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Abstract. In this paper we study the two fundamental functionalities oblivious
polynomial evaluation in the exponent and set-intersection, and introduce a new
technique for designing efficient secure protocols for these problems (and others).
Our starting point is the [6] technique (CRYPTO 2011) for verifiable delegation
of polynomial evaluations, using algebraic PRFs. We use this tool, that is useful
to achieve verifiability in the outsourced setting, in order to achieve privacy in the
standard two-party setting. Our results imply new simple and efficient oblivious
polynomial evaluation (OPE) protocols. We further show that our OPE protocols
are readily used for secure set-intersection, implying much simpler protocols in
the plain model. As a side result, we demonstrate the usefulness of algebraic
PRFs for various search functionalities, such as keyword search and oblivious
transfer with adaptive queries. Our protocols are secure under full simulation-
based definitions in the presence of malicious adversaries.
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1 Introduction

Efficient secure two-party computation. Secure two-party computation enables two par-
ties to mutually run a protocol that computes some function f on their private inputs,
while preserving a number of security properties. Two of the most important proper-
ties are privacy and correctness. The former implies data confidentiality, namely, noth-
ing leaks by the protocol execution but the computed output. The latter requirement
implies that the protocol enforces the integrity of the computations made by the par-
ties, namely, honest parties learn the correct output. Feasibility results are well estab-
lished [49, 23, 39, 5], proving that any efficient functionality can be securely computed
under full simulation-based definitions (following the ideal/real paradigm). Security is
typically proven with respect to two adversarial models: the semi-honest model (where
the adversary follows the instructions of the protocol but tries to learn more than it
should from the protocol transcript), and the malicious model (where the adversary fol-
lows an arbitrary polynomial-time strategy), and feasibility holds in the presence of
both types of attacks.
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Following these works, many constructions focused on improving the efficiency of
the computational and communication costs. Conceptually, this line of works can be
split into two sub-lines: (1) Improved generic protocols that compute any boolean or
arithmetic circuit; see [47, 30, 44, 36, 38, 7, 16, 43] for just a few examples. (2) Protocols
for concrete functionalities. In the latter approach attention is given to constructing ef-
ficient protocols for specific functions while exploiting their internal structure. This ap-
proach has been proven useful for many different functions in both the semi-honest and
malicious settings. Notable examples are calculating the kth ranked element [1], pattern
matching and related search problems [29, 48], set-intersection [31, 28] and oblivious
pseudorandom function (PRF) evaluation [20].

In this paper we study the two fundamental functionalities oblivious polynomial
evaluation in the exponent and set-intersection and introduce a new technique for de-
signing efficient secure protocols for these problems in the presence of semi-honest and
malicious attacks with simulation-based security proofs. We further demonstrate that
our technique is useful for various search functionalities.

Algebraic PRFs. Informally, an algebraic pseudorandom function (PRF) is a PRF with
a range that forms an Abelian group such that group operations are efficiently com-
putable. In addition, certain algebraic operations on these outputs can be computed
significantly more efficiently if one possesses the key of the pseudorandom function
that was used to generate them. This property is denoted by closed form efficiency and
allows to compute a batch of l PRF values much more efficiently than by computing
the l values separately and then combing them. Algebraic PRFs were exploited in [6] to
achieve faster verifiable polynomial evaluations (in the exponent). Specifically, in their
setting, a client outsources a d-degree polynomial to an untrusted server together with
some authenticating information, while the client stores a short secret key. Next, when
the client provides an input for this polynomial the server computes the result and an
authentication message that allows the client to verify this computation in sub-linear
time in d.

More concretely, let Q(·) = (q0, . . . , qd) be the polynomial stored on the server in
the clear. Then the client additionally stores a vector of group elements {gaqi+ri}di=0

where a ← Zp and p is a prime, and ri is the ith coefficient of a polynomial R(·) of
the same degree as Q(·). Then for every client’s input t the server returns y = Q(t)
and u = gaQ(t)+R(t) and the client accepts u if and only if u = gay+R(t). Interestingly,
in case gri = PRFK(i), where PRF is an algebraic PRF, the closed form efficiency
property enables the client to compute the value gR(t) in sub-linear time in d. Stated
differently, verifiability is achieved by viewing gaqi+ri as a (one-time) message au-
thentication code (MAC) for gqi where batch verification of multiple MACs can be
computed more efficiently than verifying each MAC separately.

In this work we demonstrate the usefulness of algebraic PRFs for various two-party
problems by designing secure protocols based on this primitive. In particular, we mod-
ify the way [6] use algebraic PRFs so that instead of achieving verifiability in the out-
sourced setting, we achieve privacy in the standard two-party setting. It is worth noting
that although the main focus of [6] is correctness, they do discuss how to achieve one-
sided privacy by encrypting the coefficients of the polynomial (since the polynomial
must be specified explicitly). Nevertheless, it is not clear how to maintain the privacy



of the input to the polynomial in their protocol. In this work, we use algebraic PRFs
to mask the polynomial in a different way that does not allow the verifiability of the
polynomial evaluation but allows the extractability of the polynomial more easily, and
demonstrate an alternative way to achieve correctness. We focus our attention on the
plain model where no trusted setup is required.

Oblivious polynomial evaluation. The oblivious polynomial evaluation (OPE) func-
tionality is an important functionality in the field of secure two-party computation. It
considers a setting where party P0 holds a polynomial Q(·) and party P1 holds an ele-
ment t, and the goal is that P1 obtains Q(t) and nothing else while P0 learns nothing.
OPE has proven to be a useful building block and can be used to solve numerous cryp-
tographic problems; e.g., secure equality of strings, set-intersection, approximation of
a Taylor series, RSA key generation, oblivious keyword search, set membership, data
entanglement and more [22, 37, 21, 20, 41, 3].

Despite its broad applicability the study of OPE was demonstrated using only few
concrete secure protocols, initiated in [40] and further continued in [9, 50, 24]. In par-
ticular, the only protocol with a complete simulation-based proof in the presence of
malicious attacks is the protocol in [24]. This protocol evaluates a d-degree polynomial
over a composite order group ZN with O(sd) modular exponentiations, where N is an
RSA composite and s is a statistical security parameter.

The general (and currently the most practical) approach of [16, 15] for arithmetic
circuits follows the preprocessing model: in an offline phase some shared randomness
is generated independently of the function and the inputs; in an online phase the ac-
tual secure computation is performed. One of the main advantages of these protocols
is that the basic operations are almost as cheap as those used in the passively secure
protocols. To get good performance, these protocols use the somewhat-homomorphic
SIMD approach that handles many values in parallel in a single ciphertext, and thus
more applicable for large degree polynomials. Similarly, protocols for Boolean circuits
apply the cut-and-choose technique which requires to repeat the computation s times in
order to prevent cheating except with probability 2−s [35].

In some applications such as password-based authenticate key exchange protocols
or when sampling an element from a d-wise independence space, the polynomial degree
is typically small and even a constant. In these cases, our protocols have clear benefits
since they are much simpler, efficient and easily implementable.

Secure set-intersection. In the set-intersection problem parties P0, P1, holding input
sets X,Y of sizes mX and mY , respectively, wish to compute X ∩ Y . This problem
has been intensively studied by researchers in the last few years mainly due to its poten-
tial applications for dating services, datamining, recommendation systems, law enforce-
ment and more; see [21, 34, 13, 31, 32, 25, 28] for a few examples. For instance, consider
two security agencies that wish to compare their lists of suspects without revealing their
contents, or an airline company that would like to check its list of passengers against
the list of people that are not allowed to go abroad.

Two common approaches are known to solve this problem securely in the plain
model: (1) oblivious polynomial evaluation and (2) committed oblivious PRF evalua-
tion. In the former approach party P0 computes a polynomial Q(·) such that Q(x) = 0



for all x ∈ X . This polynomial is then encrypted using homomorphic encryption and
sent to P1, that computes the encryption of ry ·Q(y) + y for all y ∈ Y , and using fresh
randomness ry . This approach (or a variant of it) was taken in [21, 34, 13, 28].

The second approach uses a secure implementation of oblivious pseudorandom
function evaluation. Namely, P0 chooses a PRF key K and computes the set PRFX =
{PRFK(x)}x∈X . The parties then execute an oblivious PRF protocol where P0 inputs
K, whereas P1 inputs the set Y and learns the set PRFY = {PRFK(y)}y∈Y . Finally,
P0 sends the set PRFX to P1 that computes PRFX ∩ PRFY and extracts the actual
intersection. This idea was introduced in [20] and further used in [25, 31, 32]. Other
solutions in the random oracle model such as [12, 11, 2] take a different approach by
applying the random oracle on (one of) the sets members, or apply oblivious transfer
extension [18].

In a recent result [45], the authors overview exiting solutions for set-intersection in
the semi-honest setting and compare their efficiency. One of their conclusions is that
OPE-based approaches are inferior to oblivious-transfer extension based approaches.
It is an interesting question to test whether this conclusion also for the case for the
malicious setting as well.

To the best of our knowledge, the most efficient protocol in the malicious plain
model that does not require a trusted setup or rely on non-standard assumptions is the
protocol of [28] that incurs computation of O(mX +mY log(mX +mY )) modular ex-
ponentiations. A more efficient protocol with O(mX +mY ) communication and com-
putational costs was introduced by [31] in the common reference string (CRS) model
(where the CRS includes a safe RSA composite that determines the group order and
implies high overhead when mutually produced). Another drawback of this protocol is
that its security proof runs an exhaustive search on the input domain of the PRF in order
to extract P0’s input. This implies that the proof works for small domain PRFs and that
the complexity of the simulator grows linearly with the size of the PRF’s input domain.

Committed oblivious PRF evaluation. The oblivious PRF evaluation functionalityFPRF

that obliviously evaluates a PRF is defined by (K,x) 7→ (−,PRFK(x)). This function-
ality is very important in the context of secure computation since it essentially imple-
ments a random oracle. That is, the party with the PRF key, say P0, mimics the random
oracle role via interaction. Therefore, if the protocol that realizes FPRF is simulation-
based secure then both desirable properties of a random oracle, programmability and
observability, can be achieved by this protocol. First, since the simulator can force any
output for a corrupted P1, it essentially programs the function’s output. In addition, it
can also observe (via extraction) the input to the functionality. Nevertheless, the useful-
ness of oblivious PRF evaluation is reflected via an additional property of committed
key that implies that the same key is used for multiple PRF evaluations.

Committed oblivious PRF (CPRF) evaluation has been used to compute secure set-
intersection [31, 25], oblivious transfer with adaptive queries [20], keyword search [20],
pattern matching [25, 19] and more. It is therefore highly important to design efficient
protocols for this functionality. Current implementations of the [42] algebraic PRF, dis-
cussed in this paper, employ an oblivious transfer protocol for each input bit [20, 25]
and are only secure for a single PRF evaluation. Consequently, the protocol of [25]
does not achieve full security against malicious adversaries. In addition, the protocol



from [31] (that implements a variant of the [17] PRF) requires a trusted setup of a safe
RSA composite and suffers from the drawbacks specified above.

1.1 Our Results

In this paper we use algebraic PRFs to design alternative simple and efficient protocols
for polynomial evaluation, set-intersection, committed oblivious PRF evaluation and
search problems. Below, we demonstrate the broad usefulness of our technique.

Oblivious polynomial evaluation (Section 3). We present secure protocols in the plain
model for OPE in the exponent with simulation-based security against semi-honest and
malicious attacks. We stress that evaluating a polynomial in the exponent has strong ap-
plicability in the context of set membership where the goal is to privately verify mem-
bership in some secret set, as well as achieving d-wise independence. We use algebraic
PRFs to build simple two-phases OPE protocols as follows. In the first phase party P0,
holding the polynomial gQ(·), publishes its masked polynomial gQ(·)+R(·) where the set
gR(·) is determined by an algebraic PRF. Next, P1 locally computes gQ(t)+R(t) and the
parties run an unmasking secure computation for obliviously evaluating gR(t) for P1.

The efficiency of the latter phase is dominated by the overhead of the closed form
efficiency property of the specific PRF. In this work, we consider two PRF implemen-
tations used by [6]: (1) a PRF with security under the strong-DDH assumption. (2) The
Naor-Reingold PRF [42] with security under the DDH assumption. More concretely,
the efficiency of our protocols is only d+ 1 modular exponentiations for the first phase
of sending the masked polynomial, and d+1+O(1) (resp. O(log d)) modular exponen-
tiations for the second phase of obliviously evaluating the pseudorandom polynomial
under the strong-DDH (resp. DDH) assumption. For simplicity, we only consider uni-
variate polynomials. Our technique can be applied for multivariate polynomials as well
(with total degree d or of degree d in each variable); see [6] for further details. To the
best of our knowledge, our protocols are the first to obliviously evaluate both univariate
and multivariate polynomials that efficiently.

Secure set-intersection (Section 4). In this work we demonstrate that algebraic PRFs
are useful for both approaches of OPE and committed oblivious PRF that enable to de-
sign set-intersection protocols. We first show that our protocols for OPE readily induce
secure protocols for set-intersection. That is, first P0 encodes the set X by a polyno-
mial gQ(·) as specified above, and masks it. Next, for each y ∈ Y party P1 verifies
whether the masked polynomial evaluation of y equals the evaluation gR(y), and con-
cludes whether the element is in the intersection. We stress that this naive approach
requires a multiplicative overhead (in the sets sizes) since for each element in its in-
put Y , P1 needs to evaluate a polynomial of degree mX . To reduce the computational
overhead, Freedman et al. [21] introduced a balanced allocation scheme [4] into their
protocol that splits the elements into B = mX

log logmX
bins, with maximum number of

M = O(mX/B + log logB) = O(log logmX) elements in each bin. In that case, the
elements mapped by P0 to a certain bin must only be compared to those mapped by
P1 to the same bin. Therefore, P1 should only evaluate an M -degree polynomial for
each y ∈ Y , rather than a polynomial of degree mX . Nevertheless, their solution with



hash functions is only applicable in the semi-honest setting. Following that, Hazay and
Nissim [28] introduced a maliciously secure protocol which implies the computation
of O(mX +mY log(mX +mY )) modular exponentiations. Their construction is fairly
complicated and combines both approaches of OPE and oblivious PRF evaluation.

We introduce the hashing technique into our constructions and provide a generic
description that can be instantiated with different hash functions. Our protocols are
far less complicated and maintain a modular description. Specifically, we devise an
alternative zero-knowledge proof for verifying the correctness of the hashed polyno-
mials while exploiting the algebraic properties of the PRF. Under the strong-DDH as-
sumption our protocol matches the communication overhead of the protocol from [31]
(that also relies on a dynamic hardness assumption) and implies the computation of
O(mX +mY log logmX) exponentiations, with the benefits that it operates over prime
order groups, it does not require a trusted setup and the proof complexity does not
depend on the PRF’s input domain size. Under the DDH assumption our protocol, us-
ing hash functions, implies the computation of O(mX +mY logmX) exponentiations
which improves the overhead of the [28] protocol. Next we show that algebraic PRFs
are useful for applications that rely on committed oblivious PRF evaluation. Our results
for set-intersection are summarized in Table 1.

Committed oblivious PRF evaluation (Section 5). Observing that the batch computation
for l PRF values PRF′

K(x) =
∏l

i=0[PRFK(i)]x
i

is a PRF as well (by fixing l properly),
we derive new PRF constructions in prime order groups and more interestingly, simple
committed oblivious PRF evaluation protocols. Our strong-DDH based PRF requires
constant overhead, and our DDH-based protocol is the first committed oblivious PRF
implementation for the [42] function. Our protocols using committed oblivious PRF
imply set-intersection protocols with O(mX + mY ) costs under the strong-DDH as-
sumption and ((mX + mY ) log(mX + mY )) communication and computation costs
under the DDH assumption, where the former analysis matches the overhead from [31].
In particular, plugging-in our protocols for committed oblivious PRF evaluation in the
protocols cited above implies malicious security fairly immediately. Finally, we note
that committed oblivious PRF evaluation is also useful for search functionalities that
support database search and data retrievals, such as in keyword search and oblivious
transfer with adaptive queries.

2 Preliminaries

2.1 Basic Notations

We denote the security parameter by n. We say that a function µ : N→ N is negligible if
for every positive polynomial p(·) and all sufficiently large n it holds that µ(n) < 1

p(n) .
We use the abbreviation PPT to denote probabilistic polynomial-time. We further denote
by a ← A the random sampling of a from a distribution A, by [d] the set of elements
(1, . . . , d) and by [0, d] the set of elements (0, . . . , d).

We define a d-degree polynomial Q(·) by its set of coefficients (q0, . . . , qd), or
simply write Q(x) = q0 + q1x + . . . qdx

d. Typically, these coefficients will be picked



Table 1. Comparisons with secure set-intersection constructions. We highlight the constructions
with the best performance under each assumption.

Hardness Overhead
Reference Modeling Assumption (Number of Exp.)

[31] CRS of a safe prime Decisional d-DHI O(mX +mY )

[28] plain model DDH O(mX +mY log(mX +mY ))

[18] random oracle random oracle O(n), where n is sec. parameter
This Work – OPE plain model d-strong DDH O(mX +mY log logmX)

This Work – OPE plain model DDH O(mX +mYlog mX)

This Work – CPRF plain model d-strong DDH O(mX +mY)

This Work – CPRF plain model DDH O((mX +mY ) log(mX +mY ))

from Zp for a prime p. We further write gQ(·) to denote the coefficients of Q(·) in the
exponent of a generator g of a multiplicative group G of prime order p.

2.2 Zero-Knowledge Proofs

To prevent malicious behavior, the parties must demonstrate that they are well-behaved.
To achieve this, our protocols utilize zero-knowledge (ZK) proofs of knowledge. Our
proofs are Σ-protocols with a constant overhead. A generic efficient technique that
enables to transform any Σ-protocol into a zero-knowledge proof of knowledge can be
found in [26]. This transformation requires additional 6 exponentiations.

1. πDL, for demonstrating the knowledge of a solution x to a discrete logarithm prob-
lem [46].

RDL = {((G, g, h), x) | h = gx} .

2. πDDH, for demonstrating that an El Gamal ciphertext is an encryption of zero [10].

RDDH = {((G, g, h, g1, h1), x) | g1 = gx ∧ h1 = hx} .

3. πMULT, for proving that a ciphertext c2 encrypts a product of two plaintexts values.
Namely,

RMULT =

((G, PK, c0, c1, c2), (a0, a1, r0, r1, r2, )) |
ci = EncPK(ai; ri)
for i ∈ {0, 1}
∧ c2 = EncPK(a0 · a1; r2)


where multiplication is performed in the corresponding plaintext group. A zero-
knowledge proof for the El Gamal PKE, that is based on the Damgård and Jurik
technique [14], can be found in [28].

4. πEq, for demonstrating equality of two exponentiations. Namely,

REq =

{
((PK, c1, c

′
1, c2, c

′
2), (m, r1, r2)) |

c′1 = cm1 · EncPK(0; r1)
∧c′2 = cm2 · EncPK(0; r2)

}



where exponentiation, as well as multiplication with an encryption of zero, are
computed componentwise. A variant of this zero-knowledge proof was presented
and discussed in [27] for Paillier encryption scheme and can be easily extended for
this relation as well. We leave the details of this proof to the full version.

3 Protocols for Oblivious Polynomial Evaluation

In this section we introduce our new constructions for oblivious polynomial evaluation
(OPE) in the exponent, implementing functionality FOPE : (gQ(·), t) 7→ (−, gQ(t)) for
Q(·) = (q0, . . . , qd). In particular, we assume common knowledge of the public pa-
rameters: a multiplicative group G of order p and a generator g for G, and that the
polynomial coefficients are in Zp. In our solution, party P0 generates these parame-
ters and publishes its masked polynomial gQ(·)+R(·), where the set of values gR(·) is
determined by an algebraic PRF that has a closed form efficient computation for uni-
variate polynomials (see Section 3.1). Next, P1 computes gQ(t)+R(t) and the parties run
an unmasking secure computation for obliviously evaluating gR(t) for P1. Importantly,
the closed form efficiency property of the PRF allows the parties to mutually compute
gR(t) in sub-linear time in d. Before presenting our OPE constructions we formally
define algebraic pseudorandom functions.

3.1 Algebraic Pseudorandom Functions [6]

Algebraic PRFs are PRFs with two additional algebraic properties. First, they map their
inputs into some Abelian group, where certain algebraic operations on these outputs
can be computed signicantly faster if one possesses the PRF key. These properties were
exploited in [6] to achieve faster polynomial evaluations (in the exponent), where the
coefficients of these polynomials lie in the PRF range. Several constructions, implying
different overheads, were introduced in [6]; we focus our attention on their construc-
tions for univariate polynomials. Our protocols can be applied for multivariate polyno-
mials as well (with total degree d or of degree d in each variable). We begin with the
formal definition of algebraic PRFs.

Definition 31 (Algebraic PRFs) We say that PRF = (KeyGen,PRF,CFEval), is an
algebraic PRF if KeyGen,PRF are polynomial-time algorithms specified as follows:

– KeyGen, given a security parameter 1n, and a parameter m ∈ N that determines
the domain size of the PRF, outputs a pair (K, param) ← Kn, where Kn is the
key space for a security parameter n. K is the secret key of the PRF, and param
encodes the public parameters.

– PRF, given a key K, public parameters param, and an input x ∈ {0, 1}m, outputs
a value y ∈ Y , where Y is some set determined by param.

– In addition, the following properties hold:
Pseudorandomness. We say that PRF is pseudorandom if for every PPT adver-

sary A, and every polynomial m = m(n), there exists a negligible function
negl such that

|Pr[APRFK(·)(1n, param) = 1]− Pr[Afn(·)(1n, param) = 1]| ≤ negl(n),



where (K, param) ← KeyGen(1n,m) and fn : {0, 1}m 7→ Y is a random
function.

Algebraic. We say that PRF is algebraic if the range Y of PRFK(·) for every
n ∈ N and (K, param) ← Kn forms an Abelian multiplicative group. We
require that the group operation on Y be efficiently computable given param.

Closed form efficiency. Let N be the order of the range sets of PRF for security
parameter n. Let z = (z1, . . . , zl) ∈ ({0, 1}m)l, k ∈ N, and efficiently com-
putable h : Zk

N 7→ Zl
N with h(x) = ⟨h1(x), . . . , hl(x)⟩. We say that (h, z) is

closed form efficient for PRF if there exists an algorithm CFEvalh,z such that
for every x ∈ Zk

N ,

CFEvalh,z(x,K) =
l∏

i=1

[PRFK(zi)]
hi(x)

and the running time of CFEval is polynomial in n,m, k but sublinear in l.

The last property is very important for our purposes since it allows to run certain com-
putations very fast when the secret key is known. We next describe two implementations
for algebraic PRFs introduced in [6].

Algebraic PRFs From Strong DDH Let G be a computational group scheme. The
following construction PRF1 is an algebraic PRF with polynomial sized domains.

KeyGen(1n,m): Generate a group description (G, p, g) ← G(1n). Choose k0, k1 ←
Zp. Output param = (m, p, g,G),K = (k0, k1).

PRFK(x): Interpret x as an integer in {0, . . . , D = 2m} where D is polynomial in n.
Compute and output gk0k

x
1 .

Closed form efficiency for polynomials of degree d. We now show an efficient closed
form for PRF1 for polynomials of the form (where evaluation is computed in the
exponent)

Q(x) = PRFK(0) · PRFK(1)x · . . . · PRFK(d)x
d

=
d∏

i=0

PRFK(i)x
i

where d ≤ D. Let h : Zp 7→ Zd+1
p , be defined as h(x)

def
= (1, x, . . . , xd) and

(z0, . . . , zd) = (0, . . . , d). Then, we can define

CFEvalh(x,K)
def
= g

k0(k
d+1
1 xd+1−1)

k1x−1 .

Specifically, we write
d∏

1=0

[PRFK(zi)]
hi(x) =

d∏
i=0

[gk0k
i
1 ]x

i

= gk0

∑d
i=0 ki

1x
i

.

Correctness of CFEval follows by the identity
∑d

i=0 k0k
i
1x

i = k0((k1x)
d+1−1)

k1x−1 .

Theorem 32 ([6]) Suppose that the D-Strong DDH assumption holds. Then, PRF1 is
a pseudorandom function.



Algebraic PRFs From DDH Let G be a computational group scheme. Define PRF2

as follows.

KeyGen(1n,m): Generate a group description (p, g,G)← G(1n). Choose k0, k1, . . . , km ←
Zp. Output param = (m, p, g,G),K = (k0, k1, . . . km).

PRFK(x): Interpret x = (x1, . . . , xm) as an m-bit string. Compute and output gk0
∏m

i=1 k
xi
i .

This function is known by the Naor-Reingold function [42].

Closed form for polynomials of degree d. We describe an efficient closed form for
PRF2 for computing polynomials of the same form as above. That is,

Q(x) = PRFK(0) · PRFK(1)x · . . . · PRFK(d)x
d

=

d∏
i=0

PRFK(i)x
i

.

Let h : Zp 7→ Zd+1
p , defined as h(x) = (1, x, . . . , xd) and let z = (z1, . . . , zl) =

(0, . . . , d) then

CFEvalh,z(x,K)
def
= gk0(1+k1x)(1+k2x

2)...(1+kmx2m )

with m = ⌈log d⌉ (clearly, d must be a power of 2).

Theorem 33 ([42]) Suppose that the DDH assumption holds. Then, PRF2 is a pseu-
dorandom function.

To this end, we only consider z = (0, . . . , d) and omit z from the subscript, writing
CFEvalh(x,K) instead.

3.2 Our OPE Constructions

We describe our protocol for oblivious polynomial evaluation in the FMaskPoly-hybrid
setting, where the parties have access to a trusted party that computes functionality
FMaskPoly : (K, t) 7→ (−, gR(t)) relative to some prime order group G and gener-
ator g that are picked by P0, for gR(·) =

(
gr0 , . . . , grd

)
and gri = PRFK(i) for

all i. For simplicity, we first describe a semi-honest variant of our protocol and then
show how to enhance its security into the malicious setting. Formally, let PRF =
⟨KeyGen,PRF,CFEval⟩ denote an algebraic PRF with a range group G (cf. Defini-
tion 31), then our semi-honest protocol follows.

Protocol 1 (Protocol πOPE with semi-honest security.)

– Input: Party P0 is given a d-degree polynomial gQ(·) = (gq0 , . . . , gqd) with coefficients
qi’s from Zp with respect to prime order group G and generator g. Party P1 is given an
element t from Zp. Both parties are given a security parameter 1n, group description G, p
and g.

– The protocol:



1. Masking the polynomial. P0 invokes (K, param) ← KeyGen(1n, ⌈log d⌉) where
param includes a group description G of prime order p and a generator g. It next
defines a sequence of d elements R̃(·) = (r̃0, . . . , r̃d) over G where r̃i = PRFK(i) for
all i.
P0 sends P1 param and the masked polynomial C(·) =

(
gq0 r̃0, . . . , g

qd r̃d
)
, where

multiplication is implemented (componentwise) in G.
2. Unmasking the result. Upon receiving the masked polynomial C(·) = (c0, . . . , cd),

party P1 computes the polynomial evaluation C(t) =
∏d

i=0(ci)
ti . I.e., C(·) is evalu-

ated in the exponent. Next, the parties invoke an ideal execution of FMaskPoly where the
input of P0 is K and the input of P1 is t. Let Z denote the output of P1 from this ideal
call, then P1’s output is C(t)/Z where division in implemented in G.

Note that correctness holds since party P1 computes in Step 2 the polynomial evaluation

C(t) =
d∏

i=0

(ci)
ti =

d∏
i=0

(gqi r̃i)
ti =

d∏
i=0

(gqigr
′
i)t

i

= gQ(t)+R(t)

and then “fixes” its computation by dividing out Z = gR(t). In addition, privacy holds
due to the pseudorandomness of PRF that hides the coefficients of Q(·). Next, we
prove the following theorem. The proof is straightforward and is left for the full version.

Theorem 34 Assume PRF = ⟨KeyGen,PRF,CFEval⟩ is an algebraic PRF, then Pro-
tocol 1 securely realizes functionality FOPE in the presence of semi-honest adversaries
in the FMaskPoly-hybrid model.

Efficiency. In the first phase P0 computes d+ 1 modular exponentiations as it can first
compute the PRF evaluations in Zp (using the PRF key K) and then raise the outcomes
to the power of g. Next, P0 multiplies each PRF evaluation PRFK(i) with gqi (where
these computations can be combined into a single exponentiation per index i). Effi-
ciency of the second phase is dominated by the degree of Q(·) and the implementation
of functionality FMaskPoly. In Section 3.3 we discuss several ways to realize FMaskPoly.
(1) Assuming the strong-DDH assumption, our protocol requires a constant number
of modular exponentiations. (2) Assuming the DDH assumption our protocol requires
O(log d) modular exponentiations. Therefore, the overall cost is 2(d+1)+O(1) (resp.
O(log d) exponentiations.

Security in the Presence of Malicious Adversaries We next prove the security of
Protocol 1 in the presence of malicious attacks. We observe that if the protocol that
implements FMaskPoly is secure in the presence of malicious corruptions then the en-
tire protocol is secure against malicious attacks as well. Intuitively, security against a
corrupted P1 is immediately implied since a corrupted P1 does not learn anything be-
yond gR(t′), where t′ is P1’s input to FMaskPoly. More concretely, in the security proof
the simulator publishes a random polynomial S̃(·) = gS(·) first, and then extracts P1’s
input t′ to πMaskPoly. Finally, the simulator forces P1’s output within πMaskPoly to be
gS(t′)/gQ(t′). In case P0 is corrupted we need to demonstrate how to extract the coef-
ficients of gQ(·). This is achieved by the fact that P0 is committed to the PRF key K
within FMaskPoly.



To conclude, in order to obtain malicious security the only modification we need
to consider with respect to πOPE is to employ a maliciously secure implementation of
functionality FMaskPoly. In the hybrid setting this does not make a difference for the
protocol description. In Section 3.3 we discuss secure implementations of functionality
FMaskPoly. The proof for the following theorem is simple and left for the full version.

Theorem 35 Assume PRF = ⟨KeyGen,PRF,CFEval⟩ is an algebraic PRF, then Pro-
tocol 1 securely realizes functionality FOPE in the presence of malicious adversaries in
the FMaskPoly-hybrid model.

3.3 Secure Protocols for πMaskPoly

In this section we describe a concrete protocol that implements functionality FMaskPoly :
(K, t) 7→ (−, gR(t)), used as a subprotocol within our main protocol πOPE for oblivious
polynomial evaluation from Section 3.2. This computation corresponds to the polyno-
mial evaluation R̃(x) = PRFK(0)·PRFK(1)x ·. . .·PRFK(d)x

d

with respect to function
PRF. In what follows, we discuss a detailed secure implementation for PRF1 that is
described in Section 3.1 and then briefly discuss how to implement function PRF2,
formally described in Section 3.1, using similar ideas.

We recall that when implementing functionality FMaskPoly relative to PRF1 the

parties compute the value g
∑d

i=0 k0k
i
1x

i

= g
k0((k1x)d+1−1)

k1x−1 , so that P0 enters a PRF
key K = (k0, k1) and learns nothing and P1 enters x = t and learns this outcome.
This is a simple computation that requires a constant number of exponentiations and
can be easily implemented securely. Achieving malicious security requires to ensure
correctness of computations which we obtain using simple zero-knowledge proofs of
knowledge. Loosely speaking, the parties first generate a joint public key for the additive
El Gamal PKE such that no party knows the secret key (we omit the details here).
Next, each party commits to its input and the parties jointly compute k1t. A slight
complication arises since the parties need to compute the inverse of k1t−1. Relying on
the fact that (k1t− 1)−1 = (k1t− 1)p−2 mod p and that

k0((k1t)
d+1 − 1)

k1t− 1
=

k0(k1t)
d+1 − k0

k1t− 1
=

k0k
d+1
1 td+1

k1t− 1
− k0

k1t− 1
,

we let the parties compute the inverse of k1t − 1 first and then complete the computa-
tion by multiplying the result with k0(k1t)

d+1 and k0. Formally, our protocol uses the
following tools:

1. Distributed additive El Gamal. We denote this scheme by Π = (πKeyGen,Enc, πDEC).
2. Zero-knowledge proofs of knowledge: πDL for proving a discrete logarithm and πEq

for proving consistency of exponents, which are formally stated in Section 2.2.

Finally, we implicity assume that a party rerandomizes its homomorphic compu-
tations on the ciphertexts. Such that rerandomization is carried out by multiplying the
outcome with a random encryption of zero. We now describe our protocol is details.



Protocol 2 (Protocol πMaskPoly with malicious security.)

– Input: Party P0 is given a PRF key K = (k0, k1). Party P1 is given an element t. Both
parties are given a security parameter 1n, a polynomial degree d and (G, p, g) for a group
description G of prime order p and a generator g.

– Convention: Homomorphic operations on ciphertexts are computed componentwise.
– The protocol:

1. Distributed key generation. P0 and P1 run protocols πKeyGen(1
n, 1n) in order to

generate additive El Gamal public key PK = ⟨G, p, g, h⟩ for which the corresponding
shares of the secret key SK are (SK0, SK1). P0 then sends P1 encryptions of k0 and
k1, denoted by ck0 and ck1 , and proves their knowledge using πDL.

2. Computing encryption of k1t. Upon receiving ciphertexts ck0 and ck1 , P1 sends P0

an encryption of its input t, denoted by ct. It further computes the encryption of k1t,
denoted by ck1t, and proves consistency relative to ct and ck1t using the zero-knowledge
proof πEq.

3. Computing encryptions of kd+1
1 and td+1. P0 computes the encryption of kd+1

1 ,
denoted by c

kd+1
1

, and proves consistency between gd+1 and c
kd+1
1

using πEq. Similarly,

P0 computes the encryption of td+1, denoted by ctd+1 , and proves correctness.
4. Computing encryption of (k1t− 1)−1. The parties compute the inverse of (k1t− 1),

by first computing the encryption of k1t− 1 given ciphertext ck1t from above, and then
raising the result to the power of p− 2. Let cinv denote the outcome.

5. Computing encryptions of k0(k1t− 1)−1 and k0k
d+1
1 (k1t− 1)−1. Given cipher-

texts cinv , c
kd+1
1

and ck0 , P0 computes the encryptions of k0(k1t−1)−1 and k0k
d+1
1 (k1t−

1)−1 and proves consistency relative to cinv , c
kd+1
1

and ck0 using πEq (where the proof

of the later computation involves running πEq twice). Let c0 and c′0 denote the respective
outcomes.

6. Computing encryption of k0k
d+1
1 td+1(k1t− 1)−1. Given ciphertexts ctd+1 and c′0,

P1 computes the encryption of k0kd+1
1 td+1(k1t − 1)−1 and proves consistency using

πEq. Let c1 denote the respective outcome.
7. Outcome. Finally, the parties decrypt c1/c0 for P1 that outputs the result.

Theorem 36 Assume Π = (πKeyGen,Enc, πDEC), πDL and πEq are as above, then Pro-
tocol 2 securely realizes functionality FMaskPoly with respect to PRF1 in the presence
of malicious adversaries.

We leave the proof to the full version. Next, we note that the implementation of
the other PRF PRF2 follows similarly. Namely, recall that the parties compute the
value gk0(1+k1,x)(1+k2x

2)...(1+kmx2m ) which can be carried out in O(m) time as fol-
lows. First, P0 commits to its key (k0, k1, . . . , km), whereas P1 commits to the ele-
ments (x, x2, . . . , x2m) together with a ZK proof of consistency. Next, given the product

g̃ = gk0(1+k1,x)(1+k2x
2)...(1+k′

mx2m
′
) for some integer m′ < m, the parties compute

g̃ · g̃km′+1x
2(m

′+1)

= g̃(1+km′+1x
2(m

′+1)
) = gk0(1+k1,x)(1+k2x

2)...(1+km′+1x
2(m

′+1)
)

where ĝ = g̃km′+1 is carried out by P0 and proven correct with respect the commitment

of gkm′+1 . This computation is followed by P1 computing ĝx
2(m

′+1)

which is also ver-

ified against the commitment of gx
2(m

′+1)

where the commitment is realized using El
Gamal. See the ZK proof πEq for more details.



4 Secure Set-Intersection

One important application that benefits from our OPE construction is the set-intersection
functionality which is defined by having each party’s input consists of a set of elements
from domain {0, 1}t. Formally:

Definition 41 Let X and Y be subsets of a predetermined arbitrary domain {0, 1}t and
mX and mY the respective upper bounds on the sizes of X and Y .1 Then functionality
F∩ is defined by:

(X,Y ) 7→ (mY , (X ∩ Y,mX)).

To achieve a secure set-intersection protocol, we modify protocol πOPE from Section 3.2
as follows. First, P0 prepares a polynomial Q(·) with coefficients in Zp and the set of
roots X . It then masks Q(·) as in Protocol 1 using the sequence of pseudorandom el-
ements R̃(·). The parties then interact with a trusted party that computes functionality
FEqMask, which is a slight variation of functionalityFMaskPoly. Namely, instead of imple-
menting FMaskPoly the functionality checks for equality with respect to P1’s polynomial
evaluations of gQ(·)R̃(·) and R̃(·) on the set Y . This modification in the functionality’s
description is required due to the fact that we cannot let P1 learn Q(y) for arbitrary
y ∈ Y (even if P1 is honest), since that would leak information about X . More specif-
ically, FEqMask is defined by (K, {(yi, Ti)}yi∈Y ) 7→ (−, {bi}i), where bi = 1 only if
Ti = gR(yi) and 0 otherwise, gR(·) =

(
gr0 , . . . , grmX

)
and gri = PRFK(i) for all i.

Stated differently, bi = 1 if and only if Q(yi) = 0 (or yi ∈ X ∩ Y ) with overwhelming
probability. Finally, P1 outputs the set of elements Z ⊆ Y for which bi = 1.

Our implementation for FMaskPoly from Section 3.3 easily supports this functional-
ity, since P0 can run its zero-knowledge proofs with respect to a single set of ciphertexts
encrypting its PRF key. In addition, in order to enable the extraction of the set X by
the simulator we add zero-knowledge proofs of knowledge for the relation RDL, for-
mally defined in Section 2.2. This technicality arises because P0 sends elements in G
yet the polynomial Q(·) + R(·) is evaluated in the exponent, implying that X and Y
must be sampled from Zp as well. Note that P0 may fix X and its masked polynomial
in G. Nevertheless, P1 needs to know the discrete logarithms of Y with respect to some
group generator g in order to evaluate the masked polynomial.

Formally, let d = mX − 1, then define our set-intersection protocol as follows,

Protocol 3 (Protocol π∩ with malicious security.)

– Input: Party P0 is given a set X of size mX . Party P1 is given a set Y of size mY . Both
parties are given a security parameter 1n.

– The protocol:
1. Masking the input polynomial. P0 defines an d-degree polynomial Q(·) = (q0, . . . , qd)

with coefficients in Zp and the set of roots X , for d = mX − 1. It then invokes
(K, param)← KeyGen(1n, d) where param includes a group description G of prime

1 In order to deal with a proof technicality, where a corrupted party inputs less elements than
its set size, prior constructions assume a super polynomial lower bound on the input domain
sizes. Since we do not wish to restrict the input domains, we assume that the set sizes are not
strict and may denote some upper bound on the actual numbers of elements.



order p and a generator g, and defines a new d-degree polynomial R̃(·) = (r̃0, . . . , r̃d)
over G, where ri is defined by PRFK(i) for all i.
P0 sends P1 param and the masked polynomial C(·) =

(
gq0 r̃0, . . . , . . . , g

qd r̃d
)
,

where multiplication is implemented in G. P0 further proves the knowledge of the dis-
crete logarithm of ci = gqi r̃i for all i with respect to a generator g, by invoking an
ideal execution of FDL on input {((g, ci), logg ci)}i∈[0,d].2 The input of P1 for FDL is
{(g, ci)}i∈[0,d].

2. Unmasking the result. Upon receiving the masked polynomial C(·) = (c0, . . . , cd)
and upon receiving from FDL the value 1, denoting “accept” for all i, party P1 com-
putes the polynomial evaluation C(y) =

∏d
i=0(ci)

yi

for all y ∈ Y (picked in a random
order). I.e., C(·) is evaluated in the exponent.
Next, the parties invoke an ideal execution of FEqMask, where the input of P0 is K and
the input of P1 is the set {(y, C(y))}y∈Y . P1 outputs y if and only if the output from
FEqMask on (y, C(y)) is 1.

Correctness follows easily since P1 outputs only elements in Y that zeros polynomial
Q(·), whom its roots are the set X . Next, we prove the following theorem.

Theorem 42 Assume PRF = ⟨KeyGen, F,CFEval⟩ is an algebraic PRF, then Proto-
col 3 securely realizes functionality F∩ in the presence of malicious adversaries in the
{FDL,FEqMask}-hybrid model.

Proof: We prove security for each corruption case separately.

P0 is corrupted. Let A be a PPT adversary corrupting party P0, we design a PPT
simulator SIM that simulates the view A, playing the role of the honest P1 while
extracting A’s input set X , details follow.

1. Given input (1n, X, z), SIM invokes A on this input and receives A’s first mes-
sage, (G, p, g) and a d-degree polynomial C(·) = (c0, . . . , cd).

2. SIM emulates the ideal calls of FDL by playing the role of the trusted party that
receives fromA tuples {((g, ci), c′i)}i∈[0,d] and records these values. SIM verifies
whether ci = gc

′
i for all i and records 1 only if these conditions are met, and 0

otherwise. In case SIM records 0 it aborts and outputs whatever A does.
3. SIM defines the input set X ′ as follows. For every i let r̃i = PRFK(i) and ri =

logg r̃i and let q′i = c′i − ri.3 SIM fixes polynomial Q′(·) = (q′0, . . . , q
′
d) and

defines X ′ to be the set of roots of Q′(·). SIM computes X ′ by factoring Q′(·)
over Zp and sends the set X ′ to the trusted party, receiving back mY .

4. SIM emulates the ideal call of FMaskPoly by playing the role of the trusted party
that receives from A a PRF key K.

5. SIM outputs whatever A does.

Note that the adversary’s view is identical to its view in the hybrid execution since it
does not get any output from the internal ideal calls as well as from F∩. We now claim

2 We implicitly assume that P0 knows the discrete logarithms of the ri’s by its knowledge of K.
This is the case for all PRF implementations presented in [6].

3 See Footnote 2.



that P1’s output is identical with overwhelming probability in both executions due to the
following. In the hybrid execution the correctness of the ideal call for FEqMask ensures
that P1 obtains the correct equality bit for every y ∈ Y . Namely, if C(y) ̸= R̃(y)
then the honest P1 obtains 0 from FEqMask and does not output y. On the other hand, if
C(y) = R̃(y) then P0 receives 1 and returns y. Stating differently, P1 returns y ∈ Y

only if C(y)/R̃(y) = 1 where division is computed component-wise. Next, in the
simulation SIM defines the input set X ′ of the adversary as the set of roots with
respect to the unmasked polynomial C(·)/R̃(·) (computed component-wise), where the
masking is defined by the PRF key K input by the adversary to FEqMask. Therefore the
intersection is computed with respect to the same set X ′.

P1 is corrupted. Let A be a PPT adversary corrupting party P1, we design a PPT
simulator SIM that generates the view of A as follows. SIM first sends a random
polynomial S̃(·). Next, upon receiving the adversary’s set of elements Y ′ to FMaskPoly,
SIM forwards it to the trusted party for F∩. Let Z ′ denotes the output returned by the
trusted party, then SIM completes the simulation by forcing the output of A within
FEqMask to be consistent with the set Z. More formally,

1. Given input (1n, Y, z), SIM invokes A on this input and sends it (G, p, g).
2. SIM picks a random d-degree polynomial S̃(·) =

(
s̃0, . . . , s̃d

)
=

(
gs0 , . . . , gsd

)
with coefficients in G and sends it to A. (We assume that the simulator knows
mX as part of its auxiliary information. This can also be assured by modifying the
definition of the functionality, given mX to P1 as part of its input).

3. SIM emulates the ideal calls of FDL by playing the role of the trusted party that
receives from A tuples {(g, s̃i)}i∈[0,d] and sends A the value 1 for all i (denoting
accept calls).

4. SIM then emulates the ideal call of FEqMask by playing the role of the trusted
party that receives from A the set {(y′j , Ty′

j
)}j∈[mY ]. SIM sends the set Y ′ =

{y′j}j∈[mY ] to the trusted party, receiving back the intersection Z = X ∩ Y ′.
For all y′j ∈ Z, SIM emulates the ideal response of FEqMask as follows. If Ty′

j
=

gS(y′
j) then SIM sendsA the value 1. Otherwise it sends 0. For all y′j /∈ Z, SIM

always replies with 0.
5. SIM outputs whatever A does.

Note that the protocol never verifies that A’s inputs to FEqMask are consistent pairs
{(y′j , Ty′

j
)}j of which Ty′

j
= gS(y′

j) for all j ∈ [mY ]. We prove that this is not re-
quired. Specifically, the differences between the hybrid and simulated executions are
as follows. First, SIM sends in the simulation a random polynomial instead of a real
masked polynomial. In addition, SIM fixes the output of FEqMask based on the cor-
rectness of A’s computations which deviates from the way this functionality is defined.
Consider a hybrid game Hyb where the simulator SIMHyb uses the real input X of P0

to define polynomial Q(·), but decides on the output of FEqMask according to the strat-
egy specified in the simulation. Namely for every pair (y′j , Ty′

j
), SIMHyb verifies first

whether Ty′
j
= C(y′j) and returns 1 if equality holds. Clearly, the views induced in Hyb

and in the simulation are computationally indistinguishable due to the pseudorandom-
ness of F . This argument is similar to the argument presented in the proof of Protocol 1.



Next, we claim that the distributions induced by the views of the hybrid execution and
game Hyb are statistically close.

Formally, for every y′j consider two cases. (i) y′j /∈ X which implies that y′j is not
in the intersection and that bj = 0 in the simulation of Hyb. Next, define a Bad event
in which A receives bj = 1 from the trusted party for FEqMask in the hybrid execution.
Clearly, this event holds only if Ty′

j
= CFEval(y′j ,K) = gR(y′

j) for K the PRF key
entered by the honest P0, which implies thatAmust correctly guess CFEval(y′j ,K). We
claim that the probability this event occurs is negligible due to the pseudorandomness of
F and CFEval (in Section 5 we discuss the pseusorandomness of CFEval). Specifically,
any successful guess with a non-negligible probability implies an attack on the PRF.
Thus, the probability that Bad occurs is negligible. It therefore holds that the adversary’s
views are statistically close condition on the event that y′j is not in the intersection. (ii)
y′j ∈ X which implies that y′j is in the intersection. Nevertheless, here there is no
analogue bad event. This is because bj = 1 only when Ty′

j
= C(y′j) = CFEval(y′j ,K),

which implies that bj = 1 in both executions due to correctness of FEqMask.

Efficiency. As in Protocol 1, the efficiency of Protocol 3 is dominated by the im-
plementation of functionality FEqMask. Our protocols from Section 3.3 can be easily
modified to support this functionality without significantly effecting their overhead,
since the parties can first compute the encryption of the closed form efficiency of the
PRF and then compare it with the input of P1. Therefore, the overall communication
complexity is O(mX) group elements for sending the first message and O(mY ) (resp.
O(mY logmY )) group elements for the second phase of implementingFEqMask for each
y ∈ Y , depending on the underlying PRF. In particular, the number of modular expo-
nentiations implies multiplicative costs in the sets sizes since P1 evaluates its masked
polynomial for each element in Y . Next, we demonstrate how to reduce this cost.

4.1 Improved Constructions Using Hash Functions

We now show how to reduce the computational overhead using hash functions by split-
ting the set elements into smaller bins. Our protocol is applicable for different hash
functions such as: simple hashing, balanced allocations [4] and Cuckoo hashing [33].
For simplicity, we first describe our protocol for the simple hashing case; see Section 4.1
for a discussion about extensions to the other two hashing. Informally, the parties first
agree on a hash function that is picked from a family of hash functions and induces a set
of bins with some upper bound on the number of elements in each bin. Next, P0 maps
its elements into these bins and generates a polynomial for each such bin, which is com-
puted as in Protocol 3 but with a smaller degree. Finally, P0 masks all the polynomials
and sends them to P1. Upon receiving the masked polynomials, P1 maps its elements
into the same set of bins and evaluates the masked polynomials for these mapped bins.
In the last step, the parties unmask these evaluations. To be precise, we need to specify
how the masking procedure works and ensure that the parties do not deviate from the
instructions of the protocol.

We fix some notations first. We denote by h the hash function picked by the parties,
by B the number of bins and byM the maximum number of elements allocated to any



single bin (where B andM are parameters specified by the concrete hash function in
use and further depend on mX ). Note that the potential number of allocated elements
is bounded by BM which may be higher than the exact number mX . This implies that
the protocol must ensure that P0 does not take advantage of that and introduce more set
elements into the protocol execution. In addition, it must be ensured that a corrupted
P0 does not mask the zero polynomial, which would imply that P1 accepts any value it
substitutes in the masked polynomial. On the other hand, the protocol must ensure that a
corrupted P1 does not gain any information by entering incorrect values. Verifying that
a polynomial is not all zeros can be easily done by substitution a random element in it
and checking that the result is different than zero. In Section 4.1 we demonstrate how
to enforce P0’s correct behaviour by designing a new proof that exploits the algebraic
properties of the underlying PRF. The verification procedure for P1 is even simpler as
demonstrated below.

Next, we explain how the masking procedure is computed. Denote by Qj(·) the
polynomial associated with the jth bin. If the degree of Qj(·) is smaller thanM− 1
then P0 fixes the values of theM1−deg(Qj(·)) leading coefficients to be zeros. It then
masks the ith coefficient of Qj(·) by multiplying it with PRFK((j − 1) · M + i) for
i ∈ [0,M− 1]. Furthermore, unmasking is computed by comparing the evaluation of
the jth polynomial to the following computation

jM−1∏
i=0

PRFK(i)x
i
/ (j−1)M−1∏

i=0

PRFK(i)x
i

= PRFK((j − 1)M)x
(j−1)M

· . . . · PRFK(jM− 1)x
jM−1

,

which is exactly the set of PRF values that mask polynomial Qj(·).
More formally, our protocol uses two functionalities in order to ensure correctness.

First, the parties call functionality FBins for proving that the masked polynomials sent
by P0 are correctly defined. Namely, FBins : (K, {Cj(·) = (cj0, . . . , c

j
M−1)}j∈[B]) 7→

(−, b) and b = 1 only if none of the unmasked polynomials {Qj(·)}j is the zero poly-
nomial and the overall degrees of these polynomials {Qj(·)}j is bounded by mX . In
addition, the parties call functionality FEqMaskHash in order to correctly unmask polyno-
mial evaluations {Ch(y)(y)}y∈Y for P1. We continue with the detailed description of
our set-intersection protocol in the hybrid model. In Sections 4.1 and 4.1 we discuss
how to securely implement these functionalities.

Protocol 4 (Protocol π∩ with malicious security and hash functions.)

– Input: Party P0 is given a set X of size mX . Party P1 is given a set Y of size mY . Both
parties are given a security parameter 1n.

– The protocol:
1. Fixing the parameters of the hash function. The parties fix the parameters B and
M of the hash function and picks a hash function h : {0, 1}t 7→ [B]. P0 invokes
(K, param)← KeyGen(1n,M− 1) where param includes a group description G of
prime order p and a generator g.

2. Masking the input polynomial. For every x ∈ X , P0 maps x into bin h(x). Let
Bj denote the set of elements mapped into bin j. Next, P0 constructs a polynomial



Qj(·) = (qj0, . . . , q
j
d) with coefficients in Zp and the set of roots Bj . If |Bj | <M, P0

fixes the leadingM− |Bj | − 1 coefficients to zero.
For each j ∈ [B], P0 defines a new (M−1)-degree polynomial R̃j(·) = (r̃j0, . . . , r̃

j
M−1)

over G, where r̃ji is defined by PRFK((j − 1)M+ i) for all i ∈ [0,M− 1]. P0 sends

P1 param and the masked polynomials {Cj(·)}j = {gq
j
0 r̃j0, . . . , . . . , g

q
j
M−1 r̃jM−1}j ,

where multiplication is implemented in G.
P0 further proves the knowledge of the discrete logarithm of cji = gq

j
i r̃ji for all i

and j with respect to a generator g, by invoking an ideal execution of FDL on input
{((g, cji ), logg c

j
i )}i∈[0,M−1],j∈[B].4 The input of P1 forFDL is {(g, cji )}i∈[0,M−1],j∈[B].

Finally, P0 proves correctness usingFBins where P0 enters K and P1 enters the masked
polynomials.

3. Unmasking the result. Upon receiving the polynomials {Cj(·) = (cj0, . . . , c
j
M−1)}j∈[B]

and upon receiving accepting messages from FDL,FBins, party P1 computes the fol-
lowing for every y ∈ Y (picked in a random order). It first maps y into bin h(y) and
then computes the polynomial evaluation Ch(y)(y) =

∏h(y)M−1

i=(h(y)−1)M(c
h(y)
i )y

i

. I.e.,
Ch(y)(·) is evaluated in the exponent.
Next, the parties invoke an ideal execution of FEqMaskHash, where the input of P0 is K
and the input of P1 is the set {(y, h(y), Ch(y)(y))}y∈Y .
P1 outputs y only if the output from FEqMaskHash on (y, h(y), Ch(y)(y)) is 1.

Theorem 43 Protocol 4 securely realizes functionality F∩ in the presence of malicious
adversaries in the {FDL,FBins,FEqMaskHash}-hybrid model.

Security follows easily from the secure implementations of FBins and FEqMaskHash and
the proof of Protocol 3. We discuss these protocols next. We stress that P1 needs to
ensure in Protocol 4 that P0 indeed uses the same PRF key for both sub-protocols (for
instance by ensuring that P0 enters the same commitment of K).

A Secure Protocol for FBins In this section we design a protocol πBins for securely
implementing functionality FBins : (K, {Cj(·)}j∈[B]) 7→ (−, b) for which b = 1 only
if none of the unmasked polynomials {Qj(·)}j is the zero polynomial and the overall
degrees of all polynomials {Qj(·)}j is bounded by mX . To prove that none of the poly-
nomials is the all zeros polynomial we evaluate each masked polynomial on a random
element and then verify that the result is different than zero. In particular, for each j
the parties first agree on a random element zj and then compute the polynomial eval-
uation Cj(zj). Next, the parties verify whether Cj(zj) = R̃j(zj) where R̃j(·) is the
masking polynomial of Cj(·). Note that if Qj(·) is not the all zeros polynomial then
Cj(zj) ̸= R̃j(zj) with overwhelming probability over the choice of zj . This is because
there exists a coefficient qi,j ̸= 0 which implies that for Cj(zj) = Qj(zj) · R̃j(zj).
Now since Qj(zj) ̸= 0 it holds that Cj(zj) ̸= R̃j(zj). On the other hand, in case Qj(·)
is the zero polynomial then it holds that Cj(zj) = R̃j(zj) for all zj . This is because
Qj(zj) = 0 as all its coefficients equal zero.

The more challenging part is to prove that the overall degrees of all polynomi-
als {Qj(·)}j is bounded by mX + B.5 Our proof ensures that as follows. First, P0

4 See Footnote 2.
5 For technical reasons, we require that in case of an empty bin, P0 fixes the polynomial that is

associated with this bin to be 1.



picks a PRF key K and forwards P1 a commitment of K together with encryptions of
f =

(
f0 = PRFK(0), . . . , fBM−1 = PRFK(BM− 1)

)
(that are encrypted using the

El Gamal encryption scheme). Next, P0 proves that it computed the sequence f cor-
rectly. This can be achieved by exploiting the closed form efficiency property of the
PRF. Namely, the parties mutually compute the encryption of

∏BM−1
i=0 PRFK(i)z

i

for
some random z, and then compare it with the encryption of

∏BM−1
i=0 fzi

i . In particular,
the latter computation is carried out on the ciphertexts that encrypt the corresponding
values from f by utilizing the homomorphic property of El Gamal. Then, equality is
verified such that P0 proves that the two ciphertexts encrypt the same value. Finally, the
parties divide the vector of ciphertexts f with the polynomials coefficients {Cj(·)}j∈[B]

component-wise (note that both vectors have the same length). P0 then proves that the
overall degrees of the polynomials is as required using a sequence of zero-knowledge
proofs. The last part of our proof borrows ideas from [28]. We continue with the formal
description of our protocol.

Protocol 5 (Protocol πBins with malicious security.)

– Input: Party P0 is given a PRF key K for function PRF. Both parties are given a security
parameter 1n, masked polynomials {Cj(·) = (cj0, . . . , c

j
M−1)}j∈[B], (G, p, g) for a group

description G of prime order p and a generator g, and an integer mX .
– The protocol:

1. Setup. P0 generates (PK, SK) ← Gen(1n) for the El Gamal encryption scheme for
group G. It then computes the set f =

(
f0 = PRFK(0), . . . , fBM−1 = PRFK(BM−

1)
)

and sends to P1 their encryptions under PK, denoted by (e0, . . . , eBM−1) , as well
as PK.

2. Proving the correctness of f . The parties pick z ← Zp at random and compute ef =∏MB−1
i=0 ez

i

i . Next, the parties compute the encryption of the product
∏BM−1

i=0 PRFK(i)z
i

,
denoted by ePRF, which corresponds to the closed form efficiency function of PRF. Fi-
nally, P0 proves that the two ciphertexts encrypt the same plaintext by proving that
ef/ePRF is a Diffie-Hellman tuple using πDL (see Section 2.2).

3. Proving a bound mX on the overall degrees. If πDL is verified correctly, the parties
compute the differences with respect to the masked polynomials {Cj(·)}j and plaintexts
f , component-wise. Namely, for all j ∈ [B] and i ∈ [0,M− 1] the parties compute the
encryption of cji/f(j−1)M+i. We denote the result vector of ciphertexts by cDiff .
P0 then sets Zi,j = 1 for 0 ≤ i ≤ deg(Qj(·)), and otherwise Zi,j = 0. P0 computes
zi,j = EncPK(Zi,j) and sends {zi,j}i,j to P1. P0 proves that Z0,j , Z1,j , . . . , ZM−1,j

is monotonically non-increasing. For that, P0 and P1 compute encryptions of Zi,j −
Zi+1,j and Zi,j − Zi+1,j − 1, and P0 proves that Zi,j − Zi+1,j ∈ {0, 1} by showing
that one of these encryptions denotes a Diffie-Hellman tuple using πDDH.
P0 completes the proof that the values Zi,j were constructed correctly by proving for
all i, j that one of the encryptions {e(j−1)M+i, z

′
i,j} is an encryption of zero, where

z′i,j is an encryption of 1− Zi,j .6

Finally, to prove that the sum of degrees of the polynomials {Qj(·)} equals mX , both
parties compute an encryption τ of T =

∑
i,j Zi,j − B − mX . Then P proves that

(PK,EncPK(T )) is a Diffie-Hellman tuple using πDDH.

6 We wish to avoid the case where e(j−1)M+i is an encryption of a non-zero value while z′i,j
encrypts zero.



4. Checking zero polynomials. If all the proofs are verified correctly, then for any j ∈ [B]
the parties compute Cj(zj) where zj ← Zp. The parties call FEqMaskHash with inputs
(K, {zj , j, Cj(zj)}j∈[B]). Let {bj}j∈[B] be P1’s output from this ideal call.7

5. P1 outputs b = 1 only if bj = 0 for all j.

Theorem 44 Assume that El Gamal is IND-CPA, then Protocol 5 securely realizes
functionalityFBins in the presence of malicious adversaries in the {FDL,FDDH,FEqMaskHash}-
hybrid model.

The details of the proof are omitted here. Next, we note that the efficiency of our
protocol is dominated by Steps 2 and 4, where in the former step the parties compute
the closed form efficiency relative to the set f in time O(BM) = O(mX) and in the
latter step the parties substitute a random element in every polynomial Cj . Overall,
the overhead of this step relative to PRF PRF1 implies O(B) = O(mX) group ele-
ments and modular exponentiations. For PRF PRF2 this step implies O(B logmX) =
O((mX\ log logmX) · logmX) cost; see a discussion below.

A Secure Protocol for FEqMaskHash The next protocol is designed in order to compare
the result of P1’s polynomial evaluations on the set Y with the masking polynomials.
Basically, for every y ∈ Y , P1 computes first Ch(y)(y). The parties then run a protocol
for comparing {Ch(y)(y)}y∈Y with {R̃h(y)(y)}y∈Y . To do so, P1 must also input the
value h(y) which determines the bin’s name. Nevertheless, we do not require from the
parties to mutually compute h(y) since that would imply a far less efficient protocol.
Instead, we demonstrate that P1 cannot learn additional information by entering an
inconsistent bin number. Finally, for every j, P1 outputs 1 only if equality holds.

Formally, we define FEqMaskHash by (K, {y, h(y), Ch(y)(y)}y∈Y ) 7→ (−, {bj}j),
where bj = 1 if Ch(y)(y) =

∏h(y)M−1
i=0 PRFK(i)y

i
/∏(h(y)−1)M−1

i=0 PRFK(i)y
i

. The
actual implementation of this functionality depends on the underlying PRF. We consider
two different implementations here. First, considering our protocol from Section 3.3
designed for PRF1, an analogue protocol for our purposes can be similarly designed
with the modification that the parties now compare Ch(y)(y) against the result of the
following formula evaluation,

g
k0

(
(k1x)(h(y)+1)M−1−(k1x)h(y)M−1

)
k1x−1

where h(y) is only known to P1. Note that our protocol from Section 3.3 does not need
to rely on the fact that both parties know the polynomial degree d for computing this
formula. It is sufficient to prove that the computation of some ciphertext c to the power
of h(y) is consistent with a ciphertext encrypting gh(y), where such a ciphertext can
be provided by P1. See this protocol from Section 3.3 and the ZK proof πEq for more
details. The overall overhead of the modified protocol is also constant.

Next, considering the unmasking protocol for PRF2, the parties compute the fol-
lowing formula that corresponds to the masking of the polynomial that is associated

7 Note that zj may be an element that is not mapped to the jth bin.



with bin h(y),

gk0

(
1+k1,x

)(
1+k2x

2
)
...
(
1+kmx2log(h(y)M−1)

)
/

gk0

(
1+k1,x

)(
1+k2x

2
)
...
(
1+kmx22

log((h(y)−1)M−1) )
.

Note that computing this formula requires O(logmX) exponentiations on the worst
case if the bin number implies a high value so that h(y)M, which determines the poly-
nomial degree, is O(mX).

Security is stated as follows. If P0 is corrupted then security follows similarly to the
security proof of the protocols implementing FMaskPoly (Section 3.3) since P0 enters the
same input for both functionalities and runs the same computations with respect to its
PRF key. The interesting and less trivial corruption case is of P1. We consider two bad
events here: (1) A corrupted P1 enters y, h′ for which h′ ̸= h(y). This implies that the
parties will not compute the correct unmasking. (2) A corrupted P1 enters consistent
y, h(y), but an incorrect value Ch(y)(y). Note that upon extracting P1’s input to the
protocol execution, the simulator can always tell whether this input corresponds to the
first or the second case, or neither.

Specifically, in the first case the parties compute the unmasking on y for which
element y in not allocated to the specified bin h′. This implies that P1 would always
obtain 0 from the protocol execution unless it correctly guesses R̃h′(y), which only
occurs with a negligible probability due to the security of the PRF. Therefore we can
successfully simulate this case by always returning zero. We further note that the secu-
rity argument of the later case boils down to the security presented in the proof for a
single polynomial shown in the proof of Theorem 42, since in this case P1 enters h(y)
that is consistent with y so the parties compute the correct masking for y.

Using More than One Hash Function In some cases, such as for balanced allocation
hash function [4], better performance are obtained by using a pair of hash functions
h1, h2, which allocate elements into two distinct bins. That is, the input to the function-
ality are defined by (K, {y, h1(y), h2(y), Ch(y)(y)}y∈Y ) 7→ (−, {bj}j). This poses a
problem in our setting since a corrupted P1 may deviate from the protocol by substitut-
ing a different element with respect to each hash function, and learn some information
about P0’s input. Specifically, if P1 learns that some element y ∈ X was not allocated
to h1(y) it can conclude that P0 has M additional elements that are already mapped
into bin h1(y). Note that this leaked information cannot be simulated since it depends
on the real input X . In this case we need to verify that P1 indeed maps the same element
into both bins correctly. A simple observation shows that if this is not the case then the
simulation fails only for elements that are in the intersection. Meaning, there exists a
bin for which the membership result is positive (since otherwise the adversary anyway
learns 0, and it cannot distinct the cases of non-membership and incorrect behaviour).
We thus define the polynomials slightly different, forcing correct behaviour.

Specifically, the polynomial Qj(·) that is associated with the set of elements Bj
(namely, the elements that are mapped to the jth bin) is defined as follows. For each x ∈
Bj , set Qj(x) = gh1(x)+h2(x) where h1(x) and h2(x) are viewed as elements in Zp.



Next, in the unmasking phase, for any tuple (y, h1, h2, Cy) entered by P1, the parties

compare Cy with both
(∏h1M−1

i=0 PRFK(i)y
i
/∏(h1−1)M−1

i=0 PRFK(i)y
i) · gh1·h2 and(∏h2M−1

i=0 PRFK(i)y
i
/∏(h2−1)M−1

i=0 PRFK(i)y
i) · gh1·h2 such that the functionality

returns 1 to P1 if equality holds with respect to one of the comparisons. Therefore, P1

will learn that an element y ∈ X only if it entered h1 and h2 such that h1 + h2 =
h1(y) + h2(y). Note that this implies that if one of the h1, h2 values is inconsistent
with h1(y), h2(y) yet equality holds, then the other value is also inconsistent with high
probability. In this case, P1’s output will always be 0 since the incorrect polynomials
will be unmasked.

We further need to prove that for any y /∈ X the protocol returns 0 with over-
whelming probability. Specifically, we need to prove that the probability that either
Qh1(y)(y) = gh1(y)+h2(y) or Qh2(y)(y) = gh1(y)+h2(y), is negligible. In order to sim-
plify our proof, we modify our construction and fix Qj(x) = PRFK(gh1(x)+h2(x)) for
any x ∈ Bj using a PRF K key that is mutually picked by both parties. In this case,
we can easily claim that the probability that the protocol returns 1 for y /∈ X is neg-
ligible since that implies that either Qh1(y)(y) or Qh2(y)(y) equal the pseudorandom
value PRFK(gh1(y)+h2(y)) for y /∈ X . We stress that the PRF key for this purpose can
be publicly known since pseudorandomness is still maintained as long as the algorithm
for generating the bin polynomials does not use this key. We further note that both al-
gebraic PRFs that we consider in this paper can be easily evaluated over an encrypted
plaintext given the PRF key since it only require linear operations.

Finally, a similar solution can be easily adapted for Cuckoo hashing with a stash [33]
(by treating the stash as a third polynomial). Nevertheless, Cuckoo hashing using a stash
suffers from the following drawback. It has been proven in [33] that for any constant s,
using a stash of size s implies an overflow with probability O(ns) (taken over the choice
of the hash functions). Specifically, if the algorithm aborts whenever the original choice
of hash functions results in more than s items being moved to the stash, then this means
that the algorithm aborts with probability of at most O(ns). Consequently, P1 can iden-
tify with that probability whether a specific potential input of P0 does not agree with
the hash functions h1 and h2. This probability is low but not negligible. On the other
hand, Broder and Mitzenmacher [8] have shown for balanced allocations hash function
that asymptotically, when mapping n items into n bins, the number of bins with i or
more items falls approximately like 22.6i. This means that if M = ω(log log n) then
except with negligible probability no bin will be of size greater thanM. Nevertheless,
(ignoring the abort probability), Cuckoo hashing performs better than balanced alloca-
tion hash functions, and by tuning the parameters accordingly this abort probability can
be ignored for most practical applications.

Efficiency The efficiency here depends on the parameters B = O(mX/ log logmX)
and M = O(log logmX) that are specified by the underlying hash function, as well
as the PRF implementation that induce the overhead of the implementations of FBins

and FEqMaskHash. Concretely, when implementing the algebraic PRF with PRF1 the
number of exponentiations computed by the parties is O(BM +mYM) = O(mX +
mY log logmX), whereas the number of transmitted group elements is O(BM+mY ) =



Functionality FCPRF

Functionality FCPRF communicates with with parties P0 and P1, and adversary SIM.

1. Upon receiving a message (key,K) from P0, send message key to SIM and
record K.

2. Upon receiving (input, x) from P1, send message input to adversary SIM. Upon
receiving an approve message, send PRFK(x) to P1. Otherwise, send⊥ to P1 and
abort.

Fig. 1. The committed oblivious PRF evaluation functionality.

O(mX + mY ). Moreover, implementing the algebraic PRF using PRF2 implies the
overhead of O(mX+mY logmX) exponentiations and the communication is as above.

5 Committed Oblivious PRF Evaluation

The oblivious PRF evaluation functionality FPRF is an important functionality that is
defined by (K,x) 7→ (−,PRFK(x)). One known example for a protocol that im-
plements FPRF is the instantiation based on the Naor-Reingold pseudorandom func-
tion [42] (specified in Section 3.1), that is implemented by the protocol presented in [20]
(and proven secure in the malicious setting in [25]). This protocol involves executing
an oblivious transfer for every bit of the input x. Nevertheless, it has major drawback
since it does not enforce the usage of the same key for multiple evaluations, which is
often required. In this section, we observe first that the algebraic closed form efficiency
of PRFs PRF1 and PRF2, specified in Section 3.1, are PRFs as well. Moreover, the
protocols for securely evaluating these functions induce efficient implementations for
the committed oblivious PRF evaluation functionality with respect to these new PRFs
in the presence of adaptive inputs. This is because the PRF evaluations protocols are
implemented with respect to the same set of key commitments. We formally define this
functionality in Figure 1.

More formally, let PRF be an algebraic PRF from a domain {0, 1}m into a group
G. Then, define the new function PRF′ : Zp 7→ G by PRF′

K(x) =
∏l

i=0[PRFK(i)]x
i

.
Note that the domain size of PRF′ is bounded by l + 1, since upon observing l +
1 evaluations of PRF′ it is possible to interpolate the coefficients of the polynomial
{PRFK(i)}i (in the exponent). On the other hand, it is easy to verify that if l+1 ≤ 2m

then PRF′ is a PRF. The proof is straight forward and thus omitted.

Theorem 51 Assume F : {0, 1}m 7→ G is a PRF, then PRF′ is a PRF for (l+1) ≤ 2m.

We implement PRF′ using the two PRFs from Section 3.1 and obtain two new PRF
constructions under the strong-DDH and DDH assumptions. Let K = (k0, k1) be the
key for the PRF PRF1 with the strong-DDH based security, and recall that the closed
form efficiency for this function is defined by

PRF′
K(x) = CFEvalh(x,K) = g

k0(k
d+1
1 xd+1−1)

k1x−1 .



This implies that PRF′ only requires a constant number of modular exponentiations.
See Section 3.3 for secure implementations of obliviously evaluating PRF′. Next, let
K = (k0, . . . , km) be the key for the Naor-Reingold PRF, and recall that the closed
form efficiency of this function is defined by

PRF′
K(x) = CFEvalh,z(x,K) = gk0(1+k1,x)(1+k2x

2)...(1+kmx2m )

which requires O(log l) = O(m) operations, namely, a logarithmic number of opera-
tions in the domain size where x is an m-bits string. This is the same order of overhead
induced by the [20] implementation that requires an OT for each input bit. Nevertheless,
our construction has the advantage that it also achieves easily the property of a com-
mitted key since multiple evaluations can be computed with respect to the same PRF
key. Plugging-in our protocol inside the protocols for keyword search, OT with adap-
tive queries [20] and set-intersection [25] implies security against malicious adversaries
fairly immediately. It is further useful for search functionalities as demonstrated below.

5.1 The Set-Intersection Protocol

We continue with describing our set-intersection protocol. Informally, P0 generates a
PRF key for PRF and evaluates this function on its set X . It then sends the evalua-
tion results to P1 and the parties engage in a committed oblivious PRF protocol that
evaluates PRF on the set Y . P1 then concludes the intersection. In order to handle a
technicality in the security proof, we require that P0 must generate its PRF key in-
dependently of its input X , since otherwise it may maliciously pick a secret key that
implies collisions on elements from X and Y , causing the simulation to fail. We en-
sure key independence by asking the parties to mutually generate the PRF key af-
ter P0 has committed to its input. Then upon choosing the PRF key, the parties in-
voke two variations of functionality FCPRF, denoted by F0

CPRF and F1
CPRF. Formally,

we define F0
CPRF as follows: ((K, (x1, . . . , xmX ), R), (cKEY, (c1, . . . , cmX ), PK)) 7→

(−, (PRFK(x1), . . . ,PRFK(xmX
))) only if ci encrypts xi for all i and cKEY is a com-

mitment of K where verification is carried out using randomness R. In the final step,
the parties call functionality F1

CPRF in order to evaluate the PRF on the set Y and is de-
fined by ((K,R), (cKEY, (y1, . . . , ymY ))) 7→ (−, (PRFK(y1), . . . ,PRFK(ymY ))) only
if cKEY is a commitment of K where verification is carried out using randomness R. In
both executions the output is given to P1 that computes the intersection of the results.

Implementing F0
CPRF and F1

CPRF. Implantation-wise, there is not much of a difference
between the protocols for the two functionalities, which mainly differ due to the iden-
tity of the party that enters the input values to the PRF (where the same committed key
is used for both protocol executions). We note that the realization of F0

CPRF and F1
CPRF

can be carried out securely based on the implementations of the closed form efficiency
functions shown in Section 3.3, since our committed PRFs are based on these functions.
More concretely, the difference with respect to functionality F0

CPRF is that now when
P0 is corrupted the simulator needs to extract the randomness used for committing to
the PRF key and the xi’s elements which can be achieved using the proof of knowledge
πDL since the parties use the El Gamal PKE. Specifically, P0 proves the knowledge of



the discrete logarithm of (c1, . . . cmX ) with respect to a generator g, by invoking an
ideal execution of FDL on input {((g, ci), logg ci)}i∈[mX ].8 The input of P1 for FDL is
{(g, ci)}i∈[mX ]. In case P1 does not receive an “accept” message from FDL it aborts.
Next, the parties continue with the PRF evaluations where the ZK proofs are carried out
with respect to the same key commitment. We note that extracting the PRF key and the
set (x1, . . . , xmX

) is already implied by the protocols from Section 3.3 due to the ZK
proofs of knowledge. Finally, the implementation of F1

CPRF follows similarly but with-
out the additional proof we added above for F0

CPRF in order to extract the randomness
of the committed input.

Next, we describe our set-intersection protocol using committed oblivious PRF.

Protocol 6 (Protocol π∩ with malicious security from committed oblivious PRF.)

– Input: Party P0 is given a set X of size mX . Party P1 is given a set Y of size mY . Both
parties are given a security parameter 1n.

– The protocol:
1. Distributed key generation. P0 and P1 run protocol πKeyGen(1

n, 1n) in order to gen-
erate additive El Gamal public key PK = ⟨G, p, g, h⟩ where the corresponding shares
of the secret key SK are (SK0, SK1).

2. Input commitment and PRF key generation. P0 sends encryptions of its input X
under PK; denote this set of ciphertexts by C = (c1, . . . cmX ).
P0 invokes (K, param)← KeyGen(1n, d = log(mX +mY )) where param includes
a group description G of prime order p and a generator g, and sends P1 param and a
ciphertext EncPK(K;R).
P1 picks a new key (K′, param) ← KeyGen(1n, d = log(mX + mY )) and sends
it to P0. The parties then compute the encryption cKEY of K̃ = KK′, relying on the
homomorphic property of El Gamal.

3. PRF evaluations on X. The parties call functionality F0
CPRF where P0 enters the set

X , key K̃ and randomness R and P1 enters C, cKEY and PK. Denote by PRFX =
{PRF′

K̃
(x)}x∈X the output of P1 from this ideal call only if C is a vector of ciphertexts

that encrypts X and cKEY is a commitment of K̃, where verification is computed using
randomness R.

4. Oblivious PRF evaluations on Y. The parties call functionality F1
CPRF where P0 en-

ters the key K̃ and randomness R and P1 enters the commitment cKEY and the set Y .
Denote by PRFY = {fy}y∈Y the output of P1 from this ideal call only if cKEY is a
commitment of K̃ where verification is computed using randomness R.
P1 outputs all y ∈ Y for which fy ∈ PRFX .

Theorem 52 Assume PRF′
K(·) is a PRF defined as above and that El Gamal is IND-

CPA, then Protocol 6 securely realizes functionality F∩ in the presence of malicious
adversaries in the {FDL,F0

CPRF,F1
CPRF}-hybrid model.

Proof: We prove security for each corruption case separately. We assume that the
simulator is given mX and mY as part of its auxiliary input.

8 We abuse notation and write log c to denote the discrete logarithm of the two group elements
in ciphertext c.



P0 is corrupted. Let A be a PPT adversary corrupting party P0, we design a PPT
simulator SIM that generates the view of A as follows.

1. Given (1n, X, z), SIM engages in an execution of πKeyGen(1
n, 1n) withA. Denote

the outcome by PK.
2. Upon receiving from A its commitment for the PRF key K ← KeyGen(1n, d =

log(mX + mY )), SIM picks a new key share K ′ and sends it to A using PK.
Denote the combined key by K̃ = KK ′.

3. SIM extracts the adversary’s input X ′ from the input to the ideal call F0
CPRF. It

then sends X ′ to the trusted party and completes the execution as would the honest
P1 do on an arbitrary set.

In the hybrid setting, computational indistinguishability between the hybrid and simu-
lated executions is trivially claimed since the adversary does not receive any message
from P1 that depends on Y . An important observation here is that the probability of the
event for which there exists y ∈ Y such that y /∈ X ′ and yet PRFK̃(y) ∈ PRFX′ is
negligible, since the key K̃ is picked independently of the set X ′. This argument fol-
lows from similarly to the proof in [25] and implies that P1’s output in both executions
is identical condition that the above event does not occur.

P1 is corrupted. Let A be a PPT adversary corrupting party P1, we design a PPT
simulator SIM that generates the view of A as follows.

1. Given (1n, Y, z), SIM engages in an execution of πKeyGen(1
n, 1n) withA. Denote

the outcome by PK.
2. SIM picks a PRF key share K ← KeyGen(1n, d = log(mX + mY )) and sends

its encryption to A using PK. Upon receiving A’s key share K ′ the simulator sets
the combined key by K̃ = KK ′.

3. SIM picks a set of mX arbitrary elements XSIM from Zp. It then emulates the
ideal call F0

CPRF and hands the adversary a random set U of size mX and proper
length.

4. Finally, the simulator extracts the adversary’s input Y ′ to the ideal call F1
CPRF and

sends this set to the trusted party, receiving back Z = X ∩ Y ′. The simulator
completes the execution as follows. For each element y′ ∈ Y ′ ∩ Z it programs the
ideal answer of F1

CPRF to be r ∈ U where r is picked from the remaining elements
from the set U that were not picked thus far. Otherwise, the simulator returns a
fresh random element from Zp.

Security here follows from the IND-CPA security of the El Gamal PKE and the security
of the PRF. That is, the simulated view is different from the hybrid view relative to
the encrypted input of P0 and the fact that the simulator uses a random function to
evaluate the sets in X ′

SIM and Y ′. Therefore, the proof can be shown by defining
a hybrid game where in the first game the simulator encrypts P0’s real input X but
completes the simulation as in the original simulation. Indistinguishability between the
simulation and the hybrid game follows easily by a reduction to the IND-CPA security
of El Gamal since the simulator never uses the secret key of the encryption scheme.
Indistinguishability between the hybrid game and the hybrid execution follows by a
reduction to the pseudorandomness of the PRF.



Efficiency. The overhead of protocol 6 depends on the implementations of F0
CPRF and

F1
CPRF discussed above. Our protocol obtains O(mX +mY ) communication and com-

putation overheads under the strong-DDH assumption and O((mX +mY ) log(mX +
mY )) overheads under the DDH assumption, where the former analysis matches the [31]
analysis (such that both constructions rely on dynamic assumptions).

5.2 Search Functionalities

In search functionalities a receiver searches in a sender’s database, retrieving the ap-
propriate record(s) according to some search query. The database for search function-
alities can be described by pairs of queries/records {(qi, Ti)}i such that the answer to
a query qi is a record Ti.9 In a private setting we need to ensure that nothing beyond
these records leaks to the receiver, while the sender does not learn anything about the
receiver’s search queries. Committed oblivious PRF evaluation is a useful tool for se-
curely implementing various search functionalities [20]. First, in the setup phase the
database is encoded and handed to the receiver. That is, for each query qi the sender
defines the pair (PRFK(qi∥1),PRFK(qi∥2)⊕ Ti). Next, in the query phase the parties
run a committed oblivious PRF evaluation protocol twice such that the sender inputs K
and the receiver inputs a query q. The receiver’s output are the values PRFK(q∥1) and
PRFK(q∥2), where the first outcome is used to find the encrypted record while the sec-
ond outcome is used to extract the record. (Alternative implementations involve a single
invocation of PRF by splitting PRFK(q) into two parts). Examples for such functional-
ities are keyword search, oblivious transfer with adaptive queries and pattern matching
(and all its variants). The functionality of committed oblivious PRF is important in this
context since the sender must be enforced to use the same PRF key.
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