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Abstract. We introduce a new framework for polling responses from a
large population. Our framework allows gathering information without
violating the responders’ anonymity and at the same time enables public
verification of the poll’s result. In contrast to prior approaches to the
problem, we do not require trusting the pollster for faithfully announcing
the poll’s results, nor do we rely on strong identity verification.
We propose an “effort based” polling protocol whose results can be pub-
licly verified by constructing a “responder certification graph” whose
nodes are labeled by responders’ replies to the poll, and whose edges
cross-certify that adjacent nodes correspond to honest participants. Cross-
certification is achieved using a newly introduced (privately verifiable)
“Private Proof of Effort” (PPE). In effect, our protocol gives a general
method for converting privately-verifiable proofs into a publicly-verifiable
protocol. The soundness of the transformation relies on expansion prop-
erties of the certification graph.
Our results are applicable to a variety of settings in which crowd-sourced
information gathering is required. This includes crypto-currencies, polit-
ical polling, elections, recommendation systems, viewer voting in TV
shows, and prediction markets.

Keywords: polling, anonymity, protocols, random graphs, public verifiability, proof
of work, CAPTCHA

1 Introduction

The Internet enables reciprocal communication on a massive scale. Thus, it has
the potential to allow new forms of information gathering and “crowd-sourced”
decision making. Some examples (already in widespread use) are political polling,
elections (which are a mechanism for achieving consensus among voters about
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which candidate to put in office), recommendation systems (e.g., based on users’
opinions about products and services), prediction markets (leveraging the “wis-
dom of the crowds” to predict future events) and “crypto-currencies” (such as
Bitcoin [16]).

We can think of all these cases as a generalized “opinion poll”:the outcome is
the result of aggregating the opinions of a large population of Internet users. The
“protocols” that implement the poll (and the methods of computing the results)
are different in each case, but in all of them we can categorize the participants
into three types (some parties may belong to multiple categories):

1. pollsters are responsible for collecting the information and publishing the
result.

2. responders are the parties who provide inputs to the poll.

3. verifiers are interested in (should agree on) the result, but may not be active
participants.

Although at first glance the examples mentioned above may not necessarily
appear to be a distributed protocol problem (e.g., in elections there is a central
election authority that can broadcast results to everyone), it is natural to con-
sider the case when the central authorities are untrusted, and can potentially
act maliciously. Viewed this way, verifiable polling is a generalization of the fun-
damental problem of achieving consensus between mutually-distrustful parties.
While in the general polling setting, inputs of various parties could differ and are
aggregated into the poll’s “tally”, the basic consensus problem focuses on the
special case in which parties only have to agree on a specific output if all of their
inputs match. Correctness of the consensus is guaranteed by the verifiability
property of the polling protocol.

In their general form, verifiable opinion polls are also useful as building blocks
in more complex protocols. For example, the main technical innovation of Bit-
coin, a recently popular “crypto-currency”, is in achieving a distributed, decen-
tralized consensus about the currency’s public transaction ledger (the record of
all Bitcoin transactions) [16].

In the “traditional” setting for the verifiable polling problem (and its vari-
ants), the number and identities of the parties are known in advance. Using stan-
dard cryptographic techniques, solutions are known to many of them. Techniques
for verifiable voting, for example, provide solutions that hide the individual re-
sponses of the participants, even after revealing the tally (see subsection 1.5 for
references).

Unfortunately, adapting the traditional solutions to work in a decentralized
internet environment is non-trivial. One of the major problems encountered in
this setting is the lack of identity verification. Strong identity verification on a
large scale is expensive, and in many cases completely impractical (e.g., when
participants are spread across national boundaries, there might not be a single
entity trusted by all of them to certify identities). The mechanisms for identity
verification become even more complex when anonymity (or pseudonymity) of
the participants is required. In the absence of identity verification, it is impossible



to distinguish a fake identity from a real one; this opens the door to “Sybil
attacks” (attacks based on creating multiple fake identities).

There are various methods used to mitigate Sybil attacks without requiring
identity verification. A recurring idea is to force participants to prove they ex-
pended some valuable resource: for example, spending money or performing a
computational task. This serves to limit the number of fake identities an adver-
sary can create. In this paradigm, we have no choice but to relax our requirements
from the poll: rather than requiring “one vote per participant”, we now allow
“one vote per effort” (where an “effort unit” corresponds to expending some
resource). We call this effort-based polling.

The Bitcoin protocol is an excellent example of this type: in effect, consensus
is achieved by having parties constantly “vote” on which version of the trans-
action ledger they accept, where for each “vote” the party must also generate a
“proof-of-work” to prove that the required amount of computational effort was
expended.3

Proofs of work are one of the very few examples of proofs of effort that
are publicly verifiable. However, they suffer from significant drawbacks. First of
all, they are inherently wasteful in that the computation “does nothing” except
prove work (indeed, this is one of the strongest arguments against the Bitcoin
currency [12]). Secondly, and perhaps more importantly, a party with access to
more computing power than most honest responders may gain a hugely dispro-
portionate influence on the results (not to mention the wide disparities between
the responders themselves).

1.1 Privately Verifiable Proofs of Effort

An alternative to publicly-verifiable proofs of work, and one that may be po-
tentially easier to achieve, is that of privately-verifiable proofs of resource ex-
penditure. One well known example is that of enforcing human involvement in
each response. In voting for the “American Idol” TV show, for example, online
viewers must solve a CAPTCHA [19] for each vote, but the total number of
votes is effectively unlimited. (What makes the CAPTCHA solution privately
verifiable is the fact that all currently known CAPTCHAs are private coin: in
effect, every CAPTCHA is generated together with its solution.)

Beyond being easier to achieve (and not being “wasteful”) The “human ef-
fort” requirement may be useful when there is a “resource gap” between hon-
est and malicious parties. For example, show producers have significantly more
money and access to more computing power than most honest viewers (and there
are wide disparities between the viewers themselves)—using proof-of-work in this
context could give them a hugely disproportionate influence on the results.

In effect, what CAPTCHAs enable us to achieve is what we call a privately-
verifiable proof of effort (PPE). Informally, this is an interactive protocol between

3 The outcome of a Bitcoin “poll” is not a majority-vote, but a randomized selection
in which the probability for selecting a “candidate” is proportional to the total
effort expended for that candidate. However, this still fits in our generalized polling
framework.



two parties: if both parties are honest the test returns “true” to both, otherwise
the test returns “false” to the honest participant.

Definition 1 (PPE, informal). A two-party protocol is a PPE if it satisfies:

1. Effort If both parties honestly follow the protocol, they expend one “effort
unit”.

2. σ-Completeness. If both parties honestly followed the protocol, they will both
output “true” at the end of the protocol with probability at least 1− σ.

3. ε-Soundness. If one party is malicious (invests less than the required ef-
fort) and the other honestly follows the protocol, the honest party will output
“false” with probability at least 1− ε.

We note that this definition is necessarily informal, since the term “effort
unit” is itself not well defined. In our analysis, we sidestep the problem by re-
versing the definition: instead of defining a PPE as a proof of effort, we define a
“proof of effort” as successful completion of PPE with at least one honest par-
ticipant (formally, we follow Canetti et al.’s framework for defining CAPTCHAs
[4] and define effort in terms of oracle calls; see section 2 for details).

The peer-to-peer nature of PPEs makes them potentially easier to realize
than their publicly-verifiable counterparts (which require costly distributed co-
ordination). In section A, we list several potential mechanisms for PPEs, most of
which do not require human involvement (making them fully automatizable, and
hence scalable). These include proofs of storage, human interaction (including
symmetric CAPTCHAs) and leveraging social networks.

1.2 Our Results

While PPEs seem easier to realize, it is not at all clear how to utilize them in
order to deal with the problem of a cheating pollster. For instance, in the Ameri-
can Idol example, a malicious CAPTCHA generator can use the solutions to the
CAPTCHAs without expending any human effort. Thus, existing CAPTCHAs
cannot be publicly verified (hence cannot be used to achieve a consensus about
the result of the poll when the generator is untrusted).

Our main result is a new protocol for publicly-verifiable effort-based polling,
based on any privately-verifiable proof-of-effort (PPE). The protocol uses PPEs
to generate a “responder certification graph”: each responder is a node in the
graph while an edge between two responders corresponds to a PPE execution.
Loosely speaking, we guarantee that, as long as enough honest users participate
in the protocol, a large number of cheating nodes will be publicly detected (note
that, unlike most standard definitions of an “honest party”, in our case every
party controlled by the adversary is considered “cheating”, even if it follows the
honest protocol exactly).

If each node in the graph is published together with their response to the
poll, the poll results cannot be skewed significantly by the pollster without being
detected.



In its simplest variant, our protocol assumes that the responder certification
graph is sampled at random. This sampling can be performed in a publicly-
verifiable way, say by applying a “random-looking” function (e.g., SHA-1) to
two nodes’ indices to determine if there is an edge between them in the graph.
Since our protocol’s analysis relies only on expansion properties of such ran-
domly chosen graphs, the construction can potentially be derandomized—using
an explicit graph with the appropriate expansion properties, we could remove
our assumption about SHA-1 and improve the protocol parameters, at the cost
of making the protocol more complex.

We note that while the structure of certification graph is fixed (it depends
only on the number of nodes), we allow the adversary to specify the number of
nodes (within bounds) and to arbitrarily control the assignment of honest nodes
to vertices in the graph. We prove that security holds for every assignment.

1.3 Main Theorems

The total number of nodes in the certification graph is denoted m and corre-
sponds to the total number of responders (some of whom may be controlled by
the adversary). The number of honest responders is denoted by n. We denote
by d the average degree of the responder certification graph: this is the number
of PPE executions each responder is expected to participate in.

We model our assumption that the pollsters have bounded resources by spec-
ifying that a cheating pollster cannot participate in too many successful PPEs
with honest responders. In terms of the certification graph, this assumption im-
plies a bound a on the number of “attack edges”—PPE executions in which the
cheating pollster participates as one party and convinces an honest responder to
accept. The ratio a/d gives a lower bound on the number of “cheating” nodes;
an attacker can always create this many cheating nodes without detection by
following the protocol honestly. Thus, our security guarantees make sense only
when a/d� n (we can think of a/dn as a small constant).

We denote by κ the security parameter. Our main theorems guarantee the
soundness (a malicious pollster can’t cheat undetectably) and completeness (an
honest execution will be accepted) of our protocol. For simplicity, we will con-
sider PPEs for which ε (the soundness error of a PPE) is negligible in the security
parameter and omit it. For our completeness proof, we require an additional inde-
pendence property: that for a given node, the probability of failure in each PPE
execution is independent (the probability can depend on the node, however).

Theorem 1 (Soundness—Informal). Let A be an adversarial pollster that
cannot succeed in more than a PPEs with honest responders. If there are at least
n ≥ αm, α ∈ (0, 1), honest responders to the poll and A controls more than Ω(ad )
of the responses in the poll outcome, then verification will fail with overwhelming
probability (in κ).

See section 4 for the full theorem and proof. Note that our proof holds in the
random oracle model, but under a very reasonable assumption about the crypto-



graphic hash function (that the generated graph has good expansion parameters)
it holds in the standard model as well.

Theorem 2 (Completeness—Informal). If the pollster is honest, and ma-
licious responders are bounded by O(m) successful PPEs, the probability that
verification fails is negligible in κ.

See section 5 for the full theorem and proof. The bound on successful PPEs
by malicious responders is required to guarantee robustness of the protocol—
when the pollster is honest the verification should succeed even if some of the
responders are malicious.

1.4 Comparison to Verifiable Voting

At a high level, our polling protocol has the same form as most universally ver-
ifiable voting protocols (involving an “election authority”, “voters”, “receipts”
and “verification procedure”):

1. The pollster sets up the poll and publishes public parameters on a bulletin-
board (modeled as a broadcast channel). This corresponds to the role of the
“election authority”.

2. Honest responders (corresponding to the “voters”) send their responses to
the pollster and engage in an interactive proof protocol to ensure that they
are expending the correct amount of “effort” for each response. This protocol
includes interaction with the pollster and also, unlike most voting protocols,
interaction with a subset of other responders.
The pollster signs the transcript of each communication with a responder
and sends this signature to the responder (think of this as the “receipt” in
the voting protocol).

3. The pollster publishes the empirical distribution of responses, together with
a proof of correctness.

4. The verification procedure consists of both a local verification step performed
by the responders (which in a voting protocol corresponds to verifying that
the voter’s receipt appears on the bulletin board) and a global verification
step performed by the verifiers (which corresponds to the “universal verifica-
tion” step in voting protocols). Note that responders can also act as verifiers
if they wish.

A significant difference between effort-based polling and verifiable voting is
the issue of voter identity. In our polling protocol, parties are identified only
by self-chosen pseudonyms (for our purposes, a pseudonym is a verification key
of a public-key signature scheme). We do not limit the number of pseudonyms
a party may generate, or require parties to link their pseudonyms to their real
identities.

In contrast, most voting protocols assume each party in the protocol has been
identified by a trusted authority, in order to ensure that each voter gets only a
single vote. By relaxing this requirement to “one vote per effort expended”, we



can dispense with the complexity, expense and privacy implications of securely
identifying responders.

In particular, our protocol is compatible with completely anonymous polling
(if responders communicate with the pollster over anonymous channels)—in ad-
dition to hiding the link between their real identities and their responses, use
of anonymous channels can hide the fact of participation in the poll, with the
degree of anonymization depending only on the anonymous channel (in contrast,
cryptographic voting protocols that support hiding the voters’ participation re-
quire a separate non-anonymous registration step, and anonymity depends on
the election trustees in addition to the anonymous channel).

1.5 Related Work

Sybil Defense In a “Sybil attack”, an adversary creates multiple “fake” identi-
ties in order to manipulate a protocol. The problem of establishing trustworthy
virtual identities has plagued the Internet from its inception [10]. It is particu-
larly acute in distributed systems with no central authority—without additional
assumptions, vulnerability to some forms of Sybil attacks is unavoidable in this
case [9]. The paper by [10] deals with the problem of establishing identities. One
of the first discussions of trust metrics based on social graphs appears in [13].
The term “Sybil Attack” (attributed to Brian Zill from MSR) was introduced
in [9], where it is shown that in the absence of a central certifying authority,
some attacks are always possible.

A reputation system for p2p with similar ideas to pagerank (doesn’t handle
sybils) is developed in [11], and the possibility of using “Turing tests” to limit
Sybil nodes is mentioned in [3]. In [7] it is shown that there exists no symmet-
ric sybil-proof reputation mechanism. Since the existing sybil-defense protocols
all care about reputations (e.g., determining which nodes are “real” and which
are sybils), they all strongly rely on breaking symmetry: having at least one
trusted node. Our protocol is symmetric, however we can sidestep the impos-
sibility proof because we don’t care about individual nodes’ reputations—only
about the aggregate opinion of all the nodes.

The technique of random walks on a social networks to bound the effect
of Sybil attack is introduced in [23] (see [22] for an expanded version with full
proofs). A 2006 survey of sybil attack literature can be found in [14]. An improved
version of [23] (slightly different protocol, same goal but better parameters)
appears in [21], and a newer protocol to identify sybil nodes in a social graph is
presented in [8]. The protocol makes very similar assumptions about the social
graph, and Bayesian methods to compute the probabilities that nodes are sybils.
Finally, [18] uses the social network graph to aggregate votes for online content.
The “vote collector” is assumed to be honest, and votes are collected using max-
flow in the social graph.

Most of these techniques implicitly or explicitly use assumptions about ex-
pansion properties of social-network graphs. We also make use of the idea that
if “adding edges is hard” in an expander graph the adversary is limited in the
effect bad nodes can have, but in our case the graph is artificially generated,



so we can prove (in the random-oracle model, at least) that our graph has the
required properties. On the other hand, the labeling of the graph is adversarial;
despite this, we get results that are—in some sense—stronger than the results
on social networks: we can bound the total number of “bad” nodes (rather than
just their influence).

Verifiable and Private Polling. A widely used technique for privacy-preserving
polling is called “randomized response” and was introduced in [20]. The first
suggestion for cryptographic verifiability in voting, which also gives a mechanism
for establishing anonymous channels (mix-nets) was made in [5]. More recently,
the works of [6,17] propose taking into account human voters in End-to-End
verifiability, and introduce the notion of separate verification steps for the voter
and external observers. Another incarnation of this idea is verifiable (for the
pollster) privacy-preserving polling using scratch-off cards [15].

2 Model and Definitions

We now introduce a formal model for capturing the notion of verifiable effort-
based polling. The definition will have to address both the syntax of a polling
protocol and the issue of the “effort” involved in the protocol execution. To
model the effort expended by each one of the protocol participants, we give par-
ties access to an effort oracle. The effort spent by each party is measured as the
number of calls that party makes to the oracle. To justify this measure, we pro-
pose to use “peer-to-peer” protocols that presumably require the expenditure of
one call to an effort oracle per successful execution. One well known example for
such a protocol is a CAPTCHA, automatically generated challenges that should
be solvable only if given a call to an effort oracle (and moreover accommodate
automatic verification of the solution). Other options, (some of which may be
more practical) are described in section A.

Before delving into the details, we note that for the convenience of the reader,
the ePrint version of this paper contains a table of the parameters and notation
used in the paper [1].

2.1 Verifiable Effort-Based Polling

An m-responder polling scheme is a multi-party protocol between a pollster,
denoted P and m responders, denoted R1, . . . , Rm. The ith responder holds an
input xi ∈ D ∪ {⊥}, where D is the domain from which the responses are taken
and ⊥ denotes lack of participation in the poll. In practice m will be an upper
bound on the number of responders; We denote by n < m the actual number
of (honest) participants. The number of honest responders is known only to the
adversary. Thus, the adversary can create “fake” responders by replacing some
of the ⊥ inputs with adversarially chosen values. As the adversary knows all the
inputs and controls all the outputs in our protocols, we do not need to consider



corrupted responders—the adversary can just replace an honest responder’s in-
put with a different one to simulate a corrupted responder.

We give parties access to an oracle denoted E, and let REi (resp. PE) denote
the execution of Ri (resp. P ) with access to the oracle E. Let ei denote the
total number of oracle calls made by Ri to E. Let 〈PE , RE1 (x1), . . . , REm(xm)〉
be a random variable describing the output of a protocol execution, where the
probabilities are taken over the parties’ coin tosses. The output of the protocol
takes the form (Y , z), where Y = (y, w) denotes the output of the pollster
(y = (y1, . . . , ym) indicates the outputs of the responders as announced by the
pollster, and w contains a proof of correctness of the result) and z = (z1, . . . , zm)
denotes the local outputs of the responders, where zi corresponds to the local
output of Ri following the protocol execution. The role of the local outputs zi is
to enable local verification by the parties.

To make the polling scheme publicly-verifiable we will additionally require the
existence of a verifier V that takes Y and z as inputs (the verification procedure
can use the output of the local verification; e.g., global verification could fail if
too many responders complain).

Definition 2 (Verifiable Effort-Based Polling). Let κ,m, a ∈ N and let
α, θ ∈ [0, 1] and B : N× N 7→ N. An m-responder effort-based polling scheme is
said to be (α,B)-sound and θ-robust if there exists a probabilistic polynomial-
time algorithm V such that for any x1, . . . , xm ∈ D ∪ {⊥} with n = #{i ∈
[m]|xi 6= ⊥}, the following properties are satisfied:

Soundness: For every PPT (Probabilistic Polynomial Time) P ∗, if n ≥ αm
and ∆(x, y) ≥ B(a,m) then

Pr
[
V (Y , z) = accept

]
< 2−κ ,

where the probability is taken over (Y , z) ← (P ∗E , RE1 (x1), . . . , REm(xm)),
a is the total number of oracle calls made by P ∗ to E,and ∆(x, y) is the
minimum Hamming distance between x and some permutation of y (i.e., this
corresponds to the number of responses changed/added by the adversary).

Completeness: For every subset {i1, . . . , it} ⊆ [m] of responders (correspond-
ing to malicious responders), if ei1 + . . .+ eit < θm then

Pr
[
V (Y , z) = accept

]
> 1− 2−κ,

where the probability is taken over (Y , z)← (PE , RE1 (x1), . . . , REm(xm)).

Informally, we can interpret (α,B)-soundness as a guarantee that if at least
an α-fraction of responders are honest, then the adversary cannot change too
many responses without getting caught. The influence of the adversary is cap-
tured by the function B. Generally, we would expect B(a,m) to be proportional
to the number of responses an honest user could add using a calls to the effort
oracle. Thus, an intuitive measure of the protocol’s soundness is a bound on the
multiplicative advantage of the adversary:

C(a) = B(a,m)
d

a



If the multiplicative advantage is bounded by C, then any adversary who can
change C · ` responses using an optimal cheating strategy could have altered `
responses (in expectation) by honestly following the protocol and expending the
same amount of effort.

The θ-robustness of the protocol guarantees that if the total effort available
to malicious responders is less than θm, then they cannot cause the verification
procedure to fail except with negligible probability.

2.2 Formally Defining Proofs of Effort

In the “effort-oracle” model we can fully formalize definition 1. Note that while
we define PPE to be a two-party protocol, we require soundness to hold even
in a concurrent setting, in which a malicious party A∗ participates concurrently
in multiple executions of the protocol with other parties. To achieve this, we
assume each protocol execution has a unique identifier id (e.g., in practice this
could be a concatenation of the identities of the participating parties and the
current time).

Definition 3 (one-sided PPE). A protocol ΠE(P, V ) between a prover P and
a verifier V is a one-sided PPE if it satisfies the following properties:

1. Efficiency An honest execution of ΠE(P, V ) requires P and V to make at
most one oracle call to E (each).

2. σ-Completeness If P and V execute an instance of ΠE(P, V ) and both
honestly follow the protocol, then with probability at least 1−σ V will output
“true” at the end of the protocol.

3. ε-Soundness For every PPT (Probabilistic Polynomial time) P ∗ that exe-
cutes an instance of ΠE(P ∗, V ) using identifier id, if V honestly follows the
protocol but P ∗ does not make at least one oracle call to E with input id,
then the probability that V outputs “true” is at most ε.

Definition 4 (two-sided PPE). A protocol ΠE(A,B) between two parties A
and B is a two-sided (symmetric) PPE if it simultaneously satisfies the one-sided
PPE definition for A as a prover and B as verifier, and vice versa.

3 The Protocol

The main technical innovation in this paper is the construction of the Pollster’s
proof for the correctness of the published results. To do this, we borrow ideas
from the literature on defense against Sybil attacks using pre-existing trust re-
lations.

To account for the possibility that an honest responder can fail a PPE execu-
tion independently of his honesty, we denote by ηE the fraction of failing PPEs
that the protocol tolerates before discarding someone’s vote. On the other hand,
we indicate by ηV the upper bound on the fraction of responders whose vote can
be discarded by the pollster (if the number of discarded votes is greater than



ηV , the overall verification will fail). Moreover, in order to avoid denial-of-service
attacks caused by malicious responders that intentionally fail all their PPEs, our
protocol will require to register for the poll by solving a single-sided PPE (i.e.,
a PPE that requires effort only from the voters side in order to be successful).
With high probability this kind of attack will then be unsuccessful whenever
the cheating responders are limited in the amount of effort they can expend.
Following, is a high-level description of our protocol. The full formal protocol
description can be found in the ePrint version of the paper [1].

1. Parameter Announcement. This phase consists of a single broadcast by
the pollster, consisting of the public parameters for the poll. The pollster
generates a unique, random identifier id for the poll and public key param-
eters for a digital signature scheme. We denote by SK, V K the secret and
public key respectively (note that these are required only for completeness—
responders will have their own signature and verification keys).
The public parameters are the tuple (id, questions, p, V K), where questions
is the set of poll questions. p is a probability that determines the expected
degree of the certification graph.

2. Registration. Each responder Ri samples a private key SKi and a public
key V Ki for their signature scheme, and sends (addri, V Ki) to the pollster
(where addri is the responder’s network address). Each responder then solves
a single-sided PPE (verified by the pollster). If verification was successful,
the pollster adds (addri, V Ki) to its list of registered responders.
When the registration phase is over, the pollster broadcasts the list of reg-
istered public keys. Note that the network addresses are not required to
appear in the broadcast list. The order of public keys in the list maps each
registered responder to a unique index (i.e., the ith key in the list is mapped
to index i).
For each index i, we define Ni to be “the neighborhood of i” in the certi-
fication graph. Ni is computed from i and m (the total number of parties)
using a cryptographic hash H: j ∈ Ni iff H(i, j) ≤ p, where the output of H
is treated as a binary fraction in [0, 1] (e.g., H could be SHA-1). Since all of
the parameters are public, every party can compute the list of its neighbors
in the graph.
However, while Ri may know the verification key of every neighbor, it does
not necessarily know their network addresses. The parties can communi-
cate via the pollster, or alternatively, the pollster can send each party i the
network addresses of all its neighbors in the graph.

3. Responder Certification (PPE execution). As just described, every
pair of responders is paired in a PPE instance with probability p. Now,
for each Rj ∈ Ni, responder Ri engages in a PPE with Rj . The actual
execution is peer-to-peer, however the communication may be facilitated
by the pollster (e.g., the pollster’s website can be used as a conduit for a
VOIP chat). If the PPE execution succeeded (both parties received “true”),
the parties sign each other’s public keys (concatenated with a unique “poll
identifier”, to prevent the signatures being reused in other polls) and send
the signed values to each other.



4. Poll Response. Every responder Ri sends to the pollster the results of
the certification phase (a signature on V Ki from each neighbor with which
it successfully completed a PPE) and xi, the actual response to the poll
questions.

5. Results and Proof. We can think of the responders as nodes of a graph
Gc in which they are connected by edges if and only if they were supposed
to interact through a PPE. Let V = {1, . . . ,m} denote the set of responders
and E := {(i, j)|i, j ∈ V,H(i, j) < p} the set of edges. We call Gc = (V,E)
the “certification graph”. Note that anyone can compute Gc given the serial
numbers associated to the responders and p. Then, as a “proof of correctness”
the pollster publishes the graph consisting of the following4:
Node labels: For each responder Ri the pollster publishes

(xi, sigSKi
(xi), V Ki, idi).

Edge signature: For each successful PPE the pollster publishes
(sigj(V Ki), sigi(V Kj)), where V Ki, V Kj are the public keys of the re-
sponders involved in it.

List of deleted nodes: The list of all nodes whose response will not count
in the result because they failed more than a ηE fraction of the PPEs.

The empirical distribution of the responses can be computed by counting the
votes associated to the non-deleted nodes. Note that the graph published
by the pollster, call it Gp, is composed of the same nodes as Gc, but it’s
missing all the edges associated to unsuccessful PPEs. So, Gp = (V,E′) is
a subgraph of Gc = (V,E) where (i, j) is in E′ if and only if Ri and Rj
successfully interacted through a PPE.

6. Verification. The procedure is divided in two steps:
Local verification (performed by each responder) consists of verifying

that the corresponding node was published correctly, as were the edge
signatures in which he was involved (no adjacent edge is missing, and all
the adjacent edges in the graph were verified with a successful PPE). If
any of these verifications fail, the responders sends a “complaint”.

Global verification (can be performed by anyone) consists of checking
that all the nodes, and no others, that failed more then ηEd edges are
indeed marked as deleted. To verify if a node i is marked correctly, the
verifier needs to find its neighbors in the graph (by computing the hash
function H(i, j) for every j 6= i) and checking how many of the signed
edges appear in the published graph. Then, the verifiers need to check
that no more than a ηV fraction of the nodes were deleted and that not
“too many” valid complaints were sent.

An adversarial pollster can attempt to manipulate results either by changing
the responses associated with honest nodes or by “controlling” many nodes (they
will be nodes that do not correspond to any honest participant, but appear in
Gp and their “behaviour” is dictated by the pollster), such that the overall

4 the information as described is redundant (e.g., the list of deleted nodes can be
computed from the list of edge signatures and node labels), but we describe it in
this way to make the description of the verification process simpler.



empirical distribution differs from the empirical distribution over the honest
nodes. In the former case, the local verification will detect the adversary and
many valid complaints will be sent. In the latter case, we use an expansion
property of the graph to prove that any large enough set of “bad” nodes (nodes
that are controlled by the adversary) must have many edges to its complement
in the graph. Thus, an adversary who wants to control a big enough set of nodes
must succeed in many PPE executions with honest nodes; since the adversary
is bounded in the number of successful PPE executions, it will be caught with
high probability.

The protocol also provides a measure of robustness against malicious respon-
ders. Cheating responders cannot undetectably modify the results for the same
reason that a cheating pollster cannot. However, they can attempt to launch a
denial-of-service attack by causing verification to fail. As explained above, the
single-sided PPE in step 4 will prevent this form of attack, as long as the cheating
responders are limited enough in the amount of effort they can expend.

4 Soundness

To prove the soundness of our protocol we need to show that the number of votes
that the adversary can control is at most proportional to the amount of effort
that he is willing to invest. That is, whenever the adversary is able to control
a “meaningful” amount of votes that is significantly greater that the number of
votes that she could have controlled by honestly following the protocol (with the
same effort investment), our verification procedure will fail with overwhelming
probability. The proof of such a result will rely both on the security of the
signature schemes and on an expansion property of the graph Gp published by
the pollster as proof of correctness.

The use of the signatures is entirely straightforward: they prevent the ad-
versary from changing honest users’ votes and from claiming a failed PPE with
an honest user was successful (to do this, the adversary would have to forge the
honest node’s signature). Similarly, the pollster’s signature on the honest user’s
registration information and the signatures of its neighboring nodes allows the
honest user to verifiably complain about being omitted from the count despite
successfully completing the requisite number of PPEs. The “meat” of the secu-
rity proof is in the analysis of the certification graph, and that will be the focus
of this section.

As described in the previous sections, in a m-responders polling scheme, each
responder holds an input xi ∈ D ∪ {⊥}, where D is the domain from which the
responses are taken and ⊥ denotes lack of participation in the poll. We call a
node honest if its corresponding party participated in the poll (its input was not
⊥). We call a node bad if it is not honest but its response in the output is not
⊥. Finally, we say a node is deleted if it failed more than ηEd of the PPEs it
was assigned (note that both honest and bad nodes may be deleted), where d
is the number of PPE executions each responder is expected to participate in.
Note that for soundness to hold, we need that at least a certain portion, say α,



of the responders are actually honest. That is, we need at least αm responders
to participate to the poll by sending an input. The adversary could in theory be
the one controlling the remaining (1 − α)m votes by replacing ⊥ as an actual
vote in the output and by spending the effort he has available. We prove that if
the number of controlled nodes is significantly greater than the number of votes
he would have controlled by acting honestly, then he will be detected with high
probability.

In order to prove soundness, we bound separately the number of bad nodes
(corresponding to “fake” parties generated by the adversary) and the number of
changes the adversary can make to the input of honest nodes (that is, responder
Ri voted xi and the pollster output yi ∈ D \ {xi} or yi = ⊥ instead). To prove
the first bound, we rely on an expansion property of the graph Gp output by
the pollster. In the following subsection we give a general definition of such a
property and we prove some lemmas that will be useful for our proof.

4.1 Large-Set Expanding Property

The LSE property is similar to the “jumbled” graphs of Thomason, but is weaker
since we don’t care if small sets do not expand. This lets us get better LSE pa-
rameters for random graphs than are possible for the standard jumbled graphs
(formally, we use the G(n, p) model for random graphs; a graph is distributed
according to G(n, p) if it has n vertices and for each pair of vertices the corre-
sponding edge exists with probability p).

Definition 5 (Large-Set Expanding (LSE)). A graph G = (V,E), with
m = |V |, is said to be (K, ρ, q)-LSE if for every pair of disjoint sets A,B ⊂ V
such that K ≤ |A| ≤ m/2, |B| ≥ m − |A| − ρ it holds that the set of edges
between A and B, denoted by e(A,B), has cardinality greater than |A||B|q.

In our analysis K will denote a bound on both the maximum number of bad
nodes that we will allow and on the minimum number of good nodes that we
require, ρ will be the maximum number of deleted nodes and q a function of the
probability that two voters have to run a PPE.

Lemma 1. Let G(m, p) = (V,E) be a random graph with p = d/m, For every
ρ ≥ 1, ρ ∈ N and every b > 1, if

d >
4b2m

m− 2ρ
(lnm+ 1)

then G is (K, ρ, b−1b p)-LSE with probability at least 1 − 2−κ for K = κ + (ρ +
2) lnm+ ρ (where the probability is over the choice of graph).

Proof. Consider an arbitrary pair of sets A,B ⊂ V such that K ≤ |A| ≤ m/2,
|B| = m − |A| − r with 1 ≤ r ≤ ρ. Define the random variable Xi,j to be the
indicator variable for the event (i, j) ∈ E.

Since G is a random (m, p)-graph, the Xi,j ’s are independent and Pr[Xi,j =
1] = p. Then



|e(A,B)| =
∑
i∈A

∑
j∈B

Xi,j

E[|e(A,B)|] = |A||B|p = µ

For A,B ⊂ V such that K ≤ |A| ≤ m
2 and m − |A| − ρ ≤ |B| ≤ m − |A|, let

Bad(A,B) be the event that

|e(A,B)| < b− 1

b
µ

(For A,B not satisfying the size restrictions, we define Bad(A,B) to be the null
event.)

To prove the lemma, we must bound the probability that
Pr [∃A,B ⊂ V : Bad(A,B)]. First, since the Xi,j ’s are independent, by the Cher-
noff bound we have for any disjoint sets A and B:

Pr[|e(A,B)| < b− 1

b
µ]

≤ exp{− µ

2b2
} = exp{−|A||B|p

2b2
}

= exp{−|A|(m− |A| − r)p
2b2

} ≤ exp{−|A|(m/2− r)p
2b2

}

Next, we bound the probability that there exist two sets A and B of fixed
sizes |A| = x, |B| = m− x− r such that Bad(A,B) occurs. Denote

ε = Pr

 ⋃
A,B⊂V,A∩B=∅
|A|=x,|B|=m−x−r

Bad(A,B)





By the union bound, this probability is bounded by

ε ≤
∑

A,B⊂V,A∩B=∅
|A|=x,|B|=m−x−r

Pr

[
|e(A,B)| < b− 1

b
µ

]

≤
∑

A,B⊂V,A∩B=∅
|A|=x,|B|=m−x−r

exp{−|A||B|p
2b2

}

=
∑

A,B⊂V,A∩B=∅
|A|=x,|B|=m−x−r

exp{−x(m− x− r)p
2b2

}

=

(
m

x

)(
m− x
r

)
exp{−x(m− x− r)p

2b2
}

≤
(
m

x

)(
m

r

)
exp{−x(m− x− r)p

2b2
}

≤
(me
x

)x (me
r

)r
exp{−x(m− x− r)p

2b2
}

Since |A| = x ≤ m
2 ,

exp{−x(m− x− r)p
2b2

} ≤ exp{−x(m/2− r)p
2b2

}

Hence

ε ≤ exp
{
x(lnm+ 1− lnx) + r(lnm+ 1− ln r)− x

(m
2
− r
) p

2b2

}
≤ exp

{
−x
(
d

4b2
− dr

2b2m
− lnm− 1 + lnx

)
+ r(lnm+ 1− ln r)

}
≤ exp

{
−x
(
d

4b2
− dr

2b2m
− lnm

)
+ r(lnm+ 1)

}
≤ exp {−x+ r(lnm+ 1)}

Where the last two inequalities hold as long as lnx > 1 (which is always
true assuming K > 3), ln r ≥ 0 (which is always true for r ≥ 1) and d >
4b2m
m−2r (lnm+ 1).

Applying the union bound again, we get

Pr [∃A,B ⊂ V : Bad(A,B)]

≤
m/2∑
x=K

ρ∑
r=1

Pr

 ⋃
A⊂V
|A|=x

⋃
B⊂V

|B|=m−x−r

{|e(A,B)| < b− 1

b
µ}


≤ m

2
ρe−K+ρ(lnm+1)

≤ 2−κ



since K > κ ln 2 + (ρ+ 1) lnm+ ln ρ+ ρ.

In our analysis, we will use this lemma to prove that the certification graph
Gc is indeed expanding with specific parameters K, ρ, and q. We will then need
to use the following lemma, in order to prove that our protocol is sound:

Lemma 2. Consider a graph G = (V,E) with m = |V | nodes. Let G′ = (V,E′)
be the graph obtained from G by deleting at most s edges per node. If G is
(K, ρ, q)-LSE, then G′ is (K, ρ, q − 2s

m−2ρ )-LSE.

Proof. For simplicity let q′ = q− 2s
m−2ρ . Consider A,B ⊂ V such that K ≤ |A| ≤

m/2 and m − |A| − ρ ≤ |B| ≤ m − |A|. We want to prove that |eG′(A,B)| >
|A||B|q′, where eG(·, ·) indicates the set of edges between A and B in the graph
G.

First, by assumption the maximum number of edges that can be missing in
G′ from v are exactly s. Therefore, the maximum number of edges that can be
missing in G′ from the set of all edges with at least one node in A is |A|s. In the
worst case, for us, all the missing edges were part of e(A,B) in G. Thus,

|eG′(A,B)| ≥ |eG(A,B)| − |A|s

Now we can use the fact that G is (K, ρ, q)-LSE to obtain the following:

|eG′(A,B)| ≥ |eG(A,B)| − s|A| > |A||B|q − s|A| .

It remains to show that |A||B|q′ ≤ |A||B|q − s|A|. From q′ = q − 2s
m−2ρ and

|A| ≤ m/2 we get

|A||B|q′ = |A||B|
(
q − 2s

m− 2ρ

)
≤ |A||B|

(
q − s

m− |A| − ρ

)
= |A||B|q − |A|s

(
|B|

m− |A| − ρ

)
≤ |A||B|q − |A|s ,

from which we can conclude |eG′(A,B)| > |A||B|q′ as required.

4.2 Main Theorem and Proofs

We can now apply the results obtained in the previous subsection specifically to
our protocol. Let a denote the maximum number of effort oracle calls that the
adversary is willing to make and let K = κ+ (ηVm+ 2) lnm+ ηVm.5 Formally,
we prove

5 Recall that ηV is a parameter denoting the max fraction of nodes that can be deleted
before verification fails.



Theorem 3 (Soundness). Let

b =

√
d( 1

2 − ηV )

2(lnm− 1)
.

If b > ( 1
2 − ηV )/( 1

2 − ηV − ηE) > 1, then the protocol of section 3 is an (α,B)-
sound verifiable polling protocol for

α = K/m+ ηV

and

B(a,m) = max

{
K,

(
b

(b− 1)( 1
2 − ηV )− bηE

)
a

d

}
+ θm .

When a is sufficiently large (so we can ignore the K “free” responses), this
implies the multiplicative advantage of the adversary is bounded by

C(a) =

(
b

(b− 1)( 1
2 − ηV )− bηE

)
+
θmd

a
.

One way to interpret this is that an adversary gets resources equivalent to θm
honest users “for free”, but any more powerful adversary has multiplicative ad-
vantage bounded by

C∗ =

(
b

(b− 1)( 1
2 − ηV )− bηE

)
+ 1

(recall that an honest user must solve, in expectation, d PPEs during the protocol
execution, so an adversary more powerful than that must have a > θmd).

Proof. As we discussed at the beginning of the section, there are two ways for
the pollster to affect the vote count:

1. By possibly controlling some of the nodes.
2. By replacing or deleting the votes of honest participants.

For the latter, the bound relies on the security of the signature scheme and
on the local verification of honest parties. In fact, the signature scheme ensures
that the adversary cannot modify responses (with a yi 6= ⊥) (since that would
require forging a signature compatible with the node’s verification key). Thus,
the local verification of honest nodes will catch the adversary deleting or com-
pletely replacing nodes; Global verification fails whenever more then θm nodes
complain—thus, the number of deleted/replaced nodes in a successful protocol
execution can be at most θm.

It is left to show that if the number of controlled nodes is higher than B,
then global verification will fail. The proof proceeds as follow:

– Using Lemma 1 and Lemma 2 we prove that Gp is LSE with high probability.



– We will then have a lower bound on the number crossing edges between a
possible set of bad nodes and the set of honest nodes.

– We conclude by noticing that the pollster, in order to control a set of nodes
larger than B, would have had to succeeded in more than a PPEs involving
honest participants.

Let F denote the nodes in Gp corresponding to voters that have failed more
than ηEd PPEs. It must be that |F | ≤ ηVm, otherwise the verification procedure
would fail. Let B and H denote the set of bad and honest nodes, respectively,
that have not been labeled as “deleted”. Thus B, H and F are disjoint sets
whose union is V . That is, since we have a total of m nodes, if |B| = x then
|H| = m− x− |F |. Recall that a successful PPE corresponds to an edge in Gp.
Thus, a lower bound on the number of edges in Gp between the sets B and H
translates to a lower bound on the number of PPEs in which the adversary must
have succeeded, and hence on the number of oracle calls made by the adversary.

Note that from Lemma 1, we know that Gc is (K, ηVm,
b−1
b p)-LSE with

probability at least 1 − 2κ. Thus, from Lemma 2, we can conclude that, with
probability at least 1− 2κ, Gp is (K, ηVm,

b−1
b p− 2ηEd

m−2ηVm )-LSE. Wlog assume

|B| < m/2 and |B| ≥ max

{
K,

(
b

(b− 1)( 1
2 − ηV )− bηE

)
a

d

}
(the case |H| < m/2 is analogous, using |H| ≥ (α− ηV )m ≥ K). Then, we get:

|e(B,H)| > |B||H|
(
b− 1

b
p− 2ηEd

m− 2ηVm

)
≥ |B| (m− |B| − ηVm)

(
(b− 1)d(1− 2ηV )− 2bdηE

mb(1− 2ηV )

)
≥
(

2b

(b− 1)(1− 2ηV )− 2bηE

)
a

d

(m
2
− ηVm

)( (b− 1)d(1− 2ηV )− 2bdηE
mb(1− 2ηV )

)
=

(
2b

(b− 1)(1− 2ηV )− 2bηE

)
a

d

(
m(1− 2ηV )

2

)(
d[(b− 1)(1− 2ηV )− 2bηE ]

mb(1− 2ηV )

)
= a

Thus, with probability at least 1 − 2κ, |e(B,H)| > a which contradicts the
assumption of the adversary being limited to a successful PPEs.

Therefore, the number of votes controlled by a pollster that invests a effort

oracle calls must be lower than max{K,
(

b
(b−1)( 1

2−ηV )−bηE

)
a
d}+ θm, as wanted.

5 Completeness

It is now left to show that in the case of an honest pollster, the verification
procedure will succeed with overwhelming probability. Even when dealing with
an honest pollster, we still need to take into account the possibility that malicious



voters might try to force the verification to fail. This can be done by registering
for the poll but aborting in all the PPE executions. Such a strategy will force
the verification procedure to label the node as deleted and all its edges as failing.
It will thus increase the number of deleted nodes which, for the verification to
output accept, needs to be smaller than ηVm.

To make sure that such an attack would require the adversary to expend
actual effort, we require each responder to solve a single-sided PPE (where the
effort is required only from the responders) in order to be allowed to partic-
ipate to the poll. We think of the number of maliciously controlled nodes as
bounded by θm, where θ will depend on the “effort” invested by the malicious
voters. Theorem 4 gives a bound on ηV as a function of θ and κ that will enable
the verification procedure, in case of an honest pollster, to output accept with
probability at least (1− 2κ).

To prove the main theorem of this section, we will require the following lemma
(whose proof is below):

Lemma 3. Assuming static corruption, the probability that malicious respon-
ders with a θm bound on effort (in total) can control max {3θmd, 3κ} edges in
the certification graph is bounded by e−κ.

Theorem 4 (Completeness). Let θm denote the maximum number of effort
oracle calls that can be made by malicious responders and

ηmin
V = θ +

3 ·max
{
κ
md , θ

}
ηE

+
2σ

ηE

(
1 + max

{
2,

2κ

mdσ

})
If the pollster follows the protocol honestly, ηE > 0 and ηV ≥ ηmin

V then the
probability that the verification procedure outputs accept is at least 1− 2−κ.

We note that for non-trivial soundness, the values of ηE and ηV are further
constrained. See the ePrint version of this paper for a discussion on choosing the
parameters [1].

Proof. Let G(m, p) = (V,E), with p = d/m, be the random graph generated by
the pollster. Recall that an edge (i, j) is labeled as failing whenever the PPE
between i and j fails. We denote by σ the probability that such an event occurs
between honest voters. Moreover, ηE is the highest fraction of PPEs that can
fail before a node/voter gets labeled as deleted, and ηV is the maximal fraction
of deleted nodes accepted by the verification procedure.

Let Xi,j denote the indicator random variable for the event “(i, j) ∈ E is a
failing edge”. Note that, if i and j are both honest, the Xi,j ’s are independent
and Pr[Xi,j = 1] = σp. Let X =

∑
i∈V

∑
j∈V Xi,j . Then, E[X] = m2σp = mdσ

and X denotes the number of failing edges in the graph. Since each edge affect
2 nodes, 2X is actually the cardinality of the set containing (with repetitions)
all the nodes affected by failing X edges. Note that for a node to be labeled as
deleted, such a node needs to be connected to at least dηE failing edges, which
means that such a node has been counted at least dηE times in 2X. Thus, the



expected number of deleted nodes in case of honest responders is bounded by
2X/dηE . Now, in our analysis, we need to take into account that, in the worst
case scenario, there will be θm nodes maliciously controlled who will intentionally
fail all their PPE’s. Therefore, we will have to account for the following:

1. The malicious nodes (which are θm) will be failing nodes;
2. Enough bad edges will cause an honest node to be marked deleted. However,

by Lemma 3, with high probability the malicious responders cannot affect
more than 3 ·max {κ, θmd} honest edges. Which means that at most another
3 ·max {κ/d, θm} /ηE nodes can be “forced” to be labeled as deleted.

To conclude, we want to prove that the probability that 2X
dηE

+ θm + 3θm
ηE

is greater than ηVm is negligible. Let ηV = θ + 3θ
ηE

+ 2σ
ηE

(1 + δ). (we will set δ

below.) Then,

Pr

[
2X

dηE
+ θm+

3θm

ηE
> ηVm

]
= Pr

[
2X

dηE
>

2σ

ηE
(1 + δ)m

]
= Pr [X > (1 + δ)mdσ]

By the Chernoff Bound,

Pr [X > (1 + δ)mdσ] ≤ exp

{
− δ2

2 + δ
mdσ

}
Setting δ = max

{
2, 2κ

mdσ

}
, we ensure that Pr [X > (1 + δ)mdσ] ≤ e−κ.

We conclude by proving Lemma 3, as a corollary of the following claim:

Claim. Let S ⊂ V be an arbitrary set of vertices and denote
δ = max {2, 2κ/(|S|d)}. Then

Pr [|{(i, j) ∈ E|i ∈ S}| > (1 + δ)d|S|] < e−κ

(i.e., the probability S has more than (1 + δ)d|S| edges is bounded by e−κ).

Proof. For every pair of vertices i, j ∈ V , let Xi,j be the indicator variable for
the event (i, j) ∈ E. By definition, E[Xi,j ] = p. Denote X =

∑
i∈S
j∈V

Xi,j the

number of edges adjacent to S. Then E[X] = mp|S| = d|S|. By Chernoff,

Pr [Xi > (1 + δ)d|S|] ≤ exp

{
− δ

2/δ + 1
d|S|

}
≤ exp

{
−δ

2
d|S|

}
= exp {−κ}

Proof (Proof of Lemma 3). Since the pollster randomly shuffles the nodes in the
certification path during the registration phase, any set of responders is assigned
a random set of nodes in the certification graph. By symmetry, we can consider
the probability for any specific set of size θm. The result follows by setting
|S| = θm in Claim 5.



6 Discussion and Open Questions

General Verifiable Computation Among Anonymous Participants While we state
our main results in terms of polling, the security guarantee we give is that the
final published graph does not contain too many “bad” nodes. It may be possible
to leverage this technique for doing more general computations, where the edges
in the graph correspond to a private computation between two parties, and the
final goal is a joint, publicly-verifiable computation (in this case, the “responses”
might be some intermediate public values of the computation).

Parallel and Distributed Verification The verification procedure in our protocol is
highly parallelizable: each responder must verify three properties, each of which
can be done by reading only a small part of the graph:

– that her own node was correctly published on the bulletin-board (requires
O(m) evaluations of the hash function, but only O(d) communication),

– that the total number of deleted nodes was small (requires reading a small
list of nodes),

– and that no edges were missed (this is a local property of each potential edge
that can be computed from the node labels and the size of the graph).

The only non-local part in the verification is the aggregation of the results from
all the nodes. However, by publishing a small amount of additional information,
this computation can be distributed as well. Given an aggregation tree, where
each node aggregates the results from its children, a verifier can check a sin-
gle local neighborhood and a path from that neighborhood to the root in the
tree. Thus, if we can assume that enough honest responders will participate in
verification, the total amount communication for each responder can be made
logarithmic in the size of the graph.

Practicality of the Protocol The parameters achieved by our protocol are not
quite good enough to be practical for interaction-based PPEs (the degree of the
graph would be about 180 for reasonable parameters). However, this may already
be good enough for PPEs that can be automated (for example, the social-network
based PPE). Moreover, we believe further research can significantly improve the
efficiency.

Improving Efficiency by Using Hypergraphs. Our bound on the degree of the
graph may be slightly high for some uses of the protocol. However, we can extend
the PPE definition to a multi-party setting, in which several parties certify each
other simultaneously (e.g., using a multi-person chat, such as “Google Hang-
out” or “Skype”). This has the potential of significantly lowering the degree.
Extending our protocol in this way may be an interesting direction for future
work.



Improving Efficiency by Using Explicit Graphs. Our bound on the degree of
the graph is for a randomly chosen graph. In particular, our soundness analysis
includes the event that the chosen graph is not a good expander as a failure mode.
Thus, we require the properties to hold for random graphs with overwhelming
probability. However, it is fairly easy to prove that graphs with better parameters
(e.g., lower degree for the same expansion rate) exist : if we have an explicit
representation of such a graph, soundness will hold unconditionally.
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A Implementing PPEs, Extensions and Selective Polling

The peer-to-peer nature of PPEs seems to facilitate implementation with rela-
tively simple mechanisms. Below we give several examples.

Bitcoin and Proofs of Storage. The original motivation for proofs of storage
(PoS) is to allow clients to outsource data storage “to the cloud”. In this setting a
storage provider stores a large file on behalf of a client. Roughly, a PoS protocol
allows the provider to prove to the client that it is still storing the file (can
reconstruct the entire file), using a small amount of communication.

Since storage is a valuable resource, it is tempting to use proofs-of-storage as
the “effort unit” in an effort-based polling scheme (e.g., one unit of effort could
be storing 1GB of data for 1 day).

Moreover, publicly-verifiable proofs of storage have been constructed [2]—
given a “public-key” generated for a specific file, anyone can verify that the PoS
that the storage provider publishes for that file.

The problem here is that “backup” is a peer-to-peer concept. In particu-
lar, any solution must prevent malicious parties from sending each other “fake”
data to store: e.g., they store a short seed instead of a large pseudorandom file
generated by that seed.

However, the existing PoS protocols can be trivially used to construct a PPE:
an honest user will send good (incompressible) files to its peers (e.g., by encrypt-
ing the file), and it can verify using the PoS that the files were stored as required.
The soundness and completeness properties of this PPE are inherited directly
from the PoS protocol, hence we can hope for almost perfect completeness and
negligible soundness-error.

This implementation of PPEs may be most interesting in the context of
Bitcoin. One of the strong arguments against the currency is the inherent waste
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of the Bitcoin protocol [12]; this is a direct consequence of using proof-of-work
as the basis of its effort-based polling scheme. If we could replace proof-of-work
with, for example, “proof-of-backup”, instead of generating heat as a side-effect,
the Bitcoin network would function as a distributed backup system in addition
to a currency.

Human Interaction. The simplest type of PPE consists of human interaction:
participants certify each other’s effort by simply talking with each other (e.g.,
using VOIP, video, or even textual chat). This is at least as hard to pass than a
“real” Turing test (which consists solely of textual interaction), so its soundness
properties seem to be very robust.

To prevent a proxying attack (in which Eve convinces Alice that she has
expended effort by relaying Alice’s challenges to Bob and vice versa), the protocol
can include Bob reading aloud his partner’s identity. Thus, to act as a person-
in-the-middle, Eve would have to translate Bob saying Eve’s public key to Bob
saying Alice’s public key, which seems like it would require some actual effort.

Symmetric CAPTCHAs. In this version of the PPE, each party generates a
“real” CAPTCHA to be solved by the other party while simultaneously solving
the CAPTCHA she received.

To prevent a proxying attack, we bind the CAPTCHA to the parties’ identi-
ties using a combination of cryptographic commitments and a Message Authen-
tication Code (MAC).

Define the CAPTCHA as a problem-generator G(r) that given a random
input r generates a CAPTCHA C along with its solution V .

1. When Bob generates a CAPTCHA for Alice, he chooses a secret MAC key
and sets as the random input to G the MAC of the pair of public keys
(Alice,Bob). He sends G(r) to Alice.

2. Alice solves C, and sends a commitment to her solution to Bob.
3. Bob then sends his secret MAC key to Alice.
4. Alice verifies that the challenge she received is correctly generated (i.e.,

bound to Alice and Bob’s public keys). If not, she aborts
5. Otherwise, Alice opens her commitment
6. Bob verifies that Alice correctly solved the challenge.

This protocol ensures that Eve can’t use Alice to solve Bob’s challenge to her,
since Alice would refuse to open her commitment if she sees the CAPTCHA
wasn’t meant for her. Note that in terms of the effort required, this is not harder
than just solving a CAPTCHA—the rest of the protocol can be completely
automated.

Leveraging Existing Social Networks. Instead of an online effort, a possible
PPE implementation can use an existing social network (basing the “effort” on
the assumption that becoming “well connected” in a social network is difficult).
For example, two parties can verify that they have several short, vertex-disjoint
paths between them in the social network (or use some other measure of distance
for which the effort assumption seems reasonable).



In this version of the protocol, parties are not guaranteed anonymity (since
they must reveal their identities in order to verify their distance in the social
network), but the public transcript of the protocol does not reveal anything
about their identities or their social-network neighborhood.

The main problem here is preventing an adversary from using the same social-
network identity in multiple different PPE invocations. The fact that the PPE
is a private-coin primitive makes this problem easy to solve, assuming the social
network allows users to publish information linked to their real identity (e.g., a
“home page”). Party i chooses a random nonce ri and publish a commitment to
ri on their homepage. When executing the PPE with party j, i will publish ri
and privately open the commitment to ri towards party j; Party j can verify by
looking at i’s homepage that the nonce is the correct one. Assuming the home-
page provides a consistent view to all honest users, i cannot use a different nonce
in different PPE invocations. However, the public transcript cannot be linked to
i’s social-network identity due to the hiding property of the commitment.

Other PPE Extensions. Our basic definition of PPE only guarantees that
“effort” is expended by the parties. This can be easily extended to capture more
complex conditions that are hard to verify publicly but may be easy to verify
in a peer-to-peer manner. For example, limiting a poll to a small geographic
area. While certifying location in a publicly-verifiable way is difficult, verifying
that someone else is physically nearby can be much easier (e.g., using speed
of response or shared environmental cues, such as noise or micro-local weather
conditions). By extending the PPE to verify physical proximity, we can guarantee
the vast majority of participants must be local (assuming a large enough fraction
is).

Another example is polling groups whose membership is secret (e.g., a poll
of the “Anonymous” organization). If members of the group can recognize each
other (e.g., they have a “secret handshake”), we can use the same technique to
guarantee that our poll is targeting the group.

Limiting a poll to specific communities in an existing social network can be
done similarly. Thus we can conduct verifiable polls on a social-network graph
while keeping the graph itself secret—this can be important, since the structure
of the social network often reveals a large amount of information about the
identity of its nodes.

B Choosing Parameters

Below is a table containing a list of the most common parameters used through-
out the paper. We partition the parameters into fixed parameters (in Table 1)—
those that depend on assumptions about adversarial behavior and the effective-
ness of the PPEs, and tunable parameters (in Table 2)—those that can be set
by the poll designer (subject to certain constraints) and computed parameters
(in Table 3)—these are functions of the previous parameters.



Table 1: Fixed Parameters

Symbol Description

m Total number of responders to the poll / Number of nodes in the
graph.

n Number of honest responders.

a
Upper bound on the number of oracle calls that the adversary
can successfully perform / Upper bound on the number of attack
edges.

θ
Upper bound on the fraction of malicious responders: the total
number of oracle calls made by malicious responders is at most
θm.

σ Probability of a PPE failing when both parties honestly follow the
protocol.

ε Probability of a PPE succeeding when one party does not make
at least one oracle call.

Table 2: Tunable Parameters

Symbol Description

κ Security parameter.

d Expected degree of the graph (expected number of PPE execu-
tions per responder). This can be tuned by changing p (p = d/m).

α Minimum fraction of honest responders required to guarantee
soundness.



Table 3: Computed Parameters

Symbol Description

p Edge probability. Every pair of responders will be required to en-
gage in a PPE with probability p.

ηE
Upper bound on the fraction of PPE’s that a responder can fail
without getting deleted.

ηV
Upper bound on the fraction of nodes that can be deleted without
causing the verification procedure to fail.

K Number of nodes in the graph that the adversary can control “for
free”.

C∗
Upper bound on the multiplicative advantage of the adversary
(an adversary has no more influence than an honest user that can
invest C∗ times the effort).

B.1 Constraints on Parameters

First, from Theorem 3 we have:√
d( 1

2 − ηV )

2(lnm− 1)
> (

1

2
− ηV )/(

1

2
− ηV − ηE)

which implies that

d >
1
2 − ηV

( 1
2 − ηV − ηE)2

(2 lnm− 2) . (1)

By the definitions of α and K in Theorem 3, we get

α ≥ K/m+ ηV =
κ+ 2 lnm

m
+ ηV (lnm+ 2) ≥ κ+ 2 lnm

m
(2)

Isolating ηV instead of α, we have:

ηV ≤ ηmax
V =

α− κ+2 lnm
m

2 + lnm
(3)

Combining this with the bound on ηV from Theorem 4, we get
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Which implies the following bound on ηE :

ηE ≥ ηmin
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Finally, note that we must have θ < ηV ≤ ηmax
V , but this is not sufficient.

Since we need 1
2 − ηV − ηE > 0:
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This gives us the following bound on θ:
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Since the θ must be non-negative, we also have a bound on σ:
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2

hence

σ ≤ ηmax
V

24
(6)

B.2 Examples of Parameter Settings

For simplicity we will consider PPEs for which the soundness error ε is negligible
and we will omit it. Moreover, depending on the context in which we would like to
use our protocol and the level of security we would like to achieve, different type
of PPEs might be more suitable. As presented in section A, there are multiple
ways we could think of implementing PPEs and, naturally, each implementation
comes with its own advantages/disadvantages. For instance, opting for a proof-
of-storage based implementation can provide us with PPEs with almost perfect
completeness (σ = 0), but requires a lot of communication. On the other hand,
other implementations which would give us a worse completeness error (e.g.,
based on CAPTCHAs), might have higher error but require fewer (or different)
resources.



In Table 4 the reader can find example parameter settings for two parameter
regimes: in Scenarios 1 and 2, there are 5000 responders and PPEs are error-
free, while Scenarios 3 and 4 have 100000 responders with PPEs that have a non-
negligible (albeit small) error rate. The first scenario in each pair has degree close
to the minimum possible for those parameters, while the second demonstrates
the soundness advantage of increasing the degree (we note that the values are
based on our worst-case bounds—in practice it may be possible to achieve better
parameters).

Table 4: Possible Parameters

Symbol Scenario 1 Scenario 2 Scenario 3 Scenario 4

κ 40 40 40 40

m 5, 000 5, 000 100, 000 100, 000

θ 1/1000 1/1000 1/10000 1/10000

σ 0 0 1/1000 1/1000

ηE 1/8 1/8 0.23 0.23

ηV 0.025 0.025 0.028 0.028

α 0.28 0.28 0.38 0.38

K 1246 1246 35, 192 35, 192

d 60 120 165 240

C∗ 200 10 670 23

As to be expected, higher the degree of the graph (that is the number of PPEs
each responder is required to carry out) lower is the advantage the adversary
gets.
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