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Abstract. We present new constructions of two-message and one-message
witness-indistinguishable proofs (ZAPs and NIWIs). This includes:
– ZAPs (or, equivalently, non-interactive zero-knowledge in the com-

mon random string model) from indistinguishability obfuscation and
one-way functions.

– NIWIs from indistinguishability obfuscation and one-way permuta-
tions.

The previous construction of ZAPs [Dwork and Naor, FOCS 00] was
based on trapdoor permutations. The two previous NIWI constructions
were based either on ZAPs and a derandomization-type complexity as-
sumption [Barak, Ong, and Vadhan CRYPTO 03], or on a specific num-
ber theoretic assumption in bilinear groups [Groth, Sahai, and Ostrovsky,
CRYPTO 06].
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1 Introduction

Zero-knowledge proofs [GMR89] and their feasibility for NP [GMW91] are fun-
damental to modern cryptography, allowing to prove any NP statement while
guaranteeing total privacy of the witness. One of the main pillars on which
this exquisite guarantee relies is interaction. Minimizing interaction from zero-
knowledge protocols has drawn significant efforts. Since even two-message zero-
knowledge, without any setup assumptions, is impossible [GO94], these efforts
have either focused on non-interactive zero-knowledge (NIZK) in the trusted
common random string (or common reference string) model [BFM88], or on
achieving non-interactive systems with weaker security guarantees. One notable
relaxation is that of witness indistinguishability (WI), guaranteeing that the
proof does not reveal which one of many witnesses is used.

Following this direction, Dwork and Naor [DN07] show that, unlike zero-
knowledge, two-message WI, or as they term ZAPs, can be achieved without any
setup. Specifically, they show that assuming one-way functions, the existence of
ZAPs in the plain model is equivalent to that of NIZKs in the common random
string model. The latter were constructed by Feige, Lapidot, and Shamir from
trapdoor permutations [FLS99]. Furthermore, in ZAPs, the verifier’s message is
a random string that can be used for multiple proofs, giving rise to a completely
non-interactive WI system where the first message is fixed non-uniformly. This
provided evidence that diverging from the strong notion of zero-knowledge may
very well allow to remove interaction altogether.

Barak, Ong, and Vadhan [BOV07] then constructed completely non-interactive
WI (NIWI), without any non-uniformity, by derandomizing the ZAP verifier
under the assumption that Dtime(2O(n)) has a problem of non-deterministic
circuit complexity 2Ω(n). Groth, Ostrovsky, and Sahai [GOS12] subsequently
constructed NIWIs under the decision linear assumption on bilinear groups.

ZAPs and NIWIs have found a great number of applications in cryptography,
but only few candidate constructions, from specific assumptions, are known. In
particular, both [DN07] and [BOV07] rely on trapdoor permutations, for which
there are very few candidates, all based on factoring-related assumptions. Alter-
natively, the [GOS12] construction is based on a specific assumption on bilinear
groups. Different constructions from different computational assumptions are
still sought after. In this work, we provide new constructions of ZAPs and NIWIs
under a rather different type of assumption: indistinguishability obfuscation.

Indistinguishability obfuscation. The goal of obfuscation is to make code
unintelligible while preserving its functionality. It has been long considered to be
a holy grail of cryptography, with diverse and far reaching applications. Up until
recently, there were no candidates obfuscators, except for very restricted classes
of programs, and in fact, some classes were shown to be unobfuscatable under
the natural virtual black-box notion [BGI+01]. This dramatically changed with
the work by Garg et al. [GGH+13b] who proposed a candidate construction of
general-purpose obfuscators, based on graded multilinear encodings [GGH13a],
and conjectured that it satisfies the seemingly weak notion of indistinguishability



obfuscation (iO) [BGI+01], for which no impossibility results are known. This
notion only requires that it is hard to distinguish an obfuscation of C0 from an
obfuscation of C1, for any two circuits C0 and C1 of the same size that compute
the exact same function.

Perhaps surprisingly, iO has been shown to have variety of powerful appli-
cations, such as functional encryption, deniable encryption, two-message multi-
party computation [GGH+13b, SW14, GGHR14], and many more. Still, some ba-
sic primitives have so far evaded the long arms of iO, including collision-resistant
hashing, fully-homomorphic encryption, and also trapdoor permutations, which
as said above, are essential in generic ZAP and NIWI constructions.

1.1 Results

We provide new constructions of ZAPs and NIWIs based on iO.

Our first result is a construction of ZAPs (or NIZKs):

Theorem 1.1 (informal). Assuming indistinguishability obfuscation for a cer-
tain family of polysize circuits and one-way functions, there exist ZAPs in the
plain model and NIZKs in the common random string model, for every language
in NP.3

The new ZAP can, in particular, be plugged into the result of Barak, Ong,
and Vadhan [BOV07] to obtain a NIWI for all of NP, assuming in addition
the existence of a language in Dtime(2O(n)) with circuit complexity 2Ω(n). We
give a new construction of NIWIs based on indistinguishability obfuscation and
one-way permutations.

Theorem 1.2 (informal). Assuming indistinguishability obfuscation for a cer-
tain family of polysize circuits and one-way permutations, there exist NIWI
proofs, for every language in NP.

As explained below, in our construction of NIWI, one-way permutations are
used to construct a dense non-interactive commitment scheme. We show that
such commitments are somewhat inherent (see more details below).

Comparison to previous constructions. Sahai and Waters [SW14] con-
structed, from iO, non-adaptive NIZK arguments in the common reference string
model; these are insufficient to obtain ZAPs (let alone, NIWIs).

The assumptions that we rely on for either NIWIs, or NIZKs in the ran-
dom string model (or equivalently, ZAPs) are incomparable to previously used
assumptions. Our main assumption is iO, which is not formally known to be
either weaker or stronger. While perhaps not weaker, iO does seem to be of dif-
ferent nature than the previous assumptions. Indeed, previous constructions are
based on primitives with an exact combinatorial or algebraic structure, such as

3 The assumption of one-way functions can be replaced with assuming NP 6= coRP
[KMN+14].



trapdoor permutations [DN07, BOV07], or bilinear maps in appropriate groups
[GOS12]. Finding candidates adhering to such exact structures has proven to be
challenging, and such candidates remain scarce. In contrast, iO has candidates
based on noisy graded encodings [GGH+13b], which by now already have several
proposed instantiations [GGH13a, CLT13, GGH14]. Future constructions of iO
may be based on primitives with even less algebraic structure.

While our construction of NIZKs relies solely on iO and one-way functions,
the NIWI construction also requires (certifiable) one-way permutations, which
are already a rather structured object, with only few more candidates than
trapdoor permutations (based on the hardness of discrete logs). We find that the
main appeal of the suggested NIWI construction, compared to previous ones, is
its relative simplicity.

1.2 Techniques

We now overview the techniques behind our constructions. We start with the
construction of ZAPs, and then move on to the NIWI construction.

ZAPs. Our main technical contribution towards obtaining ZAPs is a construc-
tion of invariant signatures in the common random string model, a concept pre-
sented by Goldwasser and Ostrovsky [GO92]. We then apply a series of generic
transformations from the literature: in the common random string model, in-
variant signatures imply NIZKs [GO92], which imply ZAPs [DN07] (in the plain
model). As a secondary contribution, we also give a full description and proof of
the first transformation, previously sketched in [GO92]. Details follow.

Invariant signatures. Invariant signatures, introduced by Goldwasser and Os-
trovsky [GO92], are digital signatures where all valid signatures of any message
are either identical, or share a common property. Concretely, we say that a sig-
nature scheme is invariant if there is some efficiently computable property P
of signatures such that for any message m∗ and any verification key vk there
is a unique value Pvk(m

∗) such that P (σ) = Pvk(m
∗) for any valid signature

σ with respect to vk. Furthermore, it is required that for every message m∗,
for an honestly generated verification key (sampled independently of m∗), the
property value Pvk(m

∗) is pseudo-random, even given the verification key and
a signature oracle on messages m 6= m∗. Like in [GO92], we consider a relaxed
notion of invariant signatures in the common random string model (CRS). Here
we require that the property value P of valid signatures is unique for every
verification key vk, with overwhelming probability over the choice of the CRS.
Pseudo-randomness of Pvk should hold even given the CRS.4

Before explaining how we construct invariant signatures, let us first motivate
them by recalling how they are utilized in the construction of NIZKs.

4 In the original definition of [GO92], pseudo-randomness is also required for messages
m∗ sampled adaptively after the verification key. While we do not achieve such
adaptive pseudo-randomness, the above selective pseudo-randomness will suffice for
our purpose.



NIZKs from invariant signatures. Goldwasser and Ostrovsky gave a trans-
formation from invariant signatures to NIZKs [GO92]. Their transformation is
based on the construction of Feige, Lapidot and Shamir [FLS99] of NIZKs in the
hidden-bits model. In this model, a random hidden string is available to the prover
but is hidden from the verifier. The prover can reveal to the verifier specific bits
of the hidden string in the locations of its choice, but it cannot change the value
of these bits. [FLS99] also show how to compile a NIZK in the hidden-bits model
into a NIZK in the CRS model assuming trapdoor permutations. [GO92] gave a
different compilation technique based on invariant signatures. Next, we describe
such a compilation following the same high-level idea as [GO92, BGRV09].

We interpret the CRS (available to both prover and verifier) as containing a
CRS for the invariant signature, as well as a sequence of messages {mi} and one-
time pad bits {si} where every (mi, si) will be used to obtain a single hidden bit
bi. The prover will sample keys (sk, vk) for the invariant signature and send the
verification key vk to the verifier as part of the proof. The hidden bit bi is then
defined as the bit Pvk(mi), the property value of the message mi, XORed with
the the one-time pad bit si. To reveal the bit bi, the prover sends to the verifier a
signature σi on mi. The verifier can compute bi by computing P (σi) = Pvk(mi).

The uniqueness of the signature guarantees that the prover cannot affect the
value of the hidden bits. Note that the prover can always affect the value of bi
by choosing the verification key vk. However, since the length of vk is bounded,
this issue can be overcome via soundness amplification [FLS99, GO92]). Another
problem is that the prover might affect the distribution of the hidden bits by
choosing a verification key such that Pvk(·) is unbalanced. In [GO92, BGRV09],
this is addressed by certifying the fact that Pvk(·) is balanced, using a similar
approach to [BY96]. In our construction, we guarantee that the hidden bits
are uniformly distributed by simply XORing Pvk(mi) with the random one-time
pad bit si. Finally, the pseudo-randomness of Pvk guarantees that the bits not
revealed by the prover remain hidden from the verifier.

Constructing invariant signatures. The starting point of our construction
is the selectively-secure signature scheme of Sahai-Waters based on iO and one-
way functions [SW14]. The basic idea behind the construction is as follows. The
secret signing key is simply a key K for a pseudo-random function PRFK , and
a signature σ on message m is simply σ = PRFK(m). The public verification
key is an obfuscation C̃ ← iO(CK) of a circuit CK that given any m returns
ym = f(PRFK(m)) for some one-way function f . Verification of any σ for m is
simply done by computing f(σ) and comparing to the value ym output by C̃K .

Sahai and Waters show, based on the indistinguishability obfuscation guar-
antee, that their scheme is selectively-secure; namely, it is impossible to forge
a signature for any preselected message m∗, even given a signature oracle on
other messages. The idea is to consider an alternative to the the circuit CK that
computes the same function, but while only “knowing” ym∗ , and without ac-
tually “knowing” the preimage PRFK(m∗). This is achieved using their elegant
puncturing technique. Specifically, instead of using any PRF family, they use a
puncturable PRF. In such PRFs, it is possible to puncture a given key K at



an arbitrary point m∗ in the domain of the function. The punctured function
PRFKm∗ , with punctured key Km∗ , preserves functionality at any other point,
but hides any information on the point PRFK(m∗); namely, the value PRFK(m∗)
is pseudo-random, even given (m∗,Km∗). Such puncturable PRFs follow from
the GGM [GGM86] construction [BW13, BGI14, KPTZ13].

Using a puncturable PRF in the implementation of CK , it can be shown
that if a forger succeeds in finding a preimage of ym∗ = f(PRFK(m∗)), it would
also succeed had we provided it with an obfuscation of the alternative circuit
CKm∗ ,ym∗ . The circuit CKm∗ ,ym∗ computes the same function as CK , but in
a different way: it only has the punctured key Km∗ , and has the value ym∗

directly hardwired into it, so that it does not have to evaluate the PRF in
order to compute it. Thus, the fact that the forger still succeeds follows by
the guarantee of indistinguishability obfuscation. However, now by the pseudo-
randomness guarantee at the punctured point m∗, we know that PRFK(m∗) is
pseudo random, even given the circuit CKm∗ ,ym∗ , and thus the forger can be
used to invert the one-way function f .

We next observe that the Sahai-Waters signature scheme can be made in-
variant as follows. To get uniqueness, we can use an injective one-way function
f instead of an arbitrary one-way function. Indeed, this guarantees that for any,
even malicious, verification key C̃ and any message m, the value y∗ = C̃(m) has
a unique preimage under f that will be accepted in verification. To get (selective)
pseudo-randomness, rather than just (selective) unforgeability, we can define the
property P to extract a Goldreich-Levin hardcore bit [GL89] from the unique
signature with respect to a fixed seed put in the verification key; this preserves
uniqueness.

The above solution requires the extra assumption that injective one-way func-
tions exist. We show that a more significant modification of the SW scheme al-
lows to rely on any one-way function. Unlike the solution above that did not rely
on a CRS, the new solution will (as explained before, this is still sufficient for
our purposes). The basic idea is the following. Imagine we had at our expense a
non-interactive perfectly-binding commitment scheme Com. We could then aug-
ment the circuit CK to output, instead of a one-way function f(PRFK(m∗)),
a commitment cm∗ = Com(b; r), to plaintext b = PRFK(m∗), where the ran-
domness r is derived, say, by applying another PRFK′ to m∗ (or simply setting
(b, r) = PRFK(m∗)). A signature would then include the plaintext underlying
the commitment PRFK(m∗) and the randomness r = PRFK′(m

∗). The unique
property P will simply be the plaintext b.

Indeed, uniqueness will now follow by the perfect binding of the commitment,
and pseudo-randomness of b will follow using a similar puncturing argument to
the one above, coupled with the hiding of the commitment Com. However, non-
interactive perfectly-binding commitments are only known based on injective
one-way functions [Blu81], which may take us back to square one. Here the CRS
comes to our aid. We can use Naor’s [Nao91] two-message statistically-binding
commitment scheme, where the first receiver message is simply a random string



that can be put in the CRS; indeed, this commitment can be based on any
one-way function.

NIWIs. The first stepping stone in our NIWI construction is a natural idea
suggested by Niu et al. [NLLT14], where it is described using the terminology
of witness encryption [GGSW13]. In witness encryption, anyone can encrypt a
message m under a public candidate instance x for some NP language L (x is
thought of as the public key); if x ∈ L, anyone holding a corresponding witness
w can decrypt the encrypted Encx(m); however, if x /∈ L, the encryption is
semantically secure; namely, Encx(m) is computationally indistinguishable from
Encx(m′) for any two messages m,m′. Such a scheme can be easily constructed
from any indistinguishability obfuscator (as we shall soon see).

Given a witness encryption scheme, Niu et al. suggest the following candidate
for a NIWI. Given (x,w) ∈ RL, a proof that x ∈ L is simply an indistinguisha-
bility obfuscation D̃ ← iO(Dx,w) of the witness decryption circuit Dx,w that
given a witness encryption Encx(m), decrypts it with the witness w and outputs
m. Verification is done by running the circuit D̃ on an encryption Encx(m) of a
random m← {0, 1}n, and testing whether it successfully decrypts m. Indeed, if
x /∈ L, D̃ fails with overwhelming probability due to semantic security.

What about witness indistinguishability? at first it seems that regardless
of which witness w is used by Dx,w, it has the same functionality, since any
witness can be used for decryption. Thus, WI should follow by the iO guarantee.
However, this argument is flawed—while, for valid (honestly generated) witness
encryptions Encx(m), Dx,w behaves the same regardless of the witness, this might
not be true for maliciously generated encryptions.

To illustrate this consider a witness encryption scheme implemented us-
ing indistinguishability obfuscation, where Encx(m) consists of an obfuscation
Ẽ ← iO(Emx ) for the circuit Emx that given as input a proper witness w ∈ RL(x)
outputs m and otherwise ⊥. For x /∈ L, such a circuit always returns ⊥, regard-
less of m, and thus semantic security follows from iO. However, if we instantiate
the above candidate NIWI with this witness encryption scheme, the result will be
completely insecure. A malicious verifier may obfuscate an arbitrary circuit, in-
stead of a proper circuit Emx , and distinguish between different witnesses. Taken
to the extreme, it could just obfuscate the identity, and recover from D̃ the entire
witness w.

Fixing the NIWI using ZAPs. the above problem can be resolved by re-
quiring that the malicious verifier proves to D̃ that its witness encryption is
indeed a proper encryption of some plaintext with some randomness. However,
to maintain soundness, this should be done while keeping the one-wayness of
m. To achieve this, we rely on ZAPs, and the Feige-Shamir trapdoor paradigm
[FS89]: the prover will hard-code into D̃ a random first message for a ZAP, and
the verifier will prove to D̃ that either Ẽ was generated properly or that some
“trapdoor” statement is true. In order to assure that the verifier’s encryption is
proper, the trapdoor statement is usually chosen such that it is true, but it is
hard for the verifier to find a witness for it, for example, stating that a random



sting is in the image of a one-way permutation. However, in our setting, since
the ZAP is not a proof of knowledge, such a trapdoor statement is insufficient.

In our protocol, we do not rely on the fact that the trapdoor statement is
hard to prove, but rather we aim to design a trapdoor statement such that, if
true, certifies the validity of the witness encryption Ẽ. The problem is that such
certification cannot use the encryption’s randomness or the plaintext m as a
witness, otherwise we cannot argue that the ZAP hides m. The key observation
is that it is enough to certify that the encryption Ẽ behaves in the same way on
any two potential witnesses. To implement this idea, the trapdoor statement will
include a pair of perfectly binding commitments c1, c2 chosen by the prover (the
honest prover commits to all-zero strings). The statement asserts that there is
a pair of candidate witnesses w1, w2 such that c1, c2 are commitments to w1, w2

and the verifier’s encryption Ẽ decrypts to the same value when decrypted with
either w1 or w2.

Let us describe the intuition behind the proof of security. To prove soundness,
we rely on the fact that c1, c2 are are computed using a dense commitment
scheme, where every string has some valid decommitment. Assume there exists
an accepting proof (D̃, c1, c2) for a false statement x /∈ L, meaning that D̃
manages to invert a witness encryption Ẽ for a random message, given also the
ZAP described above. We show that, D̃ must break the semantic security of the
witness encryption. Indeed, letting w1, w2 be the plaintexts underlying c1, c2, we
note that, since x /∈ L, decrypting with either one results in the same value ⊥.
Therefore, the trapdoor statement is true, and we could have used it to compute
a ZAP proof π, without compromising the semantic security of Ẽ. Since D̃ cannot
tell the difference between the two ZAP proofs, it would still invert Ẽ, and thus
violate semantic security. We note that for the above argument to go through,
we rely on the fact that the ZAP guarantees witness-indistinguishability against
non-uniform verifiers; indeed, the reduction described above gets a non-uniform
advice: the decommitment information for the commitments c1, c2.

To show that the proof is WI, consider any instance x ∈ L with two valid
witnesses w1, w2. We go through several hybrid experiments. We start by using
the hiding property of the commitment to replace c1 and c2 with commitments to
w1 and w2, instead of all-zero strings. Now if the verifier generates an encryption
Ẽ with a valid ZAP proof π it follows from the the soundness of the ZAP and
the binding of the commitment that either Ẽ is a valid witness encryption, or Ẽ
decrypts to the same value when decrypted with either w1 or w2. In any case,
the witness decryption circuits Dx,w1

and Dx,w2
agree on the input (Ẽ, π). By

the iO guarantee, the obfuscated decryption circuits are thus indistinguishable,
and we can replace one with the other.

A note on statistical soundness. At first glance, it may seem that our reliance
on computational primitives such as witness encryption implies that the resulting
system is only computationally sound; we stress, however, that soundness is sta-



tistical.5 To cheat in our protocol, the (unbounded) prover must produce a proof
consisting of a small circuit (allegedly an obfuscated witness description circuit).
The soundness of the system is based on the fact that this computationally-
bounded circuit cannot break the security of the underling primitives. Indeed,
the computational assumptions imply that such a circuit simply does not exist.

Additionally, we note that the soundness we get is statistical and not perfect
as in [BOV07, GOS12]. In the language of [BOV07], we get MA proofs rather
than NP proofs (for all languages in NP).

On the necessity of dense commitments. The NIWI construction described
above can be based on a non-interactive commitment scheme satisfying the fol-
lowing properties. First, it is computationally hiding. Second, it is statistically
binding, but only against honest committers; namely, honestly generated com-
mitments can only be opened to a single value. Finally, the commitment is dense;
that is, every string in the range of the commitment, can be opened to at least one
value (commitments that are not generated honestly may potentially be opened
to more than one value). We observe that such dense commitments are some-
what necessary. Specifically, using NIWIs, we can transform any non-interactive
statistically binding commitment into a commitment satisfying the above three
requirements (note that statistically-binding commitments can be constructed
from any injective one-way function [Blu81].)

The basic idea is to commit twice to the same value and add a NIWI proof
that one of the two commitments were honestly generated. A valid opening of
this commitment would consist of an opening of any one of the two underlying
commitments. If the NIWI is not accepting, the committed value is set arbitrar-
ily to zero.6 The hiding of the new commitment follows from that of the original
commitment, together with the witness-indistinguishability of the NIWI. Bind-
ing, for honestly generated commitments (where the two underlying plaintexts
are identical), follows from the binding property of the original commitment.
Finally, the fact that the new commitment is dense follows directly from the
soundness of the NIWI.

We note that it may still be possible that NIWIs, and in particular, dense
commitments as above, can be based on iO and any one-way function.

Organization. In Section 2, we present the basic definitions used in the paper.
In Section 3, we define and construct invariant signatures. In Section 4, we
describe the Goldwasser-Ostrovsky transformation from invariant signatures to
NIZKs. Section 5 describes the NIWI construction.

5 In fact, any single message argument system that is sound against non-uniform
provers must be statistically sound, as accepting proofs for false statements may be
hardwired to the prover.

6 here we assume NIWI with perfect soundness. In particular we assume that the
verification procedure of the NIWI is deterministic. Dense commitments satisfying a
slightly more involved definition can be constructed from NIWI with only statistical
soundness.



2 Definitions

2.1 Non-Interactive Zero-Knowledge

Definition 2.1. A pair of PPT algorithms (P,V) is a NIZK proof in the CRS
model if they satisfy the following properties:

1. Completeness: there exists a polynomial r denoting the length of the common
random string such that for every (x,w) ∈ RL we have that:

Pr
P,crs←{0,1}r(|x|)

[V(x, crs, π) = 1 : π ← P(x,w, crs)] = 1 .

2. Soundness: for every x /∈ L we have that:

Pr
crs←{0,1}r(|x|)

[∃π : V(x, crs, π) = 1] < 2−|x| .

3. Zero-Knowledge: there exists a PPT algorithm S such that:{
(crs,P(x,w, crs)) : crs← Ur(|x|)

}
(x,w)∈RL

≈c {S(x)}(x,w)∈RL

Remark 2.1. Definition 2.1 considers only non-adaptive soundness and zero-
knowledge. Additionally, zero-knowledge is not guaranteed when multiple state-
ment are proven with respect to the same CRS. We note that any NIZK proof
system for NP can be transformed into a system that does not have these dis-
advantages assuming only OWFs [FLS99].

2.2 ZAPs

ZAPs [DN07] are two-message public-coin witness-indistinguishable proofs, de-
fined as follows.

Definition 2.2. A pair of algorithms (P,V), where P is PPT and V is (deter-
ministic) polytime, is a ZAP for an NP relation RL if it satisfies:

1. Completeness: there exists a polynomial r such that for every (x,w) ∈ RL,

Pr
P,r←{0,1}r(|x|)

[V(x, π, r) = 1 : π ← P(x,w, r)] = 1 .

2. Adaptive soundness: for every malicious prover P∗ and every n ∈ N:

Pr
r←{0,1}r(n)

[
∃x ∈ {0, 1}

n \ L
π ∈ {0, 1}∗ : V(x, π, r) = 1

]
≤ 2−n .

3. Witness indistinguishability: for any sequence I = {(x,w1, w2) : w1, w2 ∈ RL(x)}
and any first-message sequence R =

{
rx,w1,w2

∈ {0, 1}r(|x|) : (x,w1, w2) ∈ I
}

:

{π1 ← P(x,w1, rx,w1,w2
)}(x,w1,w2)∈I ≈c {π2 ← P(x,w2, rx,w1,w2

)}(x,w1,w2)∈I .



2.3 NIWIs

NIWIs [BOV07] are completely non-interactive witness-indistinguishable proofs.

Definition 2.3. A pair of PPT algorithms (P,V) is a NIWI for an NP relation
RL if it satisfies:

1. Completeness: for every (x,w) ∈ RL,

Pr
P

[V(x, π) = 1 : π ← P(x,w)] = 1 .

2. Soundness: there exists a negligible function µ, such that for every x /∈ L
and π ∈ {0, 1}∗:

Pr
V

[V(x, π) = 1] ≤ µ(|x|) .

3. Witness indistinguishability: for any sequence I = {(x,w1, w2) : w1, w2 ∈ RL(x)}:

{π1 : π1 ← P(x,w1)}(x,w1,w2)∈I ≈c {π2 : π2 ← P(x,w2)}(x,w1,w2)∈I .

2.4 Indistinguishability Obfuscation

Indistinguishability obfuscation (iO) was introduced in [BGI+01] and given a
candidate construction in [GGH+13b], and subsequently in [BR13, BGK+13].

Definition 2.4 (Indistinguishability obfuscation [BGI+01]). A PPT al-
gorithm iO is said to be an indistinguishability obfuscator for a collection of
polysize circuits C =

⋃
n∈N Cn, if it satisfies:

1. Functionality: For any C ∈ C,

Pr
iO

[∀x : iO(C)(x) = C(x)] = 1 .

2. Indistinguishability: For any polysize distinguisher D there negligible function
µ, such that for any n ∈ N and C1, C2 ∈ Cn of the same size and functionality∣∣∣Pr

iO
[D(iO(C1)) = 1]− Pr

iO
[D(iO(C2)) = 1]

∣∣∣ ≤ µ(n) .

3 Invariant Signatures from Indistinguishability
Obfuscation

In this section, we recall the definition of invariant signatures [GO92] in the
common random string (CRS) model and construct them based on iO.

Roughly, invariant signatures are digital signatures where valid signatures of
any message are either identical, or share a common property. More accurately,
there is an efficiently computable property P of signatures such that for any mes-
sage m∗ and any verification key vk there is a unique value Pvk(m

∗) such that



P (σ) = Pvk(m
∗) for any valid signature σ with respect to vk. Furthermore, it is

required that for every message m∗, for an honestly generated verification key
(sampled independently of m∗), the property value Pvk(m

∗) is pseudo-random,
even given the verification key and a signature oracle on messages m 6= m∗.
Like in [GO92], we consider a relaxed notion of invariant signatures in the com-
mon random string model (CRS). Here the property value P is unique for every
verification key vk, with overwhelming probability over the choice of the CRS,
and pseudo-randomness of Pvk should hold even given the CRS. (In the original
definition of [GO92], pseudo-randomness is also required for messages m∗ sam-
pled adaptively after the verification key. While we do not achieve such adaptive
pseudo-randomness, the above selective pseudo-randomness will suffice for our
purpose.)

Definition 3.1 (Invariant Signatures in the CRS model). A triple of poly-
time algorithms (Gen,Sign,Ver), where Gen is randomized, is a digital signature
scheme with invariant signatures and selective security in the CRS model if it
satisfies the following properties:

1. Syntax and completeness: There exists a polynomial r such that for every
security parameter n ∈ N, and for every message m ∈ {0, 1}∗ we have that:

Pr
crs←Ur(n)

[Vervk(crs,m, σ) = 1 : σ ← Signsk(m), (sk, vk)← Gen(crs)] = 1 .

2. Uniqueness: There exists a deterministic, efficiently computable, predicate
P : {0, 1}∗ → {0, 1}, and a negligible function µ such that:

Pr
crs←Ur(n)

[∃m, vk, σ1, σ2 : P (σ1) 6= P (σ2) ∧ Vervk(crs,m, σ1) = Vervk(crs,m, σ2) = 1] ≤ µ(n) .

3. Pseudo-randomness: For every poly-size adversary A, there exists a negligible
function µ such that for every security parameter n ∈ N, and for every
message m ∈ {0, 1}n:∣∣∣∣∣PrA,crs←Ur(n)

[ASign∗sk,m(crs, vk,m, P (Signsk(m))) = 1 : (sk, vk)← Gen(crs)]−
PrA,crs←Ur(n),b←U1

[ASign∗sk,m(crs, vk,m, b) = 1 : (sk, vk)← Gen(crs)]

∣∣∣∣∣ ≤ µ(n) ,

where Sign∗sk,m is an oracle that is identical to Signsk excpet that on input m
it outputs ⊥.

Remark 3.1 (Unforgeability). We do not explicitly require that the signature
scheme is unforgeable against selective attackers. Unforgeability is, in fact, im-
plied by uniqueness and the pseudo-randomness properties. In particular, if an
adversary can forge a signature σ on a message m, it can compute P (σ) and
break pseudo-randomness.

Sahai and Waters construct digital signature scheme with based on iO and one-
way functions [SW14]. As outline in the introduction, we observe that a mod-
ification of their construction is also invariant assuming also injective one-way
functions.



Theorem 3.1 (follows from [SW14]). Assuming indistinguishability obfus-
cation and injective OWFs, there exists a selectively secure invariant signature
scheme.

We show that, in the CRS model, we can in fact construct selectively secure
invariant signatures based on iO and any one-way function.

Theorem 3.2. Assuming indistinguishability obfuscation and one-way functions,
there exists a selectively-secure invariant signature scheme in the CRS model.

Like the Shahi-Waters construction, the construction here relies on their
punctured program paradigm. We next define puncturable pseudo-random func-
tions, a central tool in our construction, and then move to describe the construc-
tion.

3.1 Puncturable PRFs

We consider a simple case of the puncturable PRFs where any PRF might be
punctured at a single point. The definition is formulated as in [SW14].

Definition 3.2 (Puncturable PRFs). Let `,m be polynomially bounded length
functions. An efficiently computable family of functions

PRF =
{
PRFK : {0, 1}m(n) → {0, 1}`(n)

∣∣∣ K ∈ {0, 1}n, n ∈ N
}

,

associated with an efficient (probabilistic) key sampler KPRF , is a puncturable
PRF if there exists a puncturing algorithm Punc that takes as input a key K ∈
{0, 1}n, and a point x∗, and outputs a punctured key Kx∗ , so that the following
conditions are satisfied:

1. Functionality is preserved under puncturing: For every x∗ ∈ {0, 1}`(n),

Pr
K←KPRF (1n)

[∀x 6= x∗ : PRFK(x) = PRFKx∗ (x) | Kx∗ = Punc(K,x∗)] = 1 .

2. Indistinguishability at punctured points: The following ensembles are compu-
tationally indistinguishable:

– {x∗,Kx∗ ,PRFK(x∗) | K ← KPRF (1n),Kx∗ = Punc(K,x∗)}x∗∈{0,1}m(n),n∈N

–
{
x∗,Kx∗ , u

∣∣ K ← KPRF (1n),Kx∗ = Punc(K,x∗), u← {0, 1}`(n)
}
x∗∈{0,1}m(n),n∈N

.

To be explicit, we include x∗ in the distribution; throughout, we shall assume
for simplicity that a punctured key Kx∗ includes x∗ in the clear. As shown in
[BGI14, BW13, KPTZ13], the GGM [GGM86] PRF yield puncturable PRFs as
defined above.



3.2 Invariant Signatures Construction

We now present the details of our construction, an overview is given in the
introduction. We shall rely on the following primitives:

– A two-message statistically binding commitment Com with a random first
message based on any one-way function [Nao91]. We denote by C, S the
polynomials such that Coms(b; r) ∈ {0, 1}C(n) is a commitment to a bit b, and
where the first commitment message is s ∈ {0, 1}S(n), and the randomness
is r ∈ {0, 1}n.

– A family of puncturable PRFs PRF = {PRFK} from {0, 1}n to {0, 1}n+1

associated with a key sampler KPRF and a puncturing algorithm Punc.
– An indistinguishability obfuscator iO.

Construction 3.3 (A selectively-secure invariant signature).

The CRS. The CRS consists of a random first message s for Com. Throughout
the construction, one may identify the notation crs with that of s.

The algorithm Gen. Given the CRS s, Gen samples a PRF key K ← KPRF (1n).
Gen sets sk = K and sets vk = iO([Cs,K ]`) where [CK ]` is a “commitment
to pseudo-random property” circuit Cs,K , given by Figure 1, padded up to
length the maximum size ` of the circuits given in Figures 1,2.

The algorithm Sign. Given the secret key K and a message m output (b′, r′) =
PRFK(m).

The algorithm Ver. Given the obfuscated circuit vk, the CRS s, a message m
and a signature σ = (b, r), obtain c = vk(m). Output 1 if c = Coms(b; r).
Otherwise, output 0.

Hardwired: CRS containing a first message s ∈ {0, 1}S(n) for Com and a PRF
key K ← KPRF (1n).

Input: Message m ∈ {0, 1}n.
Output: Obtain (b′, r′) = PRFK(m) and output Coms(b′, r′).

Fig. 1. The “commitment to pseudo-random property” circuit Cs,K .

Proposition 3.1. Construction 3.3 is a selectively-secure invariant signature
scheme in the CRS model.

Proof. It is straightforward to verify the completeness of the construction. Next
we prove the uniqueness and pseudo-randomness properties.

Uniqueness. For a signature σ = (b, r) let P (σ) be the a predicate that outputs
b. Let G be the event, over the choice of the CRS crs that there exist a message



Hardwired:
1. CRS containing a first message s ∈ {0, 1}S(n) for Com.
2. Punctured PRF key Km∗ = Punc(K,m∗) where K ← KPRF (1n).
3. Commitment c∗ ∈ {0, 1}C(n).

Input: Message m ∈ {0, 1}n.
Output:

1. If m = m∗, output c∗.
2. Else, obtain (b′, r′) = PRFKm∗ (m) and output Coms(b′, r′).

Fig. 2. The circuit Cs,Km∗ ,c
∗ .

m ∈ {0, 1}n, a verification key vk and a pair of signatures σ1 = (b1, r1), σ2 =
(b2, r2) such that:

P (σ1) 6= P (σ2) ∧ Vervk(crs,m, σ1) = Vervk(crs,m, σ2) = 1 .

Equivalently, b1 6= b2 and Coms(b1; r1) = Coms(b2; r2) = vk(m). Since with
overwhelming probability Coms is perfectly binding property of Com, it holds
that Prcrs←Ur(n)

[G] ≤ negl(n), as required.

Pseudo-randomness. Fix any polysize adversary A, and for every message
m ∈ {0, 1}n, let p0(m) denote the probability that it outputs 1 given the unique
property b of any signature (b, r) on m:

p0(m) = Pr

[
ASign∗sk,m(·)(crs, vk,m, P (Signsk(m))) = 1 :

crs← Ur(n)
(sk, vk)← Gen(crs)

]

= Pr

APRF∗K,m(·)(s, vk,m, b) = 1 :

s← Ur(n)
K ← KPRF (1n)

(b, r) = PRFK(m)
vk← iO([Cs,K ]`)

 ,

where Sign∗sk,m(·) ≡ PRF∗K,m(·) is an oracle that is identical to Signsk(·) ≡
PRFK(·), except that on input m it outputs ⊥.

Consider an alternative experiment where vk is chosen to be an obfuscation
of the circuit Cs,Km,c∗ , rather than Cs,K , where c∗ = Coms(b, r), and (b, r) are
computed as before. Let p1(m) denote the probability that A outputs 1 in this
augmented experiment:

p1(m) = Pr


APRF∗K,m(·)(s, vk,m, b) = 1 :

s← Ur(n)
K ← KPRF (1n)
Km ← Punc(K,m)
(b, r) = PRFK(m)

c∗ = Coms(b, r)

vk← iO([Cs,Km,c∗ ]`)


.



Since the circuits Cs,K and Cs,Km,c∗ are equivalent, it follows from the secu-
rity of iO that the circuits iO([Cs,K ]`) and iO([Cs,Km,c∗ ]`) are computationally
indistinguishable, and therefore

|p0(m)− p1(m)| < negl(n) .

Next, consider another experiment where the signature (b, r) is chosen uniformly
at random, instead of being set to PRFK(m). We denote by p2(m) be the prob-
ability that A outputs 1 in this experiment:

p2(m) = Pr

A
PRF∗K,m(·)(s, vk,m, b) = 1 :

s← Ur(n)
K ← KPRF (1n)
Km ← Punc(K,m)

(b, r) = Un+1

c∗ = Coms(b, r)
vk← iO([Cs,Km,c∗ ]`)

 .

By the indistinguishability at punctured points property of PRF :

|p1(m)− p2(m)| ≤ negl(n) ;

Indeed, to distinguish between Km,PRFK(m) and Km, U|m|+1), a distinguisher
can perfectly emulate A, by answering its oracle queries m′ 6= m using the
punctured key Km.

Consider yet another experiment where, instead of giving A the bit b, we
replace it with a random independent bit. We denote by p3(m) the probability
that the adversary outputs 1 in this experiment:

p3(m) = Pr


APRF∗K,m(·)(s, vk,m, b′ ) = 1 :

b′ ← U1

s← Ur(n)
K ← KPRF (1n)
Km ← Punc(K,m)

(b, r) = Un+1

c∗ = Coms(b, r)
vk← iO([Cs,Km,c∗ ]`)


.

Then, by the computational hiding property of Com:

|p2(m)− p3(m)| ≤ negl(n) .



We define the probabilities p4, p5 in the same way we defined p1, p0 respectively,
except that in these experiments, A gets a random independent bit b′; that is,

p4(m) = Pr


APRF∗K,m(·)(s, vk,m, b′) = 1 :

b′ ← U1

s← Ur(n)
K ← KPRF (1n)
Km ← Punc(K,m)

(b, r) = PRFK(m)

c∗ = Coms(b, r)
vk← iO([Cs,Km,c∗ ]`)


,

p5(m) = Pr

APRF∗K,m(·)(s, vk,m, b′) = 1 :

b′ ← U1

s← Ur(n)
K ← KPRF (1n)

(b, r) = PRFK(m)

vk← iO([Cs,K ]`)

 ,

Following the same arguments as before:

|p3(m)− p4(m)| ≤ negl(n) , |p4(m)− p5(m)| ≤ negl(n) ,

and overall:

|p0(m)− p5(m)| ≤ negl(n) .

Thus, we have shown as required that for every m ∈ {0, 1}n:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

APRF∗K,m(·)(s, vk,m, b) = 1 :

s← Ur(n)
K ← KPRF (1n)

(b, r) = PRFK(m)
vk← iO([Cs,K ]`)



−Pr

APRF∗K,m(·)(s, vk,m, b′) = 1 :

b′ ← U1

s← Ur(n)
K ← KPRF (1n)

(b, r) = PRFK(m)
vk← iO([Cs,K ]`)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(n) .

4 NIZKs and ZAPs from Invariant Signatures

In this section, we show how to construct NIZKs in the CRS model based on
invariant signatures. A construction of ZAPs from NIZKs is given in [DN07].
Feige, Lapidot and Shamir constructed a NIZK proof system that is uncondi-
tionally secure in the hidden-bits model. They also showed how to transform
NIZK in the hidden-bits model to NIZK in the CRS model. Goldwasser and Os-
trovsky give a different transformation based on invariant signatures. We present
a transformation that follows [GO92], in most parts, and provide a full proof of
security.



We start by formally defining NIZK in the hidden-bits model. In this model,
a random string crs is sampled as a trusted setup. The prover can read all the bits
of crs and reveal a subset of these bits to the verifier, corresponding to indices
I. The prover cannot change the bits of crs, and the verifier gets no information
about the bits of crs that where not revealed by the prover.

Definition 4.1 (NIZK Proof in the Hidden-Bits Model). A pair of PPT
algorithms (P,V) is a NIZK proof in the hidden-bits model if it satisfies the
following properties:

1. Completeness: there exists a polynomial r denoting the length of the hidden
random string, such that for every (x,w) ∈ RL we have that:

Pr
P,crs←{0,1}r(|x|)

[V(x, crs|I , π) = 1 : (π, I)← P(x,w, crs)] = 1 ,

where I ⊆ [r(|x|)] and crs|I = {(i, crs[i]) : i ∈ I}.
2. Soundness: for every x /∈ L we have that:

Pr
crs←{0,1}r(|x|)

[∃π, I : V(x, crs|I , π) = 1] < 2−n .

3. Zero-Knowledge: there exists a PPT algorithm S such that:{
(crs|I , π) : crs← Ur(|x|), (π, I)← P(x,w, crs)

}
(x,w)∈RL

≈c {S(x)}(x,w)∈RL .

Next we construct a NIZK proof in the CRS model.

Construction 4.1 (NIZK in the CRS Model). We make use of the follow-
ing primitives:

– A selectively secure invariant signature scheme (Gen,Sign,Ver) with an in-
variant predicate P . For security parameter n, let rσ = rσ(n) be the length
of the CRS, and let k = k(n) be the length of the verification key.

– A NIZK proof system (Phb,Vhb) in the hidden-bits model with hidden random
string of length r = r(n).

The NIZK system (P,V) in the CRS model is defined as follows:

The CRS. The common random string is of length rσ + k · r · (n+ 1). The first
rσ bits of the CRS are interpreted as a CRS for the signature scheme crsσ.
We think of the rest of the CRS as divided into k · r blocks, each of length
n+ 1. For every i ∈ [k], j ∈ [r], we think of the (i, j)-th block as divided into
a message mi,j ∈ {0, 1}n and a one-time pad bit si,j ∈ {0, 1}.

The prover P. Given (x,w) ∈ RL, and the CRS (crsσ, {mi,j , si,j}) P
1. samples a pair of keys (sk, vk)← Gen(1n),
2. computes the strings {c̃rsi ∈ {0, 1}r : i ∈ [k]} such that c̃rsi[j] = P (σi,j)⊕

si,j and σi,j = Signsk(mi,j),
3. for i ∈ [k], emulates Phb(x,w, c̃rsi) and obtains a proof string πi and a

set of indices Ii,



4. outputs a proof that contains the verification key vk and the hidden-bits
proofs {πi, Σi : i ∈ [k]}, where Σi = {(j, σi,j) : j ∈ Ii}.

The verifier V. Given x, the CRS (crsσ, {mi,j , si,j}), and a proof (vk, {πi, Σi}),
V
1. for every i ∈ [k], j ∈ [r] such that (j, σi,j) ∈ Σi verifies that Vervk(crsσ,mi,j , σi,j) =

1; otherwise, V rejects,
2. for i ∈ [k], computes the set c̃rsi(Σi) = {(j, P (σi,j)⊕ si,j) : (j, σi,j) ∈ Σi},
3. for each i ∈ [k], emulates Vhb(x, crsi(Σi), πi),
4. accepts iff the emulation of Vhb accepts for every i.

Proposition 4.1. The protocol given by Construction 4.1 is a NIZK proof in
the CRS model.

Proof. The completeness property of (P,V) follows from the completeness of
(Phb,Vhb) by construction. Next we prove the soundness and zero-knowledge
properties.

Soundness. Fix some x ∈ {0, 1}n \ L. Let (crsσ, {mi,j , si,j : i ∈ [k], j ∈ [r]}) be
uniform random variables describing the content of the CRS. Let {c̃rsi : i ∈ [k]}
be the set of hidden random strings for the protocol (Phb,Vhb) computed by the
honest prover P from {mi,j , si,j} .

We prove that with overwhelming probability over the CRS, there is no proof
(vk′, {π′i, Σ′i}) that will make V accept. The uniqueness property of the signature
holds with overwhelming probability over the crsσ; from hereon, we condition
on this event. Fix some i ∈ [k] and a verification key vk′. Recall that for every
i ∈ [k], j ∈ [r], we have that c̃rsi[j] = P (σi,j)⊕ si,j . By the uniqueness property
of the signature, the value of P (σi,j) is determined by the CRS of the signature
crsσ, the verification key vk and the messages {mi,j} and is independent of the
pad bits {si,j}. It follows that c̃rsi is uniformly distributed.

Let I ′i ⊆ [r] be a set of indices such thatΣ′i is of the formΣ′i =
{

(j, σ′i,j) : j ∈ I ′i
}

for some signatures
{
σ′i,j
}

. By the uniqueness property of the signature we have
that if Σ′i contains an element (j, σ′i,j) such that c̃rsi[j] 6= P (σi,j)⊕ si,j the veri-
fier V rejects the proof. Therefore, if V accepts, it must be that c̃rsi(Σ

′
i) = c̃rsi|I′i ,

where:

c̃rsi(Σ
′
i) =

{
(j, σ′i,j ⊕ si,j) : (j, σ′i,j) ∈ Σ′i

}
,

c̃rs
′
i|I′i =

{
(j, c̃rs

′
i[j]) : j ∈ I ′i

}
.

It follows that:

Pr
mi,j ,si,j

[∃π′i, Σ′i : Vhb(x, c̃rsi(Σ′i), π′i) = 1] = Pr
c̃rsi←Ur

[∃π′i, I ′i : Vhb(x, c̃rsi|I′i , π
′
i) = 1] .

By the soundness of (Phb,Vhb) we have that the above probability is at most
2−n. Since this is true independently for every i and since V accepts iff all k
executions of Vhb accept, we have that:

Pr
mi,j ,si,j

[∃ {π′i, Σ′i} : Vhb(x, {mi,j , si,j} , (vk′, {π′i, Σ′i})) = 1] ≤ 2−n·k .



Since there are at most 2k verification keys, by a union bound:

Pr
mi,j ,si,j

[∃vk′, {π′i, Σ′i} : Vhb(x, {mi,j , si,j} , (vk′, {π′i, Σ′i})) = 1] ≤ 2−n ,

as required.

Zero-knowledge. We start be describing the simulator S.

1. S is given as input a statement x ∈ L of length n.
2. For every i ∈ [k], execute the simulator Shb of the protocol (Phb,Vhb) and

obtain:
(Bi, πi)← S(x) ,

where Bi = {(j, bi,j) : j ∈ Ii} for some set Ii ⊆ [r] and bits {bi,j}.
3. Sample crsσ ← Urσ(n) and (sk, vk)← Gen(crsσ).
4. For every i ∈ [k], j ∈ [r] sample mi,j ← Un
5. For every i ∈ [k], j ∈ [r] if j /∈ Ii sample si,j ← U1, otherwise set:

si,j = P (Signsk(mi,j))⊕ bi .

6. Output the CRS (crsσ, {(mi,j , si,j) : i ∈ [k], j ∈ [r]}). Output a simulated
proof containing the verification key vk and the simulated hidden-bits proofs
{πi, Σi : i ∈ [k]} where

Σi = {(j,Signsk(mi,j)) : j ∈ Ii} .

Next we prove that the output of the simulator is indistinguishable from
an honestly generated proof. For 0 ≤ i ≤ k consider the experiment Hi where
for every i′ ≤ i the messages and pad bits {(mi′,j , si′,j) : j ∈ [r]} are chosen
uniformly, and the hidden-bits proof (πi′ , Σi′) is computed following the hon-
est prover strategy, and for every i < i′ they are computed according to the
simulated strategy as above. For every (x,w) ∈ RL we have that:

H0(x,w) ≈ S(x) ,

Hk(|x|)(x,w) ≈
{

(crs,P(x,w, crs)) : mi,j ← U|x|, si,j ← U1

}
.

Therefore, the correctness of the simulation follows from the next claim.

Claim. For every polysize distinguisher D, there exists a negligible function µ
such that for every (x,w) ∈ RL and for every i ∈ [k(|x|)]

|Pr[D(Hi−1(x,w)) = 1]− Pr[D(Hi(x,w)) = 1]| ≤ µ(|x|) .

Proof. For i ∈ [k(|x|)], consider the experiment H ′i that is defined just like Hi

except that instead of sampling (Bi, πi)← S(x), we do the following:

1. Sample a random string c̃rsi ← Ur(|x|).
2. Emulate Phb(x,w, c̃rsi) and obtain the proof string πi and the set of indices
Ii.

3. Set Bi = c̃rsi|Ii = {(j, c̃rsi[j]) : j ∈ Ii}.



By the zero-knowledge property of (Phb,Vhb):{
(c̃rsi|Ii , πi) : c̃rsi ← Ur(|x|), (πi, Ii)← Phb(x,w, c̃rsi)

}
(x,w)∈RL

≈c {S(x)}(x,w)∈RL ,

and therefore, for every (x,w) ∈ RL and for every i ∈ [k(|x|)]:

|Pr[D(H ′i(x,w)) = 1]− Pr[D(Hi(x,w)) = 1]| ≤ negl(|x|) . (1)

For every 0 ≤ j ≤ r(|x|) consider the experiment H ′i,j that is defined just like
H ′i except that for all j′ ≤ j we set:

si,j′ = P (Signsk(mi,j′))⊕ c̃rsi[j
′] . (2)

For j′ > j choose si,j′ as in the experiment H ′i. That is, if j′ ∈ Ii we set si,j′ as
in 2 and if j′ /∈ Ii we sample si,j′ uniformly.

Note that the output distribution of the experiments H ′i,j−1 and H ′i,j may
differ when j /∈ Ii. This is due to the fact that conditioned on j /∈ Ii, the
bit c̃rsi[j] may no longer be uniform. However, based on the pseudo-randomness
property of the signature we will show that the experiments are computationally
indistinguishable.

Claim. For every polysize distinguisher D, there exists a negligible function µ
such that for every (x,w) ∈ RL and for every i ∈ [k(|x|)], j ∈ [r(|x|)]:∣∣Pr[D(H ′i,j−1(x,w)) = 1]− Pr[D(H ′i,j(x,w)) = 1]

∣∣ < µ(|x|) .

Proof. Assume towards contradiction that there is a distinguisher D and a poly-
nomial p such that for infinitely many (x,w) ∈ RL there exist i ∈ [k(|x|)], j ∈
[r(|x|)] such that:∣∣Pr[D(H ′i,j−1(x,w)) = 1]− Pr[D(H ′i,j(x,w)) = 1]

∣∣ > 1

p(|x|)
. (3)

We construct a distinguisher D̃ that breaks the pseudo-randomness property of
the signature. That is for infinity many values of n:∣∣∣∣∣∣∣∣
Pr

[
m← Un, (sk, vk)← Gen(crsσ), crsσ ← Urσ(n), b = P (Signsk(m)) :

D̃Signsk(·)(crsσ, vk,m, b) = 1

]
−

Pr

[
m← Un, (sk, vk)← Gen(crsσ), crsσ ← Urσ(n), b← U1 :

D̃Signsk(·)(crsσ, vk,m, b) = 1

]
∣∣∣∣∣∣∣∣ >

1

p(|x|)
,

(4)

where D̃ never queries its oracle on m. D̃ will have hardcoded (x,w) ∈ RL
and i, j for which (3) holds. Then D̃(crsσ, vk,m, b) emulates H ′i,j(x,w) with the
following modifications:

1. When the experiment H ′i,j(x,w) samples crsσ and vk, D uses its input crsσ
and vk instead.



2. Every time a the emulation needs to sign a message D̃ forwards the message
to the signing oracle (note that the experiment H ′i,j(x,w) does not use the
secret key sk except for signing messages).

3. If j /∈ Ii set si,j = b⊕ c̃rsi[j] .

We have that:

Pr[D(H ′i,j(x,w)) = 1] = Pr

[
m← Un, (sk, vk)← Gen(crsσ), crsσ ← Urσ(n), b = P (Signsk(m)) :

D̃Signsk(·)(crsσ, vk,m, b) = 1

]
,

Pr[D(H ′i,j−1(x,w)) = 1] = Pr

[
m← Un, (sk, vk)← Gen(crsσ), crsσ ← Urσ(n), b← U1 :

D̃Signsk(·)(crsσ, vk,m, b) = 1

]
,

and therefore, (4) follows from (3) and we get a contradiction to the pseudo-
randomness property of the signature.

The experiment H ′i,0 is identical to the experiment H ′i by definition. It follows
from Claim 4 that for every (x,w) ∈ RL and for every i ∈ [k(|x|)]:∣∣∣Pr[D(H ′i(x,w)) = 1]− Pr[D(H ′i,r(|x|)(x,w)) = 1]

∣∣∣ ≤ negl(|x|) . (5)

Note that for i ∈ [k], the experiment Hi−1 is identical to the experiment
H ′i,r(|x|) except for the order in which the the pad bits {si,j} and the random

hidden string c̃rsi are sampled. Specifically, in the experiment Hi−1:

1. First sample mi,j ← U|x|, si,j ← U1, for every j ∈ [r(|x|)].
2. Then compute c̃rsi where c̃rsi[j] = P (Signsk(mi,j))⊕ si,j .

Since in both experiments Hi−1 and H ′i,r(|x|) we have that c̃rsi is uniform and
mi,j , si,j are uniform conditioned on the fact that:

c̃rsi[j] = P (Signsk(mi,j))⊕ si,j ,

we have that the experiments Hi−1 and H ′i,r(|x|) are identical. Combining this

with (1) and (5) we get that for every (x,w) ∈ RL and for every i ∈ [k(|x|)]:

|Pr[D(Hi−1(x,w)) = 1]− Pr[D(Hi(x,w)) = 1]| ≤ negl(|x|) ,

as required.

5 Non-Interactive Witness-Indistinguishability

In this section, we construct a NIWI proof system based on indistinguishability
obfuscation and one-way permutations.

Theorem 5.1. Assuming iO for P/poly and one-way permutations, there exist
NIWI proof for every language in NP.7

7 We assume iO for all circuits for simplicity of exposition; naturally, it suffices to
have iO for a certain restricted class of circuits that we use in our construction and
analysis.



We now describe the NIWI system yielding the theorem. A high-level overview
of the construction and the main ideas behind it are provided in the introduction.

Primitives and Notation. The construction relies on an indistinguishability
obfuscator iO, a ZAP system (that can be constructed from iO and OWFs as in
Section 4), and a non-interactive (one message) statistically binding commitment
Com. We require that Com is dense, in the sense that every string of appropriate
length is a valid commitment to some message. Such a commitment can be
constructed from one-way permutations [Blu81].

Let L be any NP language. For every candidate instance x ∈ {0, 1}n and
message m ∈ {0, 1}n, denote by Emx the canonical “witness-encryption” circuit
that given any w ∈ RL(x) outputs m and otherwise outputs ⊥. Let T be the
NP language containing instances of the form (x, c1, c2, Ẽ) where x is candidate
instance for L, c1, c2 are commitments, and Ẽ is an obfuscation such that at
least one of the following conditions holds:

1. Ẽ is a valid obfuscation of a witness-encryption circuit. That is, there exist
randomness r and a message m such that Ẽ = iO(Emx ; r).

2. Ẽ has the same output on the plaintexts underlying the commitments c1, c2.
That is, there exist decommitments (w1, r1) and (w2, r2) such that:

c1 = Com(w1; r1) ∧ c2 = Com(w2; r2) ∧ Ẽ(w1) = Ẽ(w2) .

Finally, let Ds,c1,c2
x,w be a “witness-decryption” circuit as described in Figure 3.

Hardwired:
1. Instance and witness (x,w) ∈ RL,
2. first ZAP message s,
3. commitments c1, c2.

Input:
1. A circuit Ẽ,
2. second ZAP message π.

Output:
1. Verify that π is a valid proof for the statement (x, c1, c2, Ẽ) ∈ T with

respect to the first message s. If not, output ⊥.
2. Output Ẽ(w).

Fig. 3. The “witness-decryption” circuit Ds,c1,c2
x,w .

Construction 5.2 (NIWI Proof). The NIWI system (P,V) is defined as fol-
lows:

The prover P given x ∈ {0, 1}n ∩ L and w ∈ RL(x):
1. Sample a first ZAP message s ∈ {0, 1}poly(n),



2. compute a pair of commitments to the all zero string c1, c2 ← Com(0|w|),
3. compute the obfuscation D̃ ← iO(Ds,c1,c2

x,w ),

4. output (s, c1, c2, D̃) as the proof.
The verifier V given x and the proof (s, c1, c2, D̃):

1. Sample a message m← {0, 1}n,
2. compute the obfuscation Ẽ ← iO(Emx ),
3. compute a proof π for the statement (c1, c2, Ẽ) ∈ T with respect to the

first message s. Use m and the randomness used to compute Ẽ as a
witness for the fact that Ẽ is a valid obfuscation of a witness-encryption
circuit,

4. accept if m = D̃(Ẽ, π) accept, otherwise reject.

Proposition 5.1. The protocol given by Construction 5.2 is a NIWI proof.

Proof. The completeness of the system follows readily from the completeness of
the ZAP and the functionality of iO. We focus on proving soundness and then
witness-indistinguishability.

Soundness. Assume towards contradiction that there exist a polynomial p such
that for infinitely many x /∈ L there exists a proof (s, c1, c2, D̃) such that:

Pr[V(x, (s, c1, c2, D̃)) = 1] ≥ 1

p(|x|)
.

Let m be the random message sampled by V in a random execution, and let
(Ẽ, π) be the obfuscation and proof computed by V. By our assumption:

Pr[D̃(Ẽ, π) = m] ≥ 1

p(|x|)
.

Let (w1, r1) and (w2, r2) be decommitments of c1, c2 respectively (such de-
commitments exist since Com is dense). Since x /∈ L, and by the (perfect) func-
tionality of iO, the circuit Ẽ outputs ⊥ on all inputs. Therefore, the decommit-
ments (w1, r1), (w2, r2) can be used as a witness for the statement (c1, c2, Ẽ) ∈ T .
Let π′ be a proof for the statement (c1, c2, Ẽ) ∈ T with respect to the first
message s computed using the witness (w1, r1), (w2, r2). By the witness indistin-
guishability of the ZAP: π ≈c π′. Therefore,

Pr[D̃(Ẽ, π′) = m] ≥ 1

p(|x|)
− negl(|x|) .

Let Ẽ′′ = iO(E0n

x ). Since the circuits Ẽ and Ẽ′′ are of the same size, and
since both output ⊥ on all inputs, it follows from the security of iO that Ẽ ≈c
Ẽ′′. Let π′′ be a proof with respect to Ẽ′′ rather than for Ẽ. Then (Ẽ, π′) ≈c
(Ẽ′′, π′′). Indeed, a distinguisher between (Ẽ, π′), (Ẽ′′, π′′) can be reduced to a
distinguisher between Ẽ, Ẽ′′, since computing π′ and π′′ does not require the
randomness underlying Ẽ1, Ẽ2). Hence, it also holds that:

Pr[D̃(Ẽ′′, π′′) = m] ≥ 1

p(|x|)
− negl(|x|) .



Since m is uniform in {0, 1}|x| and in the above experiment the view of D̃ is
independent of m, we get a contradiction.

Witness indistinguishability. Let I = {(x,w1, w2) : w1, w2 ∈ RL(x)}, be a
sequence of instances x ∈ L, with two corresponding witnesses w1, w2. We show
that{

(s, c1, c2, D̃)← P(x,w1))
}
(x,w1,w2)∈I

≈c
{

(s, c1, c2, D̃)← P(x,w2))
}
(x,w1,w2)∈I

,

by considering a sequence of hybrid distributions.

Hyb1: Here (c1, c2, D̃)← P(x,w1) corresponds to a proof using the first witness
w1.

Hyb2: Here for each b ∈ {0, 1}, cb ← Com(wb) is a commitment to the corre-
sponding witness rather than to the all-zero string. By the computational-hiding
of Com, Hyb2 ≈c Hyb1.

Hyb3: Here the first ZAP message s is sampled conditioned the on the ZAP being
absolutely sound; that is, there exists no accepting proof, with respect to s, for
any false statement. By the soundness of the ZAP, this holds with overwhelming
probability and thus Hyb3 ≈s Hyb2.

Hyb4: Here instead of sampling D̃ ← iO(Ds,c1,c2
x,w1

) using w1, it is sampled using

w2, i.e., D̃ ← iO(Ds,c1,c2
x,w2

). To show that Hyb4 ≈c Hyb5, we show that for any
realization of s, c1, c2 (which have the same distribution in Hyb4,Hyb5), the two
circuits Ds,c1,c2

x,w1
, Ds,c1,c2

x,w2
have the exact same functionality and thus, by the iO

guarantee, iO(Ds,c1,c2
x,w1

) ≈c iO(Ds,c1,c2
x,w2

). Indeed, for any input (Ẽ, π) for Ds,c1,c2
x,wb

,
there are two options:

1. π is not a valid proof for the statement (x, c1, c2, Ẽ) ∈ T with respect to
the first message s. In this case, by the definition of Ds,c1,c2

x,wb
, it holds that

Ds,c1,c2
x,w1

(Ẽ, π) = Ds,c1,c2
x,w2

(Ẽ, π) = ⊥.

2. π is a valid proof. In this case, by the soundness of the ZAP, (x, c1, c2, Ẽ) ∈ T .
This in turn implies one of two cases
(a) Ẽ is a valid obfuscation iO(Emx ), in which case by the definition of Emx ,

and the functionality of iO, Ẽ(w1) = Ẽ(w2).
(b) c1, c2 can be opened to w̃1, w̃2, such that Ẽ(w̃1) = Ẽ(w̃2), in which case

by the binding of Com, for both b ∈ {0, 1}, wb = w̃b, and thus also
Ẽ(w1) = Ẽ(w2).

So in either case Ds,c1,c2
x,w1

(Ẽ, π) = Ds,c1,c2
x,w2

(Ẽ, π), as required.

Hyb5: Here we remove the requirement that s is sampled conditioned on absolute
soundness. Like before, it holds that Hyb5 ≈s Hyb4 by the soundness of the ZAP.

Hyb6: Here (c1, c2, D̃)← P(x,w2) corresponds to a proof using the first witness
w2. This hybrid differs from Hyb5 only in that c1, c2 are commitments to all-zero
strings rather than to w1, w2. Like before, it holds that Hyb6 ≈c Hyb5 by the
computational hiding of the commitment Com.



Remark 5.1 (Relying on relaxed dense commitments). The non-interactive com-
mitment scheme used in the NIWI construction can be somewhat relaxed. In-
deed, it suffices to require a non-interactive commitment scheme that is statis-
tically binding, but only against honest committers; namely, honestly generated
commitments can only be opened to a single value. The commitment should still
be dense in the sense that every string in the range of the commitment, can be
opened to at least one value (commitments that are not generated honestly may
potentially be opened to more than one value).

Remark 5.2 (Using witness-encryption generically). We note that we refrain
from explicitly defining witness encryption, and in the above construction, di-
rectly implement witness encryption using iO (which we anyhow rely on). While
we find that thinking about witness encryption in terms of obfuscation is helpful
in this context, it is possible to state the construction in terms of generic witness
encryption.
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