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Abstract. Assuming the existence of indistinguishability obfuscation
(iO), we show that a number of prominent transformations in the random-
oracle model are uninstantiable in the standard model. We start by
showing that the Encrypt-with-Hash transform of Bellare, Boldyreva and
O’Neill (CRYPTO 2007) for converting randomized public-key encryption
schemes to deterministic ones is not instantiable in the standard model. To
this end, we build on the recent work of Brzuska, Farshim and Mittelbach
(CRYPTO 2014) and rely on the existence of iO for Turing machines
or for circuits to derive two flavors of uninstantiability. The techniques
that we use to establish this result are flexible and lend themselves to a
number of other transformations such as the classical Fujisaki–Okamoto
transform (CRYPTO 1998) and transformations akin to those by Bellare
and Keelveedhi (CRYPTO 2011) and Douceur et al. (ICDCS 2002) for
obtaining KDM-secure encryption and de-duplication schemes respectively.
Our results call for a re-assessment of scheme design in the random-oracle
model and highlight the need for new transforms that do not suffer from
iO-based attacks.
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1 Introduction

1.1 Background

The random-oracle model (ROM) [18] is an idealized model of computation
where all parties, honest or otherwise, have oracle access to a uniformly chosen
random function. Random oracles model ideal hash functions and have found a
plethora of applications in cryptography. They have enabled the security proofs
of a wide range of practical cryptosystems which include, amongst others, digital
signature schemes, CCA-secure encryption, key-exchange protocols, identity-based
encryption, cryptosystems that are resilient to related-key and key-dependent-
message attacks, as well as more advanced security goals such as deterministic



encryption of high-entropy messages, de-duplication schemes, and point-function
obfuscators. After designing and analyzing the scheme in the random-oracle
model, one then instantiates the oracle via a concrete, possibly keyed, hash
function. In this paper we revisit this methodology and show that a number of
prominent ROM cryptosystems cannot be securely instantiated in the standard
model.

1.2 Uninstantiability

The power and practicality of random oracles drew early attention to their
standard-model instantiations. Canetti, Goldreich and Halevi (CGH) [33] demon-
strated a general negative result by constructing digital signature and encryption
schemes which are secure in the random-oracle model but become insecure as soon
as the oracle is instantiated with any concrete hash function. Such uninstantiable
schemes rely on the existence of a compact description for concrete hash functions
and lack of one for truly random functions. Roughly speaking, the idea is to
take a secure ROM scheme and tweak it slightly so that it behaves securely
unless it is run on messages that match the code of the hash function used in the
instantiation, in which case it does something “obviously insecure” (e.g., returns
the signing key or the message).

A number of other works have further studied uninstantiability problems
associated with random oracles. In a follow-up work [34], CGH extend their result
to signature schemes which only support short messages. Bellare, Boldyreva and
Palacio [8] show that no instantiation of the hashed ElGamal key-encapsulation
mechanism composes well with symmetric schemes, even though it enjoys this
property in the ROM. Goldwasser and Kalai [44] study the Fiat–Shamir heuristic
and establish uninstantiability results for it. Nielsen [51] gives an uninstantiable
cryptographic task, namely that of non-interactive, non-committing encryption,
which although achievable in the ROM, is infeasible in the standard model.
CGH-type uninstantiability has been adapted to other models of computations
such as the ideal-cipher model [21] and the generic-group model [36].

A number of recent works have looked into ROM (un)instantiability in light
of the recently proposed candidate for indistinguishability obfuscation (iO) [39].
A secure indistinguishability obfuscator guarantees that the obfuscations of any
two functionally equivalent programs (modeled as circuits or Turing machines)
are computationally indistinguishable. On the positive side, Hohenberger, Sahai
and Waters [46] show how to instantiate the hash function in full-domain hash
(FDH) signatures using iO. Bellare, Stepanovs and Tessaro [19] show the first
standard-model construction for polynomially many hardcore bits for any one-
way function. Recently, Brzuska and Mittelbach [31] have shown how to use
iO to instantiate certain forms of Universal Computational Extractors (UCEs).
UCE is a novel framework of security notions introduced by Bellare, Hoang and
Keelveedhi [12] and can be used to generically instantiate random oracles in
many protocols.

On the negative side, Brzuska, Farshim and Mittelbach [27] show that un-
der the existence of iO, several security notions in the UCE framework are



uninstantiable in the standard model, and proposed fixes to salvage many of
the applications. Brzuska and Mittelbach [30] show that assuming iO, multi-bit
output point-function obfuscation secure in the presence of auxiliary information
cannot be realized. Both results can be interpreted as conditional uninstantiability
results as ROM constructions for both UCEs [12,50] and strong multi-output
bit point obfuscation [48] exist. Bitansky et al. [20] show that indistinguishabil-
ity obfuscation rules out the existence of certain types of extractable one-way
function families which can be constructed in the random-oracle model [32].

1.3 Our results

Our work continues the study of uninstantiability of random oracles and shows
that a number of well-known and widely deployed ROM transforms are provably
uninstantiable if indistinguishability obfuscators exist. More specifically, we are
interested in ROM transformations TRO that take as input any standard-model
scheme S which is guaranteed to satisfy a mild form of security, and convert S
into a new scheme TRO[S] in the random-oracle model that meets a stronger level
of security. A fundamental question for such transforms is their instantiability,
that is, whether or not there exists an efficient hash function H such that TH[S] is
strongly secure for any mildly secure S. We show a number of negative results in
this direction, which take the form: there is a mildly secure scheme S∗ such that
no matter which hash function H is picked, scheme TH[S∗] is provably insecure.

Our results come in two flavors depending on the class of programs that
the indistinguishability obfuscator supports. Assuming iO for circuits of a priori
bounded size b, we show there is a ROM cryptosystem which is uninstantiable
with respect to keyed hash functions of description size at most b. This means
that there exists a scheme Sb such that for any hash function H of description
size at most b the scheme TH[Sb] is insecure. This, in particular, yields an
uninstantiability result for any fixed and finite set of hash functions. This result,
however, does not rule out instantiating the oracle with hash functions which
have larger description size and are in some sense “more complex” than the base
scheme. By assuming the existence of iO for Turing machines we are able to
further strengthen this result to one which rules out instantiations with respect
to any, possibly scheme-dependent, hash function.

Overview of BFM. We build on techniques of Brzuska, Farshim and Mittelbach
(BFM) [27] to construct our uninstantiable schemes and briefly recall their
technique here. BFM utilize the power of indistinguishability obfuscation to
show that a recent notion of security for hash functions known as UCE1 is
uninstantiable in the standard model.1 To this end, BFM construct an adversary

1 In UCE1 (later renamed to UCE[Scup]) security a two-stage adversary needs to
distinguish a hash function from a random oracle. The first-stage adversary is given
oracle access to either the hash function under a random key or the random oracle.
It does not get to see the hash key but can leak a message to the second-stage
adversary on termination, which additionally gets the hash key and outputs a bit.



which outputs an indistinguishability obfuscation of the Boolean circuit

C[x, y](hk) := (H(hk, x) = y) ,

where x is a random domain point and y is the corresponding hash value which
could be real or ideal. That is, the circuit C[x, y] has x and y hard-coded into it
and gets as input a hash key hk, computes H(hk, x) and outputs 1 if and only if
this value is equal to y.

BFM need to argue that an indistinguishability obfuscation of this circuit
hides x whenever y is truly random (and not computed by applying the hash-
function to x). They prove this by a counting argument that establishes that,
under appropriate restrictions on the lengths of y and the length of the key hk, the
above circuit implements the constant zero circuit with overwhelming probability.
They then employ the security of the obfuscator to conclude as the zero circuit
is independent of x. The restriction that they require, is that the number of hash
keys hk is much smaller than the size of the range 2|y|, which means that y (with
overwhelming probability) is outside the image of the function H(·, x) that has a
fixed x and maps hash-keys hk to H(hk, x). On the other hand, the above circuit
returns 1 when the hash value y is computed as H(hk, x) and hk as the correct
hash key is plugged into C[x, y].

Techniques. In our uninstantiability results for encryption, we will embed an
obfuscated program into the ciphertext.2 We now describe this program which
is a universal variant of the BFM circuit. This program takes as input the full
description of a hash function Hhk, including its key hk if there is one, and returns
the result of running the BFM circuit on the input hash-function description. It
performs the latter in the standard way by using a universal evaluator UEval,
which could be a universal Turing machine or a universal circuit evaluator,
depending on the considered model of computation.

P[x, y](Hhk) := (UEval(Hhk, x) = y) .

So, the program P[x, y] has x and y hard-coded and takes as input a description of
Hhk, computes Hhk(x) and checks whether this value is equal to y. In other words,
we no longer consider a fixed keyed hash function, but instead (potentially) look
at the set of all hash functions on a given range and domain.3 (Similar ideas have
been used by Brzuska and Mittelbach [30] to study the feasibility of multi-bit
output point function obfuscation in the presence of auxiliary inputs under the iO
assumption.) Note that P[x, y] is either a circuit or a Turing machine depending
on the underlying universal evaluator UEval. In adopting this approach, a number
of technicalities need to be addressed, which we discuss next.

The second-stage adversary can no longer call the oracle. UCE1 security requires
that the leaked message should be such that it does not computationally reveal any
of the oracle queries when the oracle is a random function.

2 We speak of programs which can be modeled either as circuits or as Turing machines.
3 Alternatively, we are looking at the universal hash function.



Our ultimate goal is to derive a strong result which rules out instantiations (of
a transformation) by arbitrary hash functions. This means that program P above
should accept inputs of arbitrary length. This, however, lies beyond the powers of
the circuit model of computation which current indistinguishability obfuscators
support. We address this problem in two incomparable ways. First, we weaken
target uninstantiability and under iO for circuits rule out instantiations by a
priori bounded-size hash functions. Second, in order to strengthen this result to
full uninstantiability, we consider a stronger form of iO which supports Turing
machines. For our purposes, the crucial difference between iO for circuits and
iO fro Turing machines is that an obfuscated Turing machine is still a Turing
machine which can process inputs of arbitrary length. (Note that the actual
Turing machine that we need to obfuscate is a universal Turing machine and has
an a priori fixed size.) Our theorem statements will therefore contain two parts
to reflect this trade off between the strength of assumptions and the reach of the
uninstantiability result obtained.

A second problem arises from the fact that the number of possible hash
function descriptions might be greater than 2|y| so that we cannot directly apply
BFM’s counting argument. We overcome this obstacle by composing both sides
of the equality in P with a pseudorandom generator (PRG) and look at

P[x, y](Hhk) := (PRG(UEval(Hhk, x)) = PRG(y)) .

This does not affect the success probability of the attack and allows us to argue
that x remains hidden as follows: First note that the right-hand side PRG(y)
is a constant that does not depend on the program input and can thus be
hard-coded into the program. Now, in a first step we can replace the right hand-
side value with a truly random value by the security of the PRG. Note that in
this step we do not rely on the security of the obfuscator and merely use the
indistinguishability of program descriptions. Indeed, the two programs might
implement significantly different functionalities. Next, we use the fact that a truly
random value is, with overwhelming probability, outside the range of a PRG
with sufficiently long stretch. Hence, the obfuscations of the above program are
computationally indistinguishable from those of the zero program. We note that
our usage of the PRG is somewhat similar to that by Sahai and Waters in their
construction of a CCA-secure PKE scheme from iO [55], the range extension of
Matsuda and Hanaoka [49] of a multi-bit point function to obtain shorter point
values, the range-extension of a UCE1-secure hash function by Bellare, Hoang
and Keelveedhi [14], and the negative result of Brzuska and Mittelbach [30] on
multi-bit point-function obfuscation with auxiliary inputs.

Assumptions. Garg et al. [39] construct an indistinguishability obfuscator for
NC1 circuits based on intractability assumptions related to multi-linear maps,
and show how to bootstrap it to support all polynomial-time circuits via a
fully homomorphic encryption scheme with a decryption circuit in NC1. The
authors validate their multi-linear intractability assumption in a generic model
of computation. Recent results show how to improve the assumptions used in



constructing indistinguishability obfuscators [52,26,4,3,42], further supporting
their plausibility.

Indistinguishability obfuscation for Turing machines has been constructed
in the works of Boyle, Chung and Pass [25] and Ananth et al. [2]. The authors
study a stronger primitive called extractability or differing-inputs obfuscation
(diO) which extends iO to circuits (and Turing machines) that are not necessarily
functionally equivalent. The requirement is that any adversary that can break the
indistinguishability property can be converted to an extractor that can output a
point on which the two circuits differ. Boyle, Chung and Pass [25] and Ananth
et al. [2] show how to build iO for Turing machines assuming diO for circuits.
The plausibility of differing-inputs obfuscation, however, has become somewhat
controversial due to a recent result of Garg et al. [40]. These authors show that
the existence of a special-purpose obfuscator for a signature scheme implies that
diO with arbitrary auxiliary input cannot exist. Although we currently do not
know how to build this special-purpose obfuscator, its existence appears to be a
milder assumption than diO, one can consider its existence to be more likely. It is
therefore important to seek alternative instantiations of iO for Turing machines
from assumptions that are weaker than diO for circuits. Indeed, very recently and
shortly after the appearance of this work, Koppula, Lewko and Waters [47] have
succeeded in constructing iO for Turing machines without relying on diO, and
using iO for circuits, one-way functions and injective pseudorandom generators.

Deterministic encryption. Our first result establishes the uninstantiability of
the Encrypt-with-Hash (EwH) transform of Bellare, Boldyreva and O’Neill [7],
whereby one converts a randomized IND-CPA public-key encryption scheme into
a deterministic public-key encryption (D-PKE) scheme D-PKE by extracting the
randomness needed for encryption via hashing the message and the public key,
that is, the encryption algorithm D-PKE.EncRO(·,·)(m, (hk, pk)) first computes
random coins r ← RO(hk, pk‖m) and then invokes the base encryption algorithm
on message m, public key pk and random coins r to generate a ciphertext. This
simple transformation meets the strongest notion of security that has been
proposed for deterministic encryption (that is, PRIV security) in the ROM if the
underlying encryption scheme is IND-CPA secure. Standard-model constructions,
on the other hand, achieve weaker levels of security, e.g., security against block
sources [10,22] or q-bounded adversaries [38,29]. To this end, we ask if any
hash function can be used to instantiate the random oracle within the EwH
transform. Assuming iO for circuits/Turing machines, we build an IND-CPA
secure encryption scheme such that when the EwH transform is applied to
this specially devised encryption scheme together with some (b-bounded) hash-
function, the resulting scheme is not PRIV-secure, not even for block-sources or
1-bounded PRIV-security.

Starting with an arbitrary scheme PKE we consider a new scheme PKE∗ which
includes an indistinguishability obfuscation of the following program as part of



its ciphertexts.

P[pk,m, r](Hhk) := if (PRG(UEval(Hhk, pk‖m)) = PRG(r))

return m

else return 0

This program performs a check similar to that of the universal BFM circuit,
but instead of returning a Boolean value returns the encrypted messages when
the check passes. That is, in P[pk,m, r], the public-key pk, the message m and the
randomness r are parameters, and the program takes as input a hash-function
Hhk (potentially with some hard-coded key hk), evaluates Hhk on pk||m to get
some value y. Then, it applies PRG to y and checks whether PRG(y) is equal to
PRG(r). If this is the case, it returns the message m. Else, it returns 0.

We can use an obfuscation of this program to attack the security of EwHH[PKE∗].
The second stage of the adversary runs this program on the description Hhk of
the hash function that is used in the instantiation (with hard-coded hk) to obtain
the encrypted message. A corollary of this result is that under iO, no security
assumption (single or multi-staged, falsifiable or not) is strong enough to build
D-PKEs via EwH. In particular, a new UCE assumption used to instantiate
EwH [15] is uninstantiable assuming iO for Turing machines (and b-bounded
uninstantiable assuming iO for circuits). We remark that our results are incompa-
rable to those of Wichs [57] who shows an unconditional unprovability result for
D-PKEs using arbitrary techniques from single-stage assumptions. (Our results
are conditional and show uninstantiability of EwH regardless of the assumptions
used.) This result naturally extends to the Randomized-Encrypt-with-Hash [9]
transform for building hedged PKEs.

The Fujisaki–Okamoto transform. The above result generalizes to a wider class
of (possibly randomized) admissible transformations that use their underlying
PKE schemes in a structured way and admit recovery algorithms that satisfy
certain correctness properties. (We leave the details to the main body.) Somewhat
surprisingly, the Fujisaki–Okamoto (FO) transform for converting CPA into
CCA security is admissible and thus suffers from uninstantiability. The FO
transform, which dates back to the 1990s, is a simple and flexible technique
to boost security of various schemes and has been widely used in identity-
based encryption [24], its hierarchical and fuzzy variants [43,56], forward-secure
encryption [35], and certificateless and certificate-based encryption [1,41] to
mention a few. Our results, once again, come in two flavors depending on the
strength of the underlying obfuscator. Our techniques can be further tweaked to
show that one cannot instantiate the oracle used within the asymmetric component
of the FO transform. This means that the POWHF-encryption assumption of
Boldyreva and Fischlin [23] used for partial instantiation of the oracles in FO is
also uninstantiable if iO/iO for Turing machines exists.

Other constructs. The uninstantiability problems arising from the existence of
indistinguishability obfuscators are not limited to deterministic encryptions and



its generalizations. We revisit the work of Bellare and Keelveedhi (BK) [16] on
authenticated and misuse-resistant encryption of key-dependent data and show
that it too suffers from uninstantiability problems. Roughly speaking, BK give a
transformation called RHtE to convert authenticated encryption into one which
resists key-dependent-message (KDM) attacks. This is done by hashing the key
with a random nonce to derive the actual key used in encryption: one encrypts m
as (N,Enc(H(hk, N‖k),m)) for a random nonce N . Our iO-based uninstantiability
result describes an IND-CPA and INT-CTXT-secure authenticated encryption
(AE) scheme whose BK transformation is not KDM secure.

Interestingly, BK require the base scheme to meet a stronger security level
than IND-CPA: ciphertexts should be indistinguishable from random strings.
BK do not consider this difference to be of major importance; in the abstract
of their paper they write that they present a RO-transform RHtE that endows
any AE-scheme with this security. Our result brings this stronger requirement to
light, and shows that assuming that ciphertexts are pseudorandom might be a
way to circumvent uninstantiability as the current state-of-the-art obfuscators
produce programs that are structured and do not look random. Conversely, if an
indistinguishability obfuscator can produce obfuscations of the zero circuit that
look random,4 then reverting to the stronger security notion would no longer be
of any help.

As a final example we show that the Convergent-Encryption transform of
Douceur et al. [37] formalized by Bellare, Keelveedhi and Ristenpart (BKR) [17]
for building message-locked encryption is also uninstantiable. Once again, BKR
formally rely on pseudorandomness of ciphertexts but similar observation to
those given above for BK apply here too.

Comparison with CGH. Recall that Canetti, Goldreich and Halevi (CGH) [33]
show the uninstantiability of certain ROM digital signature and encryption
schemes without relying on iO. Their technique is to give a (contrived) scheme
that is secure in the random oracle model but behaves anomalously on certain
inputs that are related to a compact description of the hash function. Our
uninstantiability results share these features, that is, neither their nor our unin-
stantiability results apply to “natural” schemes. For instance, it is not known if
Encrypt-with-Hash when used with ElGamal is uninstantiable or not. On the
other hand, our results apply to natural transformations.

It is natural to ask if CGH-like techniques can be directly applied here so
as to obtain uninstantiability results that do not rely on the iO machinery. For
uninstantiability with respect to unkeyed hash functions, one can indeed construct
anomalous PKE schemes which follow the CGH paradigm and give the desired
uninstantiability result for Encrypt-with-Hash. For keyed hash functions, on the
other hand, there seems to be an inherent limitation to CGH-like techniques. For

4 Note that generally, obfuscations of circuits cannot look random, because obfuscation
maintains functionality and thus, the obfuscations of the zero circuit would be
distinguishable from those of the constant one circuit. This trivial attack, however,
does not apply here if we require pseudorandomness only for the zero circuit.



instance, the security model for D-PKEs do not allow message distributions to
depend on the hash key as this value is included in the public key and the latter
is denied to the first-stage adversary. Consequently there is no way to generate
messages which contain the full description of the hash function used, including
its key, which seems to be necessary when applying CGH-like techniques. It might
appear that this issue can be easily resolved by noting that the encryption routine
does have access to the hash key, and a full description of the hash function can be
formed at this point. The caveat, however, is that such an uninstantiable scheme
no longer falls under the umbrella of schemes arising from the Encrypt-with-Hash
transform. More precisely, although we can freely modify the base PKE to prove
uninstantiability, the transformation is fixed and it only allows black-box access to
the hash function and denies encryption access to the hash key.5 This observation
applies to other transformations as well. For instance, in the FO transformation
the message that is asymmetrically encrypted is chosen uniformly at random
and thus cannot be set to the description of the hash function. To summarize,
although the description of the hash function will be eventually made public, the
adversarial scheme never gets to the hash function in full and needs to coordinate
the attack with the actual adversary, who sees the hash key, to be successful.
Indistinguishability obfuscation allows this distributed attack to be carried out.

Concurrent work. In concurrent and independent work, Green et al. [45] use iO
and techniques similar to ours to demonstrate the uninstantiability of random-
oracle schemes. Like us, they embed an obfuscated program into schemes in order
to make them uninstantiable. Our results, however, rule out the instantiability
of (existing) random-oracle transformations whereas Green at al. construct
uninstantiable schemes for primitives which cannot be targeted with CGH-like
techniques. For instance bit encryption falls outside the reach of CGH as its input
space is too short and cannot be made to behave anomalously on special long
inputs. Green et al. show that indistinguishability obfuscation can be used to
extended CGH to such constrained primitives.

Primitive design. The shortcomings of ROM primitives that we have identified
call for a re-assessment of primitives whose security analyses have only been
carried out in idealized models of computation. To highlight the importance of
this task, we propose a new transform for building deterministic encryption that
is specifically designed to bypass our attacks. In this transform one encrypts
two values independently across two invocations of the underlying encryption
algorithm to make sure that the information needed for the attack is not available
to any of the invocations. (This transform, in particular, is not admissible.) We
prove this scheme secure in the ROM, but show that the program that one
would need to successfully attack the construction (assuming the availability of
all needed information) can be split into several programs such that by feeding
obfuscations of one program into the obfuscations of another an attack can be

5 Despite this, CGH-like techniques render Encrypt-with-Hash uninstantiable when
stronger notions of security are considered [53].



launched. We leave the characterization of the class of transformations which fall
prey to extensions of the iO attack as an interesting open problem.

We believe that the structural soundness of ROM schemes should be further
validated by studying if attacks similar to those given in this work can be launched
against them. To provably rule out such attacks one needs to reduce security
to assumptions, which although strong, are not known to be uninstantiable
under existence of (d)iO. Candidate examples include UCEs against statistically
and/or strongly unpredictable sources [27,31] and indeed indistinguishability
obfuscation itself. We note that recently Bellare and Hoang [11] have proposed a
D-PKE transform starting from lossy trapdoor function and statistical UCEs. This
approach can be further combined with stronger assumptions on the base schemes
(such as pseudorandomness of ciphertexts). Indeed, it would be interesting to
derive positive results that circumvent iO-based uninstantiability by merely
exploiting the pseudorandomness of ciphertexts, even for somewhat artificial
tasks. These would strengthen our confidence in applying the random-oracle
methodology despite the broad uninstantiability results presented in this paper.

2 Preliminaries

Notation. We denote the security parameter by λ ∈ N and assume that it is
implicitly given to all algorithms in the unary representation 1λ. We denote the
set of all bit strings of length ` by {0, 1}`, the set of all bit strings of finite length
by {0, 1}∗, the length of x ∈ {0, 1}∗ by |x|, the concatenation of two strings
x1, x2 ∈ {0, 1}∗ by x1‖x2, and the exclusive-or of two strings x1, x2 ∈ {0, 1}∗ of
the same length by x1 ⊕ x2. The i-th bit of a string x is indicated by x[i]. We
denote the empty string by ε. A vector of strings x is written in boldface, and
x[i] denotes its i-th entry. The number of entries of x is denoted by |x|. For a
finite set X, we denote the cardinality of X by |X| and the action of sampling x
uniformly at random from X by x←$ X. For a random variable X we denote the
support of X by [X]. A real-valued function ν(λ) is negligible if ν(λ) ∈ O(λ−ω(1)).
We denote the set of all negligible functions by negl.

An algorithm is a randomized, stateless Turing machine unless otherwise
stated. We call an algorithm efficient or PPT if its runtime on any choice of inputs
and random coins is at most a polynomial function of the security parameter. The
action of running an algorithm A on input x and random coins r is denoted by
y ← A(x; r). If A is randomized and no randomness is specified, then we assume
that A is run with freshly and uniformly generated random coins and write
y←$ A(x). An adversary is a tuple of stateful PPT algorithms. We omit explicit
input and output states to ease notations. When an adversary A = (A1,A2)
consists of two stages A1 and A2, these two stages are assumed to be distinct
algorithms that do not share any state, unless explicitly permitted to do so by a
game.

Turing machines and circuits. Throughout the paper we consider two models of
computation: Turing machines and circuits. Recall that a Turing machine can



take inputs of arbitrary length whereas the input length to a circuit is fixed.
We denote the runtime of a Turing machine M on input x by timeM(x) and its
description size by |M|. We denote the size (a.k.a. runtime) of a circuit C by
|C|. A universal Turing machine UM is a machine that takes two inputs (M, x),
interprets M as the description of a Turing machine and returns M(x). A universal
circuit UC is defined analogously on descriptions of circuits C and inputs x for
them. Note that UC only accepts inputs (C, x) of a specific total length, whereas
UM can take inputs of arbitrary length. In order to simplify the presentation we
use the term program to refer to either a Turing machine or a circuit. We may,
therefore, speak of a universal program UEval, which denotes either a universal
Turing machine UM or a universal circuit UC, and evaluates a program P on
some input x. When defining a program, we use the notation P[z](·) to emphasize
the fact that the value z is hard-coded into P.

Indistinguishability obfuscation. We define indistinguishability obfuscation for
circuits and Turing machines under a single definition. Roughly speaking, an
indistinguishability obfuscator (iO) ensures that the obfuscations of any two
functionally equivalent programs (that is, circuits or Turing machines) are com-
putationally indistinguishable. Indistinguishability obfuscation was originally
proposed by Barak et al. [6,5] as a potential weakening of the virtual-black-box
obfuscation property, for which wide infeasibility results are known. Here we give
a game-based definition of indistinguishability obfuscation in the style of [19] with
extensions to also cover obfuscation for Turing machines [2]. We only consider
the setting where both the sampler and distinguisher are uniform but allow
the sampler to output inequivalent programs with negligible probability. This
game-based formulation is convenient for use in proofs of security.

A PPT algorithm iO is called an indistinguishability obfuscator for a program
class P = {Pλ}λ∈N if iO on input the security parameter 1λ and (the description
of) a program P outputs a program P′ and furthermore the following conditions
are satisfied:

– Correctness. For all λ ∈ N, all P ∈ Pλ, and all P′←$ iO(1λ,P), the
programs P and P′ are functionally equivalent. That is, P(x) = P′(x) for all
input values x.

– Succinctness. There is a polynomial poly such that for all λ ∈ N, all P ∈ Pλ
and all P′←$ iO(1λ,P) we have that |P′| ∈ O(poly(λ+ |P|)).

– Input-specific runtime. There is a polynomial poly such that for all λ ∈ N,
all P ∈ Pλ and all P′←$ iO(1λ,P) and all input values x we have that
TimeP′(x) ∈ O(poly(λ+ TimeP(x))).

– Security. For any pair of PPT adversaries (S,D), where S is an equivalent
sampler, i.e., where

AdveqS (λ) := Pr[∃x s.t.P0(x) 6= P1(x) ∨ TimeP0
(x) 6= TimeP1

(x) :

(P0,P1, aux)←$ S(1λ)]

is negligible, we have that

AdvioiO,S,D(λ) := 2 · Pr
[

IOS,DiO (λ)
]
− 1 ∈ negl ,



where game IO is shown in Figure 1 on the left.

When working with circuits, succinctness and runtime requirements are redundant
and follow from the facts that iO is polynomial time and that the size and runtime
of a circuit are identical.

Garg et al. [39] prove that under intractability assumptions related to multi-
linear maps an indistinguishability obfuscator supporting all NC1 circuits exists.
Assuming the existence of a perfectly correct, leveled fully homomorphic en-
cryption scheme and a perfectly sound non-interactive witness-indistinguishable
proof system, they also show how to extended this to support all polynomial-size
circuits, i.e., the family C := {Cb(λ)}λ∈N where b is a polynomial and

Cb(λ) := {C : C is a valid circuit of size at most b(λ)} .

Several follow-up works improved the assumptions underlying indistinguishability
obfuscators as well as the performance [52,26,3,4,42]. As mentioned above, circuits
and obfuscations thereof admit fixed-length inputs only.

Remark. We define indistinguishability obfuscation with respect to circuit sam-
plers that are overwhelmingly equivalent, i.e., where

AdveqS (λ) ∈ negl .

Although we allow samplers to not always output functionally equivalent circuits,
the randomized sampler only errs with negligible probability. For any bound b,
existence of iO for Cb(λ) under our definition is implied by the (non-uniform)
definition of Garg et al. [39].

Ananth et al. [2] and Boyle et al. [25] give constructions of indistinguishability
obfuscators for Turing machines which admit inputs of arbitrary lengths. Their
constructions achieve the stronger notion of differing-inputs (a.k.a. extractability)
obfuscation, initially also suggested in the work of Barak et al. [6,5]. This type of
obfuscation can be regarded as a generalization of indistinguishability obfuscation
to programs which are not necessarily functionally equivalent. We recall [2,
Theorem 3] and refer the reader to the original works for details and discussion.

Theorem 1 (Ananth et al. [2]). Under the existence of CPA-secure leveled
fully homomorphic encryption, succinct non-interactive arguments of knowledge
(SNARKs), differing-inputs obfuscation for all circuits in P/poly, and collision-
resistant hash functions, there exists a differing-inputs obfuscator for the class of
all Turing machines M := {Mλ}λ∈N, where

Mλ := {M : M is a valid Turing machine of description size at most λ} .

Koppula, Lewko and Waters [47] have succeeded in constructing iO for Turing
machines without relying on diO, and using iO for circuits, one-way functions
and injective pseudorandom generators.



IOS,DiO (λ)

(P0,P1, aux)←$ S(1λ)

b←$ {0, 1}
P′←$ iO(1λ,Pb)

b′←$ D(P′, aux)

return (b = b′)

IND-CPAAPKE(λ)

(sk, pk)←$ PKE.Kg(1λ)

(m0,m1)←$ A(pk)

b←$ {0, 1}
c←$ PKE.Enc(pk,mb)

b′←$ A(c)

return (b = b′)

INDA1,A2
D-PKE (λ)

(m0,m1)←$ A1(1λ)

(sk, pk)←$ D-PKE.Kg(1λ)

b←$ {0, 1}
for i = 1 . . . |m0|do

c[i]← D-PKE.Enc(pk,mb[i])

b′←$ A2(pk, c)

return (b = b′)

Fig. 1. Left: IO game defining the security of an indistinguishability obfuscator. Mid-
dle: The IND-CPA game for a public-key encryption scheme. Right: The IND security
game for deterministic PKEs.

Public-key encryption. A public-key encryption scheme PKE := (PKE.Kg,PKE.Enc,
PKE.Dec) consists of three PPT algorithms as follows. On input the security
parameter, the randomized key-generation algorithm PKE.Kg(1λ) generates a
key pair (sk, pk). The randomized encryption algorithm PKE.Enc(pk,m; r) gets a
message m, a public key pk and possibly some explicit random coins r and outputs
a ciphertext c. The deterministic decryption algorithm PKE.Dec(sk, c) is given
a ciphertext c and secret key sk and outputs a plaintext m or a special symbol
⊥. We denote the supported message length by PKE.il(λ) and the maximum
length of random strings used to encrypt a PKE.il(λ)-bit message by PKE.rl(λ).
We say that scheme PKE is correct if for all λ ∈ N, all m ∈ PKE.il(λ), all
(sk, pk) ∈ [PKE.Kg(1λ)] and all c ∈ [Enc(pk,m)] we have that PKE.Dec(sk, c) = m.
We say that PKE is IND-CPA secure, if the advantage of any PPT adversary A
in the IND-CPA game (shown in Figure 1; center) defined by

Advind-cpaPKE,A(λ) := 2 · Pr
[

IND-CPAAPKE(λ)
]
− 1

is negligible.

Function families. Following [19], we define a function family FF as a five tuple
of PPT algorithms (FF.Kg,FF.Ev,FF.kl,FF.il,FF.ol) where the algorithms FF.kl,
FF.il, and FF.ol are deterministic and on input 1λ specify the key, input, and
output lengths, respectively. The key-generation algorithm FF.Kg gets the security
parameter 1λ as input and outputs a key fk ∈ {0, 1}FF.kl(λ). The deterministic
evaluation algorithm FF.Ev takes as input the security parameter 1λ, a key
fk, a message x ∈ {0, 1}FF.il(λ) and generates a hash value FF.Ev(1λ, fk, x) ∈
{0, 1}FF.ol(λ). We will often refer to function families as hash functions in this
work.

PRFs and PRGs. We say that a function family FF is pseudorandom if for any
PPT adversary A we have that

AdvprfFF,A(λ) := Pr
[
AFF.Ev(fk,·)(1λ) = 1

]
− Pr

[
ARO(·)(1λ) = 1

]
∈ negl .



In the first term above, the probability is taken over a random choice of a key
fk ∈ {0, 1}FF.kl(λ) and in the second over a random choice of RO with domain
{0, 1}FF.il(λ) and range {0, 1}FF.ol(λ).

We say (PRG,PRG.il,PRG.ol) is a secure pseudorandom generator if PRG on
strings of length PRG.il(λ) outputs strings of length PRG.ol(λ) and for any PPT
adversary A we have that

AdvprgPRG,A(λ) := Pr[A(1λ,PRG(s)) = 1 :s←$ {0, 1}PRG.il(λ)]

− Pr[A(1λ, y) = 1 : y←$ {0, 1}PRG.ol(λ)]

is negligible.

Keyed random oracles. Most random-oracle transformations and schemes in the
literature are analyzed in the “unkeyed” random-oracle model, and this reflects
the fact that a fixed unkeyed hash function will be used in their instantiations.
Keyed hash functions, however, are more powerful when it comes to instantiating
random oracles and this leaves the question of how the scheme is to be instantiated
with a keyed hash function, that is, how the hash key is to be generated and who
gets access to it is rather unclear. For example, if we consider a transformation of
symmetric encryption schemes, the hash key could be part of the key-generation
process in which case it remains hidden from the adversary, or it could be a
parameter generated during set-up, in which case it would be available to the
adversary. We therefore use a generalization of the standard random-oracle model
whereby all parties get access to a keyed random function. More precisely, in
the (kl, il, ol)-ROM, where (kl, il, ol) specify various lengths as before, on security
parameter λ all parties get access to a random function of the form

RO(·, ·) : {0, 1}kl(λ) × {0, 1}il(λ) −→ {0, 1}ol(λ) .

Note that we recover the standard unkeyed random-oracle model when kl(λ) =
0 (there is only one key ε, the empty string). In defining the security of a
cryptosystem, the underlying probability space is extended to include a random
choice of a keyed function (and choices of random key as specified by the scheme).
Whether or not a party gets to see the hash key depends on the specification of
the scheme and its security model. For instance, if a keyed ROM scheme includes
hash keys under its public keys, an honest or malicious party gets to sees the
hash key whenever it gets to see the public key. As our result is a negative result,
it suffices to consider weak adversaries that do not get oracle access and/or the
hash key in some of their stages, because weaker adversaries correspond to a
stronger negative result.

(Un)instantiability. Given a scheme in the keyed ROM, we consider its standard-
model instantiations via (concrete) keyed hash functions. Formally, this entails:
(1) using a hash function that has key, input and output lengths that are identical
to those of the keyed random oracle, (2) running the key-generation algorithm
whenever a hash key is generated in the ideal scheme, and (3) calling the evaluation



routine of the hash function whenever an oracle query is placed. Given a keyed
ROM scheme and a security model for it, we say that the scheme is instantiable
if there exists a hash function which when used to instantiate the scheme (and
its security model) results in a secure scheme (with respect to the instantiated
security model). Conversely, we say that a scheme is (strongly) uninstantiable if no
hash function can securely instantiate the ideal scheme. Finally, for a polynomial
bound p, we call a scheme b-uninstantiable, if no hash function of size at most
b(λ) can securely instantiate the scheme.

3 Deterministic Encryption

We start by studying the Encrypt-with-Hash (EwH) transform of Bellare, Boldyreva
and O’Neill (BBO) [7] for building deterministic encryption from standard (ran-
domized) encryption schemes. We show that under the existence of indistinguisha-
bility obfuscation there is an IND-CPA public-key encryption scheme that cannot
be safely used within EwH. We begin by formally defining the syntax and security
of deterministic PKEs and the EwH transform. We then prove uninstantiability,
and end with two corollaries of this result.

3.1 Definitions

Deterministic public-key encryption. Deterministic public-key encryption was
first introduced by Bellare, Boldyreva and O’Neill [7]. The syntax and cor-
rectness of a deterministic public-key encryption (D-PKE) scheme D-PKE :=
(D-PKE.Kg,D-PKE.Enc,D-PKE.Dec) is defined similarly to a randomized PKE
scheme with the difference that the encryption routine is deterministic (i.e.,
D-PKE.rl(λ) = 0). BBO [7] model the security of D-PKEs via a form of simulation-
based notion called PRIV. In later works, Bellare et al. [10] and independently
Boldyreva, Fehr and O’Neill [22] introduce an indistinguishability-based notion
called IND and show that it implies is equivalent to PRIV security. The IND
game is formally defined in Figure 1 on the right.6 Roughly speaking, an IND
adversary A := (A1,A2) consists of two stages. On input the security parameter,
adversary A1 outputs a pair of message vectors (m0,m1) of the same dimension
that have distinct components and component-wise contain messages of the same
length. (Adversary A1 does not get to see the public key.) Furthermore, each
component is required to have super-logarithmic min-entropy. This condition is
formalized by requiring that for any x ∈ {0, 1}D-PKE.il(λ), any b ∈ {0, 1} and any
i ∈ [|mb|],

Pr
[
x = mb[i] : (m0,m1)←$ A1(1λ)

]
∈ negl .

A key pair (pk, sk)←$ D-PKE.Kg(1λ) is then chosen, and according to the chal-
lenge bit b, one of the two message vectors is encrypted component-wise. The

6 Bellare et al. [10] allow an additional zeroth-stage adversary to output shared state
for adversaries A1 and A2. As we prove an impossibility result we choose the weaker
definition where this shared state is empty.



second-stage adversary A2 is run on the resulting vector of ciphertexts and the
public key, and wins the game if it correctly guesses the hidden bit b. We define
the advantage of an adversary A in the IND game (see Figure 1) against scheme
D-PKE by

AdvindD-PKE,A1,A2
(λ) = 2 · Pr

[
INDA1,A2

D-PKE(λ)
]
− 1 .

We say that scheme D-PKE is IND secure if the advantage of any PPT adversary
A = (A1,A2) in the IND game is negligible. The 1-bounded version of this
security model demands that the two vectors (m0,m1) only contain a single
message each.

The Encrypt-with-Hash transform. The Encrypt-with-Hash (EwH) transform
constructs a deterministic public-key encryption scheme from a (randomized)
public-key encryption scheme PKE in the random-oracle model [7]. We present
this transform in the keyed ROM, and note that it matches the original transform
for singleton key spaces. The keyed RO is assumed to have a range which matches
the randomness space of the PKE scheme and a domain which consisting of
all bit strings of length the maximum length of public keys plus the length of
messages. The EwH transform operates as follows.

The key-generation generates a key pair using the key-generation algorithm of
the base PKE scheme. It also generates a hash key hk←$ {0, 1}kl(λ) and returns

(sk, (hk, pk)). Algorithm D-PKE.EncRO(·,·)(m, (hk, pk)) first computes random
coins r ← RO(hk, pk‖m) and then invokes the base encryption algorithm on m
and pk and coins r to generate a ciphertext. The decryption routine is identical
to that of the underlying scheme (plus a ciphertext re-computation check to
ensure non-malleability). EwH results in an IND-secure D-PKE scheme in the
keyed ROM when starting from an IND-CPA public-key encryption scheme.

Key access in EwH. With the formalism introduced above, both adversaries A1

and A2 get oracle access to RO(·, ·). The first-stage adversary, however, does not
get to see hk since the hash key is distributed as a component of the public keys.
The second-stage adversary, on the other hand, does get to see it. A stronger
model where the hash key is given out in the first stage can be considered. EwH
meets this stronger notion of security, but since our results are negative we use
the conventional (and weaker) IND model.

3.2 Uninstantiability of EwH

When the EwH transformation is instantiated with an unkeyed random oracle
a CGH-style uninstantiability result can be directly established [33]. (This in
particular shows that the use of a keyed hash function is necessary to instantiate
EwH.) Given an arbitrary PKE scheme PKE, consider a tweaked variant of
it PKE′ which first interprets parts of the message m as the description of
a hash function H (together with its single key) and checks if the provided
random coins r match the hash value H(pk‖m). If so, it returns 0‖m and else it
returns 1‖PKE.Enc(pk,m; r). Scheme PKE′ is still IND-CPA secure because the



probability that a truly random value r matches H(pk‖m) is negligible. On the
other hand, when the random coins are generated deterministically by applying a
hash function, an IND adversary which asks for encryptions of mi‖H for any two
high min-entropy messages m0 and m1 which differ, say, on their most significant
bits can easily win the game.7 The standard IND game, however, restricts the
first-stage adversary not to learn the public key, and thus, it cannot guess the
(high min-entropy) hash key.

We show how to use indistinguishability obfuscation to extend the above
uninstantiability to keyed hash functions. As mentioned in the introduction, our
result comes in the weak and strong flavors depending on the programs that the
obfuscator is assumed to support. Assuming iO for Turing machines we obtain a
strong uninstantiability result: there exists an IND-CPA encryption scheme that
cannot be securely used in EwH in conjunction with any keyed hash function.
Assuming the weaker notion of iO for circuits, we get b-uninstantiability: for any
polynomial bound b there exists an IND-CPA scheme that cannot be securely
used in EwH for any hash function whose description size is at most b. The latter
result is still quite strong as, in particular, it means that for any finite set of
hash functions (e.g., those which are standardized), we can give a PKE scheme
that when used within EwH yields an insecure D-PKE scheme for any choice of
hash function from the set. We note that the adversarial PKE scheme that we
construct depends only on an upper bound on description sizes and not on their
implementation details.

Theorem 2 (Uninstantiability of EwH). Assuming the existence of indistin-
guishability obfuscation for Turing machines M (resp. b-bounded circuits Cb),
the EwH transform is uninstantiable (resp. b-uninstantiable) with respect to IND
security in the standard model.

We start by giving a high-level description of the proof before presenting the
details. We may assume, without loss of generality, that an IND-CPA-secure PKE
scheme exists as otherwise uninstantiability trivially holds. This, in turn, implies
that we can also assume the existence of a secure pseudorandom generator.

Now given an IND-CPA-secure PKE scheme PKE, we construct a tweaked
scheme PKE∗ that is also IND-CPA secure but the D-PKE scheme EwHH[PKE∗]
fails to be IND secure.

To construct the adversarial scheme PKE∗ we follow a similar strategy to
CGH. The fundamental difference here is that PKE∗.Enc does not have access
to the hash key. To overcome this problem, we consider the obfuscation of a
program P′ that implements a universal variant of the BFM circuit [27], i.e., it
takes as input the description of a hash function H(hk, ·), with a hard-wired key,
runs it on two values m and pk embedded into P′, and outputs m if the result
matches a third hard-wired value r:

P′[pk,m, r]
(
H(hk, ·)

)
:= if H(hk, pk‖m) = r return m else return 0 .

7 This attack generalizes to the setting where the first-stage adversary can guess the
hash key with non-negligible probability and in particular, EwH is uninstantiable
with respect to the stronger IND model discussed above.



The tweak that we introduce in PKE∗ is that the encryption operation appends
obfuscations of P′[pk,m, r] to its ciphertexts, where pk, m and r are the values
input to the encryption routine.

We need to argue (1) that this tweak allows an adversary to break the scheme
whenever the hash function is instantiated and (2) that outputting such an
indistinguishability obfuscation of P′ does not hurt the IND-CPA security of
PKE∗.

For (1), note that given an obfuscation of P′[pk,m, r] as well as a description
of H(hk, ·), an adversary can recover m by running the above circuit on H(hk, ·).
Now the second stage of the IND adversary gets the public key and thus the
description of the hash-function H(hk, ·). Furthermore, it also gets a ciphertext
which contains an obfuscation of P′[pk,m, r]. Hence, the second-stage adversary
has all the information needed to break the IND security of the deterministic
encryption scheme EwHH[PKE∗].

Now, intuitively, this insecurity might have nothing to do with the transform
because the tweaked scheme PKE∗ is already insecure anyway. Hence, we also
need to argue that PKE∗, as a randomized encryption scheme, is IND-CPA secure.
Following BFM, we try to prove this by showing that the obfuscated circuit
is functionally equivalent to the zero circuit and hence it does not leak any
information about m.

We would like to argue that for a truly random r—such an r is used in
randomized encryption—P′ implements the constant zero program Z. Indeed, if r
is sufficiently longer than |pk|+ |m| then for any fixed H(hk, ·), over a random
choice of r the check performed by P′ would fail with all but negligible probability.
This, however, does not necessarily mean that the circuit is functionally equivalent
to Z as there could exist a hash function H(hk, ·) which passes the check. Contrary
to BFM, we cannot bound the probability of this event via the union bound as
the number of hash descriptions might exceed the size of the randomness space.

To resolve this issue, we consider a further tweak to the base scheme. We
consider a scheme which has a much smaller randomness space and instead uses
coins that are pseudorandomly generated. This ensures that the randomness space
used by PKE is sparse within the set of all possible coins, allowing a counting
argument to go through. We adapt the program above to cater for the new
tweaks:

P[pk,m,PRG(r)]
(
H(hk, ·)

)
:= if PRG(H(hk, pk‖m)) = PRG(r)

return m

else return 0 .

At this point it might appear that no progress has been made as the above
program, for reasons similar to those given above, is not functionally equiva-
lent to Z. We note, however, that for a truly random s ∈ {0, 1}PRG.ol(λ) the
program P[pk,m, s] has a description which is indistinguishable from that of
P[pk,m,PRG(r)] down to the security of PRG. Furthermore for such an s, this
program can be shown to be functionally equivalent to the zero circuit with



overwhelming probability as s will be outside the range of the PRG with over-
whelming probability. These two steps allow us to prove that obfuscations of P
leak no information about m, and show that scheme PKE∗ is IND-CPA secure.

Finally, notice that obfuscations of P (similarly to those of P′) allow an
IND adversary to break the resulting EwH-transformed scheme: simply run the
obfuscation of P on the description of the hash function used in the instantiation
(with a hard-wired key) to recover the encrypted message.

Not that formally program P will use a universal program evaluator to run
its input hash-function descriptions. If the (obfuscated) program is a Turing
machine, it can be run on arbitrary large descriptions and arbitrarily sized hash
functions are ruled out. On the other hand, if the program is a circuit, it has
an a priori fixed input length, and thus can only be run on hash functions that
respect the input-size restrictions. We next formalize this proof intuition.

Proof (of Theorem 2). Let PKE be an IND-CPA-secure public-key encryption
scheme, PRG be a pseudorandom generator of appropriate stretch and iO be an
indistinguishability obfuscator supporting either Turing machines or circuits. We
define a modified PKE scheme PKE∗ as follows. The key-generation algorithm
is unchanged. The adapted encryption algorithm is defined as shown below by
appending an obfuscated program P to its outputs. UEval denotes a universal
program evaluator. The modified decryption algorithm ignores the P component
and decrypts as in the base scheme.

Algo. PKE∗.Enc(pk,m; r‖r′)

s← PRG(r)

c← PKE.Enc(pk,m; s)

P← iO(P[pk,m, s](·); r′)

return (c,P)

Prog. P[pk,m, s](H(hk, ·))

r‖r′ ← UEval(H(hk, ·), pk‖m)

s′ ← PRG(r)

if (s′ = s) then return m

return 0

When we consider the above construction with respect to circuits, we need to
specify an extra parameter b that upper-bounds the size of the inputs to the
universal circuit evaluator. This maximum size of programs that the universal
circuit admits corresponds to the maximum size of the hash functions that our
uninstantiability proof applies to. Note that when the construction is considered
for Turing machines, the input size is arbitrary.

We show that the above tweaked scheme PKE∗ is IND-CPA secure via a
sequence of four games that we describe next. We present the pseudocode in
Figure 2.

Game0: This game is identical to the IND-CPA game for the randomized base
scheme PKE∗ and an arbitrary adversary A.

Game1: In this game the randomness s used in encryption is no longer generated
via a PRG call and is sampled uniformly at random.

Game2: In this game the ciphertext component P is generated as an indistin-
guishability obfuscation of the zero program (that is, Turing machine or
circuit) Z padded to the appropriate length (and running time).



Game0(λ)

b←$ {0, 1}
(sk, pk)←$ PKE.Kg(1λ)

(m0,m1)←$ A(pk)

r‖r′←$ {0, 1}PKE.rl(λ)

s← PRG(r)

c← PKE(pk,mb; s)

P← iO(P[pk,mb, s]; r
′)

b′←$ A(c,P)

return (b′ = b)

Game1(λ)

b←$ {0, 1}
(sk, pk)←$ PKE.Kg(1λ)

(m0,m1)←$ A(pk)

r‖r′←$ {0, 1}PKE.rl(λ)

s← {0, 1}PRG.ol(λ)

c← PKE(pk,mb; s)

P← iO(P[pk,mb, s]; r
′)

b′←$ A(c,P)

return (b′ = b)

Game2(λ)

b←$ {0, 1}
(sk, pk)←$ PKE.Kg(1λ)

(m0,m1)←$ A(pk)

r‖r′←$ {0, 1}PKE.rl(λ)

s← {0, 1}PRG.ol(λ)

c← PKE(pk,mb; s)

P← iO(Z|P[pk,mb,s]|; r
′)

b′←$ A(c,P)

return (b′ = b)

PRG iO

Fig. 2. Hybrids used in the proof of Theorem 2. The highlighted lines show the changes
in game transitions.

We now show that each of the above transitions negligibly changes the game’s
output with respect to any adversary A.

Game0 to Game1. We bound the difference in these games by the security of
PRG. Note that a PRG adversary that gets as input y, a PRG image under a
uniformly random seed or a truly uniformly random value, can perfectly simulate
games Game0 and Game1 for A by using y in place of s. If y is a PRG image,
then Game0 is run and if y is uniformly random the Game1 is run:

Pr[Game0(λ)]− Pr[Game1(λ)] ≤ AdvprgPRG,A(λ) .

Game1 to Game2. We show that this hop negligibly affects the winning probability
of A down to the security of the indistinguishability obfuscator. We let S to be
the sampler which runs all the steps of Game1 using the first phase of A up to
the generation of P. It then sets P0 := P[pk,mb, s], P1 := Z|P0| and aux to be the
ciphertext component c and the internal state of the first phase of the IND-CPA
adversary. Algorithm D receives an obfuscationP of either P0 or P1, and resumes
the second phase of A on (c,P) using the state recovered from aux. When P0 is
obfuscated A is run according to the rules of Game1 and when P1 is obfuscated
A is run according to the rules of Game2. Hence,

Pr[Game1(λ)]− Pr[Game2(λ)] ≤ AdvioiO,S,D(λ) .

We must show that the sampler S constructed above outputs functionally equiv-
alent circuits with overwhelming probability. Assuming that the stretch of the
PRG is sufficiently large, i.e., PRG.ol(λ) ≥ 2 · PRG.il(λ), by the union bound the
probability over a random choice of s that there exists an r ∈ {0, 1}PRG.il(λ) such
that PRG(r) = s is upper bounded by 2PRG.il(λ)−PRG.ol(λ) ≤ 2−PRG.il(λ). Hence,
the probability that P0 is functionally inequivalent to the zero circuit is upper



bounded by 2−PRG.il(λ), that is,

Pr
[
∃xP0(x) 6= 0 : (P0,P1, aux)←$ S(1λ)

]
≤ 2−PRG.il(λ) .

When working with Turing machines, we also need to ensure that the two
programs used above respect the run-time requirements of the definition of a
secure indistinguishability obfuscator for Turning machines. Formally, we will
implement the Turing machines P and Z obliviously as follows. We first consider
an oblivious Turing machine which takes in the description of the hash function
and a message as input and performs exactly the same computation that P does.
We then implement P by fixing the message input of this machine to that passed
to the encryption algorithm, retaining the machine’s oblivious structure. The
same strategy will be used in constructing the zero circuit, where the constant zero
message (of correct length) is hard-wired in. Since these machines are oblivious,
their runtimes depend only on the sizes of the message and the hash description
and hence coincide.

Game2. We reduce the advantage of A in Game2 to the IND-CPA security of
scheme PKE. The only difference between this game and the usual IND-CPA
game for PKE is that an obfuscation of Z|P[pk,mb,s]| is attached to the ciphertexts.
This program has a public description and hence its obfuscations can be perfectly
simulated. Hence,

2 · Pr[Game2(λ)]− 1 ≤ Advind-cpaPKE∗,A(λ) .

The attack. To conclude the proof, we show there exists an adversary (A1,A2)
that breaks the IND security of EwHH[PKE∗] for any function H that respects
the input requirements of P (arbitrary if P is a Turing machine, and b-bounded if
a circuit). Adversary A1 chooses two values x0, x1←$ {0, 1}PKE.il(λ)−1 uniformly
at random and outputs messages m0 := x0‖0 and m1 := x1‖1. Observe that A1

adheres to the entropy requirements of admissible IND adversaries. Adversary
A2 gets as input the public key (pk, hk) and a ciphertext (c,P). It then evaluates
P on the description of hash function H(hk, ·) with key hk recovered from the
public key and hard-coded into the program description. (Note that if we are
considering circuits, the description of this circuit must have size at most b(λ).)
Adversary A2 returns the least significant bit of P’s output. This adversary and
its operation within the IND game is shown in Figure 3. By the correctness of
the obfuscator, (A1,A2) always win IND with probability 1 irrespectively of the
message that is encrypted:

AdvindD-PKE,A1,A2
(λ) = 1 .

ut

3.3 Consequences for UCEs

We turn to Universal Computational Extractors (UCEs), a novel notion intro-
duced by Bellare, Hoang and Keelveedhi (BHK) [12] to generically instantiate



INDA1,A2

EwHH[PKE∗]
(λ)

1 : b←$ {0, 1}

2 : (m0,m1)←$ A1(1λ)

x0←$ {0, 1}PKE.il(λ)−1

x1←$ {0, 1}PKE.il(λ)−1

return (x0‖0, x1‖1)

3 : (sk, pk)←$ D-PKE.Kg(1λ)

4 : hk←$ HKg(1λ)

5 : (c,P)← EwHH[PKE∗].Enc((pk, hk),mb)

r‖r′ ← H.Ev(hk, pk‖mb)

(c,P)← PKE∗.Enc((pk, hk),mb; r‖r′)
s← PRG(r)
c← PKE.Enc(pk,mb; s)

P← iO(P[pk,mb, s](·); r′)
return (c,P)

return (c,P)

6 : b′ ← A2(1λ, (pk, hk), (c,P))

mb ← P(H(hk, ·))
b′ ← mb[|mb|]
return b′

7 : return (b = b′)

Fig. 3. The IND-security game for scheme EwHH[PKE∗] with our adversary (A1,A2)
as constructed in the proof of Theorem 2. The boxed algorithms are to be understood
as subroutines.

random oracles across a number of cryptographic protocols. UCEs constitute a
set of assumptions that roughly speaking model the strong extractor properties
enjoyed by (keyed) random oracles. One application of this new framework has
been to the EwH transform. BHK [15] show that if a scheme PKE is IND-CPA
secure and a hash function H meets what they call UCE[Scup ∩ SPKE] security
then EwHH[PKE] is IND secure. (We refer the reader to the May 2014 version
of the paper for the details.) We emphasize that this security definition depends
on the PKE scheme, because the source class SPKE is restricted to those which
run the PKE scheme as a subroutine. Our negative results on EwH show that
UCE[Scup ∩ SPKE] security is uninstantiable.

Corollary 1 (UCE[Scup∩SPKE] uninstantiability). Assuming the existence of
indistinguishability obfuscation for Turing machines M (resp. b-bounded circuits
Cb), UCE[Scup ∩ SPKE] security for hash functions is uninstantiable (resp. b-
uninstantiable) in the standard model.



We remark that BHK based the security of EwH on other stronger UCE as-
sumptions [12,13]. Our results also show the uninstantiability of these notions
assuming indistinguishability obfuscation and in particular imply the negative
results of [27]. In particular, we can rule out the instantiatiability of the so-called
bounded paralell sources[13] by considering sources that internally run an ob-
fuscator. (This translates to D-PKE schemes which run an obfuscator in their
encryption routine as we constrcut above.) The results of BFM [27], however,
rule out a wider choice of parameters for bounded paralell sources.

3.4 Extension to hedged PKEs

Hedged public-key encryption, introduced by Bellare et al. [9] models the security
of public-key encryption schemes where the random coins used in encryption
might have low entropy. Indistinguishability under chosen-distribution attacks
(IND-CDA) shown in Figure 4 formalizes the security of hedged PKEs. This
notion is similar to IND and the only difference is that the adversary additionally
to the two message vectors also outputs a randomness vector. The high min-
entropy restriction is spread over the message and randomness vectors. When the
length of the randomness entries is 0, one recovers the IND model for D-PKEs.
A transform similar to EwH, called Randomized Encrypt-with-Hash, can be
defined for hedged PKEs [9]: hash the message, public key and the randomness
to obtain new coins, and use them in encryption. Our uninstantiability result
can be immediately adapted to this transform as long as the message space has
super-polynomial size:

Prog. P[pk,m, s](H, ρ)

r ← UEval(H, pk‖m‖ρ)

s′ ← PRG(r)

if (s′ = s) then return m

return 0

That is, the program takes an additional input ρ that allows the attacker to
specify the randomness. We note that this requires the adversary to choose
the randomness in a predictable way, which does not violate the min-entropy
requirements as long as the min-entropy of the messages is sufficiently high. We
note that if one strengthens the IND-CDA notion to require the randomness
distribution to have super-logarithmic min entropy, our attacks would no longer
work. This in particular is the case if the message space of the scheme is small.

3.5 Other uninstantiability results

In the full version of the paper [28] we show that our uninstantiability results
can be further leveraged to rule out standard-model instantiations of a number
of other known transformations. We generalize the iO attack to what we call
admissible transformations, and show that the classical and widely deployed



IND-CDAA1,A2
H-PKE (λ)

b←$ {0, 1}
(m0,m1, r)←$ A1(1λ)

(sk, pk)←$ H-PKE.Kg(1λ)

for i = 1 . . . |m0|do
c[i]← H-PKE.Enc(pk,mb[i]; r[i])

b′←$ A2(pk, c)

return (b′ = b)

Fig. 4. The IND-CDA security game for hedged public-key encryption without initial
adversaries. Our results carry over to a setting where an initial adversary that passes
state to the first and second phase of the attack is present [54].

Fujisaki–Okamoto transformation [FO99] falls under it. We also show that a
generic approach to building secure symmetric encryption in the presence of
key-dependent messages, and another one for building de-duplication schemes
are uninstantiable.

In the full version, we also explore new classes of D-PKE transformations that
lie beyond those captured by admissible transformations. We present a candidate
transformation that is specifically designed to foil our iO attack. We first show
that this transformation is structurally sound by proving it secure in the ROM.
We then show how to extend our techniques to this (and potentially other classes
of) transformations. Our goal is to illustrate the flexibility of our main technique
and show that it can be tweaked and extended in many ways.

4 Concluding Remarks

The uninstantiability results presented in this paper (and the generalization
presented in the full version [28]) demonstrate the applicability of our techniques
to a more general class of transforms beyond those captured by admissible trans-
formations. It seems an intricate task to characterize the class of transformations
which are subject to our iO-based attacks. It is also an interesting and non-
trivial question to propose a D-PKE transformation that is not subject to our
uninstantiability result.

One promising avenue is to build schemes based on assumptions from the
framework of Universal Computational Extractors (UCEs) [15]. For instance,
Bellare, Hoang and Keelveedhi [15] show that message-locked encryption can be
based on UCE[Ssup], that is, UCEs with statistically unpredictable sources. This
result, however, is not generic with respect to symmetric encryption schemes
but rather fixes the base symmetric scheme. Note also that iO is not known
to contradict statistical UCEs [27]. Very recently, Bellare and Hoang [11] have
proposed a similar transform for D-PKE starting from lossy trapdoor functions.

Alternatively, one could switch to schemes that meet stronger notions of
security. For instance, IND$-type security notions that require the ciphertexts to



be indistinguishable from random do not lend themselves to out attacks as it is
unclear if obfuscation schemes can provide circuits which are indistinguishable
from random strings.

Acknowledgments

Part of this work was done while Christina Brzuska was a post-doctoral researcher
at Tel Aviv University and supported by the Israel Science Foundation (grant
1076/11 and 1155/11), the Israel Ministry of Science and Technology (grant 3-
9094), and the German-Israeli Foundation for Scientific Research and Development
(grant 1152/2011). Pooya Farshim was supported in part by EPSRC research
grant EP/L018543/1. Arno Mittelbach was supported by CASED (www.cased.de)
and the German Research Foundation (DFG) SPP 1736.

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.S. (ed.) Advances in Cryptology – ASIACRYPT 2003. Lecture Notes in Computer
Science, vol. 2894, pp. 452–473. Springer, Berlin, Germany, Taipei, Taiwan (Nov 30 –
Dec 4, 2003)

2. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs ob-
fuscation and applications. Cryptology ePrint Archive, Report 2013/689 (2013),
http://eprint.iacr.org/2013/689

3. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: Avoiding
barrington’s theorem. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 14: 21st
Conference on Computer and Communications Security. pp. 646–658. ACM Press,
Scottsdale, AZ, USA (Nov 3–7, 2014)

4. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) Advances in Cryp-
tology – EUROCRYPT 2014. Lecture Notes in Computer Science, vol. 8441, pp.
221–238. Springer, Berlin, Germany, Copenhagen, Denmark (May 11–15, 2014)

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6:1–6:48 (May
2012), http://doi.acm.org/10.1145/2160158.2160159

6. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) Advances in
Cryptology – CRYPTO 2001. Lecture Notes in Computer Science, vol. 2139, pp.
1–18. Springer, Berlin, Germany, Santa Barbara, CA, USA (Aug 19–23, 2001)

7. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) Advances in Cryptology – CRYPTO 2007. Lecture
Notes in Computer Science, vol. 4622, pp. 535–552. Springer, Berlin, Germany,
Santa Barbara, CA, USA (Aug 19–23, 2007)

8. Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model
scheme for a hybrid-encryption problem. In: Cachin, C., Camenisch, J. (eds.)
Advances in Cryptology – EUROCRYPT 2004. Lecture Notes in Computer Science,
vol. 3027, pp. 171–188. Springer, Berlin, Germany, Interlaken, Switzerland (May 2–6,
2004)



9. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek,
S.: Hedged public-key encryption: How to protect against bad randomness. In:
Matsui, M. (ed.) Advances in Cryptology – ASIACRYPT 2009. Lecture Notes in
Computer Science, vol. 5912, pp. 232–249. Springer, Berlin, Germany, Tokyo, Japan
(Dec 6–10, 2009)

10. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
Definitional equivalences and constructions without random oracles. In: Wagner,
D. (ed.) Advances in Cryptology – CRYPTO 2008. Lecture Notes in Computer
Science, vol. 5157, pp. 360–378. Springer, Berlin, Germany, Santa Barbara, CA,
USA (Aug 17–21, 2008)

11. Bellare, M., Hoang, V.T.: UCE+LTDFs: Efficient, subversion-resistant PKE
in the standard model. Cryptology ePrint Archive, Report 2014/876 (2014),
http://eprint.iacr.org/2014/876

12. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013, Part
II. Lecture Notes in Computer Science, vol. 8043, pp. 398–415. Springer, Berlin,
Germany, Santa Barbara, CA, USA (Aug 18–22, 2013)

13. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
Cryptology ePrint Archive, Report 2013/424. (Sep 22, 2013), (Version after initial
BFM attack.) http://eprint.iacr.org/2013/424/20130924:163256)

14. Bellare, M., Hoang, V.T., Keelveedhi, S.: Personal communication (Sep, 2013)

15. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
Cryptology ePrint Archive, Report 2013/424. (May 20, 2014), (Latest version at
the time of writing.) http://eprint.iacr.org/2013/424

16. Bellare, M., Keelveedhi, S.: Authenticated and misuse-resistant encryption of key-
dependent data. In: Rogaway, P. (ed.) Advances in Cryptology – CRYPTO 2011.
Lecture Notes in Computer Science, vol. 6841, pp. 610–629. Springer, Berlin,
Germany, Santa Barbara, CA, USA (Aug 14–18, 2011)

17. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure
deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology –
EUROCRYPT 2013. Lecture Notes in Computer Science, vol. 7881, pp. 296–312.
Springer, Berlin, Germany, Athens, Greece (May 26–30, 2013)

18. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 93: 1st Conference on Computer
and Communications Security. pp. 62–73. ACM Press, Fairfax, Virginia, USA
(Nov 3–5, 1993)

19. Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way
function and a framework for differing-inputs obfuscation. In: Sarkar, P., Iwata,
T. (eds.) Advances in Cryptology – ASIACRYPT 2014, Part II. Lecture Notes in
Computer Science, vol. 8874, pp. 102–121. Springer, Berlin, Germany, Kaoshiung,
Taiwan, R.O.C. (Dec 7–11, 2014)

20. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory
of Computing. pp. 505–514. ACM Press, New York, NY, USA (May 31 – Jun 3,
2014)

21. Black, J.: The ideal-cipher model, revisited: An uninstantiable blockcipher-based
hash function. In: Robshaw, M.J.B. (ed.) Fast Software Encryption – FSE 2006.
Lecture Notes in Computer Science, vol. 4047, pp. 328–340. Springer, Berlin,
Germany, Graz, Austria (Mar 15–17, 2006)



22. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
Advances in Cryptology – CRYPTO 2008. Lecture Notes in Computer Science, vol.
5157, pp. 335–359. Springer, Berlin, Germany, Santa Barbara, CA, USA (Aug 17–21,
2008)

23. Boldyreva, A., Fischlin, M.: Analysis of random oracle instantiation scenarios for
OAEP and other practical schemes. In: Shoup, V. (ed.) Advances in Cryptology
– CRYPTO 2005. Lecture Notes in Computer Science, vol. 3621, pp. 412–429.
Springer, Berlin, Germany, Santa Barbara, CA, USA (Aug 14–18, 2005)

24. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) Advances in Cryptology – CRYPTO 2001. Lecture Notes in Computer
Science, vol. 2139, pp. 213–229. Springer, Berlin, Germany, Santa Barbara, CA,
USA (Aug 19–23, 2001)

25. Boyle, E., Chung, K.M., Pass, R.: On extractability obfuscation. In: Lindell, Y. (ed.)
TCC 2014: 11th Theory of Cryptography Conference. Lecture Notes in Computer
Science, vol. 8349, pp. 52–73. Springer, Berlin, Germany, San Diego, CA, USA
(Feb 24–26, 2014)

26. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014: 11th Theory of Cryptogra-
phy Conference. Lecture Notes in Computer Science, vol. 8349, pp. 1–25. Springer,
Berlin, Germany, San Diego, CA, USA (Feb 24–26, 2014)

27. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and UCEs:
The case of computationally unpredictable sources. In: Garay, J.A., Gennaro, R.
(eds.) Advances in Cryptology – CRYPTO 2014, Part I. Lecture Notes in Computer
Science, vol. 8616, pp. 188–205. Springer, Berlin, Germany, Santa Barbara, CA,
USA (Aug 17–21, 2014)

28. Brzuska, C., Farshim, P., Mittelbach, A.: Random oracle uninstantiability from
indistinguishability obfuscation. Cryptology ePrint Archive, Report 2014/867 (2014),
http://eprint.iacr.org/2014/867

29. Brzuska, C., Mittelbach, A.: Deterministic public-key encryption from indistin-
guishability obfuscation and point obfuscation (Sep, 2014)

30. Brzuska, C., Mittelbach, A.: Indistinguishability obfuscation versus multi-bit point
obfuscation with auxiliary input. In: Sarkar, P., Iwata, T. (eds.) Advances in
Cryptology – ASIACRYPT 2014, Part II. Lecture Notes in Computer Science,
vol. 8874, pp. 142–161. Springer, Berlin, Germany, Kaoshiung, Taiwan, R.O.C.
(Dec 7–11, 2014)

31. Brzuska, C., Mittelbach, A.: Using indistinguishability obfuscation via UCEs. In:
Sarkar, P., Iwata, T. (eds.) Advances in Cryptology – ASIACRYPT 2014, Part
II. Lecture Notes in Computer Science, vol. 8874, pp. 122–141. Springer, Berlin,
Germany, Kaoshiung, Taiwan, R.O.C. (Dec 7–11, 2014)

32. Canetti, R., Dakdouk, R.R.: Extractable perfectly one-way functions. In: Aceto, L.,
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