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1 Introduction

Ideally, we would like the soundness error of an interactive proof [GMR89,BM88]
or argument systems [BCC88] to be negligible. But, in many settings, our start-
ing point is a protocol with somewhat large soundness error. For example, to
design an interactive argument for a language L, it may be easier to first design a
protocol with soundness error 1/2. This leads to the question of soundness ampli-
fication: How can we to decrease the soundness error of a given protocol? (Ideally,
we would like to simultaneously decrease both the soundness and completeness
error; we return to this question shortly.) A natural approach to performing such
soundness amplification is through a direct product theorem: Roughly speaking,
a direct product theorem for a class of problems states that if an adversary can
solve an instance of a problem with probability at most δ, then his chance of solv-
ing multiple independent instances should decrease exponentially, ideally to δk,
if we have k independent instances. For the case of interactive proofs/arguments,
the two most natural ways of running several instances are sequential repetition
and parallel repetition. In the case of sequential repetitions, we run k instances of
some underlying protocol sequentially, one after the other, and the verifier finally
accepts if all instances were accepted. It is well-known that sequential repetition
decreases the soundness error of both interactive proofs and arguments at an
essentially optimal rate; see [BM88,Gol01,DP98]. However, sequential repetition
increases the number of communication rounds of the original protocol. In the
case of parallel repetition, we instead run the k protocols in parallel. It is known
that parallel repetition decrease soundness error at an optimal rate for the case
of interactive proofs (i.e., for the case of statistical soundness). For arguments
(i.e., computational soundness), however, surprising things start happening: The
seminal work of Bellare, Impagliazzo, and Naor [BIN97] demonstrate protocols
for which parallel repetition fails to amplify soundness at all ! These counter
examples, however, are for private-coin protocols.

On the other hand, for the case of public-coin protocols, parallel repeti-
tion theorems have been established: Pass and Venkitasubramaniam [PV07] first
showed a tight parallel repetition theorem for constant-round protocols. H̊astad,
Pass, Wikström and Pietrzak [HPWP10] next extended it to arbitrary (i.e., not
necessarily constant-round) protocols; the rate at which the soundness decreases,
however, was no longer optimal—roughly speaking, when δ = (1− µ), k repeti-

tions decreases the error to e−Ω(µ2k) as opposed to δk = e−Ω(µk). Finally, Chung
and Liu presented an optimal parallel repetition theorem—where k repetitions
sufficed to decrease the error to δk. A more comprehensive survey of known
parallel repetition theorems can be found in Section 1.3.

1.1 Our Results

A New Proof of Tight Parallel Repetition for Public-coin Protocols In this work,
we revisit the result of Chung and Liu. Our central contribution is a new proof
of their tight parallel repetition theorem. Our proof follows the same framework
as the “simple” proof of the non-tight parallel-repetition theorem of H̊astad
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et al—which relied on statistical distance to measure the distance between
experiments—and shows that it can be made tight (and further simplified) if
instead relying on KL-divergence3 as the distance between the experiments. (KL-
divergence was previously instrumental for proving tight parallel theorems for
two-prover games [BRR+09] in an information-theoretic setting. Our new proof
demonstrates that also in the computational setting, KL-divergence appears to
be the right measure of distance when analyzing reductions through hybrid ex-
periments.) As such, our proof significantly simplifies and “demystifies” the proof
of [CL10], which directly analyzed the success probability through an intricate
inductive argument relying on Holder’s inequality, providing little intuition for
“why” the reduction works.

Additionally, as we now turn to discussing, our new proof enables considering
more general scenarios (whereas the analysis in [CL10] is explicitly set up to
analyze the particular direct-product case), and we believe this technique may
be useful more broadly.

Tight Chernoff-type Parallel-repetition Theorem for Any Public-coin Protocols
So far we have only discussed direct-product parallel repetition theorems, where
the parallel verifier accepts iff all parallel sessions are accepting. If the starting
protocol also has a large completeness error, then parallel repetition with a “di-
rect product” verifier also increases the completeness error. Ideally, we would
like to have a way to simultaneously decrease both the completeness and the
soundness error: just as for error reduction of the class BPP, the idea is to con-
sider a threshold verifier, who accept whenever the fraction of accepting sessions
is greater than a certain threshold γ (that is greater than the soundness error
δ, or else there is no hope to reduce the soundness error). For error reduction of
BPP, it follows by a standard Chernoff bound that such an approach works. For
interactive arguments, such “Chernoff-type” parallel repetition theorems where
first studied by Impagliazzo, Jaiswal, and Kabanets [IJK09] for the case of three-
message protocols. H̊astad et al. [HPWP10] extend the results of [IJK09] also
to public-coin protocols and Chung and Liu [CL10] improved the error decrease
rate obtaining “tight” Chernoff-type parallel repetition theorems (matching the
parameters of the standard Chernoff bound)4 in two setting:

– For the case of constant-round protocols (by relying on the direct product
parallel repetition theorem of [PV07]).

– When the gap between the threshold γ and the soundness error δ is a con-
stant (i.e., γ − δ = Ω(1)); this is done by relying on a generic reduction to
the direct product case, which is only efficient when the gap is a constant.

In particular, for non-constant round protocols, previous result only enabled si-
multaneously decreasing the completeness and soundness error at a rate match-
ing the standard Chernoff bound whenever the gap between the soundness error

3 Recall that KL(X||Y ) =
∑

x∈supp(X) Pr[X = x] · log Pr[X=x]
Pr[Y =x]

. For convenience, here
we define KL-divergence with log base e. The choice is inconsequential.

4 Also the standard Chernoff bound is not “optimal” so we content ourselves with
matching the parameters of the standard Chernoff bound.



4

and “1-the completeness error” is a constant (as opposed to it being an inverse
polynomial). We show that using our new proof technique, the analysis for the
direct product case directly extends also to the case of threshold verifiers, yield-
ing a Chernoff-type parallel repetition theorem for any public-coin protocol, and
any threshold γ > δ.

Specifically, we demonstrate the following theorem, which matches a “KL-
version” Chernoff bound, and directly implies both tight direct product theorems
and tight Chernoff-type theorems.

Theorem 1 (informal). For a public-coin interactive argument with soundness
error δ ∈ (0, 1), k-fold parallel repetition with threshold γ > δ ∈ (0, 1) decreases
soundness error to e−k·KL(γ||δ) + ngl, where ngl is a negligible function in the
security parameter.5 In particular,6

– For threshold γ = 1 (the direct product setting), the soundness error is de-
creased to δk + ngl.

– For threshold γ = (1+µ)δ (the “multiplicative” Chernoff-bound setting), the

soundness error is decreased to e−Ω(µ2δk)+ngl for µ ∈ (0, 1) and e−Ω(µδk)+
ngl for µ > 1.

1.2 Proof Overview

We now explain our new proofs of a tight parallel repetition theorem for public-
coin protocols. For simplicity of exposition, we start by focusing on the direct
product case, and next extend the analysis to deal with threshold verifiers.

We first set-up some notation. Let us consider a public-coin protocol (P, V )
with m rounds, where at each round j ∈ [m], the verifier V sends a uni-
formly random message xj to P , receives back a second-message yj , and at
the end deterministically decides to accept or reject based on the transcript
(x1, y1, . . . , xm, ym). We denote by (P k, V k) the k-fold parallel repetition of
(P,K); here V k sends a message x = (xj,1, . . . , xj,k), receives back a message y =
(yj,1, . . . , yj,k) at each round j ∈ [m], and accepts iff (x1,i, y1,i, . . . , xm,i, ym,i) is
accepting for every instance i ∈ [k]. We refer to the different parallel executions
of the protocol (P, V ) inside (P k, V k) as the parallel sessions.

To prove that parallel repetition reduces the soundness error, we show how to
transform any parallel prover P k∗ that convinces V k with probability ϵ ≥ 1.1δk

to a single-instance prover P ∗ that convinces V with probability at least δ. This
implies that parallel repetition reduces the soundness error at an essentially op-
timal rate (from δ to 1.1δk). We may without loss of generality assume that P k∗

is deterministic—its optimal random coins can always be fixed non-uniformly.7

5 As shown by [DJMW12], under some cryptographic assumptions, the additive neg-
ligible term is necessary.

6 For the direct product setting, it follows by the fact that KL(1||δ) = log(1/δ). For
the Chernoff-bound setting, it follows by the fact that KL((1+µ)δ||δ) = Θ(µ2δ) for
µ ∈ (0, 1), and KL((1 + µ)δ||δ) = Θ(µδ) for µ > 1.

7 Alternatively, “close to optimal” coins can be uniformly fixed by sampling.
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More precisely, P ∗ will internally emulate an execution of P k∗ and use this
execution in order to convince an external verifier V . On a high-level, the general
strategy is quite straight forward. P ∗ picks one of the k sessions, i; this session
will be externally forwarded (between P k∗ and V ), and all the other sessions, −i,
will be appropriately emulated internally. In other words, the external verifier
V is “embedded” in some session i of V k, and P ∗ internally emulates P k∗ and
the remaining k − 1 sessions −i of V k while forwarding P k∗’s messages yj,i’s
for session i to V ; see Figure 1 for an illustration for the case of a one-round
protocol.

P
∗

V

xi

P
k∗

V
k

yi

x = xi

y = yi

internal internal

Fig. 1. Interaction between P ∗ and V for a one-round protocol: P ∗ embeds the external
verifier V in session i of V k and internally emulates P k∗ and the remaining k−1 sessions
−i of V k while forwarding P k∗’s message y for session i to V .

Recall that since we have assumed that P k∗ is deterministic, the interaction
between P k∗ and V k is determined solely by V k’s message x1, . . . ,xm, where
each xj = (xj,1, . . . , xj,k). Thus, P

∗ needs to decide the session i to embed V at
beginning, and then at each round j, given an external message xj,i, to choose the
remaining k − 1 messages xj,−i. We now recall the rejection sampling strategy
of [HPWP10].

The Rejection Sampling Strategy. We consider a rejection sampling prover, P ∗rej,
that selects the session i ∈ [k] uniformly at random, and then at each round
j, upon receiving the external verifier V ’s message xj,i, P

∗
rej selects xj,−i using

rejection sampling as follows: P ∗rej repeatedly samples a random continuation of

(P k∗, V k) (i.e., samples uniformly random xj,−i,xj+1 . . . ,xm)8 until it finds an
accepting continuation, i.e., V k accepts at the end of interaction (or a certain a-
prior bound M on the number of samples is reached, in which case P ∗ aborts and
fails). Then, P ∗ selects the corresponding messages in the accepting continuation
as the messages of V−i at round j.

8 Note that here we use the fact that the protocol is public coin so that sampling a
random continuation is simply sampling uniformly random xj,−i,xj+1 . . . ,xm.
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To analyze the success probability of P ∗rej, let us first allow P ∗rej to make an
unbounded number of samples (i.e., set M =∞). Note that in this case, at each
round j, P ∗rej simply selects xj,−i conditioned on P k∗ convincing V k. See Figure 2

for an illustration. As we shall see, if P k∗ convinces V k with probability ϵ, then
P ∗ convinces V with probability ≥ ϵ1/k > δ. We then deal with the bounded-
sample case at the end (looking forward, as long as we make poly(1/ϵ) queries,
having such a cut-off only slightly affects the success probability of P ∗).

The main idea for analyzing (the unbounded sample version of) P ∗ is to
consider an Ideal experiment, where P ∗ succeeds with probability 1 and next
show that the actual execution of (P ∗, V ), referred to as the Real experiment,
and the Ideal experiment are close (using an appropriate choice of a distance
measure), from which we can conclude that P ∗ succeeds with high probability
in the Real experiment. Let us start by formalizing the Real experiment.

P
∗

rej V
x1,i

P
k∗

V
k

y1,i

x1 = x1,i

y1 = y1,i

xj−1,i

yj−1,i

xj−1 = xj−1,i

yj−1 = yj−1,i

xj,i xj = xj,i

internal internal

Fig. 2. Interaction between P ∗
rej and V .

The Real Experiment Consider an execution of (P ∗rej, V ) as follows. At beginning,
P ∗rej selects a random coordinate i ∈ [k]. Then at each round j ∈ [m], V selects
a uniformly random xj,i, and P ∗rej selects a random xj,−i conditioned on W
using rejection sampling (namely, repeatedly samples a random continuation of
(P k∗, V k) until it finds an accepting continuation, i.e., V k accepts at the end of
interaction, and selects the corresponding xj,−i). If no such xj,−i exists, then
P ∗rej fails. P

∗
rej succeeds if it does not fail. The output of the experiment is defined

to be (i,x1, . . . ,xm).
First, note that to prove that parallel repetition works (at an optimal rate)

we need to show that P ∗ convinces V in the Real experiment with probability
at least ϵ1/k. Secondly, observe that an equivalent way of defining the output
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(i,x1, . . . ,xm) of the experiment is as follows: uniformly sample i ∈ [k], then
for each j ∈ [m], uniformly sample xj,i ∈ {0, 1}n, and uniformly sample x−i ∈
{0, 1}(k−1)n conditioned on P k∗ convincing V k.

The Ideal Experiment Let us turn to defining the Ideal experiment. The exper-
iment is defined identically to the Real experiment, except that now we addi-
tionally select xj,i conditioned on P k∗ convincing V k; that is, uniformly sample
i ∈ [k], then for each j ∈ [m], uniformly sample xj,i ∈ {0, 1}n conditioned on P k∗

convincing V k, and uniformly sample xj,−i conditioned on P k∗(x) convincing
V k; again, the output of the experiment is defined to be (i,x).

Note that an equivalent way of defining the Ideal experiment is to uniformly
sampling i ∈ [k], and then directly uniformly sample (x1, . . . ,xm) conditioned
on P k∗ convincing V k. Since P k∗ convinces V k with positive probability, it thus
follows that in the Ideal experiment P ∗rej convinces V with probability 1.

Going from Ideal to Real Observe that the only difference between the Real and
the Ideal experiments is that at each round j ∈ [m], in Real xj,i’s are sampled
uniformly at random, and in Ideal they are sampled at random conditioned on
P k∗ convincing V k. The following natural approach is taken in [HPWP10].

Consider a set of m “hybrid” experiments, where in Hj , the messages in the
first j rounds are selected just as in Ideal (i.e., both xj′,i and xj′,−i for j

′ ≤ j are
sampled conditioned on P k∗ convincing V k), and the remaining m − j rounds
are selected just as in Real (i.e., for j′ > j, only xj′,−i is sampled conditioned on
P k∗ convincing V k, but xj′,i is uniformly sampled without any conditioning).
Clearly H0 = Real and Hm = Ideal. Furthermore, the only difference between
two consecutive hybrids j−1 and j is whether xj,i is sampled conditioned on P k∗

convincing V k or not, where i is uniformly chosen. To bound the distance be-
tween the hybrids, [HPWP10] uses the following version of Raz’ Lemma [Raz98].

Lemma 1 (Raz’ Lemma [Raz98]). Let (H,X) = (H,X1, . . . , Xk) be inde-
pendent random variables and W be an event. Then,

1

k

k∑
i=1

SD((H,Xi)|W , (H|W , Xi)) ≤
√

log(1/Pr[W ])

k
.

Let W be the event that P k∗ convinces V k. The lemma directly implies that the
statistical distance between any two consecutive hybrids Hj−1 and Hj is at most√

(log(1/Pr[W ]))/k. Thus, by the triangle-inequality, the statistical distance be-

tween the Real and the Ideal experiments is at most m ·
√
(log(1/Pr[W ]))/k,

which yields a lower bound on the success probability of P ∗rej in the Real experi-
ment that suffices to demonstrate that parallel repetition reduces the soundness
error at an exponential rate.

However, the bound is not tight for two reasons. First, due to the “hybrid
argument” we incur a linear loss in the number of rounds m (thus, to make
the soundness error small we need the number of parallel repetitions to grow
polynomially with the number of rounds in the protocol). [HPWP10] shows how
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to avoid the loss of m by proving a “multi-round” version of Raz’ Lemma, which
avoids the round-by-round hybrid argument. But the bound still does is not tight
due to the use of statistical distance to measure the distance between Real and
Ideal

KL Divergence as a Distance Measure. The crux of our new proof is to instead
use Kullback-Leibler divergence (KL divergence, for short) as a distance measure
between the Real and Ideal experiments. In fact, the proof of Raz’ Lemma (and
also the multi-round version in [HPWP10]) first provides a bound on the KL
divergence between the random variables, and then arrives a bound on their
statistical distance by relying on Pinsker inequality. The “translation” between
KL divergence and statistical distance, however, incurs a quadratic loss. By
directly working with KL divergence, we can avoid it.9 By a calculation very
similar to the proof of Raz’ lemma (and essentially implicit in [HPWP10]), we
directly show the following lemma:

Lemma 2. KL(Ideal||Real) ≤ log(1/Pr[W ])
k .

Let us now show how to get a tight lower bound on the success probability
of P ∗ in the Real experiment. Let SucReal and SucIdeal be indicator variables
that indicate, respectively, whether P ∗ convinces V in the Real and the Ideal
experiments.

log(1/Pr[W ])

k
≥ KL(Ideal||Real) ≥ KL(SucIdeal||SucReal) = 1·log 1

Pr[SucReal = 1]
,

(1)
which implies that Pr[SucReal = 1] ≥ ϵ1/k since Pr[W ] = ϵ. The second inequality
follows since applying the same function to two distributions can only decrease
their KL divergence, whereas the last equality follows by the definition of KL di-
vergence and the fact that Pr[SucIdeal = 1] = 1. This concludes that P ∗ convinces
V with probability at least ϵ1/k in the Real experiment.

Dealing with Threshold Verifiers. Our analysis directly extends also to yield
tight “Chernoff-type” parallel-repetition theorems where we consider a thresh-
old verifier V k,γ that accepts iff more that γ · k sessions are accepting. Let us
consider the same rejection sampling strategy P ∗rej that selects a uniform i ∈ [k],

and then at each round j ∈ [m], samples xj,−i conditioned on P k∗ convinces
V k,γ (note that we do not require V k,γ accepts the i-th session). Let us also
consider the same Real and Ideal experiments as above. For the same reason,

we have KL(Ideal||Real) ≤ log(1/Pr[W ])
k . The only difference is that in the Ideal

experiment, we no longer have that the success probability is 1. However, since
V k,γ accepts only when ≥ γ · k sessions accepts, and i ← [k] is uniform and
independent of the transcript (x1, . . . ,xm), P ∗rej convinces V with probability at

least γ in Ideal. An analogous calculation shows that if P k∗ convinces V k,γ with

9 A similar phenomena occurred already in the context of parallel repetition for “free”
two-prover games; see [BRR+09].
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probability ≥ e−k·KL(γ||δ), then P ∗rej convinces V with probability at least δ in
the Real experiment.

Handling The Bounded-Sample Case. In our analysis so far we have assumed
that P ∗ can make an unbounded number of samples. Let us now show that its
success probability is still high even if we impose a polynomial bound M on the
number of samples it can make (and thus P ∗ becomes efficient). Let us first con-
sider the Ideal experiment. The main observation is that, in the Ideal experiment,
in expectation, P ∗ only needs to make 1/ϵ samples to pick xj,−i conditioned on
P k∗(x) convincing V k for every j ∈ [m] (since the prefix (x1, . . . ,xj−1, xj,i)
is also picked conditioned on P k∗ convincing V k, and P k∗ convinces V k with
probability ϵ). Thus, if the allowed number of samples M is sufficiently larger
than 1/ϵ, then by the Markov inequality, P ∗ can successfully convince V k with
probability “almost” 1, even if we restrict P ∗ to use at most M samples.10 Since
the Ideal and the Real experiments are statistically close, this directly yields a
lower bound on the success probability of P ∗ in the Real experiment. But as we
saw, working with statistical distance does not give the tight bound. To obtain a
tight bound, we again work with KL divergence. Here, the only difference is that
Pr[SucIdeal = 1] is no longer 1, but can be made arbitrarily (inverse polynomially)
close to 1 by increasing M . This is sufficient to conclude that Pr[SucReal = 1]
can be made arbitrarily (inverse polynomially) close to ϵ1/k as well (since the
KL divergence of two binary random variables is a “smooth” function of the
probabilities of both random variables).

1.3 Related Works: When Parallel Repetition Works

Let us briefly summarize the class of argument systems for which parallel repe-
titions is known to decrease the soundness error.

– The seminal work of Yao [Yao82] on hardness amplification of one-way func-
tions can be viewed as showing that parallel repetition reduces the soundness
error at an optimal rate for all two-message argument systems for which the
verifier’s decision to accept or reject is a public function of the transcript;
that is, the verifier is not employing any secret randomness to decide whether
to accept or reject—we refer to such protocols as being publicly verifiable. An
important special case of publicly-verifiable protocol are public-coin proto-
cols (a.k.a. Arthur-Merlin protocols [BM88]) where in each round the verifier
simply tosses some random coins and directly sends them to the prover (that
is, the verifier doesn’t employ any secret randomness).

– The seminal work of Bellare, Impagliazzo and Naor [BIN97] was the first one
to explicitly study parallel repetition of argument systems and demonstrated
that parallel repetition reduces the soundness error for all three-message

10 SinceM > 1/ϵ, we only get an efficient reduction as long as ϵ is an inverse polynomial.
As a consequence, parallel repetition of arguments cannot decrease the soundness
error beyond being “negligible”. As shown by [DJMW12], under some cryptographic
assumptions, this is inherent.
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protocols (not just publicly-verifiable ones). The results of [BIN97] demon-
strated that parallel repetition reduces the soundness error of such protocols
at an exponential rate, but did not establish an optimal rate (i.e., reducing
the soundness error from ϵ to ϵk). Nevertheless, the more recent work by
Canetti, Halevi and Steiner [CHS05] shows that parallel repetition indeed
reduces the soundness error at an optimal rate for this class of protocols.

– [BIN97,PW07] demonstrate 4-message protocols for which parallel repeti-
tion fails; in these protocols, the verifier uses “secret randomness”. Pass
and Venkitasubramaniam [PV12] turn to considering public-coin protocols,
and demonstrate that parallel repetition decreases the soundness error for
constant-round public-coin protocols at an optimal rate.

– H̊astad, Pass, Wikström and Pierzak [HPWP08] show that parallel repeti-
tion, in fact, works for all (not necessarily constant-round) public-coin pro-
tocols, and decreases the soundness error at an exponential rate. Chung and
Liu [CL10] demonstrate that it in fact decreases at an optimal rate.

– [HPWP08] consider a generalization of both public-coin and three-message
protocol, called simulatable protocols—where roughly speaking the verifier’s
messages can be predicted without knowing its randomness—and demon-
strate that parallel repetition reduces the error at an exponential rate; an
improved “nearly” optimal rate (reducing the soundness error from ϵ to ϵk/2)
is obtained by [CL10].

– [HPWP08], and more explicitly [CL10], also consider protocols satisfying
a “computational” simulatability property and demonstrate that parallel
repetition reduces the soundness error at a nearly optimal rate also for such
protocols.

– The elegant work of Haitner [Hai09] considers a certain class of protocols with
“random-terminating” verifiers and demonstrates that parallel repetition re-
duces the soundness error at an exponential rate for such protocols; random-
terminating protocols are important since any argument can be turned into a
random-terminating one, while only slightly increasing the soundness error.
[HPWP10] provide a generalization, called δ-simulatable protocols—where,
very roughly speaking, we only need to predict a δ-fraction of the verifier’s
messages—that encompasses both simulatable and random-terminating pro-
tocols, and demonstrate that parallel repetition decreases the soundness error
at an exponential rate. Optimal, or even “nearly” optimal, parallel repetition
theorems for δ-simulatable (or even random-terminating) protocols are not
known.
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2 Preliminaries

Throughout the paper, all log are base e.

2.1 Interactive Arguments

Definition 1 (Interactive Proofs/Arguments). A pair of interactive algo-
rithms (P, V ) is an interactive proof for a NP language L with completeness
error c and soundness error s if it satisfies the following properties:

– Completeness: For all x ∈ L with NP witness w,

Pr[⟨P (w), V ⟩(x) = 1] = 1− c(|x|).

– Soundness: For all adversarial provers P ∗, and for every all x /∈ L,

Pr[⟨P ∗, V ⟩(x) = 1] ≤ s(|x|).

where ⟨P, V ⟩(x) denotes the output of V after communicating with P if both
players get x as a common input. (P, V ) is an interactive argument for L
if P runs in polynomial time and the soundness property holds only against
all non-uniform polynomial-time adversarial provers P ∗. (P, V ) is public-coin if
verifier’s messages are uniformly random strings; otherwise, (P, V ) is private-
coin.

Definition 2 (Parallel Repetition with Threshold Verifiers). Let (P, V )
be an interactive protocol. Let k ∈ N and γ ∈ (0, 1). We use (P k, V k,γ) to denote
k-fold parallel repetition of (P, V ) with threshold γ, where P k and V k,γ interact
by executing k copies of (P, V ) in parallel and at the end of execution, V k,γ

accepts iff at least γ · k copies accept. For the direct product case with γ = 1, we
use V k to denote V k,1.

2.2 Kullback-Leibler divergence

Here we review the definition and basic properties of Kullback-Leibler diver-
gence.

Definition 3. Let X and Y be discrete random variables over a finite support
[N ]. The Kullback-Leibler divergence (KL divergence for short) of X from Y is
defined to be

KL(X||Y ) =
∑

x∈[N ]

Pr[X = x] log
Pr[X = x]

Pr[Y = x]
.

For p, q ∈ (0, 1), we use KL(p||q) to denote the KL divergence KL(X||Y ) of two
binary random variables X and Y with Pr[X = 1] = p and Pr[Y = 1] = q.

The following properties of KL divergence can be found in any Information
Theory textbook (e.g., [CT06]). We first recall the chain rule for KL divergence.
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Lemma 3 (chain rule). Let (X1, X2) and (Y1, Y2) be random variables. We
have

KL((X1, X2)||(Y1, Y2)) = KL(X1||Y1) + E
x←X1

[KL(X2|X1=x||Y2|Y1=x)].

The following lemma says that applying a deterministic function can only
decrease the KL divergence.

Lemma 4. Let X and Y be random variables and f a deterministic function.
We have

KL(f(X)||f(Y )) ≤ KL(X||Y ).

The following lemma allows us to decompose the KL divergence of two joint
distributions by the sum of the KL divergence of their marginals.

Lemma 5 ([Hol09], Lemma 4.2). Let X = (X1, . . . , Xk) be independent
random variables, and Y = (Y1, . . . , Yk) be random variables.

k∑
i=1

KL(Yi||Xi) ≤ KL(Y ||X)

The following lemma bounds how much conditioning can creates the KL
divergence.

Lemma 6. Let X be a random variable and W a (probabilistic) event.

KL(X|W ||X) ≤ log
1

Pr[W ]
.

The following simple lemma bounds the sensitivity of KL divergence of two
binary random variables with respect to the first coordinate, which will be useful
for us. The lemma follows by the fact that KL divergence is a smooth function,
and is proved by a straightforward calculation. For the sake of completeness, we
provide a proof in the appendix.

Lemma 7. For every p, q, η ∈ (0, 1) such that η ≤ min{p/2, q}, we have

KL(p||q)−KL(p− η||q) ≤ Θ (η · log(1/η))

2.3 A Lemma on Sampling

The following simple lemma is taken from H̊astad et al. [HPWP10]; for self-
containment, we recall the proof.

Lemma 8 ([HPWP10]). Let (X,Y ) be a joint distribution over some finite
domain. Let W be a deterministic event on (X,Y ). Consider the following ex-
periment:

– Sample x← X|W .
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– Sample y ← Y |W∧X=x using rejection sampling; i.e., sample i.i.d. y1, y2, . . .←
Y |X=x and outputs the first yt such that (x, yt) ∈W .

Let T be the number of sample used in the rejection sampling. We have E[T ] =
1

Pr[W ] .

Proof. The lemma follows by the following calculation.

E[T ] =
∑
x

Pr[X = x|W ] · E[T |X = x]

=
∑
x

Pr[X = x|W ] · 1

Pr[W |X = x]

=
∑
x

Pr[X = x ∧W ]

Pr[W ]
· Pr[X = x]

Pr[W ∧X = x]

=
∑
x

Pr[X = x]

Pr[W ]
=

1

Pr[W ]
.

3 Proof of the Parallel Repetition Theorem

In this section, we present the formal of our tight Chernoff-type parallel repeti-
tion theorem for public-coin protocols.

Theorem 2. Let (P, V ) be a public-coin interactive argument for a language L.
There exists an oracle adversarial prover P (·)∗ such that for every k ∈ N, input
z ∈ {0, 1}∗, every γ, δ, ξ ∈ (0, 1) with γ > δ, and every deterministic parallel
adversarial prover P k∗, if

Pr[⟨P k∗, V k,γ⟩(z) = 1] ≥ ϵ
def
= (1 + ξ) · e−k·KL(γ||δ),

then
Pr[⟨P (Pk∗)∗(k, γ, δ, ξ), V ⟩(z) = 1] ≥ δ.

Furthermore, P (·)∗ runs in time poly(|z|, k, ϵ−1, ξ−1, (γ − δ)−1) given oracle ac-
cess to P k∗.

Note that in the direct product setting with γ = 1, KL(1||δ) = log(1/δ)
so e−k·KL(γ||δ) = δk. Thus, the above theorem implies a tight direct product
theorem as a corollary. For the “multiplicative” Chernoff-bound setting with γ =
(1+µ)δ, we have KL((1+µ)δ||δ) = Θ(µ2δ) for µ ∈ (0, 1), and KL((1+µ)δ||δ) =
Θ(µδ) for µ > 1, which implies bounds e−Ω(µ2δk) and e−Ω(µδk), respectively. This
matches the usual multiplicative Chernoff bounds.

Proof. Let m denote the round complexity of (P, V ). Let us consider a P
(·)∗
rej that

interacts with V by the aforementioned rejection sampling withM = Θ( k·m
ϵ·ξ·(γ−δ) ·

log k
δ·ξ ). Specifically, P

∗
rej, selects the session i ∈ [k] uniformly at random, and
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then at each round j, upon receiving the external verifier V ’s message xj,i,
P ∗rej selects xj,−i using rejection sampling as follows: P ∗rej repeatedly samples a

random continuation of (P k∗, V k,γ) until it finds an accepting continuation, i.e.,
V k,γ accepts at the end of interaction (note that we do not require V k,γ accepts
the i-th coordinate), or M = Θ( k·m

ϵ·ξ·(γ−δ) · log
k
δ·ξ ) samples is reached, in which

case P ∗rej aborts and fails. Then, P ∗rej selects the corresponding messages in the
accepting continuation as the messages of V−i at round j.

By inspection, P
(·)∗
rej runs in time poly(|z|, k, ϵ−1, ξ−1, (γ − δ)−1) on input

z, k, γ, δ, ξ. It remains to show that if P k∗ convinces V k,γ with probability at least

ϵ, then P
(·)∗
rej convinces V with probability at least δ. LetW denote the event that

P k∗ convinces V k,γ in the execution of ⟨P k∗, V k,γ⟩(z). We consider the following

Real experiment, which is the same as the execution of ⟨P (Pk∗)∗
rej (k, γ, δ, ξ), V ⟩(z)

except that P ∗rej takes an unbounded number of samples (i.e., set M =∞).

The Real Experiment Consider an execution of (P ∗rej, V ) as follows. At beginning,
P ∗rej selects a random coordinate i ∈ [k]. Then at each round j ∈ [m], V selects
a uniformly random xj,i, and P ∗rej selects a random xj,−i conditioned on W
using rejection sampling (namely, repeatedly samples a random continuation of
(P k∗, V k,γ) until it finds an accepting continuation, i.e., V k,γ accepts at the end
of interaction, and selects the corresponding xj,−i). Let Tj denotes the number
of samples P ∗rej takes. If no such xj,−i exists, then P ∗rej fails, and we set Tj =∞
and all remaining xj,−i,xj+1, . . . ,xm = ⊥. P ∗rej succeeds if it does not fail. The
output of the experiment is defined to be (i,x1, . . . ,xm).

Note that the event that P (·)∗ convinces V in ⟨P (Pk∗)∗(k, γ, δ, ξ), V ⟩(z) cor-
responds to the event that in the Real experiment, P ∗ succeeds and Tj ≤M for
every j ∈ [m]. Let SucReal be the indicator random variable of this event. Our
goal is to lower bound

Pr[⟨P (Pk∗)∗(k, γ, δ, ξ), V ⟩(z) = 1] = Pr[SucReal = 1].

We next compare it with an Ideal experiment, which is identical to the Real
experiment, except that the messages x1,i, . . . , xm,i are also selected conditioned
on W .

The Ideal Experiment At beginning, P ∗rej selects a random coordinate i ∈ [k].
Then at each round j ∈ [m], V selects a random xj,i conditioned on W , and
P ∗rej selects a random xj,−i conditioned on W using rejection sampling. Let Tj

denotes the number of samples P ∗rej takes. The output of the experiment is defined
to be (i,x1, . . . ,xm).

Note that sampling random x1,i,x1,−i, . . . , xm,i,xm,−i conditioned on W
step by step is equivalent to sampling the whole x1, . . . ,xm conditioned on W .
Thus, the output distribution of the Ideal experiment is simply a uniformly ran-
dom coordinate i ∈ [k] and a uniformly random accepting transcript (x1, . . . ,xm).
Let SucIdeal be the corresponding indicator random variable of SucReal in the Ideal
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experiment; that is, SucIdeal is the indicator random variable of the event that
P ∗rej convinces V and Tj ≤M for every j ∈ [m].

In what follows, we will show that (i) Pr[SucIdeal = 1] ≥ γ − (m/Mϵ) and
(ii) KL(Ideal||Real) ≤ (log(1/Pr[W ]))/k, and derive the desired lower bound on
Pr[SucReal = 1] from them.

Lemma 9. Pr[SucIdeal = 1] ≥ γ − (m/Mϵ).

Proof. Note that in the Ideal experiment, for every i ∈ [k] and j ∈ [m], the
prefix (x1, . . . ,xj−1, xj,i) is chosen randomly conditioned on W and then P ∗rej
selects a random xj,−i conditioned on W using rejection sampling. Applying
Lemma 8 with X = (X1, . . . ,Xj−1, Xj,i), Y = Xj,−i and event W implies that

E[Tj ] = 1/Pr[W ] ≤ 1/ϵ for every j ∈ [m]. By the Markov inequality, we have
Pr[Tj ≤M ] ≥ 1−1/(Mϵ) for every j ∈ [m]. Also note that i is uniformly random
and independent of x and Tj ’s so the probability that a random coordinate i
is accepting is at least γ. Thus, it follows by an union bound that Pr[SucIdeal =
1] ≥ γ − (m/Mϵ).

Lemma 10. KL(Ideal||Real) ≤ (log(1/Pr[W ]))/k.

Proof. It is instructive to first prove the one-round case (i.e., m = 1), which
is equivalent to the KL-version of Raz’ Lemma. In this case by definition,
Ideal = (I,X1|W ) and Real = (I,X1,I ,X1,−I |W,X1,I

). By applying the chain
rule (Lemma 3), we have

KL(Ideal||Real) = KL(I||I) + E
I

[
KL

(
X1|W ||(X1,I ,X1,−I |W,X1,I

)]
=

1

k

k∑
i=1

KL
(
X1|W ||(X1,i,X1,−i|W,X1,i)

)
.

For each termKL(X1|W ||(X1,i,X1,−i|W,X1,i)), by applying the chain rule again,
we have

KL
(
X1|W ||(X1,i,X1,−i|W,X1,i)

)
= KL(X1,i|W ||X1,i) + E

X1,i|W
[KL(X1,−i|W,X1,i ||X1,−i|W,X1,i)]

= KL(X1,i|W ||X1,i).

Applying Lemma 5,

1

k

k∑
i=1

KL
(
X1|W ||(X1,i,X1,−i|W,X1,i)

)
=

1

k

k∑
i=1

KL(X1,i|W ||X1,i)

≤ 1

k
KL(X1|W ||X1).

Therefore, by Lemma 6,

KL(Ideal||Real) ≤ 1

k
KL(X1|W ||X1) ≤

log(1/Pr[W ])

k
.
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We proceed to consider the general case, which is proved by the same cal-
culation, except that we first apply an additional chain rule to break up terms
corresponding to each round.

KL(Ideal||Real) =
m∑
j=1

E
I,X<j |W

[
KL(Xj |W,X<j ||(Xj,I |W,X<j ,Xj,−I |W,X<j ,Xj,I

))
]
.

Now, for each term, the same calculation as before using the chain rule and
Lemma 5 shows that

E
I,X<j |W

[
KL(Xj |W,X<j ||(Xj,I |W,X<j ,Xj,−I |W,X<j ,Xj,I

))
]

≤ 1

k
E

X<j |W

[
KL(Xj |W,X<j

||Xj |X<j
)
]
.

Applying another chain rule and Lemma 6 gives,

KL(Ideal||Real) ≤ 1

k
E

X<j |W

[
KL(Xj |W,X<j ||Xj |W,X<j )

]
=

1

k
KL(X≤m|W ||X≤m)

≤ log(1/Pr[W ])

k

We now derive the desired lower bound on the probability Pr[SucReal = 1]
using Lemma 9 and 10. Let q = Pr[SucReal = 1] and η = m/Mϵ. Since our goal
is to lower bound q by δ and γ − η ≥ δ, we can assume w.l.o.g., that q ≤ γ − η.
Lemma 10 implies that

KL(γ − η||q) ≤ KL(SucIdeal||SucReal) ≤ KL(Ideal||Real) ≤ (log(1/Pr[W ]))/k,

where the second inequality follows since applying the same function to two
distributions can only decrease their KL divergence. Now, note that the fact
that Pr[W ] ≥ (1 + ξ)e−k·KL(γ||δ) and Lemma 7 implies that

Pr[W ] ≥ (1 + ξ) · e−k·KL(γ||δ) ≥ e−k·KL(γ||δ)+ξ/2

≥ e−k·(KL(γ−η||δ)+Θ(η·log(1/η)))+ξ/2 ≥ e−k·KL(γ−η||δ),

where the last inequality follows by the fact that k ·Θ(η · log(1/η)) ≤ ξ/2 (which
follows by the choice of M). Combining the above inequalities, we have KL(γ−
η||q) ≤ KL(γ − η||δ), which implies q ≥ δ.
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Proof of Lemma 7

Lemma 11 (Lemma 7 restated). For every p, q, η ∈ (0, 1) such that η ≤
min{p/2, q}, we have

KL(p||q)−KL(p− η||q) ≤ Θ (η · log(1/η))

Proof. By definition,

KL(p||q) = p log
p

q
+ (1− p) log

1− p

1− q

= p log p+ p log
1

q
+ (1− p) log(1− p) + (1− p) log

1

1− q

KL(p− η||q) = (p− η) log
p− η

q
+ (1− p+ η) log

1− p+ η

1− q

= (p− η) log(p− η) + (p− η) log
1

q
+ (1− p+ η) log(1− p+ η)

+ (1− p+ η) log
1

1− q

By further expanding, we have

(p− η) log(p− η) = p log(p− η)− η log(p− η)

= p log p+ p log(1− η

p
)− η log(p− η)

(p− η) log
1

q
= p log

1

q
− η log

1

q

(1− p+ η) log(1− p+ η) = (1− p) log(1− p+ η) + η log(1− p+ η)

= (1− p) log(1− p) + (1− p) log(1 +
η

1− p
)

+ η log(1− p+ η)

(1− p+ η) log
1

1− q
= (1− p) log

1

1− q
+ η log

1

1− q

Therefore,

KL(p||q)−KL(p− η||q)

= −p log(1− η

p
) + η log(p− η) + η log

1

q
− (1− p) log(1 +

η

1− p
)

− η log(1− p+ η)− η log
1

1− q

≤ −p log(1− η

p
) + η log

1

q
− η log(1− p+ η)

≤ 2η + η log
1

q
− η log η ≤ Θ(η log(1/η)),
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where the first inequality follows by dropping negative terms, the second in-
equality follows by the monotonicity of logarithm and using Taylor expansion,
and the last inequality uses η < q.


