation to probabilistic
circuits: It should be hard to distinguish between the obfuscations of any
two circuits whose output distributions at each input are computationally
indistinguishable, possibly in presence of some auxiliary input. We call
the resulting notion probabilistic indistinguishability obfuscation (pIO).
We define several variants of pIO, and study relations among them. More-
over, we give a construction of one of our variants, called X-pIO, from
sub-exponentially hard indistinguishability obfuscation (for deterministic
circuits) and one-way functions.
We then move on to show a number of applications of pIO. In particular,
we first give a general and natural methodology to achieve fully
homomorphic encryption (FHE) from variants of pIO and of semantically
secure encryption schemes. In particular, one instantiation leads to FHE
from any X-pIO obfuscator and any re-randomizable encryption scheme
that’s slightly super-polynomially secure.
We note that this constitutes the first construction of full-fledged FHE
that does not rely on encryption with circular security.
Moreover, assuming sub-exponentially secure puncturable PRFs com-
putable in NC1, sub-exponentially-secure indistinguishability obfusca-
tion for (deterministic) NC1 circuits can be bootstrapped to obtain
indistinguishability obfuscation for arbitrary (deterministic) poly-size
circuits (previously such bootstrapping was known only assuming FHE
with NC1 decryption algorithm).

1 Introduction

Program obfuscation, namely the algorithmic task of turning input programs into
“unintelligible” ones while preserving their functionality, has been a focal point
for cryptography for over a decade. However, while the concept is intuitively
attractive and useful, the actual applicability of obfuscation has been limited.
Indeed, the main notion to be considered has been virtual black box (VBB) [7]



which, while natural and intuitively appealing, is very strong, hard to satisfy,
and also not easy to use. In fact, for many program classes of interest, VBB
obfuscation is unattainable [7,26,10].

All this changed with the recent breakthrough results of [21,37]. Their
contribution is twofold: First they demonstrate a candidate general obfuscation
algorithm for all circuits, thus reviving the hope in the possibility of making
good of the initial intuitive appeal of program obfuscation as an important
and useful cryptographic primitive. Second, they demonstrate how to make
use of a considerably weaker notion of secure obfuscation than VBB, namely
indistinguishability obfuscation (IO), initially defined in [7]. Indeed, following
[21,37] there has been a gush of works demonstrating how to apply IO to a
plethora of situations and applications, and even resolving long standing open
problems.

Obfuscating probabilistic programs. Still, exiting notions of obfuscation,
VBB and IO included, predominantly address the task of obfuscating determinis-
tic programs. That is, the program to be obfuscated is a sequence of deterministic
operations. This leaves open the question of obfuscating probabilistic programs,
namely programs that make random choices as part of their specification, and
whose output, on each input, is a random variable that depends on the internal
random choices.

A priori it may not be clear what one wants to obtain when obfuscating such
programs, or why is the problem different than that of obfuscating deterministic
programs. Indeed, why not just obfuscate the deterministic program that takes
both “main” and “random” input, and leave it to the evaluator to choose some
of the input at random, if she so desires?

The main drawback of this approach is that it does not allow the obfuscation
mechanism to hide the random choices of the program from the evaluator.
Consider for instance the task of creating a program that allows generating
elements of the form gr, hr for a random r, where g, h are two generators of a
large group, and where r should remain hidden even from the evaluator of the
program. Alternatively, consider the task of obfuscation-based re-encryption:
Here we wish to “obfuscate” the program that decrypts a ciphertext using an
internal decryption key, and then re-encrypts the obtained plaintext under a
different key, using fresh randomness — all this while keeping the plaintext
hidden from the evaluator.

Indeed, in both these examples, the goal is to create an obfuscation
mechanism with two additional properties, stated very informally as follows: (a)
the internal random choices of the obfuscated program should “remain hidden”
from the evaluator, up to what is learnable from the output, and (b) the random
choices of the program should remain “random”, or “unskewed”, as much as
possible.

How can we define these properties in a sensible way? Barak et al. [7] take
a first stab by defining the concept of obfuscators for sampling algorithms,
namely algorithms that take only random input and at each execution output
a sample from a distribution. Essentially, their definition requires that the (one



bit) output of any adversary that has access to an obfuscated version of such a
sampling algorithm be simulatable given only poly-many random samples from
the distribution. However, while this definition does capture much of the essence
of the problem, it is subject to essentially the same unattainability results that
apply to VBB obfuscation.

Probabilistic IO. We propose an alternative definition for what it means to
obfuscate probabilistic circuits. Our starting point is IO, rather than VBB, and
hence we refer to the resulting general notion as indistinguishability obfuscation
for probabilistic circuits, or pIO for short. This both reduces the susceptibility to
unattainability results and allows making stronger distributional requirements
on the outputs.

Consider a randomized circuit, namely a circuit C that takes an input x and
a uniformly chosen random input r, and returns the random variable C(x, r).
The basic idea is to compile such a circuit into a deterministic obfuscated circuit
Λ = O(C) that has essentially the same output distribution as the original circuit
— with the one caveat that if Λ is run multiple times on the same input then it
will give the same output.

The security requirements from a pIO obfuscator O for a family of circuits
C are thus three: First, polynomial slowdown should hold as usual. Second,
functionality should be preserved in the sense that for any C ∈ C and for any
input x it should hold that C(x) ≈c Λ(x). Note that in C(x) the probability
is taken over the random choices of C (i.e., the sampling of r), whereas Λ is a
deterministic circuit and the probability is taken only over the random choices
of O. In fact, we make the stronger requirement that no efficient adversary can
distinguish whether it is given oracle access to the randomized oracle C(·) or the
deterministic oracle Λ(·), as long as it does not submit repetitive queries to the
oracles.)

Third, obfuscation should hold in the sense that O(C1) ≈c O(C2) for any
two circuits C1 and C2 where the output distributions of C1(x) and C2(x)
are “similar” for all inputs x, where similar means in general computationally
indistinguishable. This property is trickiest to define, and to stress this even
further, we note that the indistinguishability of O(C1) and O(C2) does not
follow from IO even if the distributions of C1(x) and C2(x) are identical.
Another important aspect is that we often need to consider programs that are
parameterized by some additional system parameters, such as a public key of a
cryptosystem. We thus extend the definition to consider also families of circuits
with auxiliary input.

Concretely, we consider four variants of the above intuitive notion, depending
on the specific notion of indistinguishability of probabilistic circuits assumed on
the distribution. The four variants we consider differ in the level of adaptivity
in choosing the inputs on which the programs are run in the experiment that
determines whether programs are indistinguishable. Our formalization follows
the approach of [9,2], capturing the strength of an IO algorithm O in terms of
the distributions on triples (C1, C2, z) on which it succeeds in making O(C1) and
O(C2) indistinguishable (given z).



A construction for X-pIO. As our first main result, we show how to construct
a general X-pIO scheme, where X-pIO is one of our four variants (see definition
within), from any subexponentially secure IO scheme and one way function.
The scheme is natural: X-piO(C) is the result of applying an indistinguishability
obfuscator to the following circuit. First apply the puncturable PRF to the input
x to obtain a pseudorandom value r, using a hard-coded PRF secret key. Next,
we run the circuit C on input x and random input r.

We show by reduction that if the underlying IO and puncturable PRF
are sub-exponentially secure then the scheme is X-pIO. Furthermore, one can
consider the same natural construction as a candidate implementation of any of
the other variants of pIO.

Applications: FHE and Bootstrapping. To demonstrate the usefulness of
pIO we present two natural applications of the notion, which are arguably of
independent interest.

Our first application (see Section 2.2) is to constructing fully homomorphic
encryption schemes. Here we provide a natural construction of fully homomor-
phic encryption from pIO (or, in turn from sub-exponentially secure IO and
puncturable PRFs.) In fact, we provide the first full-fledged FHE scheme that
does not rely on circular security assumptions for encryption.

We proceed in two steps. First we show how to obtain leveled homomorphic
encryption (LHE), where only a prespecified number of homomorphic operations
can be made securely. The basic idea is to use pIO to transform an underlying
encryption scheme with some mild structural properties (such as rerandomiz-
ability) into an LHE. We give a number of different instantiations of the general
scheme, where each instantiation uses a different variant of pIO and a different
type of encryption scheme as a starting point.

The second step transforms the resulting LHE into a full-fledged FHE, again
assuming IO and puncturable PRFs. (All primitives from LHE to IO to PRFs
are required to be slightly super-polynomially secure.) While this transformation
works in general for any LHE with a-priori fixed polynomial decryption depth, it
is particularly suitable for LHEs that result from our pIO based construction in
that it uses the same underlying primitives and assumptions. These constructions
use in an inherent way the concept of obfuscation of randomized circuits, and in
particular probabilistic IO.

As a second application, discussed in Section 2.3, we consider variants
of bootstrapping, transforming IO obfuscation (both probabilistic and not
probabilistic) for weak classes (such as low-depth circuits) into obfuscation for
arbitrary polynomial-size circuits.

Organization. Section 2 gives a detailed high-level and self-contained overview
of the contributions of this paper, both at the definitional level, as well as in
terms of applications.

Further down, Section 3 presents our definitions of pIO and studies relations
among them. Moreover, it presents the construction of X-pIO from IO and
puncturable PRFs. Section 4 present the application to FHE, whereas the
application to bootstrapping IO is deferred to the full version for lack of space.



d-pIO

mw-pIO

w-pIO X-pIO

IO

dIO

subexp-
IO

Fig. 1. Notions of obfuscation for probabilistic circuits: Arrows indicate
implication, whereas lack of arrows among azure boxes implies a formal separation.
The thicker line indicates that the implication holds under the assumption of
subexponentially-hard puncturable PRFs.

2 Overview

We provide an overview of the definitions and results in this work.

2.1 Our Definitional Framework: IO for Probabilistic Circuits

The first contribution of this paper, found in Section 3, is the definition and
study of IO notions for probabilistic circuits, or pIO. For our purposes, a
probabilistic obfuscator piO transforms a (usually probabilistic, i.e. randomized)
circuit C into a deterministic circuit Λ := piO(C) with the property that Λ(x)
is computationally indistinguishable from C(x) the first time it is invoked, even
when the circuits are invoked as oracles multiple times on distinct inputs. (Across
multiple calls with the same input, Λ(x) returns the same value over and over,
whereas C(x) returns a fresh random output.)

As for security, we want to ensure indistinguishability of piO(C0) and
piO(C1) whenever C0(x) and C1(x) are computationally indistinguishable for
every input x, rather than identical as in IO. However, formalizing this concept
is challenging, due to the exponential number of inputs and the fact that C0, C1

are usually chosen from some distribution.

Four pIO notions. Following the approach of [9,2], we capture different pIO
notions via classes of samplers, where such a sampler is a distributions D
(parametrized by the security parameter) outputting triples (C0, C1, z), such
that C0, C1 are circuits, and z is some (generally correlated) auxiliary input.
Different pIO notions result from different requirement in terms of the class of
samplers for which a certain obfuscator piO guarantees indistinguishability of the



obfuscations of C0 and C1 (given the auxiliary input z), in addition to the above
correctness requirement. Concretely, we consider four different notions matching
different approaches to formalizing the above computational indistinguishability
requirement on all inputs:

X-Ind pIO (X-pIO). In the simplest notion, we require that for every statically
chosen input x, the distributions of C0(x) and C1(x) are indistinguishable,
given z, where the randomness is over the sampled (C0, C1, z). While this
results in an unachievable notion, we additionally require the distinguishing
advantage to be very small, smaller than negl · X−1, for some negligible
function, where X is the number of inputs of the circuits. The requirement
on the small distinguishing gap seems stringent and leads to a weak notion,
but we show that it is necessary.

Dynamic-input pIO (d-pIO). A d-pIO obfuscator is required to work on
samplers D such that any PPT attacker, given a triple (C0, C1, z) sampled
from D, cannot find (adaptively) an input x for which, when given
additionally Cb(x) for a random b, it can guess the value of b with noticeable
advantage over random guessing.

Worst-case-input pIO (w-pIO and mw-pIO). A w-pIO obfuscator weakens
the above notion by only working on samplers for which the above
indistinguishability requirement holds for (much) stronger attackers where
the choice of x after sampling (C0, C1, z) is made without any computational
restrictions, whereas the final guess, after learning Cb(x), is restricted to be
polynomial-time. This captures the fact that the choice of the input x is
worst case as to maximize the guessing probability in the second stage.
The (stronger) notion where we enlarge our sampler class to only require
indistinguishability for attackers not passing such state is referred to as
memory-less worst-case-input pIO (or mw-pIO for short).

We prove that d-pIO implies mw-pIO, and mw-pIO implies both w-pIO and
X-pIO, but the latter two notions do not imply each other. These relations are
summarized in Figure 1 below. The fact that mw-pIO implies X-pIO is surprising
at first, as on one hand we are restricting the power of the attacker, but on
the other hand we are simplifying its task by choosing our barrier at negl/X
advantage, and it is not clear what prevails.

The notion of d-pIO is a natural generalization of the notion of differing inputs
obfuscation [7,13,2], and therefore directly suffers from recent implausibility
results [22] in its most general form. In contrast, achievability of mw-pIO and the
even weaker notion of w-pIO is not put in question by similar results, and the
original IO notion is recovered from both w-pIO and mw-pIO when restricting
them to deterministic circuits only. We in fact feel comfortable in conjecturing
that w-pIO is achieved by a construction first transforming a randomized circuit
C into a deterministic one Dk(x) = C(x;PRF(k, x)) for a PRF key k, then
applying an existing obfuscator O to Dk, such as those from [21,6,17].

X-Ind pIO from sub-exponential IO. The main technical result of this part
is a proof that for X-pIO, the above approach indeed provably yields a secure



obfuscator if the PRF is puncturable and if the obfuscator O = iO is an IO, as
long as additionally PRF and iO are subexponentially secure. In this context, sub-
exponential means that no PPT attacker can achieve better than sub-exponential
advantage, an assumption which we believe to be reasonable.

2.2 Application 1: Fully-Homomorphic Encryption

The first testbed for our pIO notions, discussed in Section 4, is a generic
construction of leveled homomorphic-encryption (or LHE, for short) from a
regular encryption scheme. We are then going to boost this to achieve fully-
homomorphic encryption (FHE) without any circular security assumptions using
a technique of independent interest.

The LHE construction. When trying to build a LHE scheme using ofuscation,
the following natural and straightforward idea came up immediately. Starting
from a CPA-secure encryption, we generate public-key and secret-key pairs for
all levels (pk0, sk0), . . . , (pkL, skL), and then, as part of the evaluation key, add

for every level i ∈ {1, . . . , L}, the pIO obfuscation of the circuit Prog(ski−1,pki)

which takes two ciphertexts α = Enc(pki−1, a) and β = Enc(pki−1, b) (where a
and b are bits), decrypts them using ski−1, and then outputs a fresh encryption
c = Enc(pki, a NAND b). The outputs of this circuit, given ski−1 and pki (but
not ski) are computationally indistinguishable from those of a “trapdoor” circuit

tProg(pki) which instead ignores its inputs, and simply outputs a fresh encryption
c = Enc(pki, 0) of 0. Note that this circuit is independent of ski−1. We therefore
hope that by relying on some pIO notion for the sampler Dski−1 that outputs
(Prog(ski−1,pki), tProg(pki), pki) (and through a careful hybrid argument), one
might transform the honest evaluation key to one that contains only obfuscations
of the “trapdoor” circuits; in the latter case, since the evaluation key depends
only on public keys, the semantic security of the LHE scheme reduces down to
that of the underlying CPA scheme. The nice feature of this approach is that
it builds on top of any already existing encryption scheme (say ElGamal), and
that for all levels, ciphertexts are of the same type and size. A similar generic
approach was for example abstracted in the work of Alwen et al. [1], and proved
secure under ad-hoc obfuscation assumptions.

Unfortunately, it turns out that the above approach generically works for
every CPA-secure scheme only when using d-pIO, which, as we discussed above,
is somewhat brittle. Indeed, the above sampler Dski−1 is not contained in the
classes associated with X-pIO and w-pIO. With respect to X-pIO there is no
guarantee that encryptions (of values (a NAND b) or 0) are negl/X close to
each other (note that here the domain size X corresponds to the length |α| +
|β| of the two input ciphertexts). It seems that to fix the problem, one could
simply re-encrypt under an encryption scheme which is negl/X secure (which
exists assuming sub-exponentially secure CPA encryption), but this results in
a longer output ciphertext of size poly(logX) (i.e., poly(|α| + |β|)), leading to
exponentially growing ciphertext with the depth.

With respect to w-pIO (and to mw-pIO also), the main challenge with the
above sampler is that given the two circuits, the adversarial first stage is



computationally unbounded and can (for example) find a secret key correspond-
ing to the public key, and pass it on to the second stage, which proceeds in
distinguishing encryptions (of values (a NAND b) and 0 again) using the secret
key efficiently.

LHE via trapdoor encryption. We get around the above conundrum by
using a generalization of CPA encryption—called trapdoor encryption: The
idea here is that the encryption scheme can generate a special trapdoor key
which is indistinguishable from a real public-key, but it does not guarantee
decryption any more. In this way, we expect to be able to guarantee stronger
ciphertext indistinguishability (even statistical) under a trapdoor key which
cannot be satisfied by normal encryption scheme as long as correctness needs
to be guaranteed. In particular, we modify the proof in the above approach as
follows: In the hybrids, the obfuscations in the evaluation key are changed one by
one in the reverse order; to change the obfuscation of circuit Prog(ski−1,pki), first
replace the public key with a trapdoor key tpki, and then move to an obfuscation

of a modified trapdoor circuit tProg(tpki) with the trapdoor key built in. Now
thanks to the stronger ciphertext indistinguishability under the trapdoor key,
it suffices to use weak notions of pIO. In this paper, we provide the following
instantiations of this paradigm:

– Lossy encryption + w-pIO. In order to instantiate the construction from
w-pIO, we consider encryption schemes which are statistically secure under
a trapdoor key, so-called lossy encryption schemes [8]. Such schemes can
be built using techniques from a variety of works [31,34,8,35], and admit
instantiations from most cryptographic assumptions. This gives an LHE
construction from w-pIO and any lossy encryption schemes.4

– Re-randomizable encryption + sub-exponential IO. Existing con-
structions of lossy encryption unfortunately do not allow a distinguishing
gap of negl/X without having the ciphertext size growing polynomially
in logX. Instead, we construct a trapdoor encryption scheme with such
a tiny distinguishing gap under the trapdoor key, from any re-randomizable
(secret or public-key) encryption scheme: The (honest) public key of the
trapdoor encryption scheme consists of two encryptions (c0, c1) of 0 and
1 of the underlying re-randomizable encryption scheme, and to encrypt a
bit b, one simply re-randomizes cb; the trapdoor key, on the other hand,
simply consists of two encryptions (c0, c

′
0) of both 0. By the semantic

security of the underlying scheme, the honest and trapdoor keys are
indistinguishable. Furthermore, if the re-randomizability of the underlying
scheme guarantees that re-randomization of one ciphertext or another of
the same plaintext yields identical distributions, then encryptions under
the trapdoor keys are perfectly hiding. Many encryption schemes such as
ElGamal, Goldwasser-Micali [27], Paillier [33], Damg̊ard-Jurik [20], satisfy

4 In fact, this instantiation only requires an even weaker w-pIO notion where sampler
indistinguishability must hold against computationally unbounded adversaries in
both stages.



the perfect re-randomizability. Therefore, when relying on such a scheme,
the corresponding samplers is negl/X-indistinguishable, for any X; hence
X-pIO suffices. Combined with the aforementioned construction of X-pIO,
this also gives us leveled LHE from any re-randomizable encryption scheme
and sub-exponentially hard IO and one-way functions.

We also note that the instantiation from d-pIO mentioned above from any CPA-
secure encryption scheme is also a (trivial) application of the above general
result.

From LHE to FHE. As a final contribution of independent interest, we use
IO to turn an LHE scheme info an FHE scheme via techniques inspired by the
recent works of Bitansky, Garg, and Telang [11], and of Lin and Pass [32].

The basic idea is to instantiate the above LHE construction on super-
polynomially many levels, but to represent these keys succinctly. This is done
by considering a circuit Γ that on input i genarates the i-th level evaluation
key, i.e., the pIO obfuscation of Prog(ski−1,pki) (in the evaluation key for super-
polynomially many levels), where the key pairs (pki−1, ski−1) and (pki, ski) are
generated using pseudo-random coins PRF(k, i − 1) and PRF(k, i) computed
using a puncturable PRF on a hard-coded seed k; (the pIO obfuscations also
use pseudo-random coins as well). The new succinct evaluation key is the IO-
obfuscation of this circuit Γ , while the public key is pk0 (generated using coins
PRF(k, 0)) and the secret key is the PRF seed k. In order for this approach to be
secure, we need the IO obfuscation to be slightly super-polynomially secure (not
necessarily sub-exponentially secure), in order to accommodate for a number of
hybrids in the proof which accounts to the (virtual) super-polynomial number of
levels implicitly embedded in the succinct representation. In particular, we get
this step almost for free (in terms of assumptions) when starting with our LHE
constructions, either because we assume sub-exponential IO in the first place, or
assuming just a slightly stronger form of w-pIO and d-pIO than what necessary
above.

We also observe that this is a special case of a more general paradigm of
using IO to turn any LHE with a fixed decryption depth (independent of the
maximum evaluation level) into an FHE, which applies to almost all known
LHE schemes (e.g. [23,18,16,15,24]). We believe that this general transformation
is of independent interest, especially because it does not rely on any encryption
scheme with circular security.

2.3 Application 2: Bootstrapping IO

Our second contribution is to use the notion of pIO to provide a simple way of
bootstrapping (standard, deterministic) IO for weak circuit classes, such as NC1,
into ones for all polynomial-size circuits. In the very first candidate construction
of IO for P/poly, Garg et al. [21] show how to obtain full fledged IO assuming
the existence of indistinguishability obfuscation for a weak circuit class WEAK,
as well as a fully homomorphic encryption scheme whose decryption can be
computed in WEAK (given the known FHE schemes, one can think of WEAK



as NC1). The natural question that remained is: Can we achieve bootstrapping
without the FHE assumption?

We show a new way to bootstrap indistinguishability obfuscation, without
assuming that FHE schemes exist. Instead, our assumption is the existence
of sub-exponentially hard indistinguishability obfuscation for a complexity
class WEAK and a sub-exponentially secure puncturable PRF computable
in WEAK. Our technique is inspired by the recent work of Applebaum [3]
that shows how to bootstrap VBB obfuscations from WEAK to P/poly using
randomized encodings; however his transformation strongly relies on the fact
that the starting point is a VBB obfuscation.

The idea is to apply the “randomized encodings” paradigm which was
originally proposed in the context of multiparty computation [29,4] and has
found many further uses ever since. A randomized encoding RE for a circuit
family C is a probabilistic algorithm that takes as input a circuit C ∈ C and an
input x, and outputs its randomized encoding (Ĉ, x̂). The key properties of RE

are that: (1) given Ĉ and x̂, one can efficiently recover C(x); (2) given C(x), one

can efficiently simulate the pair (Ĉ, x̂), implying that the randomized encoding
reveals no information beyond the output C(x); and (3) computing RE is very
fast in parallel. In particular, the work of Applebaum, Ishai and Kushilevitz [5],
building on Yao’s garbled circuits, showed a way to perform randomized encoding
of any circuit in P/poly using a circuit RE ∈ NC0, assuming a PRG in
⊕L/poly (which is implied by most cryptographic assumptions). The typical
use of randomized encodings is to reduce computing a circuit C to the easier
task of computing its randomized encoding RE(C, ·).

Therefore, to obfuscate a circuit C ∈ P/poly, the natural idea is obfuscating
its randomized encoding RE(C, x; r) using an appropriate pIO scheme for NC0.
(Here, pIO comes into play naturally, since RE is a randomized circuit.) We
show that, in fact, X-pIO suffices for this purpose: Assuming that randomized
encoding is sub-exponentially secure, then for any two functionally equivalent
circuits C1 and C2, their randomized encoding RE(C1, x; r) and RE(C2, x; r)
have indistinguishable outputs for every input x, where the distinguishing gap
is as small as negl(λ)2−|x|5. Therefore, obfuscating RE(C1, ·) and RE(C2, ·)
using an X-pIO scheme piO yields indistinguishable obfuscated programs, and
hence iO(C) = piO(RE(C, ·)) is an indistinguishable obfuscator for all P/poly.
Since, our construction of X-pIO from sub-exponentially indistinguishable IO
preserves the class of circuits modulo the complexity of the sub-exponentially
indistinguishable puncturable PRF. Put together, we are able to bootstrap sub-
exponentially indistinguishable IO for a weak class, say NC1, to IO for all of
P/poly, assuming a sub-exponentially indistinguishable PRF computable in the
weak class of circuits.

Bootstrapping pIO. The same technique above can be applied to bootstrap
worst-case-input pIO from NC0 to P/poly, assuming the existence of a PRG in
⊕L/poly. The key observation here is that since pIO handles directly randomized

5 This can be done by using a sufficiently large security parameter when generating
the randomized encoding.



circuits, it can be used to obfuscate the randomized encoding RE(C, ·) (without
relying on pseudorandom functions). Furthermore, the security of the random-
ized encoding holds for any input and auxiliary information (even ones that are
not efficiently computable). Then, given any two circuits C1(x; r), C2(x; r) whose
outputs are indistinguishable even for dynamically chosen worst-case inputs,
their randomized encoding C ′1(x; r, r′) = RE(C1, (x, r); r

′) and C ′2(x; r, r′) =
RE(C2, (x, r); r

′) are also indistinguishable on dynamically chosen worst case
inputs. This is because, over the random choice of r and r′, the distributions
of C ′1(x; r, r′) and C ′2(x; r, r′) can be simulated using only C1(x; r) and C2(x; r),
which are indistinguishable. Therefore a worst-case-input pIO scheme for NC0

suffices for obfuscating the circuit C ′(x; r, r′) = RE(C, (x, r); r), leading to a
worst-case-input pIO scheme for all P/poly. Following the same approach, we
can bootstrap dynamic-input pIO for NC0 to dynamic-input pIO for P/poly
assuming a PRG in ⊕L/poly . Similarly, we can also bootstrap X-pIO for NC0

to X-pIO for P/poly, but relying on the sub-exponential security of the PRG.
The stronger security of PRG is needed so that the randomized encoding can be
made negl(λ)/X(λ) indistinguishable.

3 IO for Probabilistic Circuits

3.1 IO for General Samplers over Probabilistic Circuits

We start with the notion of indistinguishability obfuscation for general classes of
samplers over potentially probabilistic circuits, called pIO for samplers in class S.
Here, a sampler is a distribution ensemble over pairs of potentially randomized
circuits, together with an auxiliary input. Below, we define various notions of
obfuscation for probabilistic circuits instantiating the general definition with
classes of samplers that produce pairs of probabilistic circuits satisfying different
variants of our point-wise indistinguishability requirement.

More formally, let C = {Cλ}λ∈N be a family of sets of (randomized) circuits,
where Cλ contains circuits of size poly(λ). Extending the notation of [9], a circuit
sampler for C is a distribution ensemble D = {Dλ}λ∈N, where the distribution
Dλ ranges over triples (C0, C1, z) with C0, C1 ∈ Cλ such that C0, C1 take inputs
of the same length, and z ∈ {0, 1}poly(λ). Moreover, a class S of samplers for C
is a set of circuit samplers for C.

The following definition captures the notion of pIO for a class of samplers.

Definition 1 (pIO for a Class of Samplers). A uniform PPT machine piO is
an indistinguishability obfuscator for a class of samplers S over the (potentially
randomized) circuit family C = {Cλ}λ∈N if the following two conditions hold:

Correctness: piO on input a (potentially probabilistic) circuit C ∈ Cλ and the
security parameter λ ∈ N (in unary), outputs a deterministic circuit Λ of
size poly(|C|, λ).
Furthermore, for every non-uniform PPT distinguisher D, every (potentially
probabilistic) circuit C ∈ Cλ, and string z, we define the following two
experiments:



– Exp1D(1λ, C, z): D on input 1λ, C, z, participates in an unbounded number
of iterations of his choice. In iteration i, it chooses an input xi; if xi is
the same as any of the previously chosen input xj for j < i, then abort;
otherwise, D receives C(xi; ri) using fresh random coins ri (ri = null if
C is deterministic). At the end of all iterations, D outputs a bit b. (Note
that D can keep state across iterations.)

– Exp2D(1λ, C, z): Obfuscate circuit C to obtain Λ
$← piO(1λ, C; r) using

fresh random coins r. Run D as described above, except that in each
iteration, feed D with Λ(xi) instead.

Overload the notation ExpiD(1λ, C, z) as the output of D in experiment ExpiD.
We require that for every non-uniform PPT distinguisher D, there is a
negligible function µ, such that, for every λ ∈ N, every C ∈ Cλ, and every
auxiliary input z ∈ {0, 1}poly(λ),

AdvD(1λ, C, z) = |Pr[Exp1D(1λ, C, z)]− Pr[Exp2D(1λ, C, z)]| = µ(λ) .

Security with respect to S: For every sampler D = {Dλ}λ∈N ∈ S, and for
every non-uniform PPT machine A, there exists a negligible function µ such
that∣∣Pr[(C1, C2, z)

$← Dλ : A(C1, C2, piO(1λ, C1), z) = 1]−

− Pr[(C1, C2, z)
$← Dλ : A(C1, C2, piO(1λ, C2), z) = 1]

∣∣ = µ(λ) .

where µ is called the distinguishing gap.

Furthermore, we say that piO is δ-indistinguishable if the distinguishing gap µ
bounded by δ. Especially, piO is sub-exponentially indistinguishable if µ(λ) is
bounded by 2−λ

ε

for a constant ε.

Note that the sub-exponential indistinguishability defined above is weaker than
usual sub-exponential hardness assumptions in that the distinguishing gap only
needs to be small for PPT distinguishers, rather than sub-exponential ones.

An obvious (but important) remark is that an obfuscator piO for the class
S is also an obfuscator for any class S′ ⊆ S, whereas conversely, if no obfuscator
exists for S′ (or its existence is implausible), then the same is true for S ⊇ S′.

3.2 Static-input pIO for Circuits

Arguably, the simplest way to formulate the property that two circuits are
indistinguishable on every input is to require that this true for every statically
chosen input, i.e., chosen independently of the random choice of the sampler.
This results in the following definition, which we state for completeness, but
that we will have to further restrict below to by-pass impossibility:

Definition 2 (Static-input Indistinguishable Samplers). The class Ss-Ind

of static-input indistinguishable samplers for a circuit family C contains all
circuit samplers D = {Dλ}λ∈N for C with the following property: For all non-
uniform PPT A = (A1,A2), the advantage of A in the following experiment is
negligible.



Experiment static-input-INDDA(1λ):

1. (x, st)
$← A1(1λ) // A1 chooses challenge input x statically.

2. (C0, C1, z)
$← Dλ

3. y
$← Cb(x), where b

$← {0, 1}.
4. b′

$← A2(st, C0, C1, z, x, y)

The advantage of A is Pr[b′ = b]− 1/2.

Unfortunately, we now show that pIO for general static-input indistinguish-
able samplers is (unconditionally) impossible, but we will see below that a further
restriction of the class Ss-Ind will bypass this impossibility.

Proposition 1. There exists a static-input indistinguishable sampler D∗ over
deterministic circuits, such that, there is no pIO for D∗.

Proof. Consider the following sampler D∗: D∗λ samples (C0, C1, z) where C0 is
an all zero circuit, C1 computes a point function that outputs 1 at a single point
s chosen uniformly randomly, and z is set to s. Clearly, D∗ is a static-input
indistinguishable sampler. Indeed, for any fixed input x, with overwhelming
probability D∗ samples (C0, C1, s), with a differing input s 6= x. Thus, the
outputs C0(x) = C1(x) = 0 cannot be distinguished.

However, any piO achieving correctness cannot be secure for this sampler D∗:
An adversary can easily tell apart (C0, C1, s, Λ0 = piO(C0)) from (C0, C1, s, Λ1 =
piO(C1)) by simply evaluating Λ0 and Λ1 on input s. ut

X-Ind pIO. To circumvent impossibility, we consider a smaller class of static-
input indistinguishable samplers, SX-Ind ⊂ Ss-Ind. In fact, in Section 3.6 we give
a construction for such a pIO assuming sub-exponentially indistinguishable IO.

The samplers D we consider satisfy that the distinguishing gap of any PPT
adversary in the above static-input-IND experiment is bounded by negl · X−1,
where X is the number of “differing inputs” that circuits C0, C1 sampled from
D have, and negl is some negligible function. More precisely:

Definition 3 ((Static-input) X-Ind-Samplers). Let X(λ) be a function
bounded by 2λ. The class SX-Ind of (static-input) X-Ind-samplers for a circuit
family C contains all circuit samplers D = {Dλ}λ∈N for C with the following
property: For every λ ∈ N, there is a set X = Xλ ⊆ {0, 1}∗ of size at most X(λ)
(called the differing domain), such that,

X differing inputs: With overwhelming probability over the choice of (C0, C1, z)
$←

Dλ, for every input outside the differing domain, x 6∈ X , it holds that
C0(x′; r) = C1(x′; r) for every random string r.

X-indistinguishability: For all non-uniform PPT A = (A1,A2), the advan-
tage of A in the experiment static-input-INDDA(1λ) defined in Definition 2 is
neglX−1.



Definition 4 (X-Ind pIO for Randomized Circuits). Let X be any function
bounded by 2λ. A uniform PPT machine X-piO is an X-pIO for randomized
circuits, if it is a pIO for the class of X-Ind samplers SX-Ind over C that includes
all randomized circuits of size at most λ.

We note that the notion of a differing set is added for flexibility purposes,
as our constructions below will allow for it. We stress that its definition is not
allowed to depend on the circuits which are actually sampled, and must be fixed
a-priori. Also, note that the notion encompasses the setting where C0(x) and
C1(x) are identically distributed, or are statistically very close.

The notion of X-Ind pIO is the “best-possible” achievable with respect
of static input. Indeed, one can modify the distribution D∗ constructed in
Proposition 1 to have C1(s) output 1 with probability 1

p(λ) for a polynomial

p. The differing domain there is the whole domain, i.e., Xλ = {0, 1}λ (since
the circuit may differ at any point.) This makes the sampler exactly X · p−1
indistinguishable for static adversaries, as C1(x) 6= C0(x) with probability X ·p−1
over the choice of (C0, C1, z). Yet, pIO for this sampler is impossible, as again, the
circuits differ on input z = s with probability 1

p(λ) . This impossibility cannot be

pushed any further, and indeed generalX-pIO is possible, as shown in Section 3.6.

3.3 Dynamic-input pIO for Circuits

The above notion, while achievable, makes an unnaturally strong indistinguisha-
bility requirement. We explore alternative notions where the distinguishing gap
is not required to be as small. We start with a natural sampler notion asking
for indistinguishability on every input x adaptively chosen by a (PPT) adversary
A1 on input (C0, C1, z).

Definition 5 (Dynamic-input Indistinguishable Samplers). The class
Sd-Ind of dynamic-input indistinguishable samplers for a circuit family C contains
all circuit samplers D = {Dλ}λ∈N for C with the following property: For all non-
uniform PPT A = (A1,A2), the advantage of A in the following experiment is
negligible.

Experiment dynamic-input-INDDA(1λ):

1. (C0, C1, z)
$← Dλ

2. (x, st)
$← A1(C0, C1, z)

3. y
$← Cb(x), where b

$← {0, 1}
4. b′

$← A2(st, C0, C1, z, x, y)

The advantage of A is Pr[b′ = b]− 1/2.

We note that the restriction to requiring indistinguishability on a single input is
without loss of generality, as it follows from a standard hybrid argument that the



advantage of any efficiency adversary is still negligible even if it receives samples
from Cb(x) for an unbounded number of adaptively chosen inputs.

We can now use the above sampler class to directly obtain the notion of
Dynamic-input pIO for randomized circuits.

Definition 6 (Dynamic-input pIO for Randomized Circuits). A uniform
PPT machine d-piO is a dynamic-input pIO (or d-pIO) for randomized circuits,
if it is a pIO for the class of dynamic-input indistinguishable samplers Sd-Ind over
C that includes all randomized circuits of size at most λ.

Differing-Input Indistinguishability Obfuscation. It is not hard to see that we
can recover the notion of differing-inputs indistinguishability obfuscation (dIO)
for circuits [7,13,2], by just restricting the above definition of d-pIO to the class
C′ = {C′λ}λ∈N of deterministic circuits.

This means that the notion of dynamic-input pIO generalizes dIO to
randomized circuits. In a recent work by Garg et al. [22], it was shown that
assuming strong obfuscation for a specific sampler of circuits and auxiliary
inputs, it is impossible to construct differing-input IO for general differing-input
samplers over circuits. Since dynamic-input pIO implies differing-input IO, a
construction of d-pIO for general dynamic-input indistinguishable samplers is
also implausible. However, a construction of d-pIO for specific dynamic-input
indistinguishable samplers remains possible, as in the case of dIO.

3.4 Worst-case-input pIO for Circuits

In light of the implausibility of general dynamic-input pIO, we seek for a weaker
notion, which is possibly achievable. The resulting notion is what we consider the
most natural formalization of IO in the probabilistic setting, but in contrast to
X-pIO above, we are only able to conjecture the existence of suitable obfuscators.

We first introduce the following class of samplers:

Definition 7 (Worst-case-input Indistinguishable Samplers). The class
Sw-Ind of worst-case-input indistinguishable samplers for a circuit family C
contains all circuit samplers D = {Dλ}λ∈N for C with the following property:
For all adversary A = (A1,A2) where A1 is an unbounded non-uniform machine
and A2 is PPT, the advantage of A in the following experiment is negligible.

Experiment worst-case-input-INDDA(1λ):

1. (C0, C1, z)
$← Dλ

2. (x, st) = A1(C0, C1, z) // A1 is unbounded.

3. y
$← Cb(x), where b

$← {0, 1}
4. b′

$← A2(st, C0, C1, z, x, y) // A2 is PPT.

The advantage of A is Pr[b′ = b]− 1/2.

This directly yields the notion of worst-case-input pIO:



Definition 8 (Worst-case-input pIO for Randomized Circuits). A uni-
form PPT machine w-piO is a worst-case-input pIO (or w-pIO) for randomized
circuits, if it is a pIO for the class of worst-case-input indistinguishable samplers
Sw-Ind over C that includes all randomized circuits of size at most λ.

Note that in the above definition, since A1 is computationally unbounded, its
best strategy on input (C0, C1, z) is to choose (x∗, st∗) that maximizes the
guessing advantage of A2 and hence worst-case-input indistinguishable samplers
can be seen as producing pairs of probabilistic circuits satisfying that no efficient
adversary (A2) can distinguish their output C0(x) or C1(x) on any input x.

The above definition implies a limited form of multi-input indistinguishabil-
ity: By a hybrid argument, for a worst-case-input sampler the advantage of any
adversary (A1,A2) in the above experiment is negligible even if A1 can choose
a polynomial number of inputs (x1, · · · , x`, st) at once and A2 receives output

samples yi
$← Cb(xi) for all these inputs, i.e., it is given (st, C0, C1, z, {xi}, {yi}).

However, we cannot prove an adaptive form of multi-input indistinguishability,
due to the asymmetric computational powers of A1 and A2.
Memory-less worst-case-input pIO: Forbidding state-passing. Passing state be-
tween A1 and A2 in the above definition of worst-case-input indistinguishable
samplers appears somewhat unavoidable for any “meaningful” way of defining
Sw-Ind. Indeed, if we have a sampler D ∈ Sw-Ind, then for any length function `,
we also would like any sampler D′ constructed as follows to be also in Sw-Ind:
D′λ samples (C0, C1, z) from the same distribution as Dλ, but instead returns
a triple (C ′0, C

′
1, z) where C ′b is a circuit such that C ′b(x;x′) = Cb(x) for any

x′ ∈ {0, 1}`(λ), i.e., the last `(λ) bits of the input are ignored. For such a pair,
the adversary A1 can always use the last `(λ) bits of the input (which are ignored
by the circuit) to pass on some helpful, not efficiently computable, information
to A2 that would help distinguish.

Explicitly forbidding state passing will however be useful when establishing
the landscape of relationships among notions below. In particular, we define
Smw-Ind as the class of memory-less worst-case-input indistinguishable samplers,
which consists of all samplers D for which the advantage in worst-case-input-
INDDA(1λ) is negligible for any A = (A1,A2) such that A1 is unbounded and
outputs st = ⊥, whereas A2 is PPT. Note that clearly Sw-Ind ⊆ Smw-Ind. This
then is used in the following definition.

Definition 9 (Memory-less worst-case-input pIO for Randomized Cir-
cuits). A uniform PPT machine mw-piO is a memory-less worst-case-input
pIO (or mw-pIO) for randomized circuits, if it is a pIO for the class of memory-
less worst-case-input indistinguishable samplers Smw-Ind over C that includes all
randomized circuits of size at most λ.

Indistinguishability Obfuscation. The notion of worst-case-input pIO is a direct
generalization of IO to the case of randomized circuits. We can recover the
original notion of indistinguishability obfuscation (IO) for circuits [7,21] by
restricting Definition 8 of worst-case-input pIO to the class C′ = {C′λ}λ∈N of

deterministic circuits. Also, note that the classes Smw-Ind and Sw-Ind are the same



(and thus the notion of memory-less worst-case-input and worst-case-input pIO)
when restricted to deterministic circuits.

3.5 Relations

In the full version, we prove a number of relations among notions, some of which
are quite non-trivial to establish. They are summarized by the following theorem.

Theorem 1 (Relations among pIO notions).

– A dynamic-input pIO obfuscator is also a memory-less worst-case-input pIO
obfuscator for randomized circuits.

– A memory-less worst-case-input pIO obfuscator is also a worst-case-input
pIO obfuscator.

– A memory-less worst-case-input pIO obfuscator is also an X-Ind pIO
obfuscator.

Moreover, all of these implications are strict, i.e., their converses are not true,
assuming subexponentially-secure (trapdoor) one-way permutations exist.

3.6 Construction of X-Ind pIO from Sub-exp Indistinguishable IO

In this section, we prove the existence of a construction of an X-Ind pIO
obfuscator (as in Definition 4) from sub-exponentially hard IO. It relies on sub-
exponentially secure puncturable PRFs, which we now recall

Definition 10 (Puncturable PRFs). A puncturable family of PRFs is given
by a triple of uniform PPT machines Key, Puncture, and PRF, and a pair of
computable functions n(·) and m(·), satisfying the following conditions:

Correctness. For all outputs K of Key(1λ), all points i ∈ {0, 1}n(λ), and K−i =
Puncture(K, i), we have that PRF(K−i, x) = PRF(K,x) for all x 6= i.

Pseudorandom at punctured point. For every PPT adversary (A1,A2),
there is a neligible function µ, such that in an experiment where A1(1λ)

outputs a point i ∈ {0, 1}n(λ) and a state σ, K
$← Key(1λ) and K−i =

Puncture(K, i), the following holds∣∣Pr[A2(σ,K−i, i,PRF(K, i)) = 1]− Pr[A2(σ,K−i, i, Um(λ)) = 1]
∣∣ ≤ µ(λ)

As observed by [12,14,30], the GGM tree-based construction of PRFs [25] from
PRGs yields puncturable PRFs. Furthermore, if the PRG underlying the GGM
construction is sub-exponentially hard (and this can in turn be built from
sub-exponentially hard OWFs), then the resulting puncturable PRF is sub-
exponentially pseudo-random.

We are now ready to move to our theorem. Its formal proof is deferred to the
full version, but we give a detailed description of the main ideas below.



Theorem 2 (Existence of X-Ind pIO.). Assume the existence of a sub-
exponentially indistinguishable indistinguishability obfuscator iO for circuits and
a sub-exponentially secure puncturable PRF (Key,Puncture,PRF). Then, there
exists a X-Ind pIO obfuscator X-piO for randomized circuits.

We first describe our construction of X-Ind pIO, denoted as X-piO. Recall
that by our assumption, both iO and the puncturable PRF (Key,Puncture,PRF)
have a 2−λ

ε

distinguishing gap for some constant ε ∈ (0, 1) and any non-uniform
PPT distinguisher. Also, in the following, we implicitly identify strings with
integers (via their binary encoding) and vice versa.

Construction X-piO: On input 1λ and a probabilistic circuit C of size
at most λ, proceed as follows:

1. Let λ′ = λ′(λ) = (λ log2(λ))1/ε. Sample a key of the PRF function
K ← Key(1λ

′
).

2. Construct deterministic circuit E(C,K) which outputs
C(x ; PRF(K,x)). By construction the size of E(C,K) is bounded
by a polynomial p(λ′) ≥ λ′ in λ′.

3. Let λ′′ = p(λ′) ≥ λ′. Obfuscate E(C,K) using iO, Λ
$←

iO(1λ
′′
, E(C,K)).

4. Output Λ.

To see why the construction works, consider two circuits C1, C2 sampled
satisfying the indistinguishability requirement imposed by X-Ind pIO, their
obfuscation are the IO obfuscated programs Λ1, Λ2 of the two derandomized
circuits Dk

1 , D
k
2 . The challenge lies in how to apply the security guaranetees of IO

on two circuits Dk
1 , D

k
2 that have completely different functionality. Our hope is

to leverage the fact that the original circuits C1, C2 are strongly indistinguishable
together with the sub-exponential pseudo-randomness of PRF; indeed, when the
PRF key is sufficiently long, it holds that for every x, the output pair Dk

1 (x) and
Dk

2 (x) is 1
X2ω(log(λ)) -indistinguishable. Thus by a simple union bound over all X

inputs, even the entire truth tables
{
Dk1

1 (x)
}

,
{
Dk2

2 (x)
}

are indistinguishable.

However, even given such strong guarantees, it is still not clear how to apply IO.
We overcome the challenge by considering a sequence of X+ 1 hybrids {Hi},

in which we obfuscate a sequence of “hybrid circuits”
{
Eki (x)

}
that “morph”

gradually from Dk
1 to Dk

2 . More specifically, circuit Eki evaluates the first i inputs
using Dk

2 , and the rest using Dk
1 . In any two subsequent hybrids, the circuits

Eki−1 and Eki only differ at whether the i’th input is evaluated using Dk
1 or

Dk
2 . Consider additionally two auxiliary hybrids H+

i−1, H
+
i where two circuits

F
k−i,y
i−1 , F

k−i,y
′

i modified from Eki−1, E
k
i are obfuscated; they proceed the same as

Eki−1, E
k
i respectively, except that they use internally a PRF key k−i punctured

at point i, and output directly y and y′ for input i respectively. Then, when y and
y′ are programmed to be exactly y = Eki−1(i) = Dk

1 (i) and y′ = Eki (i) = Dk
2 (i),

the two circuits compute exactly the same functionality as Eki−1, E
k
i . By IO, these

auxilary hybrids are indistinguishable from hybrids Hi−1 and Hi respectively.



Then, by the fact that y = Eki−1(i) = Dk
1 (i) and y′ = Eki (i) = Dk

2 (i) are
indistinguishable (which in turn relies on the pseudo-randomness of the PRF
function), the two auxiliary hybrids H+

i−1, H
+
i are indistinguishable, and thus

so are Hi−1 and Hi. Furthermore, since the distinguishing gap of IO and PRF
are bounded by 1

X2ω(log λ) , it follows from a hybrid argument that H0 and HX ,

which contain the IO obfuscations of Dk
1 (x) and Dk

2 (x), respectively, are 1
2ω(log λ) -

indistinguishable.
Other notions. While we cannot prove this statement in any meaningful model,
we also conjecture that the same construction is w-pIO obfuscator for randomized
circuits.

4 Application 1: Fully Homomorphic Encryption

We now describe how to construct leveled and fully homomorphic encryption
schemes using different notions of pIO. (See the Introduction for an overview of
the constructions.)

4.1 Trapdoor Encryption Schemes

Trapdoor encryption schemes have two modes: In the honest mode, an honest
public key is sampled and the encryption and decryption algorithms work as in
a normal CPA-secure encryption scheme with semantic security and correctness;
additionally, there is a “trapdoor mode”, in which a indistinguishable “trapdoor
public key” is sampled and the encryption algorithm produces ciphertexts that
may have stronger indistinguishability properties than these in the honest mode,
at the price of losing correctness. More precisely,

Definition 11 (Trapdoor Encryption Scheme). We say that Π = (KeyGen,
Enc,Dec, tKeyGen) is a trapdoor encryption scheme, if (KeyGen,Enc,Dec) is
a CPA-secure encryption scheme and the trapdoor key generation algorithm
tKeyGen satisfies the following additionally properties:

Trapdoor Public Keys: The following two ensembles are indistinguishable:{
(pk, sk)

$← KeyGen(1λ) : pk
}
λ
≈
{
tpk

$← tKeyGen(1λ) : tpk
}
λ

Computational hiding: The following ensembles are indistinguishable.{
tpk

$← tKeyGen(1λ) : Enctpk(0)
}
λ
≈
{
tpk

$← tKeyGen(1λ) : Enctpk(1)
}
λ

The basic definition of trapdoor encryption scheme only requires encryption of
different bits under a freshly generated trapdoor public key to be computation-
ally indistinguishable. As discussed before, this definition is a generalization of
CPA encryption in the following sense,

Lemma 1. Let Π ′ = (KeyGen,Enc,Dec) be a CPA-encryption scheme. Then
Π = (KeyGen,Enc,Dec, tKeyGen = KeyGen) is a trapdoor encryption scheme.



The basic trapdoor encryption scheme does not provide any advantage in the
trapdoor mode than the honest mode. Below, we consider two stronger security
properties in the trapdoor mode.

Definition 12 (Statistical Trapdoor Encryption Scheme). We say that
trapdoor encryption scheme Π = (KeyGen,Enc,Dec, tKeyGen) is a statistical
trapdoor encryption scheme, if the computational hiding property in Definition 11
is replaced by the following.

Statistical hiding: The following ensembles are statistically close.{
tpk

$← tKeyGen(1λ) : Enctpk(0)
}
λ
≈s
{
tpk

$← tKeyGen(1λ) : Enctpk(1)
}
λ

We note that any lossy encryption scheme as defined by Bellare, Hofheinz and
Yilek [8] implies a statistical trapdoor encryption scheme. A lossy encryption
scheme has a key generation algorithm KeyGen that takes as input the security
parameter 1λ and additionally a variable m ∈ {injective, lossy} indicating
whether to generate a key in the injective mode or in the lossy mode. A key
generated in the injective mode ensures decryption correctness and semantic
security, whereas a key generated in the lossy mode statistically loses information
of the plaintexts, that is, encryption of different bits are statistically close.
Therefore, we have:

Lemma 2. Let Π ′ = (Gen′,Enc,Dec) be a lossy encryption scheme. Then
Π = (KeyGen,Enc,Dec, tKeyGen) where KeyGen(1λ) = Gen′(1λ, injective) and
KeyGen(1λ) = Gen′(1λ, lossy), is a statistical trapdoor encryption scheme.

Definition 13 (µ-Hiding Trapdoor Encryption Scheme). Let µ be any
function We say that trapdoor encryption scheme Π = (KeyGen,Enc,Dec, tKeyGen)
is a µ-Lossy trapdoor encryption scheme, if the computational hiding property in
Definition 11 is replaced by the following.

µ-hiding: For any non-uniform PPT adversary A, the following holds:∣∣∣Pr[tpk
$← tKeyGen(1λ) : A(Enctpk(0)) = 1]

− Pr[tpk
$← tKeyGen(1λ) : A(Enctpk(1)) = 1]

∣∣∣ ≤ µ(λ)

where µ is called the distinguishing gap.

One of the instantiations of our general transformation for obtaining FHE relies
on sub-exponentially indistinguishable IO and a µ-hiding trapdoor encryption
scheme where µ is bounded by negl(λ)2−2l(λ) and l(λ) is an upper bound on the
length of the ciphertext. In other words, the distinguishing gap is much smaller
than the inverse exponentiation of the ciphertext length. We construct such a
µ-hiding trapdoor encryption scheme using a µ-rerandomizable encryption. In
fact, our construction achieves the stronger property of perfect hiding, that is,
µ = 0.



Definition 14 (µ-Rerandomizable Encryption Scheme). We say that a
quadruple of uniform PPT algorithms Π = (Gen,Enc,Dec, reRand) is a µ-
rerandomizable encryption scheme, if (Gen,Enc,Dec) is a CPA-secure encryption
scheme, and additionally the algorithm reRand satisfies the following property:

µ-Rerandomizability: For every non-uniform PPT adversary A, the following
holds for every λ ∈ N.∣∣∣Pr[A(pk, c0, c1, reRandpk(c0)) = 1]

− Pr[A(pk, c0, c1, reRandpk(c1)) = 1]
∣∣∣ ≤ µ(λ)

where (pk, sk)
$← Gen(1λ), c0

$← Encpk(b) and c1
$← Encpk(b).

We way that Π is perfectly re-randomizable, if the distinguishing gap µ above is
zero.

Many encryption scheme such as ElGamal, Goldwasser-Micali [27], Pail-
lier [33], Damg̊ard-Jurik [20], are in fact perfectly rerandomizable as per [36,28]
and satisfy our definition. Furthermore, we show that

Lemma 3. Let µ be a negligible function. Every µ-rerandomizable CPA encryp-
tion scheme can be transformed into a µ-hiding trapdoor encryption scheme.

An overview of the construction was provided in the Introduction (See “LHE
via trapdoor encryption”). We defer the formal construction and proof to the
full version [19].

4.2 From Trapdoor Encryption to Leveled Homomorphic
Encryption

In this section, we present our general transformation from a trapdoor encyrption
scheme Π = (KeyGen,Enc,Dec, tKeyGen) to a leveled fully homomorphic
encryption scheme LHE, relying on a pIO scheme piO for a specific class SΠ

of samplers defined by Π as described in Figure 3; (more explanation on the
class is provided in the proof of semantic security).

Proposition 2. Let Π be any trapdoor encryption scheme. Assume the exis-
tence of pIO for the class of samplers SΠ defined by Π as in Figure 3. Then, Π
can be transformed into a leveled homomorphic encryption scheme.

Below we first describe our construction and then prove its correctness and
semantic security in Lemma 4 and 5. Without loss of generality, we assume that
the public, secret keys and ciphertexts of Π have lengths bounded by l(λ). Below
we first describe our construction.

Construction of LHE: Let L = L(λ) be the depth of the circuits that we want
to evaluate. The four algorithms of the scheme proceed as follows:



– Key generation: LHE.Keygen(1λ, 1L) does the following for every level i
from 0 to L.
• samples a pair of keys (pki, ski)

$← KeyGen(1λ) of Π;

• for i ≥ 1, obfuscate the circuit Pi = Prog(ski−1,pki) as described in

Figure 2, that is, sample Λi
$← piO(1s, Pi) where the security parameter

s = s(λ) for obfuscation is an upper-bound on the size of all Pi’s.
6

Finally outputs pk = pk0, sk = skL, evk = {Pi}0≤i≤L.
– Encryption: LHE.Encpk(m) outputs a fresh encryption of m under pk = pk0

using Π, c
$← Encpk0(m).

– Decryption: LHE.Decsk(c) decrypts c using the secret key sk = skL to
obtain m = DecskL(c).

– Homomorphic evaluation: LHE.Evalevk(C, c1, . . . , c`) on input a layered
circuit C (consisting of only NAND gates) of depth at most L, evaluate C
layer by layer; in iteration i, layer i ∈ [L] is evaluated (the first layer is
connected with the input wires): At the onset of this iteration, the values
of the input wires of layer i has been homomorphically evaluated in the
previous iteration and encrypted under key pki−1 (in the first iteration,
these encryptions are simply c1, · · · , c`); for each NAND gate g in this layer
i, let α(g), β(g) be encryption of the values of its input wires; evaluate
g homomorhpically by computing γ(g) = Λi(α(g), β(g)) to obtain an
encryption of the value of g’s output wire under public key pki. At the
end, output the encryptions generated in the last iteration L.

sk, pk, tpk, α, and β are strings of length l(λ).

Circuit Prog(sk,pk)(α, β): Decrypt α and β to obtain a = Decsk(α) and b =

Decsk(β); output γ
$← Encpk(a NAND b).

Circuit tProg(tpk)(α, β): Output γ
$← Enctpk(0).

Both circuits are padded to their maximum size. Let s(λ) be an upper bound
on their sizes.

Fig. 2. Circuits used in the construction of LHE and its analysis

It follows from the correctness of pIO and Π that the scheme LHE is correct;
we refer the reader to the full version [19] for a formal proof.

Lemma 4. If pIO and Π are correct, then LHE has homomorphism.

Proof of Semantic Security of LHE Towards establishing the semantic
security of LHE, we rely on the security property of pIO for the class of

6 This is because the obfuscator piO(1λ, C) works with classes of circuits Cλ of size at
most λ.



samplers SΠ defined by the trapdoor encryption scheme Π used in LHE. Roughly
speaking, samplers in SΠ samples pairs of circuits where one of them is identical
the “honest” program used for generating the evaluation key in LHE, except
that a trapdoor public key tpk (instead of an honest public key) is hardwired

in (that is, Prog(sk,tpk)), and the other one is a “trapdoor” program tProg(tpk)

as described in Figure 2 that always generates a ciphertext of 0 under the
“trapdoor” public key hardwired inside. More precisely, we describe the class
of samplers in Figure 3.

Π = (KeyGen,Enc,Dec, tKeyGen) is a trapdoor encryption scheme, SK =
{skλ} is a sequence of strings of length l(λ), and s(λ) is an upper bound on
the sizes of programs Prog(sk,tpk) and tProg(tpk).

The Sampler DSK : The distribution DSK
s samples a trapdoor public key

tpk
$← tKeyGen(1λ), and outputs C0 = Prog(sk,tpk), C1 = tProg(tpk) and

z = tpk, where sk = skλ.
The Class SΠ : Let SΠ be the class of samplers that include distribution

ensembles DSK for all sequence of strings SK of length l(λ).

Fig. 3. The class of samplers for proving the semantic security of LHE.

Next we show that LHE is semantic secure. We note that for the proof to go
through, we only rely on the fact that piO is a pIO for the above described class
SΠ and the fact that trapdoor public keys of the trapdoor encryption scheme
Π are indistinguishable from honest public keys. The proof actually does not
depend on any hiding property in the trapdoor mode, which will only play a role
later when instantiating pIO for SΠ .

Lemma 5. Assume that Π is a trapdoor encryption scheme and piO is a pIO
for the class of samplers SΠ in Figure 3. Then, LHE is semantically secure.

Proof. Fix any polynomial time adversary A. We want to show that for every
λ ∈ N, it holds that, the advantage of the adverary AdvCPA[A] is negligible.

|Pr[A(pk, evk, LHE.Encpk(0)) = 1]− Pr[A(pk, evk, LHE.Encpk(1)) = 1]| < negl(λ) ,

where (pk, evk, sk)←LHE.Keygen(1λ).

Towards this, we consider two sequences of hybrids Hb
0 , · · · , Hb

L for b ∈
{0, 1}. Hb

0 is exactly an honest CPA game with the adversary A where it
receives a challenge ciphertext that is an encryption of b; in intermediate
hybrids, the adversary A participates in a modified game. We show that for
every two subsequent hybrids Hb

i , H
b
i+1, as well as H0

L, H
1
L, the view of A is

indistinguishable. Below we formally describe all the hybrids.



Hybrid Hb
0: Hybrid Hb

0 is an honest CPA game with A, where A receives

(pk, evk, c∗ = LHE.Encpk(b)) for freshly sampled (pk, evk, sk)
$← LHE.Keygen(1λ).

By construction of LHE, the view of A is,

view[A]b0 =
(
pk = pk0, evk = (Λ1, · · · , ΛL), cb = Encpk0(b)

)
Hybrid Hb

i for i > 0: Hybrid Hb
i proceeds identically to Hb

0 except that the
evaluation key evk is sampled in a different way. Recall that in Hb

0 , evk
consists of the obfuscated circuits Λ1, · · · , ΛL of circuits P1, · · · , PL, where
Pj = Prog(skj−1,pkj). In Hb

i , the last i circuits PL−i+1, · · · , PL are replaced

with tPL−i+1, · · · , tPL, where tPj = tProg(tpkj) (see Figure 2) hardwired

with a freshly sampled “trapdoor” public key tpkj
$← tKeyGen(1λ). Let

tΛL−i+1, · · · , tΛL be the obfuscated circuits of tPL−i+1, · · · , tPL. Then evki
in Hb

i consists of evki = Λ1, · · · , ΛL−i, tΛL−i+1, · · · , tΛL. The view of A in
Hb
i is

view[A]bi =
(
pk0, evki = (Λ1, · · · , ΛL−i, tΛL−i+1, · · · , tΛL), cb = Encpk0(b)

)
To show that the A cannot distinguish the two CPA games, it is equivalent

to show that A cannot distinguish hybrids H0
0 and H1

0 . Towards this, it suffices
to prove that A cannot distinguish any of the neighboring hybrids, that is,

– The views of A in H0
L and H1

L are indistinguishable,
– For every b and 0 ≤ i ≤ L, the views of A in Hb

i and Hb
i+1 are

indistinguishable,

Towards showing the first indistinguishability, we observe that in H0
L and

H1
L, the evaluation key evkL consists of only obfuscation of the “trapdoor”

programs {tΛi
$← piO(1s, tProg(tpkj))} which does not depend on any secret

key skj . Thus by the semantic security of Π, encryption Encpk0(0) and Encpk0(1)
are indistinguishable, and hence so are the views of A in H0

L and H1
L.

Towards showing the second indistinguishability, we observe that the only
difference between Hb

i and Hb
i+1 lies in whether the evaluation key contains an

obfuscation ΛL−i of the honest program Prog(skL−i−1,pkL−i) for layer L− i, or an

obfuscation tΛL−i of the trapdoor program tProg(tpkL−i). Furthermore, in both
Hb
i and Hb

i+1 the generation of the evaluation key does not depend on skL−i,
and hence neither do the views of A. Thus to show the indistinguishability of the
views of A it suffices to show the indistinguishability of the following ensembles,
from which the views of A in Hb

i and Hb
i+1 can be reconstructed.{

ΛL−i, pkL−i, pkL−i−1, )
}
λ
≈
{
tΛL−i, tpkL−i, pkL−i−1)

}
λ

where in the above distributions (pkL−i, skL−i) and (pkL−i−1, skL−i−1) are all
randomly sampled honest keys of Π, tpkL−i is a randomly sampled trapdoor
public key, and ΛL−i and tΛL−i are obfuscations of the honest program or
the trapdoor program as in Hb

i and Hb
i+1. We argue why the views of A in

Hb
i and Hb

i+1 can be reconstructed from the left and right random variables



respectively: This is because ΛL−i and tΛL−i correspond respectively to the
(L − i)’th obfuscation in the evaluation key in Hb

i and Hb
i+1, and the other

obfuscated programs Λ1, · · ·ΛL−i−1, tΛL−i+1, · · · , tΛL in the evaluation key can
be sampled efficiently given pkL−i−1 together with pkL−i or tpkL−i; finally,
encryption of b under pk0 can be sampled independently.

We show the above indistinguishability in two steps, via an intermediate
hybrid where an obfuscation Λ′L−i of the hybrid program Prog(skL−i−1,tpkL−i) is
sampled; the hybrid program is the same as the honest program except that a
trapdoor public key tpkL−i is hardwired.{

ΛL−i, pkL−i , pkL−i−1, )
}
λ
≈
{
Λ′L−i, tpkL−i , pkL−i−1, )

}
λ

(1){
Λ′L−i , pkL−i, pkL−i−1, )

}
λ
≈
{
tΛL−i , tpkL−i, pkL−i−1)

}
λ

(2)

Equation (1) follows directly from the fact that a randomly sampled trapdoor
public key is indistinguishable from an honest public key.

Equation (2) holds following the pIO security for the class of samplers SΠ .
More specifically, to show the equation, it suffices to show that it holds for every
fixed sequence of pairs S =

{
(pkL−i−1, skL−i−1)

}
of length l(λ) each. Fix such a

sequence S and let SK = {skL−i−1} be the sequence of secret keys only. Notice
that the sampler DSK described in Figure 3 produces exactly the hybrid and
trapdoor programs as above, that is,

(C0 = Prog(skL−i−1,tpkL−i), C1 = tProg(tpkL−i), z = tpkL−i)
$← DSK

s

Thus for the fixed sequence S, Equation (2) is equivalent to the following:{
(C0, C1, z)

$← DskL−i−1
s : (C0, C1, piO(1s, C0), z)

}
λ

≈
{

(C0, C1, z)
$← DskL−i−1

s : (C0, C1, piO(1s, C1), z)
}
λ

This indistinguishability follows directly from the premise that piO is a pIO for
the sampler DSK . Thus the views of A in Hb

i and Hb
i+1 are indistinguishable.

Instantiation of LHE We show how to instantiate our general transformation
from any trapdoor encryption scheme to a LHE scheme, more precisely, how to
realize the premise of Proposition 2.
Instantiation 1: Rerandomizable Encryption + Sub-exponential IO. The first
instantiation uses a ν-hiding trapdoor encryption scheme Π and a X-Ind pIO for
appropriate functions ν and X. Let us specify the functions: First, set ν(λ) =
negl(λ)2−2l(λ), where l(λ) is an upper bound on the lengths of the ciphertexts of
Π. Second, to set the function X, recall that every sampler DSK

s
7 in the class

SΠ produces circuits C0 = Prog(sk,tpk) and C1 = tProg(tpk) of size s(λ) and input

7 We remind the reader that all variables related with the encryption scheme Π, such
as pk, sk, tpk, are generated using security parameter λ, while the pIO scheme piO
and the related samplers all use security parameter s = s(λ).



length 2l(λ); by setting X(s(λ)) = 22l(λ), we have that the two sampled circuits
C0, C1 differ at most X(s) inputs and the output distributions of C0 and C1

are negl(λ)X(λ)−1-indistinguishable following from the ν-hiding property of Π.
Therefore DSK is an X-Ind sampler.

Therefore, any X-Ind pIO scheme is a pIO scheme matching the ν-hiding
trapdoor encryption scheme Π. Furthermore, by Lemma 3, the existence of a
ν-rerandomizable encryption scheme (in particular, a perfectly rerandomizable
one) implies that of a ν-hiding trapdoor encryption scheme. By Theorem 2, X-
Ind pIO can be constructed from any sub-exponentially indistinguishable IO and
sub-exponentially secure OWFs. Therefore, following Proposition 2, we have

Corollary 1 (LHE from rerandomizable encryption and sub-exp se-
cure IO and OWF.). Let Π be a perfectly rerandomizable encryption scheme.
Assume the existence of sub-exponentially indistinguishable IO for circuits and
sub-exponentially secure one-way functions. Π can be turned into a leveled
homomorphic encryption scheme.

Instantiation 2: Lossy Encryption + worst-case-input pIO. The second instanti-
ation combines a lossy encryption scheme, which by Lemma 2 directly implies
a statistical trapdoor encryption scheme Π, with a worst-case-input pIO. By
the statistical hiding property of the trapdoor mode of Π, every sampler DSK

in the class SΠ corresponding to Π samples circuits C0 = Prog(sk,tpk) and
C1 = tProg(tpk) with statistically close output distributions for every input.
Therefore, DSK is a worst-case-input indistinguishable sampler. In other words,
any worst-case-input pIO is a pIO for the class SΠ . Following Proposition 2,

Corollary 2 (LHE from lossy encryption and worst-case-input pIO). Let
Pi be a lossy encryption scheme. Assume the existence of a worst-case-input pIO
scheme piO. Then, Π can be transformed into a leveled homomorphic encryption
scheme.

Instantiation 3: CPA Encryption + Dynamic-input pIO for Specific Class.
Finally, we observe that any CPA encryption Π can be turned into a LHE,
if there exits a strong notion of pIO, namely dynamic-input pIO for SΠ . As
observed in Lemma 1, any CPA encryption scheme Π = (Gen,Enc,Dec) directly
implies a trapdoor encryption scheme Π ′ = (Gen,Enc,Dec, tKeyGen = Gen)
with a computationally hiding trapdoor mode. This implies that every sampler
DSK in the matching class SΠ is a dynamic-input indistinguishable sampler.
Therefore,

Corollary 3. Let Π be any CPA encryption scheme and Π ′ the corresponding
trapdoor encryption scheme. Assume the existence of a dynamic-input pIO
scheme piO for SΠ

′
. Then, Π can be transformed into a leveled homomorphic

encryption scheme.

We note that although general pIO for all dynamic-input indistinguishable
samplers is implausible by [22], pIO for the specific class of samplers SΠ

′

circumvents the implausibility result. This is because the implausibility of [22]



applies only to a specific class of samplers that produce (C0, C1, z) where z
is an obfuscated program that essentially distinguishes circuits with the same
functionality as C0 from ones with the same functionality as C1 using only
their I/O interfaces. However, samplers in SΠ

′
produce auxiliary input that is a

public key pk of Π, which cannot be used to tell apart circuits of functionalities
identical to Prog(sk,pk) or tProg(pk) through only their I/O interfaces, due to the
semantic security of Π. Therefore, dynamic-input pIO for SΠ

′
circumvents the

implausibility. We consider the same construction of X-Ind pIO as a potential
candidate construction of dynamic-input pIO for SΠ

′
.

4.3 From LHE to FHE

In this section, we show how to transform any leveled homomorphic encryption
scheme LHE with a fixed decryption depth into a fully homomorphic one, without
relying on circular security. More specifically,

– we say that a LHE scheme LHE = (LHE.Keygen, LHE.Enc, LHE.Dec, LHE.Eval)
has a fixed decryption depth DLHE.Dec(·), if for every polynomial depth L,
every (pk, sk, evk) in the support of LHE.Keygen(1λ, 1L(λ)), every freshly
generated or homomorphically evaluated ciphertext c∗ in the support of
LHE.Enc(pk, ·) or LHE.Eval(pk, (C, · · · )) with a depth L(λ) circuit C, the
decryption algorithm LHE.Decsk(c

∗) has depth bounded by DLHE.Dec(λ).

We now sketch a general transformation that turns any LHE scheme with a
fixed decryption depth into a FHE. The transformation proceeds in two steps.

A “imaginary” FHE with a non-succinct evaluation key: In a first step,
imagine a FHE scheme with an evaluation key evk that consists of a super-
polynomial number L(λ) of layer evaluation keys each of size poly(λ).
Each layer ` ∈ [L] is associated with a key tuple (pk`, sk`, evk`) of LHE
that supports evaluating circuits of depth D′ = DLHE.Dec + 1; moreover,
for each layer, an encryption of the secret key sk`−1 under the public

key pk` is released, that is, Λ` = (pk`, evk`, c`) where (pk`, sk`, evk`)
$←

LHE.Keygen(1λ, 1D
′
) for D′ = DLHE.Dec + 1 and c` = LHE.Encpk`(sk`−1).

Each Λ` is a layer evaluation key: Given two ciphertexts α, β of bits a and
b under pk`−1, we can obtain an encryption γ of a NAND b under pk`, by
evaluating homomorphically over c` the function fα,β(sk`−1) that decrypts
α, β using sk`−1 and computes NAND of the decrypted bits. Since fα,β has
depth exactlyDLHE.Dec+1, the homomorphic computation yields a ciphertext
γ of a NAND b under pk` correctly.
Therefore by publishing a super-polynomially number L of layer evaluation
keys evk = (Λ1, · · ·ΛL), the scheme supports homomorphic evaluation of
any polynomial depth circuits.

“Compress” the size of the evaluation key: The next step is to “com-
press” the size of the super-polynomially long evaluation key to obtain a
FHE with succinct evaluation key. This step relies on an IO for circuits and
a puncturable PRF. The idea is to obfuscate a master circuit Γ that on input



` ∈ [L] computes the `’th layer evaluation key Λ` produced using pseudo-
random coins generated with a puncturable PRF and hardwired PRF keys
k, k′. That is,

Λ` = Γ (k,k′)(`), where (pk`, sk`, evk`) = LHE.Keygen(1λ, 1D
′
;PRF(k, `)),

(pk`−1, sk`−1, evk`−1) = LHE.Keygen(1λ, 1D
′
;PRF(k, `− 1)),

c` = LHE.Encpk`(sk`−1;PRF(k′, `))

Λ` = (pk`, evk`, c`)

Since the size of the master program Γ (k,k′) is a fixed polynomial in λ, the

new evaluation key evk
$← iO(1s, Γ k,k

′
) is succinct, of a fixed polynomial

size in λ (where s an upperbound on the size of Γ and k, k′ are randomly
sampled PRF keys). It follows from a careful hybrid argument over the
virtual super-polynomial number of levels (similar to that in [11,32]) that
the semantic security of LHE remains even when the new evaluation key
is additionally released, provided that all primitives from LHE, to iO to
PRF all have a slightly inverse super-polynomially small distinguishing gap
µ(λ) = negl(λ)L(λ)−1.

Finally, we note that any LHE scheme with decryption in NC1 have a
fixed decryption depth (in particular, the depth is bounded by λ). Many
known constructions, for example [23,18,16,15,24] satisfy this property. Thus, if
these constructions are slightly super-polynomially secure, by assuming slightly
stronger underlying assumptions (for instance the LHE scheme of [18] can be
made slightly super-polynomially secure if assuming that the underlying learning
with error assumption is slightly super-polynomially secure), they can be directly
transformed into a FHE assuming slightly super-polynomially secure IO and
OWFs (without assuming circular security).

We also note that our LHE scheme constructed in Section 4.2 has a fixed
decryption depth, since its decryption algorithm is identical to that of the
underlying trapdoor encryption scheme. It can also be transformed into a FHE
using the above general transformation. In the full version [19], we provide a
formal description and security proof of the FHE transformed from our LHE.

Acknowledgements Ran Canetti’s research is supported by the Check Point
Institute for Information Security, ISF grant 1523/14, the NSF MACS Frontier
project, and NSF Algorithmic Foundations grant 1218461. Huijia Lin’s research
is partially supported by a gift from the Gareatis Foundation. Stefano Tessaro’s
research was partially supported by NSF Grant CNS-1423566 and a gift
from the Gareatis Foundation. Vinod Vaikuntanathan’s research was supported
by DARPA Grant number FA8750-11-2-0225, an Alfred P. Sloan Research
Fellowship, an NSF CAREER Award CNS-1350619, NSF Frontier Grant CNS-
1414119, a Microsoft Faculty Fellowship, and a Steven and Renee Finn Career
Development Chair from MIT.



References

1. Joël Alwen, Manuel Barbosa, Pooya Farshim, Rosario Gennaro, S. Dov Gordon,
Stefano Tessaro, and David A. Wilson. On the relationship between functional
encryption, obfuscation, and fully homomorphic encryption. In Cryptography and
Coding - 14th IMA International Conference, IMACC 2013, Oxford, UK, December
17-19, 2013. Proceedings, pages 65–84, 2013.

2. Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry.
Differing-inputs obfuscation and applications. Cryptology ePrint Archive, Report
2013/689, 2013. http://eprint.iacr.org/.

3. Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom functions.
IACR Cryptology ePrint Archive, 2013:699, 2013.

4. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In
FOCS, pages 166–175. IEEE Computer Society, 2004.

5. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private
randomizing polynomials and their applications. Computational Complexity,
15(2):115–162, 2006.

6. Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai.
Protecting obfuscation against algebraic attacks. In Phong Q. Nguyen and
Elisabeth Oswald, editors, EUROCRYPT, volume 8441 of Lecture Notes in
Computer Science, pages 221–238. Springer, 2014.

7. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J.
ACM, 59(2):6, 2012.

8. Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility
results for encryption and commitment secure under selective opening. In
EUROCRYPT, pages 1–35, 2009.

9. Mihir Bellare, Igors Stepanovs, and Stefano Tessaro. Poly-many hardcore bits
for any one-way function and a framework for differing-inputs obfuscation. In
ASIACRYPT, 2014.

10. Nir Bitansky, Ran Canetti, Henry Cohn, Shafi Goldwasser, Yael Tauman Kalai,
Omer Paneth, and Alon Rosen. The impossibility of obfuscation with auxiliary
input or a universal simulator. In CRYPTO, pages 71–89, 2014.

11. Nir Bitansky, Sanjam Garg, and Sidharth Telang. Succinct randomized encodings
and their applications. Cryptology ePrint Archive, Report 2014/771, 2014. http:

//eprint.iacr.org/.
12. Dan Boneh and Brent Waters. Constrained pseudorandom functions and their

applications. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT (2), volume
8270 of Lecture Notes in Computer Science, pages 280–300. Springer, 2013.

13. Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In
TCC, pages 52–73, 2014.

14. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In Hugo Krawczyk, editor, PKC, volume 8383 of Lecture
Notes in Computer Science, pages 501–519. Springer, 2014.

15. Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical gapsvp. In CRYPTO, pages 868–886, 2012.

16. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In ITCS, pages 309–325, 2012.

17. Zvika Brakerski and Guy N. Rothblum. Obfuscating conjunctions. In Ran Canetti
and Juan A. Garay, editors, CRYPTO (2), volume 8043 of Lecture Notes in
Computer Science, pages 416–434. Springer, 2013.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


18. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. In FOCS, pages 97–106, 2011. References are
to full version: http://eprint.iacr.org/2011/344.

19. Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation
of probabilistic circuits and applications. Cryptology ePrint Archive, Report
2014/882, 2014. http://eprint.iacr.org/.

20. Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system. In PKC, pages 119–136,
2001.

21. Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, Mariana Raikova, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In FOCS, 2013.

22. Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility
of differing-inputs obfuscation and extractable witness encryption with auxiliary
input. In CRYPTO, pages 518–535, 2014.

23. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

24. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In CRYPTO (1), pages 75–92, 2013.

25. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

26. Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with
auxiliary input. In FOCS, pages 553–562. IEEE Computer Society, 2005.

27. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst.
Sci., 28(2):270–299, 1984.

28. Brett Hemenway, Benôıt Libert, Rafail Ostrovsky, and Damien Vergnaud. Lossy
encryption: Constructions from general assumptions and efficient selective opening
chosen ciphertext security. In ASIACRYPT, pages 70–88, 2011.

29. Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In FOCS, pages 294–304.
IEEE Computer Society, 2000.

30. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, CCS, pages 669–684. ACM,
2013.

31. Gillat Kol and Moni Naor. Games for exchanging information. In STOC, pages
423–432, 2008.

32. Huijia Lin and Rafael Pass. Succinct garbling schemes and applications.
Cryptology ePrint Archive, Report 2014/766, 2014. http://eprint.iacr.org/.

33. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT, pages 223–238, 1999.

34. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In CRYPTO, pages 554–571, 2008.

35. Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications.
SIAM J. Comput., 40(6):1803–1844, 2011.

36. Manoj Prabhakaran and Mike Rosulek. Rerandomizable RCCA encryption. In
CRYPTO, pages 517–534, 2007.

37. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, STOC, pages 475–484.
ACM, 2014.

http://eprint.iacr.org/2011/344
http://eprint.iacr.org/
http://eprint.iacr.org/

	Obfuscation of Probabilistic Circuits and Applications

