
Multi-Client Verifiable Computation with
Stronger Security Guarantees

S. Dov Gordon1, Jonathan Katz2, Feng-Hao Liu2, Elaine Shi2, and Hong-Sheng
Zhou3

1 Applied Communication Sciences sgordon@appcomsci.com
2 University of Maryland {jkatz,fenghao,elaine}@cs.umd.edu

3 Virginia Commonwealth University hszhou@vcu.edu

Abstract. At TCC 2013, Choi et al. introduced the notion of multi-
client verifiable computation (MVC) in which a set of clients outsource
to an untrusted server the computation of a function f over their col-
lective inputs in a sequence of time periods. In that work, the authors
defined and realized multi-client verifiable computation satisfying sound-
ness against a malicious server and privacy against the semi-honest cor-
ruption of a single client. Very recently, Goldwasser et al. (Eurocrypt
2014) provided an alternative solution relying on multi-input functional
encryption.
Here we conduct a systematic study of MVC, with the goal of satisfying
stronger security requirements. We begin by introducing a simulation-
based notion of security that provides a unified way of defining soundness
and privacy, and automatically captures several attacks not addressed in
previous work. We then explore the feasibility of achieving this notion
of security. Assuming no collusion between the server and the clients,
we demonstrate a protocol for multi-client verifiable computation that
achieves stronger security than the protocol of Choi et al. in several
respects. When server-client collusion is possible, we show (somewhat
surprisingly) that simulation-based security cannot be achieved, even
assuming only semi-honest behavior.

1 Introduction

Protocols for verifiable computation (or secure outsourcing) allow computation-
ally weak clients to delegate to a more powerful server the computation of a
function f on a series of dynamically chosen inputs x(1), x(2), The main
desideratum is that, following a pre-processing stage whose complexity depends
on f , the work of the client per function evaluation should be significantly lower
than the cost of computing the function itself [20]. The initial proposal and
construction of non-interactive verifiable computation [20] led to a long line of
follow-up work [1, 3, 7–10,16–18,21,26,27,33–36].

We are interested here in the multi-client setting introduced by Choi et
al. [15]. Imagine that n clients wish to compute some function f over their

joint inputs {(x(ssid)
1 , . . . , x

(ssid)
n)}ssid for a series of subsessions identified by ssid.

(One can view the ssid as encoding a current time period, though there are
other possibilities as well.) As in earlier work, we assume no client-client com-
munication, and focus on non-interactive solutions in which each evaluation of
the function requires only a single round of communication between each client
and the server.

In earlier works on multi-client verifiable computation [15, 24], the primary
goal is to achieve security (soundness and privacy) against a malicious server,
assuming that clients behave honestly. Soundness means that a malicious server
should not be able to fool a client into accepting a wrong result; privacy means
that clients’ inputs should remain hidden from the server. (Choi et al. also con-
sidered privacy against clients, but while still assuming semi-honest client be-
havior.)

1.1 Our Contributions

In this paper, we conduct a systematic study of multi-client verifiable compu-
tation with stronger security guarantees. The primary question we address is
security when clients may be malicious. These malicious clients may potentially
be colluding with each other, or with the server.

Formal security modeling. We begin by introducing a simulation-based no-
tion of security in the universal composability framework, which provides a uni-
fied way of defining soundness and privacy. As a technical advantage, it means
that protocols satisfying the definition achieve a strong, simulation-based notion
of security not considered in previous work. Our definition also automatically
captures adaptive soundness as well as selective-failure attacks, which were not
handled in prior work on the multi-client setting4.

Impossibility when the server and clients collude. Ideally, one would
like to achieve a strong notion of security where a subset of the clients may be
corrupted, and may be colluding with the server. Unfortunately, we show that

4 Intuitively, a scheme suffers from selective-failure attacks if the server can learn some
secret information from the “decision” of the clients, upon receiving output from the
server. In the single-client setting, previous schemes in the work [16, 20] can be
completely broken by the attacks, unless the clients are willing to redo the expensive
pre-processing upon any server failure. In the multi-client setting, the same attacks
also apply to the scheme by Choi et al. [15], which is basically an extension of [20].
We note that there is no simple fix to the approaches taken in [15,16,20] using known
techniques. Previous schemes that are not vulnerable to such attacks (such as the
scheme in [36]) used completely different approaches.

Adaptive soundness is a technical issue pointed out by Bellare et al. [5] – if a
Yao’s garbled circuit is published first and later the adversary can choose inputs
based on the garbled circuit, then it is not known how to prove security other than
just assuming the garbling scheme itself is secure. Previously, the schemes of [15,20]
used Yao’s garbled circuits in this way, so the schemes suffer from such drawback.
See the work of Choi et al. [15] for further discussions about adaptive soundness and
selective failure attacks.

simulation-secure MVC is impossible to realize (for general functions) when the
server colludes with clients. This impossibility result holds even in the standalone
setting, even when the server colludes with only a single, semi-honest client,
and even in the presence of trusted setup assumptions such as PKI, common
reference strings (CRS), shared secret randomness, etc. Intuitively, our lower
bound result is due to a connection we establish between MVC and virtual black-
box (VBB) obfuscation, whose impossibility is known [4]. More details can be
found in Section 5.

Feasibility result: when server and clients do not collude. In contrast
to the above, we show positive results for the case when client-server collusion
is assumed not to occur. We show a construction that achieves security (i.e.,
soundness and privacy) against either a malicious server, or an arbitrary set of
malicious, colluding clients. Our construction achieves both adaptive soundness
and security against selective abort.

Our construction relies only on falsifiable assumptions. While it is alter-
natively possible to construct MVC schemes using a new notion, multi-input
functional encryption, by Goldwasser et al. [24], this notion inherently requires
(indistinguishable) obfuscation, which requires non-falsifiable assumptions or ex-
ponential assumptions [22]. Moreover, current constructions of obfuscation have
prohibitively large overhead.

1.2 Techniques and New Primitives

Techniques used for achieving our upper bound results can be of independent
interest. When server-client collusion is not allowed, we take a two-step approach
to achieve simulation-security of MVC. As a stepping stone, we identify a new
building block named multi-sender attribute-based encryption (mABE).

Our two-step approach for MVC. We start with a protocol which achieves
the simulation-based security against either (i) a malicious server or (ii) any
coalition of semi-honest clients. Although this is also achieved by the protocol
of Choi et al. [15]—even if not claimed explicitly there—our construction has
the advantages of offering adaptive soundness based on standard assumptions as
well as resilience to selective-failure attacks.

We then present a generic compiler that upgrades our intermediate solution
(as well as the one by Choi et al. [15]) to handle an arbitrary subset of malicious
clients. While we could rely on standard techniques, distributing commitments
to random tapes during setup, and asking each party to prove in zero knowledge
that they have acted honestly, we instead offer a compiler that does not require
committed randomness, allowing us to reduce our setup assumptions to a sim-
ple common reference string. We demonstrate that as long as our semi-honest
protocol offers a sufficiently strong notion of privacy, our compiler provides se-
curity against malicious corruption. This gives us a non-interactive multi-client
verifiable computation protocol secure against a malicious adversary under all
possible cases of non-client-server collusions, in the standard model under falsi-
fiable assumptions.

A new building block: mABE. We identify a new building block, multi-sender
attribute-based encryption, which can be of independent interest.

Recall that in the single sender setting, Parno et al. [36] showed that an
attribute-based encryption (ABE) (that supports functions and their comple-
ments) implies publicly verifiable computation (without input privacy). Later,
Goldwasser et al. [26] showed (i) how to compile an ABE scheme to a private-
index functional encryption scheme using fully homomorphic encryption (FHE),
and (ii) that private-index functional encryption implies input-private publicly
verifiable computation.

We conduct a parallel study in the multi-sender setting. The multi-sender
counterpart, multi-sender ABE (mABE) is defined as follows. Each sender Pi ∈
{P1, . . . ,Pn} has an attribute value xi, as well as two input messages (m

(i)
0 ,m

(i)
1).

A single receiver (or server) can use a decryption key for function fi to learn m
(i)
b

if and only if b = fi(x1, . . . , xn). We show how to construct an mABE scheme
secure against a malicious server or semi-honest senders. To construct this mABE
scheme, we first observe a special “local encoding” property of the LWE-based
ABE scheme by Gorbunov, Vaikuntanathan, and Wee [30]. We then combine
this observation with a proxy-OT protocol proposed by Choi et al. [15].

After obtaining the mABE construction, we then apply Goldwasser et al’s
compiler techniques [26] to transform it into an attribute-hiding mABE scheme
(which can also be thought of as a multi-sender, private-index functional en-
cryption scheme). Finally, just as single-sender private-index functional encryp-
tion implies input-private verifiable computation, we show that attribute-hiding
mABE implies multi-client verifiable computation with input privacy, secure
against a malicious server or an arbitrary subset of semi-honest clients. We
can then use the compiler described previously to obtain security in the face
of malicious corruptions, so long as there is no client-server collusion.

Sacrificing input privacy to allow server-client collusion. Since attribute
hiding mABE implies multi-client verifiable computation, it follows that attribute
hiding mABE is also impossible for general functions under server-client col-
lusion. However, it is still interesting to consider settings without input pri-
vacy/attribute hiding. In this work, we show that any mABE (without attribute
hiding) construction that is secure under some arbitrary corruption pattern im-
plies public input MVC under the same corruption pattern; in particular, this
gives a method of handling server-client collusion. We also show that an mABE
scheme secure under server-client collusion, even in the standalone setting, im-
plies extractable witness encryption (equivalently, point-filter obfuscation) [25].
So building MVC protocols without input privacy via this method would in-
herently require non-falsifiable assumptions. We note that it is also possible to
construct MVC protocols without input privacy against an arbitrary corruption
based on other non-falsifiable assumptions, such as SNARKs. It is an interesting
question – whether we can construct a secure MVC without input privacy against
an arbitrary corruption based on falsifiable assumptions, yet one should keep in
mind that any possible solution should avoid the route using mABE, as implied
by the result above.

1.3 Related Work

Non-interactive verifiable computation was first proposed by Gennaro, Gentry,
and Parno [20]. Since then, various improvements have been proposed [1,16,17,
21,27,36], and constructions for specific functionalities [9, 18,34,35].

Various works have considered server-aided secure computation with the goal
of eliminating client-to-client interaction. Most of these existing works do not
achieve complete non-interactivity, in the sense that they still require multiple
rounds of server-client interaction. Kamara et al. [31, 32] consider server-aided
multi-party computation, but their approach is not non-interactive.

Multi-input functional encryption [24] is also related to non-interactive multi-
party outsourcing. The earlier work by Shi et al. [37] shares similar goals, but for
specific functionalities such as summation and variance. Shi et al. [37] also de-
scribe various application domains such as secure sensor network aggregation. In
the multi-input functional encryption model or that of Shi et al. [37], the server
learns the final outcome of the computation, and verifiability (i.e., soundness)
is not an inherent part of the problem formulation. Interestingly, Goldwasser et
al. [24], observe that multi-input functional encryption can, in fact, be leveraged
to construct multi-client verifiable computation. This solution uses the technique
developed in [36] which solves the selective-failure issue. However, Goldwasser
et al. [24] do not consider malicious clients or client-server collusion. In addi-
tion, another major drawback is that known multi-input functional encryption
schemes rely on non-falsifiable assumptions related to obfuscation, and this is
somewhat necessary as pointed out by [24].

2 Multi-Client Verifiable Computation

2.1 Definitions

We start by introducing the notion of non-interactive multi-client verifiable com-
putation (MVC) that has the following structure: let κ be the security parameter,
n be the number of clients P1, . . . ,Pn who are delegating some computation on
some n-ary function f : Xn → Yn to a distinguished server Serv and would like
to verify the correctness of their answers. Here we assume each client’s input
message space is X , and output message space Y, for some polynomial-length
(in the security parameter) |X | and |Y|.

Intuitively, MVC protocols have the following properties: (1) All participants
are allowed to access to a certain initial setup G (e.g., PKI, CRS). (2) Then an
offline stage follows; in the offline stage, each client sends a single message to
the server Serv. (3) In the online stage, in a single time period (subsession), each
client is only allowed to send an outgoing message to the server and then receive
an incoming message from the server. In the whole paper, we assume that the
clients cannot communicate with each other directly, and can only send a single
round of message to the server per time period (subsession). Next, we give more
details.

Definition 1 (Non-interactive Multi-client Verifiable Computation). Let
κ be the security parameter, n be the number of clients and f be an n-ary function
being computed. A non-interactive multi-client verifiable computation consists of
n clients P1 . . .Pn and a server Serv with the following structure:

Setup stage: All parties Pi’s, i ∈ [n] and Serv have access to a setup G, where
party Pi obtains (pub, ski) upon queries for some secret and public informa-
tion.

Offline stage: Each client Pi sends a single message to the server. The server
stores these as f̂ , an encoded version of f .

Online stage: This step is a query-response move: at each sub-session (or
time period) ssid, upon receiving an input (ssid, xi) for i ∈ [n], the client
Pi(pub, ski, xi) computes some message (x̂i, τi). Then he sends x̂i to the
server and stores τi as a secret.
The server Serv carries out the computation on the messages received, and
sends each client Pi for i ∈ [n] an encoded output (ssid, ŷi).
Each client computes and some output yi ∪ {⊥} based on (pub, ski, ŷi, τi),
where ⊥ means that he is not convinced with the outcome.

Remark 1. For the setup G, we do not specify whether it is trusted in our defi-
nition. For our positive results, we want to minimize the requirements, and we
showed that a self-registered PKI is enough for semi-honest client or malicious
server corruptions. For the case of malicious clients corruptions, we further need
an additional CRS. On the other hand, for our lower bound results, we rule out a
large class of instantiations of G, including the trusted PKI, CRS, shared secret
randomness, and their combinations.

Note that the trusted PKI is a setup where a trusted party generates public-
and secret-key pairs for each user, and publishes the public keys to all users. The
self-registered PKI is a weaker setup where each user generates their own key
pairs, and registers the public keys with the setup so that the setup can publish
the public keys to all users.

2.2 Security Definition

The security definition for non-interactive multi-client verifiable computation,
MVC, turns out to be subtle. An MVC protocol cannot achieve the standard
multi-party computation security, which requires that malicious clients have
only one chance to provide their inputs, and cannot switch inputs later. In the
non-interactive setting, if the server and some clients are simultaneously cor-
rupted, then after gathering the transcripts of the honest clients, by definition
the malicious clients can now select different inputs for themselves and learn the
corresponding outputs. For example, consider n = 2. If client P1 and the server
are corrupted, then they effectively have access to oracle f1(∗, x2) where f1 is the
output of the first party, and x2 is the honest input of P2. The notation ∗ means
that client P1 can choose arbitrary inputs for itself and query this oracle a poly-
nomial number of times. So our security definition would allow the adversary to

learn f1(∗, x2) in the ideal world, and guarantees that this is the most that he
can learn. On the other hand if interaction is allowed, it is well-understood that
this issue can be avoided by standard techniques.

Based on this observation, we formally define the ideal functionality for pri-
vate MVC in Figure 1 that captures the above issues, and soundness and privacy.
The security of the protocol above follows the standard real/ideal paradigm [28,
29]. Here we only include the universal composability (UC) definition by Canetti [13,
14]. The standalone security definition can be found in [12,23].

Definition 2 (UC Security [14]). We say a protocol Π securely realizes F if
for any PPT adversary A in the real world, there exists a PPT simulator Sim
in the ideal world, so that no PPT environment Z is able to tell the real world
execution from the ideal world execution, i.e., EXECA,Π,Z ≈ EXECSim,F,Z .

We can also define a notion of verifiable computation without input privacy.
This is essentially the same definition, except that the server learns all the inputs
of the clients. We present a formal description and provide a construction of this
relaxed notion in the full version of this paper. In the following remarks we
highlight and clarify a few properties of the stronger definition above:

Soundness against selective failure attacks: Our ideal-functionality mod-
els a reactive functionality that has multiple sub-sessions after a common pre-
processing (i.e., Initialization) phase. Our definition implies this soundness, where
learning the decision bit of the clients does not help the server to fool the clients.
In particular, following the convention of simulation-based definition, our secu-
rity definition requires the clients to report the outputs (and acceptance deci-
sions) to the environment.

Communication model. We assume that the adversary controls the communi-
cation medium between all parties. Our protocol later relies on PKI setup, and
we can implement a secure channel with PKI. Therefore, while not explicitly
stated, all our protocols are described assuming the secure channel ideal world.

Semi-honest v.s. malicious corruption. Semi-honestly corrupted partici-
pants follow the protocol faithfully, but the adversary sees the internal states of
all semi-honestly corrupted parties.

As mentioned above, due to the non-interactive nature, if the server and at
least one client are simultaneously corrupted either in the malicious or semi-
honest model, then our ideal functionality FpVC implements a blackbox-access
oracle which the simulator can query multiple times by specifying inputs for
the malicious clients. For malicious corruption, the simulator can ask the ideal
functionality to send outputs to different clients corresponding to different cor-
rupted clients’ inputs. For example, suppose P1 and the server are maliciously
corrupted, the simulator can ask the functionality to send f2(x1, x2, x3) to P2,
and send f3(x′1, x2, x3) to P3. For semi-honest corruption, the outputs sent back
to the clients always correspond to inputs chosen by the environment.

Static corruption. We assume a static corruption model in this paper, where
some protocol participants are corrupted at the beginning of protocol execution.

Multi-Client Private Verifiable Computation

The functionality is parameterized with an n-ary function f : Xn →
Yn. The functionality interacts with n clients Pi for i ∈ [n], a distin-
guished server Serv, and the simulator Sim.

Initialization:
Upon receiving (Init) from client Pi, send (Init,Pi) to notify the sim-
ulator Sim. Later, when Sim returns (Init,Pi), send a notification
(Init,Pi) to the server Serv.
Upon receiving (Init) from the server Serv, send (Init, Serv) to notify
the simulator Sim.

Computation:
Upon receiving (Input, ssid, xi) from client Pi, send (ssid,Pi) to notify
Sim. Later, when Sim returns (ssid,Pi), store (ssid, xi), and send a
notification (Input, ssid,Pi) to server Serv.
Upon receiving (Input, ssid, 1) from server Serv, retrieve (ssid, xi)
for all i ∈ [n]. If some (ssid, xi) has not been stored yet, send
(Output, ssid, fail) to the server and all clients.

– Server is not corrupted: Compute (y1, . . . , yn) ←
f(x1, . . . , xn). Later when Sim returns (ssid,Pi, φ), if φ = ok, send
(Output, ssid, yi) to client Pi; if φ = fail, send (Output, ssid, fail)
to client Pi.

– Server is corrupted: Let I ⊆ [n] denote the set of indices corre-
sponding to corrupted clients. Let I := [n] \ I. Let x∗I denote the
corrupted clients’ inputs, xI denote the remaining clients’ inputs.
Without loss of generality, we can renumber the clients such that
I := {1, 2, . . . , |I|}.
The functionality provides to Sim blackbox oracle access to the
following oracle Of,I where Sim can choose inputs x∗I for cor-
rupted clients to query:

Oracle Of,I(x∗I):
Compute (y1, . . . , yn)← f(x∗I ,xI).
Output {yi}i∈I to Sim, and internally remember the
last seen {yi} for i ∈ I.

At any time (not necessarily simultaneously for all i), on receiving
(ssid,Pi, φ) from Sim for some i ∈ I, the functionalitya sends to
Pi (Output, ssid, yi) corresponding to the last seen yi if φ = ok,
otherwise it sends (Output, ssid, fail) to Pi.

a Restricting to sending the last seen outputs does not lose generality,
since the simulator can always repeat a previous query to the oracle
Of,I .

Fig. 1. Functionality FpVC

UC and stand-alone security. In the paper we use both the UC definition
and standalone security definition. In the standalone security, the environment
machine Z (i.e., the distinguisher) provides inputs to all protocol participants
and the adversary at the beginning of protocol execution, and it receives out-
puts from these entities when the execution is complete. The environment and
the adversary are not allowed to communicate during the protocol execution.
Protocols secure in the standalone security model can be composed sequentially.
On the other hand, in the UC framework, the environment and the adversary
are always allowed to communicate. Protocols secure in the UC framework can
be composted with arbitrary protocols. It is obvious that UC security implies
stand-alone security.

Efficiency. An important feature of MVC is the online efficiency of the clients.
Usually, we require the clients’ computation time be much less than the com-
plexity of the function f , so that over many online computations, the total cost
of the clients will have low amortized cost. However, for private MVC, in some
cases it is also interesting if the clients’ computation time is similar to f , e.g.
when the function f is simple. For example, it client P1 and P2 want to do a se-
cure comparison over their inputs. The privacy requirement makes it interesting
regardless of whether the clients’ online computation time is smaller than the
function being delegated. We do not specify a definition of efficiency but discuss
it for each scheme individually.

3 Malicious Server or Semi-honest Client Corruptions

In this section and the following section, we will demonstrate constructions that
achieve security against malicious adversaries, as long as there is no simultaneous
server-client corruption.

Roadmap. As described in Section 1.2, our plan of action is: 1) define and obtain
an mABE scheme; 2) use Goldwasser et al’s compiler techniques [26] to achieve
attribute-hiding mABE; and 3) show that attribute-hiding mABE implies private
MVC.

All of the above primitives are proven secure under a malicious server or
semi-honestly corrupted clients in this section. Then, in the following Section 4,
we show a generic compiler based on non-interactive zero-knowledge proofs, such
that any protocol secure against semi-honest corruption of an arbitrary subset
of clients, and additionally offering clients perfect privacy from one another, can
be transformed into a protocol that is secure against either a malicious server or
an arbitrary subset of malicious clients.

For convenience, in the remainder of the section, we focus on the case when
only the first client P1 learns output, and the remaining clients learn nothing.
Based on this, we can obtain a protocol where every party learns outputs through
simple parallel repetition.

3.1 Multi-sender ABE

We define a multi-sender, two-outcome ABE scheme. Intuitively, the mABE func-
tionality implements the following: consider n senders and a server. The first
sender P1 chooses two messages m0 and m1, and each Pi for i ∈ [n] has an
attribute xi. The goal is for the server to mb where b = f(x1, x2, . . . , xn) while
keeping m1−b secret. We require the mABE scheme to be non-interactive, i.e.,
after an initial preprocessing phase in which the server learns an encoding of
the function f , in each online phase, each sender sends a single message to the
server, and the server can learn mb.

We note that our mABE formulation can also be regarded as a generalization
of the proxy oblivious transfer (POT) primitive proposed by Choi et al. [15].
We present the definition of POT in Appendix A. In other words, sender P1

obliviously transfers one of m0 and m1 to the server, where which message is
transferred is determined by a policy function f over all senders’ attributes.

Figure 2 formally describes the mABE ideal functionality. We define mABE for
the single-key setting, since our verifiable computation application is inherently
single-key.

mABE Functionality

Functionality Ff
mABE interacts with multiple senders P1, . . . ,Pn, a

server Serv, as well as a simulator Sim. The functionality is parame-
terized by a function f : ({0, 1}`)n → {0, 1}.

– Upon receiving (ssid,m0,m1, x1) from the sender P1, notify
Sim with (ssid,P1). Later, if Sim replies with (ssid,P1), store
(ssid,m0,m1, x1), and notify Serv with (ssid,P1, x1).

– Similarly, upon receiving (ssid, xi) from other senders Pi for i ∈
{2, .., n}, notify Sim with (ssid,Pi). Later when Sim replies with
(ssid,Pi), if no (ssid, xi) recorded yet, store it, and notify Serv
with (ssid,Pi, xi).

– Upon receiving (ssid, 1) from Serv, if all (ssid,m0,m1, x1), and
(ssid, xi) for i ∈ {2, .., n} are recorded, return (ssid,mf(x1,...,xn))
to Serv. Otherwise, if some tuple for ssid has not been recorded,
return fail to Serv.

Fig. 2. Functionality Ff
mABE

We now present our (non-interactive) protocol that realizes FfmABE for any
efficiently computable f . We use as building blocks a non-interactive POT pro-
tocol, and any two-outcome attribute-based encryption (ABE) scheme with a
special structure where the attributes of ciphertexts can be encoded bit-by-bit.
We formalize this local encoding property in the following. and observe that
the ABE construction by Gorbunov, Vaikuntanathan, and Wee [30] satisfies this
special property. Also, we remark that one can build a two-outcome ABE from

a standard one, as shown by Goldwasser et al. [26]. Here we use ABE to denote
the two-outcome ABE for simplicity.

Definition 3 (Two-outcome ABE with Local Encoding). A two-outcome
attribute-based encryption scheme ABE for a class of boolean functions F =
{F`}`∈N from {0, 1}k → {0, 1}, is a tuple of polynomial time algorithms: ABE.{Setup,KeyGen,Enc,Dec}
as follows:

– ABE.Setup(1k) outputs a master public key mpkABE and a master secret key
mskABE.

– ABE.KeyGen(mskABE, f) On inputs mskABE and a function f ∈ F , output a
function key skf .

– ABE.Enc(mpkABE, x,m0,m1) takes as input the master public key mpkABE,
an attribute x ∈ {0, 1}` for some `, and two messages m0,m1, outputs a
ciphertext c.

– ABE.Dec(skf , c) takes as input a key skf and a ciphertext and outputs a mes-
sage m∗.

Local encoding. We say that a two-outcome ABE scheme satisfies local encoding if
the encryption algorithm ABE.Enc can be equivalently expressed as the following,
where enc is a sub-algorithm:

1. select common randomness R;
2. for all i ∈ [k], compute x̂[i] = enc(mpkABE, x[i];R);
3. m̂ = enc(mpkABE,m0,m1;R).

Finally, the ciphertext c can be written as c := (x̂[1], x̂[2], . . . , x̂[k], m̂).
The correctness property guarantees that the decryptor can learn one of the

messages mb for b = f(x), and the security guarantees that this is the only thing
he can learn. We present the formal definitions in the appendix and also refer
the readers to the work by Goldwasser et al. [26].

We present our construction of mABE in the GABE setup model, where GABE

serves as a self-registered PKI which allows the sender to generate (mpkABE,mskABE)←
ABE.KeyGen(1k), and register mpkABE. When queried by players other than the
sender, it returns mpkABE.

Construction of mABE. Let f : ({0, 1}`)n → {0, 1} be a policy function, and
without loss of generality, we let Serv denote the server, and let P1, . . . ,Pn denote
the senders. We make use of (n − 1) · ` instances of the functionality FPOT

indexed by (i, j) such that for i ∈ {2, . . . , n}, all j ∈ [`], in the (i, j)-th instance,
P1 plays the sender, Pi plays the chooser, and Serv plays the server. In the
protocol below, we assume the existence of private channels; i.e. we assume that
all parties encrypt their messages before sending them. This step is left implicit.5

The parties act as follows:

5 Recall that our protocol for realizing FPOT relies on a setup phase for establishing
a PKI, so we could rely on this PKI for encrypting messages. If we instead were
to use a protocol for FPOT that did not rely on a PKI, we could simply add the
establishment of a PKI to the setup phase of this protocol. Finally, we note that

– Offline Stage: Every party receives a function f as input. P1 calls the setup
GABE to receive (mpkABE,mskABE), and computes some skf = ABE.KeyGen(mskABE, f).
He sends skf to the server. All the other clients runs an empty step.

– Online Stage:
• On input (sid,m0,m1, x1), the sender P1 does the following in parallel :

1. Sample a random string R. Compute C = enc(mpkABE,m0,m1;R), x̂1 =
enc(mpkABE, x1, R) (bit-by-bit) and sends them to the receiver Serv.

2. For i ∈ {2, . . . , n}, j ∈ [`], P1 computes ĉi,j,0 = enc(mpkABE, 0;R), and
ĉi,j,1 = enc(mpkABE, 1;R), and then sends (ĉi,j,0, ĉi,j,1) to the (i, j)-th in-
stance of FPOT.

• For i ∈ {2, . . . , n}, upon receiving (sid, xi), the party Pi sends, in parallel,
xi[j] to the (i, j)-th instance of FPOT for all j ∈ [`]. Here xi[j] denotes the
j-th bit of xi.

• Party Serv receives enc(mpkABE,m0,m1), enc(mpkABE, x1) (bit-by-bit) from
the sender P1, and enc(mpkABE, x2), . . . , enc(mpkABE, xn) (bit-by-bit) via
the instances of the functionality FPOT. He outputs m′ by running the ABE
decryption algorithm on the received ciphertexts using decryption key skf .

Then we are able to achieve the following theorem. We present the proof in
the full version of this paper.

Theorem 1. Assuming the existence of two-outcome ABE for a function f :
({0, 1}`)n → {0, 1} with the additional encoding property as above, then the

protocol above securely realizes the ideal functionality FfmABE in the (FPOT,GABE)-
hybrid model, against either (1) malicious server corruption, or (2) any semi-
honest (static) corruption among any fixed set of clients.

Using mABE as a building block, we can easily achieve verifiable computation
without privacy. In the full version of this paper, we present the formal definition
of MVC without privacy, and the protocol that achieves this notion using mABE.
We note that the construction is very similar to the one in the next section (see
Theorem 3).

3.2 Achieving Attribute Hiding

In Figure 3, we define an attribute-hiding version of mABE, where the sender at-
tributes are not leaked to the receiver. The attribute-hiding mABE functionality,
denoted Fah-mABE, is defined in almost the same way as FmABE, except that when
the functionality notifies the server, it only notifies (ssid,Pi), without leaking the
attributes xi’s.

We present our protocol that realizes Fah-mABE in the GFHE setup plus FmABE

hybrid model, where GFHE serves as a self-registered PKI which allows the sender
to generate (pkFHE, skFHE)← FHE.KeyGen(1k), and register pkFHE. When queried

the assumption of private channels is not necessary: we could instead choose to leak
Pn+1’s output to an eavesdropper. This would suffice for our purposes, but makes
the resulting ideal functionality and the security proof a bit more involved.

ah-mABE Functionality

Functionality Ff
ah-mABE interacts with multiple senders P1, . . . ,Pn, a

server Serv, as well as a simulator Sim. The functionality is parame-
terized by a function f : ({0, 1}`)n → {0, 1}.

– Upon receiving (ssid,m0,m1, x1) from the sender P1, notify
Sim with (ssid,P1). Later, if Sim replies with (ssid,P1), store
(ssid,m0,m1, x1), and notify Serv with (ssid,P1).

– Similarly, upon receiving (ssid, xi) from other senders Pi for i ∈
{2, .., n}, notify Sim with (ssid,Pi). Later when Sim replies with
(ssid,Pi), if no (ssid, xi) recorded yet, store it, and notify Serv
with (ssid,Pi).

– Upon receiving (ssid, 1) from Serv, if all (ssid,m0,m1, x1), and
(ssid, xi) for i ∈ {2, .., n} are recorded, return (ssid,mf(x1,...,xn))
to Serv. Otherwise, if some tuple for ssid has not been recorded,
return fail to Serv.

Fig. 3. Functionality Ff
ah-mABE

by parties other than the sender, it returns pkFHE. Our construction can be
viewed as a distributed version of that of Goldwasser et al. [26], who constructed
attribute-hiding ABE (or functional encryption) from a non-hiding one. Briefly
speaking, the first party P1 generates a garbled circuit of the FHE decryption
circuit, and then all parties input ciphertexts of their attributes to FmABE, to
allow the server to learn only a set of labels to the garbled circuit. Then the
server can learn only the outcome by evaluating the garbled circuit. Intuitively,
since the attributes are encrypted, and the server can learn only a set of labels of
the garbled circuit, the server can only learn the outcome but not the attributes
of the parties.

Construction of ah-mABE. Let f : ({0, 1}`)n → {0, 1} be a policy function, let
P1, . . . ,Pn be the senders, and let Serv be the receiver. Denote g := EvalFHE(pkFHE, f

′, (c, c′, c1), . . . , cn)
where pkFHE is an FHE public key, c, c′, c1 . . . , cn are ciphertexts and f ′ is an n-
nary function that on input ((m0,m1, x1), . . . , xn) outputs mf(x1,...,xn). Assume
the function g has an λ-bit output, and denote gi as the function that outputs
the i-bit of g. Then the parties do as follows:

– Upon receiving input (ssid,m0,m1, x1), P1 does the following:

• Obtain (pkFHE, skFHE), and compute
(Γ, {L0

i , L
1
i }i∈[λ]) ← Gb.Garble(1k,DecFHE(skFHE, ·)) where DecFHE(skFHE, ·)

is a circuit that takes a λ-bit ciphertext as input and outputs a single bit
message.
• Send (ssid, Γ) to the receiver Serv, and in parallel,
• Compute m̂0 ← EncFHE(pkFHE,m0), m̂1 ← EncFHE(pkFHE,m1), x̂1 ← EncFHE(pkFHE, x1),

and send (ssid, L0
j , L

1
j , (m̂0, m̂1, x̂1)) to the functionality FgjmABE for all j ∈

[λ].

– For i ∈ [n] \ {1}, upon receiving input (ssid, xi), Pi first calls GFHE to obtain
pkFHE. Then he computes x̂i ← EncFHE(pkFHE, xi) and sends (ssid, x̂i) to the
functionality FgjmABE for all j ∈ [λ].

– Upon receiving input (ssid, x̂1, . . . , x̂n, {Ldi}i∈[λ], Γ) from the ideal function-

alities and P1, the receiver Serv computes Gb.Eval(Γ, {Ldi}i∈[λ]), and outputs
the result of the evaluation.

Then we are able to achieve the following theorem. We present the proof in
the full version of this paper.

Theorem 2. Assuming the existence of a fully homomorphic encryption scheme
and a garbling scheme, the protocol above securely realizes the ideal functional-
ity Ffah-mABE for any efficiently computable f in the (FmABE,GFHE)-hybrid model,
against either (1) malicious server corruption, or (2) semi-honest (static) cor-
ruption among any fixed set of senders.

Using the functionality Fah-mABE, we are able to build an MVC scheme that
also achieves input and output privacy, in a similar fashion that (single-sender)
private-index functional encryption implies private verifiable computation [26].
As before, we assume f outputs only one bit and only the first party receives
the output. The construction is in the Ffah-mABE hybrid model. More formally,
let f : ({0, 1}`)n → {0, 1} be a function to be delegated, let P1, . . . ,Pn be the
clients and Serv be the server. The the parties do as the following:

– Upon receiving input (ssid, x1), P1 samples two random inputs m0,m1 ←
{0, 1}` and sends (ssid,m0,m1, x1) to the functionality Ffah-mABE. Locally, he
stores m0,m1.

– For i ∈ [n] \ {1}, upon receiving message (ssid, xi), Pi sends (ssid, xi) to the

functionality Ffah-mABE.

– Upon receiving (ssid,m) from Ffah-mABE, the server sends P1 the message
(ssid,m).

– Upon receiving (ssid,m) from the server, P1 checks whether m = mb for some
b ∈ {0, 1}. If so, he outputs b, and otherwise he outputs ⊥.

In particular we show the following theorem. We present the proof in the full
version of this paper.

Theorem 3. The protocol above securely realizes FpVC in the Ffah-mABE hybrid
world, against either (1) malicious server corruption, or (2) semi-honest (static)
corruption of any fixed set of clients.

Remark 2. Actually the above theorem can be more general – we can show that
the protocol is secure against any (static) pattern of corruption in the Ffah-mABE

hybrid world (we will include this in the proof). However, in the previous Theo-

rems 1 and 2, we only know how to realize Ffah-mABE against either (1) malicious
server corruption, or (2) semi-honest (static) corruption of any fixed set of clients.
Therefore, by putting things together we can obtain an input-private verifiable

computation (pVC) protocol against such patterns of corruption. In Section 5,
we will show that the corruption pattern cannot be extended – it is impossible to
construct general pVC protocols against arbitrary server-client collusions. This
in particular implies that it is impossible to construct a protocol for Ffah-mABE

against arbitrary server-client collusions.

Efficiency of our construction. We outline the efficiency of a scheme where every
client receives 1 bit of output — this can be achieved by a parallel repetition of
our basic construction where only P1 receives output. For such a private MVC
scheme, the server runs in poly(κ) · O(|f | · n). If we instantiate using the ABE
construction of Gorbunov et al. [30], the run-time and the communication cost
for each client is O(d·n`κ), where d is the depth of the function f being delegated,
` is the input length, and κ is the security parameter. In Appendix B we also
offer more detailed discussion. We note that if some non-falsifiable assumption is
used, it is possible to remove the dependence on the circuit depth. As mentioned,
the focus of this paper is on using falsifiable assumptions.

Also we note that efficiency of Choi et al.’s construction [15] does not depend
on circuit depth — however they security is weaker in many respects. An interest-
ing direction for future research is to construct a scheme (or prove impossibility)
where the client online computation and communication does not depend on the
number of parties n and the circuit depth d, by only using standard assumptions.

4 From Semi-honest to Malicious Clients Corruptions

In the previous section, we considered the case where the clients can be cor-
rupted in the semi-honest way. In this section, we present a simple compiler that
upgrades the previous protocol to one that is secure against any maliciously
corrupted clients, and remains non-interactive. That is, the resulting protocol is
secure against either malicious server, or against a set of malicious clients. Our
construction only needs an additional setup FCRS.

We note that if we allow more rounds of communication, it is already known
how to achieve security against arbitrary malicious corruptions (i.e. of clients
and/or the server) [2]. However in the non-interactive multi-client verifiable com-
putation MVC, there are no known constructions. We have already demonstrated
security against a malicious server, and we will consider arbitrary corruptions
of both the server and the clients in Section 5. Here we address the case where
multiple clients are corrupted, and demonstrate that if an MVC protocol of-
fers security against the semi-honest corruption of an arbitrary subset of the
clients, and, additionally it offers the clients perfect privacy from one another
(as defined in Definition 4), then there exists a simple compiler for guaranteeing
security against the malicious corruption of clients. Of course, if we are allowed
for a trusted PKI during the setup phase, we could include honestly generated,
committed randomness for each party, and then use a NIZK to prove that all
messages were honestly generated. However, we are interested in avoiding the
use of trusted PKI, instead allowing each party to register the key of their choice;
see Remark 1 for a discussion about trusted PKI and self-registered PKI.

Definition 4. An MVC protocol Π has perfect client privacy if for all inputs
x1, . . . , xn, for an adversary A that semi-honestly corrupts some subset of the
parties {Pi}i∈I where I ⊂ [n], and for every random tape rA belonging to A,
there exists a simulator Sim such that the following distributions are identical{

ViewΠ(x1,...,xn),A
}
≡ {Sim({xi, yi}i∈I , rA)}

where (y1, . . . , yn) ← f(x1, . . . , xn), and ViewΠ(x1,...,xn),A is the view of the ad-
versary when the inputs to the clients are (x1, . . . , xn). In particular, the view
contains random string rA, inputs {xi}i∈I , and the message received from the
server, and the messages generated by honest clients.

Note that what distinguishes this from a standard requirement for semi-
honest corruption is that we require indistinguishability to hold for every random
tape of the adversary, rather than only on average. Intuitively, if a protocol meets
this requirement, we can simplify the standard compilation techniques, since the
adversary is free to use the random tape of his choice. To achieve security in the
presence of malicious adversaries, it suffices to have the clients prove (using a
NIZK) that their messages are consistent with some random string. Formally,
we are able to achieve the following theorem. We present the proof in the full
version of this paper.

Theorem 4. Suppose there exists an MVC protocol Π in self-registered PKI
setup hybrid model that is secure against semi-honest client corruptions, and that
Π has perfect client privacy. Then there exists an MVC protocol Π ′ in the ZK
and the self-registered PKI setup hybrid model, which is secure against malicious
client corruptions.

In order to apply the compiler results to our protocol, we need to show that
our constructions have the desired property. We show this by the following claim:

Claim. If the underlying ABE and FHE and the garbling schemes is perfectly
correct, then the private MVC protocol from Section 3 has perfect client privacy.

Proof. Since P2, . . . ,Pn do not receive messages or output, their views can be
simulated easily. Now, we give a simulation of P1’s view. In the honest protocol,
P1 samples random strings m0,m1 and some r for generating ciphertexts of the
ABE, FHE and garbling schemes. Suppose these schemes have perfect correct-
ness. Then for every r the honest P1 will receive either m0 or m1 from the server,
depending on b := f(x1, . . . , xn). Therefore, given the result of the computation,
b, and the random tape of P1, R = (m0,m1, r), the simulator can simply output
mb as the message from the server, producing an identical view. This completes
the simulation of his view.

As a consequence of this theorem and Theorems 1, 2, 3, and the fact that non-
interactive ZK can be implemented in the CRS model, we are able to construct
a private MVC protocol using CRS and self-registered PKI. We summarize this
by the following theorem:

Theorem 5. Assume the existence of a fully homomorphic encryption scheme,
a garbling scheme, and an ABE that has local encoding property. Assume the
primitives have perfect correctness. Then for any efficiently computable f , there
exists an MVC protocol that securely realizes the ideal functionality FfpVC in the
CRS and self-registered PKI hybrid model, against (1) any malicious server cor-
ruption, or (2) any malicious (static) corruption among any fixed set of clients.

5 When the Server and Some Clients Are Corrupted

In this section, we consider the remaining, more complicated case where the
server and clients can be corrupted at the same time. We show that even for
a seemingly simple case where only one client and the server are corrupted to-
gether, it is impossible to construct private MVC for general functions, under a
large class of instantiations of G setup including trusted PKI (which is stronger
than self-registered PKI, see Remark 1), CRS, shared secret randomness, etc.
The lower bound holds even in the standalone setting, and for semi-honest cor-
ruptions.

In particular, we consider the case with two clients and one server, where
the function being delegated is a universal circuit U(·, ·), the first client’s input
is a circuit C, the second client’s is a string x. The server returns U(C, x) =
C(x) to both parties. If there exists a private MVC protocol with respect to
such U , i.e. if there exists a protocol that realizes FpVC, then, even if it is only
secure against semi-honest corruption and only in the standalone setting, we
can construct an obfuscator for any circuit. (We refer the reader to the remark
following Definition 2 for a definition of the standalone setting.) By previous
lower bounds for obfuscation [4], this leads to an impossibility result. We present
the formal statement below.

We note that there is a similar lower bound argument in the server-aided
MPC setting in the work [2]. Our lower bound further shows that even a natural
relaxation of security (where the ideal functionality can be called multiple times
if there is server-client corruption) is not achievable for all functionalities.

Theorem 6. Suppose there exist an instantiation of G setup and a private MVC
protocol Π (i.e., one that realizes FpVC) for all efficiently computable functions
in the G setup hybrid world, against semi-honest corruptions for arbitrary parties
in the standalone model, then there exists an obfuscator for any circuit C secure
under the virtual black-box simulation.

Proof. Consider the case where two clients want to delegate the computation of
the universal circuit U(·, ·) to the server; the first client provides a circuit C, and
the second provides an input x. Then the honest server returns C(x) to both
parties. Suppose there exists an instantiation of setup G and a secure protocol
Π that achieve this goal, then we construct an obfuscator O that on input C
does the following:

– O simulates the setup G and the role of each client in the offline stage to
obtain pub, sk1, sk2, f̂ .

– O simulates the first client’s procedure on input C in the online stage. Let Ĉ
be the message that P1 sends to the server.

– O outputs (Ĉ, pub, sk2, f̂) as an obfuscation of C, i.e. O(C).

To evaluate O(C) on input x, the evaluator simulates P2’s online phase to
create an encoding of x using pub, sk2, and then simulates the (corrupted) server

to evaluate Ĉ, x̂ with the encoded version of the function f̂ .

The correctness follows immediately from the correctness of the protocol
Π, and the efficiency of the obfuscator follows directly from the efficiency of
the parties in the protocol Π. In the rest of the proof, we are going to show
the virtual black-box (VBB) simulation property. In particular we will turn the
protocol simulator into a VBB obfuscation simulator.

Now we analyze the construction. In particular, we want to show given an
adversary A attacking the security of the obfuscation, we are going to construct
a simulator Sim such that the probability A(O(C)) = 1 is close to that of
SimC(1k) = 1 up to a negligible factor for all polynomial-sized circuits C. We
do this by defining a particular adversary A∗ that attacks ΠG , and using the
protocol simulator that is guaranteed to exist for this adversary by the security
of the MVC protocol.

Given A and any poly-sized circuit C, we define the following experiment in
the G-hybrid world. Let Z∗ be an environment and A∗ be an adversary attacking
protocol ΠG . A∗ corrupts the server and the second party at the beginning. He
queries the ideal functionality G and stores the reply (pub, sk2). Upon receiving
a message from P1 during the offline stage (on behalf of the server), he uses
this message, along with the offline message that an honest P2 would send, to
construct f̂ as the server would do. When P1 sends a message Ĉ to the server
during the online phase, A∗ interprets (Ĉ, pub, sk2, f̂) as an obfuscation of O(C).
Then A∗ runs A on the interpreted O(C) and passes A’s output to Z∗. Z∗
outputs this as the output of the experiment EXECA∗,Π,Z∗ .

Now we are ready to construct the simulator Sim. By the premise that ΠG

realizes FpVC, for this A∗, there exists Sim∗ such that for this particular Z∗, we

have EXECGA∗,Π,Z∗ ≈ EXECSim∗,FpVC,Z∗ . Given such Sim∗, we define a simulator
Sim for the VBB obfuscation as follows:

– Sim basically simulates the execution of EXECSim∗,FpVC,Z∗ .

– Whenever the protocol simulator Sim∗ queries the oracle OU,{2}(·) in the
ideal functionality with some modified P2’s input x′2, Sim simulates it using
a black-box query to C with input x′2 and returns C(x′2) to Sim∗.

– Then Sim outputs whatever the output of the experiment EXECSim∗,FpVC,Z∗ .

Then we are going to prove that Sim is a good VBB simulator by the fol-
lowing lemma:

Lemma 1. For the simulator Sim described above, there exists a negligible func-
tion ν(·) such that |Pr[A(O(C)) = 1]− Pr[SimC(1k) = 1]| < ν(k).

Proof. Assume there is a non-negligible function ε with Pr[A(O(C)) = 1] −
Pr[SimC(1k) = 1] > ε. We show that the real and simulation worlds in the
protocol are distinguishable.

According to the description of EXECGA∗,Π,Z∗ , the output of such experiment
is identical to that ofA(O(C)). On the other hand, the output of EXECSim∗,FpVC,Z∗

is exactly the same as that of SimC(1k). So this means the executions of the pro-
tocol are distinguishable by ε, which reaches a contradiction. Thus we complete
the proof.

Acknowledgments

This research was sponsored in part by the U.S. Army Research Laboratory and
the U.K. Ministry of Defence and was accomplished under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the U.S. Army Research Laboratory, the
U.S. Government, the U.K. Ministry of Defence, or the U.K. Government. The
U.S. and U.K. Governments are authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation hereon.

References

1. B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient
verification via secure computation. In S. Abramsky, C. Gavoille, C. Kirchner,
F. Meyer auf der Heide, and P. G. Spirakis, editors, ICALP 2010, Part I, volume
6198 of LNCS, pages 152–163. Springer, July 2010.

2. G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs.
Multiparty computation with low communication, computation and interaction via
threshold FHE. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 483–501. Springer, Apr. 2012.

3. M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on
outsourced data. In A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM CCS
13, pages 863–874. ACM Press, Nov. 2013.

4. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In J. Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Aug. 2001.

5. M. Bellare, V. T. Hoang, and P. Rogaway. Adaptively secure garbling with appli-
cations to one-time programs and secure outsourcing. In X. Wang and K. Sako,
editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 134–153. Springer, Dec.
2012.

6. M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In
T. Yu, G. Danezis, and V. D. Gligor, editors, ACM CCS 12, pages 784–796. ACM
Press, Oct. 2012.

7. E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In R. Canetti and
J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108.
Springer, Aug. 2013.

8. E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive zero
knowledge for a von neumann architecture. In Usenix Security Symposium, 2014.

9. S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over
large datasets. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages
111–131. Springer, Aug. 2011.

10. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In D. Boneh, T. Roughgar-
den, and J. Feigenbaum, editors, 45th ACM STOC, pages 111–120. ACM Press,
June 2013.

11. Z. Brakerski. Fully homomorphic encryption without modulus switching from
classical GapSVP. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 868–886. Springer, Aug. 2012.

12. R. Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology, 13(1):143–202, 2000.

13. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.

iacr.org/2000/067.
14. R. Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, Oct.
2001.

15. S. G. Choi, J. Katz, R. Kumaresan, and C. Cid. Multi-client non-interactive veri-
fiable computation. In A. Sahai, editor, TCC 2013, volume 7785 of LNCS, pages
499–518. Springer, Mar. 2013.

16. K.-M. Chung, Y. Kalai, and S. P. Vadhan. Improved delegation of computation
using fully homomorphic encryption. In T. Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 483–501. Springer, Aug. 2010.

17. K.-M. Chung, Y. T. Kalai, F.-H. Liu, and R. Raz. Memory delegation. In P. Ro-
gaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 151–168. Springer,
Aug. 2011.

18. D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In T. Yu, G. Danezis, and V. D. Gligor,
editors, ACM CCS 12, pages 501–512. ACM Press, Oct. 2012.

19. S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and its appli-
cations. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, 45th ACM
STOC, pages 467–476. ACM Press, June 2013.

20. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In T. Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 465–482. Springer, Aug. 2010.

21. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In T. Johansson and P. Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, May 2013.

22. C. Gentry, A. B. Lewko, A. Sahai, and B. Waters. Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. IACR Cryptology ePrint
Archive, 2014:309, 2014.

23. O. Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, Cambridge, UK, 2004.

24. S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai,
E. Shi, and H.-S. Zhou. Multi-input functional encryption. In P. Q. Nguyen
and E. Oswald, editors, Advances in Cryptology—Eurocrypt 2014, volume 8441 of
LNCS, pages 578–602. Springer, 2014.

25. S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich.
How to run turing machines on encrypted data. In R. Canetti and J. A. Garay,
editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 536–553. Springer,
Aug. 2013.

26. S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich.
Reusable garbled circuits and succinct functional encryption. In D. Boneh,
T. Roughgarden, and J. Feigenbaum, editors, 45th ACM STOC, pages 555–564.
ACM Press, June 2013.

27. S. Goldwasser, H. Lin, and A. Rubinstein. Delegation of computation without
rejection problem from designated verifier CS-proofs. IACR Cryptology ePrint
Archive, 2011:456, 2011.

28. S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

29. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Comput., 18(1):186–208, 1989.

30. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for
circuits. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, 45th ACM
STOC, pages 545–554. ACM Press, June 2013.

31. S. Kamara, P. Mohassel, and M. Raykova. Outsourcing multi-party computation.
Cryptology ePrint Archive, Report 2011/272, 2011. http://eprint.iacr.org/.

32. S. Kamara, P. Mohassel, and B. Riva. Salus: a system for server-aided secure
function evaluation. In T. Yu, G. Danezis, and V. D. Gligor, editors, ACM CCS
12, pages 797–808. ACM Press, Oct. 2012.

33. A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi, and
N. Triandopoulos. Trueset: Nearly practical veriable set computations. In Usenix
Security Symposium, 2014.

34. C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. In
A. Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 222–242. Springer, Mar.
2013.

35. C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal verification of
operations on dynamic sets. In P. Rogaway, editor, CRYPTO 2011, volume 6841
of LNCS, pages 91–110. Springer, Aug. 2011.

36. B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in
public: Verifiable computation from attribute-based encryption. In R. Cramer,
editor, TCC 2012, volume 7194 of LNCS, pages 422–439. Springer, Mar. 2012.

37. E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song. Privacy-preserving
aggregation of time-series data. In NDSS 2011. The Internet Society, Feb. 2011.

A Preliminaries

Here we present the definitions we use in this paper.

A.1 Two-outcome ABE

Definition 5 (Correctness of Two-outcome ABE [26]). For any polyno-
mial n(·), for every sufficiently large security parameter κ, if n = n(κ), for all
boolean functions f ∈ Fn, attributes x ∈ {0, 1}n, messages M0,M1 ∈ M, there
exists some negligible ν(·) such that

Pr

(mpkABE,mskABE)← ABE.Setup(1κ);
skf ← ABE.KeyGen(mskABE, f);
c← ABE.Enc(mpkABE, x,m0,m1);
m = ABE.Dec(skf , c) :
m = mf(x)

 = 1− ν(κ).

If ν = 0, then the scheme has perfect correctness.

Then we define the security for single-key two-outcome ABE.

Definition 6 (Security of Two-outcome ABE [26]). Let ABE be a two-
outcome ABE scheme for the class of boolean functions F = {Fn}n∈N and asso-
ciated message spaceM and let A = (A1,A2,A3) be a triple of PPT adversaries.
Consider the following experiment.

– (mpkABE,mskABE)← ABE.Setup(1κ)
– (f, st1)← A1(mpkABE)
– skf ← ABE.KeyGen(mskABE, f)
– (m,m0,m1, x, st2)← A2(st1, skf)
– choose a bit b at random. Then let

c =

{
ABE.Enc(mpkABE, x,m,mb), if f(x) = 0,
ABE.Enc(mpkABE, x,mb,m), otherwise.

– b′ ← A3(st2, c). If b = b′, and there exists n such that, for all f ∈ Fn,
messages m.m0,m1 ∈M, |m0| = |m1|, x ∈ {0, 1}n, output 1. Else output 0.

We say the scheme is a full-secure single-key two-outcome ABE if for all PPT
adversaries A, and for all sufficiently large κ, the probability that the experiment
outputs 1 is bounded by 1/2 + ν(k) for some negligible function ν.

A.2 Garbling Schemes

Definition 7 (Garbling Schemes [6]). A garbling scheme for a family of
circuits C = {Cn}n∈N with Cn a set of boolean circuits taking as input n bits, is
a tuple of PPT algorithms Gb = Gb.{Garble,Enc,Eval} such that

– Gb.Garble(1κ, C) takes as input the security parameter κ and a circuit C ∈
Cn for some n and outputs the garbled circuit Γ and a secret key sk.

– Gb.Enc(sk, x) takes as input x and outputs an encoding c,
– Gb.Eval(Γ, c) takes as input a garbled circuit Γ and an encoding c, and out-

puts a value y which should be C(x).

The correctness and efficiency properties are straight-forward. Next we con-
sider a special property of the encoding of the Yao’s garbled scheme, which we
will use in this paper. The secret key has the form sk = {L0

i , L
1
i }i∈[n], and the

encoding of an input x of n bits is of the form c = (Lx1 , Lx2 , . . . , Lxn), where xi
is the i-th bit of x.

Then we are going to define the security of garbling schemes.

Definition 8 (Input and Circuit Privacy). A garbling scheme Gb for a
family of circuits {Cn}n∈N is input and circuit private if there exists a PPT
simulator Sim such that for every adversaries A and D, for all sufficiently large
κ,

∣∣∣∣∣∣∣∣Pr

(x,C, α)← A(1k);

(Γ, sk)← Gb.Garble(1κ, C);
c← Gb.Enc(sk, x) :
D(α, x, C, Γ, c) = 1

− Pr

 (x,C, α)← A(1k);

(Γ̃ , c̃)← Sim(1κ, C(x), 1|C|, 1|x|) :

D(α, x, C, Γ̃ , c̃) = 1

∣∣∣∣∣∣∣∣ = ν(k)

for some negligible ν(·), where we consider only A such that for some n, x ∈
{0, 1}n and C ∈ Cn.

A.3 Extractable Witness Encryption

Definition 9 (Witness Encryption [19]). A witness encryption for a lan-
guage L ∈ NP with corresponding witness relation RL consists of two polynomial-
time algorithms WE.{Enc,Dec} such that

– Encryption WE.Enc(1κ, x, b): takes as input a security parameter κ, a state-
ment x ∈ {0, 1}∗, a bit b and outputs a ciphertext c.

– Decryption WE.Dec(w, c): takes as input a witness w ∈ {0, 1}∗ and a cipher-
text c and outputs a bit b or ⊥.

Correctness: For all (x,w) ∈ RL, for all bits b for every sufficiently large security
parameter κ, we have

Pr[c←WE.Enc(1κ, x, b) : WE.Dec(w, c) = b] = 1− ν(κ),

for some negligible ν.

Definition 10 (Extractable Security [25]). A witness encryption scheme
for a language L ∈ NP is secure if for all PPT adversaries A, and all poly q,
there exists a PPT extractor E and a poly p such that for all auxiliary input z
and all x ∈ {0, 1}∗, the following holds:

Pr[b← {0, 1}; c←WE.Enc(1κ, x, b) : A(x, c, b) = b] ≥ 1/2 + 1/q(|x|)
⇒ Pr[E(x, z) = w : (x,w) ∈ RL] ≥ 1/p(|x|).

A.4 Obfuscations

Definition 11 (Circuit Obfuscator [4]). A probabilistic algorithm O is a
(circuit) obfuscator for the collection F of circuits if the following holds:

– (functionality) For every circuit C ∈ F , the string O(C) describes a circuit
that computes the same function as C.

– (polynomial slowdown) There is a polynomial p such that for every circuit
C ∈ F , we have |O(C)| ≤ p(|C|).

– (“virtual black box” (VBB) property) For any PPT A, there is a PPT Sim
and a negligible function ν such that for all circuits C ∈ F , it holds that∣∣∣Pr [A(O(C)) = 1]− Pr

[
SimC(1|C|) = 1

]∣∣∣ ≤ ν(|C|).

We say that O is efficient if it runs in polynomial time. If we omit specifying
the collection F , then it is assumed to be the collection of all circuits.

A.5 Proxy Oblivious Transfer

Choi et al. [15] recently defined and constructed proxy oblivious transfer. Instead
of taking the game based security definitions from the paper by Choi et al., here
we define the security of POT in the real/ideal paradigm, which provides a
stronger security guarantee. In the ideal functionality below, we omit the session
id for notational simplicity. We remark that in each session, the functionality
could accept multiple new inputs; we assign a sub-session id, i.e., ssid, for each
new input.

Theorem 7 ([15]). There is a non-interactive protocol which realizes FPOT in
the self-registered PKI setup GDiffie−Hellman-hybrid model, against (1) any mali-
cious server corruption, or (2) any semi-honest (static) corruption among any
fixed set of clients.

Proxy Oblivious Transfer

Functionality FPOT interacts with a sender PS , a chooser PC , a receiver
PR, and the simulator Sim.

– Upon receiving (ssid,m0,m1) from the sender PS , notify Sim with
(ssid,PS). Later, when Sim replies with (ssid,PS), if no value
(ssid,m′0,m

′
1) has been recorded yet, store it and notify PR with

(ssid,PS).
– Similarly, upon receiving (ssid, b) from the chooser PC , notify Sim

with (ssid,PC). Later, when Sim replies with (ssid,PC), if no
value (ssid, b′) has been recorded yet, store it and notify PR with
(ssid,PC).

– Upon receiving (ssid, 1) from PR, if both (ssid,m0,m1) and
(ssid, b) are recorded, send (ssid,mb) to the receiver PR; else send
fail.

Fig. 4. Functionality FPOT

Choi et al. [15] constructed a non-interactive protocol in the offline/online
model that realizes the ideal functionality FPOT. In this model, the two clients

run some protocol in the offline stage, prior to learning their inputs, and then
complete the protocol in the online stage, after receiving their inputs. In their
construction, the clients do not need to interact in the offline stage, and in the
online stage both the sender and chooser send a single message to the server.
The construction relies on the existence of non-interactive key agreement schemes
(e.g., the Diffie-Hellman key exchange scheme).

B Instantiations and Efficiency

In this section, we discuss the instantiations of our building blocks. We need a
two-outcome attribute encryption scheme with the local encoding property, a
fully homomorphic encryption scheme, and a garbling scheme. In particular we
can use any instantiation of FHE schemes, e.g. one by Brakerski [11], and any
instantiation of Yao’s garbling scheme.

The attribute based encryption (ABE) constructed by Gorbunov, Vaikun-
tanathan, Wee [30] actually achieves the requirements of regular ABE with the
local encoding property. Goldwasser et al. [26] showed a generic way to achieve
two-outcome ABE from a regular one. So by plugging the GSW ABE scheme
and using the generic technique, we achieve the two-outcome ABE as required
by Definition 3.

For our private MVC scheme, the server clearly runs in poly(κ, f). For the
clients, P2, . . . ,Pn runs in time O(`κ), where ` is the input length; P1 generates
O(n`κ) ABE ciphertexts plus a garble circuit of size O(κ), where n is the num-
ber of parties, ` is the input length, and κ is the security parameter. However,
the ciphertexts’ length for the currently best known ABE construction of Gor-
bunov, Vaikuntanathan, Wee [30] depends on the circuit depth (independent of
the size). Therefore, P1’s running time (the communication complexity as well)
depends on O(d · n`κ), where d is the depth of the function being delegated.
The construction of Choi et al. [15] has better online efficiency for clients that is
independent of the function complexity, but has the issues of adaptive soundness
and is vulnerable to selective failure attacks. The construction using multi-input
functional encryption [24] can achieve better efficiency but their solution inher-
ently requires the existence of indistinguishable obfuscation, which is a stronger
assumption and has large overhead.

