
On Obfuscation with Random Oracles

Ran Canetti1,2 ?, Yael Tauman Kalai3, and Omer Paneth1 ??

1 Boston University
2 Tel Aviv University
3 Microsoft Research

Abstract. Assuming trapdoor permutations, we show that there ex-
ist function families that cannot be VBB-obfuscated even if both the
obfuscator and the obfuscated program have access to a random ora-
cle. Specifically, these families are the robust unobfuscatable families of
[Bitansky-Paneth, STOC 13].
Our result stands in contrast to the general VBB obfuscation algorithms
in more structured idealized models where the oracle preserves certain al-
gebraic homomorphisms [Canetti-Vaikuntanathan, ePrint 13; Brakerski-
Rothblum, TCC 14; Barak et al., Eurocrypt 14].

? Supported by the Check Point Institute for Information Security, ISF grant 1523/14,
the NSF MACS Frontier project, and NSF Algorithmic Foundations grant 1218461.

?? Supported by the Simons award for graduate students in theoretical computer science
and an NSF Algorithmic foundations grant 1218461.



1 Introduction

Program obfuscators, namely efficient compilers that transform an arbitrary pro-
gram into one that has the same functionality but is otherwise “impenetrable”,
are an intriguing concept. The widely applicable interpretation of “impenetra-
ble,” called virtual black-box (VBB) [BGI+01], requires that the obfuscated
version of a program helps learn any predicate of the program no more than
does oracle access to the program’s input-output functionality.

While a number of program families of interest are known to be VBB obfus-
catable (under some strong hardness assumptions), e.g. [Can97, Wee05, BCKP14],
no general-purpose VBB-obfuscators of all programs can exist. Indeed [BGI+01]
show that, assuming one way functions, there exist unobfuscatable functions.
These are functions that have a succinct description that cannot be effectively
learned when having only oracle access to the function. At the same time, how-
ever, this succinct description can be extracted from any program that computes
the function. Clearly, no program that computes such a function can possibly
be VBB-obfuscated.

The construction of [BGI+01] makes crucial use of the fact that programs
can be represented as strings and in particular can be executed with their own
specification as input. In contrast, in some abstract models where programs do
not necessarily have succinct representations as strings VBB obfuscation is in
fact obtainable. One example is “hardware assisted” obfuscation, where some
part of the computation is modeled as a black-box representing impenetrable
secure hardware [GIS+10, BCG+11].

Another example is motivated by the recent candidate construction of obfus-
cation for all circuits of Garg et. al. [GGH+13b], that is based on an algebraic
primitive called graded encodings [GGH13a]. The works of [BR14, BGK+14]
prove that close variants of the proposed candidate are VBB secure in a model
where the graded encodings are implemented by an ideal oracle. [CV13] study a
different construction based on ideal pseudofree groups. Here, idealized models
serve as an intermediate steps on the way to full-fledged obfuscation, namely as
a model for developing potentially viable obfuscation algorithms and for under-
standing their security properties, as well as the computational assumptions on
which their security might be based.

This raises natural questions: What are the simplest and minimally-structured
abstract models that allow for general-purpose VBB obfuscation? For instance,
do general-purpose VBB obfuscators exist in the random-oracle model? Do they
exist in the generic group model [Sho97, BS84]? In fact, is there any non-trivial
abstract model of computation where general-purpose VBB obfuscation is im-
possible?

Answers to the above question may shed light on what algebraic structure
(if any) is inherent for secure obfuscation — even in the plain model, and even
when attempting to obtain only weaker notions of obfuscation such as indistin-
guishability obfuscation.

We note that Barak et al. show that their impossiblity holds even when all
entities, namely the program to be obfuscated, the obfuscator and the obfuscated



program have access to a random oracle. 4 Goldwaser and Rothblum [GR14] ex-
tend this to show that even the considerably weaker notion of indistinguishability
obfuscation is unobtainable in general in this setting. However, these results do
not answer the above questions. Specifically, they leave open the possibility of
obfuscating fully specified programs that do not access the random oracle. In-
deed, Lynn et al. ask whether general purpose obfuscation is possible in that
setting [LPS04].

1.1 This Work

We consider obfuscation in the setting of Lynn et al. [LPS04], where both the
obfuscator and the obfuscated program have access to a random oracle, and
where the obfuscator is only required to operate on fully specified programs that
do not have access to the random oracle. Furthermore, we give the adversary
access to the same oracle. Here we show:

Theorem 1.1 (Main Theorem, informal). Assume trapdoor permutations
exist. Then there exist function families that cannot be VBB obfuscated, even
in a model where the obfuscator and the obfuscated function have access to a
random oracle.

Our impossibility extends to the case where the obfuscator and obfuscated
program have access to an invertible random permutation rather than a random
function. That is, the oracle represents a random permutation, and can be asked
both to evaluate the function and to invert it. It also extends to the case of
approximate obfuscation, where the obfuscated program is only required to agree
with the original program on a significant fraction of the inputs.

1.2 Techniques.

The starting point of our proof is the existence of robust unobfuscatable functions
(RUFs) which are a strengthening of the unobfuscatable functions of [BGI+01].
Essentially, RUFs have a succinct description that cannot be effectively learned
having only oracle access to the function. At the same time, this description can
be extracted from any program that approximates the function, namely agrees
with the function on some large fraction of the inputs, say 90%. Bitansky and
Paneth [BP13] construct RUFs from any trapdoor permutation.

Our proof now proceeds by transforming any obfuscator in the RO model
into an obfuscator in the plain model, namely one where the RO is not used.
The transformation loses in correctness: the resulting plain-model obfuscator
generates a program that computes the function correctly only on some fraction
of the inputs. Still, impossibility is demonstrated by applying the transformation
to an obfuscator for a family of RUFs.

4 In fact, [BGI+01] prove that their negative result holds in the more general settings
of bounded relativization.



We describe in more detail the transformation from obfuscation in the RO
model to obfuscation in the plain model. Let OR be an obfuscator in the RO
model. Our goal is to transform OR into an obfuscator O in the plain model.
We start by describing a simple warm-up. Let O be the following plain-model
obfuscator: given a description of a program C, the obfuscator O emulates an
execution of the RO obfuscator OR(C), answering every oracle query of OR

randomly and independently (repeated queries are answered consistently), and
obtains a RO obfuscation C̃R of C. Let RC be the set of RO query-answer pairs
that occurred during the emulation of OR(C). The obfuscator O then outputs
an obfuscated program C̃ that has hard-coded to it the description of the RO
obfuscation C̃R and the set RC . Given an input x, the obfuscation C̃ emulates
the RO obfuscation C̃R(x). C̃ answers any RO query made by C̃R as follows: if
the query appears in the set RC it is answered consistently with RC , otherwise,
a random answer is given.5

The correctness of O follows directly from the correctness of OR in the RO
model since, when C̃ emulates the program C̃R, all the RO queries made by C̃R

are answered randomly and consistently with the answers given to the obfuscator
OR(C) that generated C̃R. However, even if OR is a VBB obfuscator in the RO
model, the obfuscator O may be completely insecure, since the obfuscation C̃
includes the set RC in the clear. This may reveal information about the program
C.

In our actual transformation, the obfuscation C̃ will include a different set
of RO query-answer pairs RX that on the one hand, will give no information
about the program C, but on the other hand, will result in a obfuscation that
is only approximately correct.

The actual plain-model obfuscator O starts by emulating the random oracle
obfuscator OR(C) and obtains the RO obfuscation C̃R and the set RC as before.
Next, O “tests” the RO obfuscation C̃R to learn which oracle queries are often
made by C̃R when executed on a random input. Specifically, O samples random
inputs x1, . . . , x` used to test the program C̃R. The set RX is initially empty.
For every i ∈ [`], O emulates the RO obfuscation C̃R(xi) and answers any RO
query made by C̃R as follows: if the query appears in the set RC or in the set
RX it is answered consistently, otherwise, a random answer is given. In both
cases, the query-answer pair is added to the set RX . Note that the final set RX
may not contain all the queries in RC and it may also contain queries outside
RC .

Finally, the obfuscator O outputs an obfuscated program C̃ that has hard-
coded to it the description of the RO obfuscation C̃R and the set RX . As before,
the obfuscation C̃ on an input x emulates the RO obfuscation C̃R(x) and answers
any RO query made by C̃R as follows: if the query appears in the set RX it is
answered consistently with RX , otherwise, a random answer is given.

5 This results in a randomized obfuscated program. In the full construction we make
the obfuscated program deterministic by including in the description of the obfus-
cated program a list of random oracle answers that are reused in every evaluation.



We argue that the new set RX gives no information about the program
C: Consider the following alternative way to sample the set RX . Let R be a
random function that is consistent with the query-answer pairs in RC . Now
execute the RO obfuscation C̃R on random inputs x1, . . . , x` and given oracle
access to R. The set RX simply contains all the query-answer pairs that occur in
these executions. Intuitively, since RX can be sampled given the RO obfuscation
C̃R and oracle access toR, it follows from the VBB security of the RO obfuscator
OR that RX reveals no information about the program C.

To argue that C̃ is approximately correct, consider an evaluation of C̃ on a
random input x. C̃ emulates the RO obfuscation C̃R(x) and answers any RO
query made by C̃R randomly and consistently with the set RX . As discussed in
the warm-up, if all of the queries made by C̃R were answered consistently with
the set RC , perfect correctness would have followed from the correctness of OR

in the RO model. However, the emulation of C̃R(x) may make a query that is in
the set RC but not in the set RX . Such a query will be answered randomly in a
way that may not be consistent with the answer in RC and correctness may be
lost. We can therefore bound the probability that C̃(x) disagrees with C(x) by
the probability that C̃R(x) makes a query q ∈ RC \ RX . Such a query q must
not have been asked by any of the test executions of C̃R on the random inputs
x1, . . . , x`, otherwise it would have been added to the set RX . The probability
that a query in RC is asked by C̃(x) but is not asked by C̃(xi) for any i ∈ [`] is
inversely proportional to `. Therefore, by making ` large enough, we can make
the correctness error sufficiently small (recall that any constant correctness error
that is bounded away from 1 is sufficient for the negative result of [BP13] to hold).

Connection to [IR89]. Our proof follows the same outline as the proof of Impagli-
azzo and Rudich [IR89] separating key-agreement protocols from one-way func-
tions (as well as many subsequent works). In essence, Impagliazzo and Rudich
rule out existence of key-agreement protocols secure gainst unbounded adver-
saries in the RO model. They do so in two steps: first they transform any key-
agreement protocol in the RO model into a key-agreement protocol in the plain
model. Next they rely on the impossibility for information-theoretically secure
key-agreement. We follow the same two steps: first we transform any general
(possibly approximate) obfuscator in the RO model to a general approximate
obfuscator in the plain model. Next we rely on the impossibility of the latter.
Note that in our case the impossibility in the plain model is stronger in the
sense that it rules out existence of a primitive that provides only computational
security.

2 Impossibility of Obfuscation in the RO Model

In this section we prove an impossibility result for general purpose obfuscation
in the RO model. We start by defining approximate obfuscation and state the
known impossibility result for obfuscation with approximate correctness.



2.1 Approximate Obfuscation.

We define approximate obfuscation, both in the RO model and in the plain
model.

Let F = {Fk}k∈{0,1}∗ be a family of functions such that Fk has a domain
D|k|.

Definition 2.1 (Approximate Obfuscation). For a function ε : N→ [0, 1],
a PPT algorithm O is a secure ε-approximate obfuscator for F if it satisfies the
following requirements:

– Approximate Functionality: for all n ∈ N, k ∈ {0, 1}n:

Pr
x←Dn

[O(k)(x) 6= Fk(x)] ≤ ε(n) ,

where the probability is also over the coins of the obfuscator O.
– Virtual Black-Box: for every poly-size adversary A there exists a poly-size

simulator S and a negligible function µ such that for every k ∈ {0, 1}∗:∣∣∣Pr[A(O(k)) = 1]− Pr[SFk(1|k|) = 1]
∣∣∣ ≤ µ(|k|) ,

where the probabilities are over the coins of the obfuscator O, the adversary
A and the simulator S.

Definition 2.2 (Approximate Obfuscation in the RO model). For a
function ε : N → [0, 1], a PPT algorithm O is a secure ε-approximate obfus-
cator for F in the RO model if it satisfies the following requirements:

– Approximate Functionality: for all n ∈ N, k ∈ {0, 1}n:

Pr
x←Dn

[OR(k)(x) 6= Fk(x)] ≤ ε(n) ,

where R : {0, 1}∗ → {0, 1}∗ is a random function, and the probability is also
over R and the coins of the obfuscator O.

– Virtual Black-Box: for every poly-size adversary A there exist a poly-size
simulator S and a negligible function µ such that for every k ∈ {0, 1}∗ :∣∣∣Pr[AR(OR(k)) = 1]− Pr[SFk(1|k|) = 1]

∣∣∣ ≤ µ(|k|) ,

where the probabilities are over R, the coins of the obfuscator O, the adver-
sary A, and the simulator S.

Next we formally state the known impossibility results for approximate obfus-
cation in the plain model. The following is a direct corollary of [BP13, Theorem
3.1, Theorem 4.1, Lemma 4.1].

Corollary 2.1 ([BP13]). Assuming trapdoor permutations, there exists a fam-
ily of functions F such that an

(
1
2 − ε

)
-approximate obfuscator for F does not

exist for every noticeable function ε.



Remark 2.1 (More on the impossibility of approximate obfuscation). The work
of [BP13] constructs a family of error-robust unobfuscatable functions. These are
families {Fk}k∈{0,1}∗ such that given oracle access to Fk for a random key k, the
key remains completely hidden. However, given the code of any function that
agrees with Fk on 1

2 + ε of the inputs, it is possible to fully recover the key k.
This implies the following strong impossibility for approximate obfuscation: For
any

(
1
2 − ε

)
-approximate obfuscator for {Fk}, with probability at least ε

2 over
the coins the the obfuscation, the obfuscated function agrees with the original
function with probability at least 1+ε

2 . Therefore, with noticeable probability
over the coins the the obfuscation, it is always possible to reconstruct the entire
key from the obfuscated program.

2.2 The Impossibility

We start by describing a transformation from any (possibly approximate) obfus-
cation in the RO model to an approximate obfuscation in the plain model. The
approximation error of the resulting obfuscation will be slightly larger then that
of the original obfuscation.

Theorem 2.1. If a family of functions F has a secure ε-approximate obfuscator
in the RO model then it has a secure (ε+ δ)-approximate obfuscator in the plain
model for every noticeable function δ.

Then, we combine the transformation in Theorem 2.1 with the known impos-
sibility result for approximate obfuscation (Corollary 2.1) to derive the following
impossibility for obfuscation in the RO model:

Corollary 2.2. Assuming trapdoor permutations, there exists a family of func-
tions F such that an

(
1
2 − ε

)
-approximate obfuscator for F in the RO model does

not exist for every noticeable function ε.

Next we prove Theorem 2.1. See Section 1.2 for a high-level overview of the
proof.

Proof. Let O be a secure ε-approximate obfuscator for F in the RO model,
making at most ` = `(|k|) queries to the oracle. We construct a secure (ε + δ)-
approximate obfuscator O′ for F in the plain model.

The obfuscator O′:

1. On input k, emulate O(k) as follows. Run O on input k, answer every oracle
query made by O(k) randomly (assume w.l.o.g that O never makes the same
query twice), and obtain an obfuscated oracle circuit C. Set Rk to be all the
queries made by O(k) and their answers.

2. Set RC to be the empty set.

3. For i = 1 to
⌈
|C|·`
δ

⌉
:

(a) Sample xi ← D|k|.



(b) Execute C(xi). For every oracle query made by C(xi), if it is in RC ∪Rk
then answer consistently, otherwise answer randomly (assume w.l.o.g
that C never makes the same query twice). Add all new pairs of queries
made by C(xi) and their answers to RC .

4. Sample |C| random oracle answers r1, . . . , r|C|.
5. Output the description of a circuit C ′ as follows:

(a) The circuit C ′ has the description of C, the set RC and the answers {ri}
hardcoded into it.

(b) On input x, C ′ emulates C(x). Let qi be the i-th oracle query made by
C(x). If qi is in RC , C ′ answers consistently, otherwise, C ′ answers with
ri.

(c) C ′ outputs the same as C(x).

Next we show that O′ is a secure (ε+ δ)-approximate obfuscator. That is, O′
satisfies the approximate functionality and the virtual black-box requirements.

Approximate functionality. Fix a key k ∈ {0, 1}n, let ε = ε(n), δ = δ(n), and let
x be a random input sampled from Dn. By the approximate functionality of O,
the circuit C produced by O(k) satisfies:

Pr
x

[CR(x) 6= Fk(x)] ≤ ε . (1)

Let C ′ be the obfuscated circuit generated by the plain-model obfuscator
O′(k). Recall that C ′(x) emulates the execution of C(x) and the answers the
oracle queries made by C. Queries that are in RC are answered consistently
with R, and queries outside RC are answered from the set of random answers
{ri}. Since every distinct query made by C(x) is answered randomly and inde-
pendently, we can consider an identical experiment where C ′ answers all of C’s
queries using a random oracle R′ which agrees with R on all the queries in RC .
Additionally, all the answers of R and R′ outside the set Rk ∪ RC are random
independent of C. Let G(x) be the event that the execution of CR

′
(x) does not

query R′ on any query in the set Rk \ RC . We have that conditioned on G(x),
the output of CR

′
(x) and of CR(x) are identically distributed, and specifically:

Pr
x

[(CR
′
(x) 6= Fk(x)) ∧G(x)] = Pr

x
[(CR(x) 6= Fk(x)) ∧G(x)] ≤ ε .

Therefore, we can bound the probability of error on x by bounding the proba-
bility of the event ¬G(x) as follows:

Pr
x

[CR
′
(x) 6= Fk(x)] ≤ Pr

x
[(CR

′
(x) 6= Fk(x))∧G(x)]+Pr

x
[¬G(x)] ≤ ε+Pr

x
[¬G(x)] .

Thus, to prove approximate functionality it suffices to prove the following claim,
bounding the probability of the event ¬G(x).

Claim 2.2.

Pr
x

[¬G(x)] ≤ δ.



Proof (Proof of Claim 2.2.). We start by giving a high-level overview of the
proof. For a random input x, the execution of C(x) makes at most |C| oracle
queries. To bound the probability of the event ¬G(x) we bound the probability
that the i’th query of CR

′
(x) is the first query to fall in the set Rk\RC , for every

i ∈ |C|. To this end, we argue that the for every query q ∈ Rk, the probability
that the i’th query of CR

′
(x) is indeed q, but q was never queried during the

“testing phase” of O′ (Step 3) is small. (if q is queried queried during testing
phase then q ∈ RC .)

Recall that in the testing phase of O′ we execute CR on many random inputs.
Since we are only bounding the probability that the i’th query of CR

′
(x) is the

first query to fall outside the set Rk \ RC , we can condition on the event that
all previous queries do not fall in the set Rk \ RC . Conditioned on this event,
by the definition of the oracles R and R′, the i-th query of CR

′
and of CR are

identically distributed. Therefore, the probability that the i’th query of CR
′
(x)

is q, but q was never queried in any of the test executions is bounded by the
inverse of the number of test executions. Since the number of different queries
q ∈ Rk is bounded by ` we get the required bound on probability that the i’th
query of CR

′
(x) falls in the set Rk \ RC , and therefore also on the probability

of the event ¬G(x).
We continue with the formal proof of the claim. Let:

I =

⌈
|C| · `
δ

⌉
,

be the number if iterations of the loop in Step 3 of O′. Let qj be the j-th query
C(x) makes. Let qi,j be the j-th query made by the emulation of C on the
random input xi in the i-th iteration of the loop in Step 3. For every j ∈ [`], let
Gj(x) the event that qj /∈ Rk \ {qi,j}i∈[I]. Note that

Gj(x)⇒ qj /∈ Rk \ RC ,

and therefore,
∀jGj(x)⇒ G(x) .

Thus we can bound the probability of the event ¬G(x) as follows:

Pr
x

[¬G(x)] ≤ Pr
x

[¬G1(x) ∨ · · · ∨ ¬G|C|(x)]

=
∑
j∈|C|

Pr
x

[G1(x) ∧ · · · ∧Gj−1(x) ∧ ¬Gj(x)] .

It is therefore sufficient to show that for every j ∈ [|C|],

Pr
x

[G1(x) ∧ · · · ∧Gj−1(x) ∧ ¬Gj(x)] ≤ δ

|C|
.

To this end, fix j ∈ [|C|] and fix the oracles R and R′. Let G̃j−1(x) denote
the event:

G1(x) ∧ · · · ∧Gj−1(x) .



Note that:
Pr
x

[G̃j−1(x) ∧ ¬Gj(x)] ≤ Pr
x

[¬Gj(x)|G̃j−1(x)]

and therefore, it suffices to prove that:

Pr
x

[¬Gj(x)|G̃j−1(x)] ≤ δ

|C|
.

For every query q denote by

pq , Pr
x

[qj = q|G̃j−1(x)] .

Since for every i ∈ [I], x and xi are both uniform in Dn and since the oracles R
and R′ only differ on queries in the set Rk ∩ RC we have that conditioned on
G̃j−1(x) the view of the two executions:

CR
′
(x) and CR(xi)

up until the j-th query, are identically distributed. Therefore, for every i ∈ [I]:

pq = Pr
x

[qj = q|G̃j−1(x)] = Pr
x

[qi,j = q|G̃j−1(x)] .

Thus, as desired,

Pr
x

[¬Gj(x)|G̃j−1(x)] ≤∑
q∈Rk

Pr
x

[(qj = q) ∧ (∀i, qi,j 6= q) |G̃j−1(x)] ≤

∑
q∈Rk

pq(1− pq)
|C|·`
δ ≤ (2)

∑
q∈Rk

δ

|C| · `
≤ δ

|C|
,

where (2) follows from the fact that the expression pq(1− pq)e is maximized by
pq = 1

e+1 . This completes the proof of Claim 2.2.

Virtual Black-Box. Fix a key k ∈ {0, 1}n and let A′ be an adversary that tries
to learn some information from the obfuscation O′(k). We show how to use the
code of A′ to construct an adversary A that learns the same information from
the obfuscation O(k) where both A and O have access to the same random
oracle. That is, we will show that:

Pr[AR(OR(k)) = 1] = Pr[A′(O′(k)) = 1] , (3)

where the probabilities are overR, the coins of the obfuscators O and O′, and the
coins of the adversaries A and A′. By the security of O, there exist a simulator
S and a negligible function µ such that:∣∣Pr[AR(OR(k)) = 1]− Pr[SFk(1n) = 1]

∣∣ ≤ µ(n) . (4)



It follows from Equations (3) and (4) that S is a good simulator for A′ as well.
It is left to show how to construct an adversary A that satisfies Equation (3).
Loosely speaking, given an obfuscation O(k), A will use the same strategy of
the obfuscator O′ to transform the obfuscation O(k) into an obfuscation O′(k)
and then execute A′ on O′(k). A will use its random oracle to answer queries
made by O(k). Formally, A is defined as follows:

1. Given an obfuscated input circuit C and given access to oracle R, repeat the

following for i = 1 to
⌈
|C|·`
δ

⌉
:

(a) Sample xi ← Dn.

(b) Execute C(xi) and forward its oracle queries to R.

2. Sample |C| random oracle answers r1, . . . , r|C|.

3. Set RC to be the set of queries made by C in Step 1 and their answers.
Construct a circuit C ′ from C, RC and {ri} as in Step 5 of the obfuscator
O′.

4. Output the same as A′(C ′).

By construction, the circuit C ′ used by A in Step 4 is distributed identically to
the output of O′(k) and therefore Equation (3) holds.

References

[BCG+11] Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman
Kalai, and Guy N. Rothblum. Program obfuscation with leaky hardware.
In ASIACRYPT, pages 722–739, 2011.

[BCKP14] Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On
virtual grey box obfuscation for general circuits. In Advances in Cryptol-
ogy - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 17-21, 2014, Proceedings, Part II, pages 108–125,
2014.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscat-
ing programs. In CRYPTO, pages 1–18, 2001.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit
Sahai. Protecting obfuscation against algebraic attacks. In Advances
in Cryptology - EUROCRYPT 2014 - 33rd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages 221–238,
2014.

[BP13] Nir Bitansky and Omer Paneth. On the impossibility of approximate
obfuscation and applications to resettable cryptography. In STOC, pages
241–250, 2013.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation
for all circuits via generic graded encoding. In Theory of Cryptography
- 11th Theory of Cryptography Conference, TCC 2014, San Diego, CA,
USA, February 24-26, 2014. Proceedings, pages 1–25, 2014.



[BS84] László Babai and Endre Szemerédi. On the complexity of matrix group
problems I. In 25th Annual Symposium on Foundations of Computer
Science, West Palm Beach, Florida, USA, 24-26 October 1984, pages
229–240, 1984.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide
all partial information. In CRYPTO, pages 455–469, 1997.

[CV13] Ran Canetti and Vinod Vaikuntanathan. Obfuscating branching pro-
grams using black-box pseudo-free groups. IACR Cryptology ePrint
Archive, 2013:500, 2013.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear
maps from ideal lattices. In EUROCRYPT, pages 1–17, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sa-
hai, and Brent Waters. Candidate indistinguishability obfuscation and
functional encryption for all circuits. In FOCS, 2013.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and
Akshay Wadia. Founding cryptography on tamper-proof hardware to-
kens. In TCC, pages 308–326, 2010.

[GR14] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation.
J. Cryptology, 27(3):480–505, 2014.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable con-
sequences of one-way permutations. In Proceedings of the 21st Annual
ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle,
Washigton, USA, pages 44–61, 1989.

[LPS04] Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and
techniques for obfuscation. In Advances in Cryptology - EUROCRYPT
2004, International Conference on the Theory and Applications of Cryp-
tographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceed-
ings, pages 20–39, 2004.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related prob-
lems. In Advances in Cryptology - EUROCRYPT ’97, International Con-
ference on the Theory and Application of Cryptographic Techniques, Kon-
stanz, Germany, May 11-15, 1997, Proceeding, pages 256–266, 1997.

[Wee05] Hoeteck Wee. On obfuscating point functions. IACR Cryptology ePrint
Archive, 2005:1, 2005.


	On Obfuscation with Random Oracles

