
Tightly-Secure Authenticated Key Exchange

Christoph Bader1, Dennis Hofheinz2, Tibor Jager1, Eike Kiltz1, and Yong Li1

1 Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany
{christoph.bader,tibor.jager,eike.kiltz,yong.li}@rub.de

2 Karlsruhe Institute of Technology, Germany
dennis.hofheinz@kit.edu

Abstract. We construct the first Authenticated Key Exchange (AKE)
protocol whose security does not degrade with an increasing number
of users or sessions. We describe a three-message protocol and prove
security in an enhanced version of the classical Bellare-Rogaway security
model.
Our construction is modular, it can be instantiated efficiently from stan-
dard assumptions (such as the SXDH or DLIN assumptions in pairing-
friendly groups). For instance, we provide an SXDH-based protocol with
only 14 group elements and 4 exponents communication complexity (plus
some bookkeeping information).
Along the way we develop new, stronger security definitions for digital
signatures and key encapsulation mechanisms. For instance, we intro-
duce a security model for digital signatures that provides existential un-
forgeability under chosen-message attacks in a multi-user setting with
adaptive corruptions of secret keys. We show how to construct efficient
schemes that satisfy the new definitions with tight security proofs under
standard assumptions.

1 Introduction

Authenticated Key Exchange (AKE) protocols allow two parties to establish a
cryptographic key over an insecure channel. Secure AKE protects against strong
active attackers that may for instance read, alter, drop, replay, or inject messages,
and adaptively corrupt parties to reveal their long-term or session keys. This
makes such protocols much stronger (and thus harder to construct) than simpler
passively secure key exchange protocols like e.g. [19].

Probably the most prominent example of an AKE protocol is the TLS Hand-
shake [16,17,18], which is widely used for key establishment and authentica-
tion on the Internet. The widespread use of TLS makes AKE protocols one of
the most widely-used cryptographic primitives. For example, the social network
Facebook.com reports 802 million daily active users on average in September
2013. This makes more than 229 executions of the TLS Handshake protocol per
day only on this single web site.3 The wide application of AKE protocols makes
it necessary and interesting to study their security in large-scale settings with
many millions of users.

3 Figure obtained from http://newsroom.fb.com/Key-Facts on May 26, 2014. We
assume that each active user logs-in once per day.

http://newsroom.fb.com/Key-Facts

Provably-secure AKE and tight reductions. A reduction-based security proof
describes an algorithm, the reduction, which turns an efficient attacker on the
protocol into an efficient algorithm solving an assumed-to-be-hard computational
problem. The quality of such a reduction can be measured by its efficiency: the
running time and success probability of the reduction running the attacker as a
subroutine, relative to the running time and success probability of the attacker
alone. Ideally the reduction adds only a minor amount of computation and has
about the same success probability as the attacker. In this case the reduction is
said to be tight.

The existence of tight security proofs has been studied for many crypto-
graphic primitives, like, e.g., digital signatures [8,34,28,2], public-key encryp-
tion [4,25,31], or identity-based encryption [15,11]. However, there is no example
of an authenticated key exchange protocol that comes with tight security proof
under a standard assumption, not even in the Random Oracle Model [6].

Known provably secure AKE protocols come with a reduction which loses a
factor that depends on the number µ of users and the number ` of sessions per
user. The loss of the reduction ranges typically between 1/(µ ·`) (if the reduction
has to guess only one party participating in a particular session) and 1/(µ · `)2
(if the reduction has to guess both parties participating in a particular session).
This may become significant in large-scale applications. We also consider tight
reductions as theoretically interesting in their own right, because it is challenging
to develop new proof strategies that avoid guessing. We will elaborate on the
difficulty of constructing tightly secure AKE ini the next paragraph.

The difficulty of Tightly-Secure AKE. There are two main difficulties with prov-
ing tight security of an AKE protocol, which we would like to explain with
concrete examples.

To illustrate the first, let us think of an AKE protocol where the long-term
key pair (pki, ski) is a key pair for a digital signature scheme. Clearly, at some
point in the security proof the security of the signature scheme must be used as
an argument for the security of the AKE protocol, by giving a reduction from
forging a signature to breaking the AKE protocol. Note that the attacker may
use the Corrupt-query to learn the long-term secret of all parties, except for
communication partner Pj of the Test-oracle. The index j might be chosen at
random by the attacker.

A standard approach in security proofs for AKE protocols is to let the reduc-
tion, which implements the challenger in order to take advantage of the attacker,
guess the index j of party Pj . The reduction generates all key pairs (pki, ski)
with i 6= j on its own, and thus is able to answer Corrupt-queries to party Pi for
all i 6= j. In order to use the security of the signature scheme as an argument, a
challenge public-key pk∗ from the security experiment of the signature scheme
is embedded as pkj := pk∗.

Note that this strategy works only if the reduction guesses the index i ∈ [`]
correctly, which leads to a loss factor of 1/` in the success probability of the
reduction. It is not immediately clear how to avoid this guessing: a reduction
that avoids it would be required to be able to reveal all long-term secret key

2

at any time in the security experiment, while simultaneously it needs to use the
security of the signature scheme as an argument for the security of the AKE
protocol. It turns out that we can resolve this seeming paradox by combining
two copies of a signature scheme with a non-interactive proof system in a way
somewhat related to the Naor-Yung paradigm [33] for public-key encryption.

To explain the second main difficulty, let us consider signed-DH protocol as
an example. Let us first sketch this protocol. We stress that we leave out many
details for simplicity, to keep the discussion on an intuitive level. In the sequel
let G be a cyclic group of order p with generator g. Two parties Pi, Pj exchange
a key as follows.

1. Pi chooses x
$← Zp at random. It computes gx and a digital signature σi

over gx, and sends (gx, σi) to Pj .

2. If Pj receives (gx, σi). It verifies σi, chooses y
$← Zp at random, computes

gy and a digital signature σj over gy, and sends (gy, σj) to Pi. Moreover, Pj
computes the key as K = (gx)y.

3. If Pi receives (gy, σj), and σj is a valid signature, then Pi computes the key
as K = (gy)x.

The security of this protocol can be proved [13] based on the (assumed) se-
curity of the signature scheme and the hardness of the decisional Diffie-Hellman
problem, which asks for a given a vector (g, gx, gy, gw) ∈ G to determine whether
w = xy or w is random. However, even though the DDH problem is randomly
self-reducible [4], it seems impossible to avoid guessing at least one oracle par-
ticipating in the Test-session.

To explain this, consider an attacker in the AKE security model from Sec-
tion 4.1. Assume that the attacker asks Send(i, s, (>, j)) to an (uncorrupted)
oracle πsi . According to the protocol specification, the oracle has to respond
with (gx, σi). At some point in the security proof the security of the protocol
is reduced to the hardness of the DDH problem, thus, the challenger of the
AKE security experiment has to decide whether it embeds (a part of) the given
DDH-instance in gx. Essentially, there are two options:

– The challenger decides that it embeds (a part of) the given DDH-instance
in gx. In this case, there exists an attacker which makes the simulation fail
(with probability 1) if oracle πsi does not participate in the Test-session. This
attacker proceeds as follows.
1. It corrupts some unrelated party Pj to learn skj .

2. It computes gy for y
$← Zp along with a signature σj under skj , and asks

Send(i, s, (gy, σj)) to send (gy, σj) to πsi .
3. Finally it asks Reveal(i, s) to learn the session key ksi computed by πsi ,

and checks whether ksi = (gx)y.
A challenger interacting with this attacker faces the problem that it needs
to be able to compute ksi = (gy)x, knowing neither x or y. Note that the
challenger can not answer with an incorrect ksi , because the attacker knows
y and thus is able check whether ksi is computed correctly.

– The challenger decides that it does not embed (a part of) the given DDH-
instance in gx. If now the attacker asks Test(i, s), then the challenger is not

3

able to take advantage of the attacker, because the DDH-challenge is not
embedded in the Test-session.

The only way we see to circumvent this technical issue is to let the challenger
guess in advance (at least) one oracle that participates in the Test-session, which
however leads to a loss of 1/(µ`) in the reduction.

The challenge with describing a tightly-secure AKE protocol is therefore to
come up with a proof strategy that that avoids guessing. This requires to apply
a strategy where essentially an instance of a hard computational problem is
embedded into any protocol session, while at the same time the AKE-challenger
is always able to compute the same keys as the attacker.

Our contribution. We construct the first AKE protocols whose security does not
degrade in the number of users and instances. Following [5] we consider a very
strong security model, which allows adaptive corruptions of long-term secrets,
adaptive reveals of session keys, and multiple adaptive Test queries.

Our model provides perfect forward secrecy [9,29]: the corruption of a long-
term secret does not foil the security of previously established session keys. In ad-
dition to that, we prevent key-compromise impersonation attacks [10,23]: in our
security model, an attacker may introduce maliciously-generated keys. On the
other hand, we do not allow reveals of internal states or intermediate results of
computations, as considered in the (extended) Canetti-Krawczyk model [13,30].
The existence of a tightly secure construction in such a model is an interesting
open problem.

While our approach is generic and modular, we give efficient instantiations
from standard assumptions (such as the SXDH or DLIN assumptions in pairing-
friendly groups). Specifically, we propose an SXDH-based AKE protocol with
a communication complexity of only 14 group elements and 4 exponents (plus
some bookkeeping information). The security reduction to SXDH loses a factor
of κ (the security parameter), but does not depend on the number of users or
instances. (Using different building blocks, this reduction loss can even be made
constant, however at a significant expense of communication complexity.)

Our approach. At a very high level, our AKE protocol follows a well-known
paradigm: we use a public-key encryption scheme to transport shared keys, and
a digital signature scheme to authenticate exchanged messages. Besides, we use
one-time signature scheme to provide a session-specific authentication, and thus
to guarantee a technical “matching conversations” property.4 The combination
of these building blocks in itself is fairly standard; the difficulty in our case is to
construct suitable buildings blocks that are tightly and adaptively secure.

More specifically, we require, e.g., a signature scheme that is tightly secure
in face of adaptive corruptions. Specifically, it should be hard for an adversary

4 Intuitively, the matching conversations property, introduced by Bellare and Rog-
away [5] establishes the notion of a “session” between two communication partners
(essentially as the transcript of exchanged messages itself). Such a notion is essen-
tial in a model without explicit session identifiers (such as the one of Canetti and
Krawczyk [13,14]) that separate different protocol instances.

4

A to forge a new signature in the name of any so far uncorrupted party in the
system, even though A may corrupt arbitrary other parties adaptively. While
regular signature security implies adaptive security in this sense, this involves
a (non-tight) guessing argument. In fact, currently, no adaptively tightly secure
signature scheme is known: while, e.g., [25] describe a tightly secure signature
scheme, their analysis does not consider adaptive corruptions, and in particular
no release whatsoever of signing keys. (The situation is similar for the encryption
scheme used for key transport.)

How we construct adaptively secure signatures. Hence, while we cannot directly
use existing building blocks, we can use the (non-adaptively) tightly secure signa-
ture scheme of [25] as a basis to construct adaptively and tightly secure compo-
nents. In a nutshell, our first (less efficient but easier-to-describe) scheme adapts
the “double encryption” technique of Naor and Yung [33] to the signature setting.
A little more concretely, our scheme uses two copies of an underlying signature
scheme SIG (that has to be tightly secure, but not necessarily against adaptive
corruptions). A public key in our scheme consists of two public keys pk1, sk2 of
SIG; however, our secret key consists only of one (randomly chosen) secret key
skb of SIG. Signatures are (non-interactive, witness-indistinguishable) proofs of
knowledge of one signature σi under one ski.

During the security proof, the simulation will know one valid secret key skb
for each scheme instance.5 This allows to plausibly reveal secret keys upon cor-
ruptions. However, the witness-indistinguishability of the employed proof system
will hide which of the two possible keys ski are known for each user until that
user is corrupted. Hence, an adversary A who forges a signature for an uncor-
rupted user will (with probability about 1/2) forge a signature under a secret
key which is unknown to the simulation. Hence, the simulation will lose only
about a factor of 2 relative to the success probability of A.

Of course, this requires using a suitable underlying signature scheme and
proof system. For instance, the tightly secure (without corruptions) signature
scheme from [25,1] and the Groth-Sahai non-interactive proof system [24] will
be suitable DLIN-based building blocks.

Efficient adaptively secure signatures. The signature scheme arising from the
generic approach above is not overly efficient. Hence, we also construct a very
optimized scheme that is not as modularly structured as the scheme above, but
has extremely compact ciphertexts (of only 3 group elements). In a nutshell, this
compact scheme uses the signature scheme that arises out of the recent almost-
tightly secure MAC of [11] as a basis. Instead of Groth-Sahai proofs, we use
a more implicit consistency proof reminiscent of hash proof systems. Security
can be based on a number of computational assumptions (including SXDH and

5 This can be seen as a variation of the approach of “two-signatures” approach of [21].
Concretely, [21] construct a signature scheme in which the simulation – by cleverly
programming a random oracle – knows one out of two possible signatures for each
message.

5

DLIN), and the security reduction loses a factor of κ (the security parameter),
independently of the number of users or generated signatures. We believe that
this signature scheme can be of independent interest.

Adaptively secure PKE and AKE schemes. A similar (generic) proof strategy
allows to construct adaptively (chosen-plaintext) secure public-key encryption
schemes using a variation of the Naor-Yung double encryption strategy [33].
(In this case, the simulation will know one out of two possible decryption keys.
Furthermore, because we only require chosen-plaintext security, no consistency
proof will be necessary.) Combining these tightly and adaptively secure building
blocks with the tightly secure one-time signature scheme from [25] finally enables
the construction of a tightly secure AKE protocol. As already sketched, our
signature scheme ensures authenticated channels, while our encryption scheme
is used to exchange session keys. (However, to achieve perfect forward secrecy –
i.e., the secrecy of finished sessions upon corruption –, we generate PKE instances
freshly for each new session.)

Notation. The symbol ∅ denotes the empty set. Let [n] := {1, 2, . . . , n} ⊂ N and

let [n]0 := [n] ∪ {0}. If A is a set, then a
$← A denotes the action of sampling

a uniformly random element from A. If A is a probabilistic algorithm, then we

denote by a
$← A that a is output by A using fresh random coins. If an algorithm

A has black-box access to an algorithm O, we will write AO.

2 Digital Signatures in the Multi-User Setting with
Corruptions

In this section we define digital signature schemes and their security in the
multi-user setting. Our strongest definition will be existential unforgeability un-
der adaptive chosen-message attacks in the multi-user setting with adaptive cor-
ruptions. We show how to construct a signature scheme with tight security proof,
based on a combination of a non-interactive witness indistinguishable proof of
knowledge with a signature scheme with weaker security properties.

2.1 Basic Definitions

Definition 1. A (one-time) signature scheme SIG consists of four probabilistic
algorithms:

– Π
$← SIG.Setup(1κ): The parameter generation algorithm on input a security

parameter 1κ returns public parameters Π, defining the message space M,
signature space S, and key space VK × SK.

– SIG.Gen(Π): On input Π the key generation algorithm ouputs a key pair
(vk, sk) ∈ VK × SK.

– SIG.Sign(sk,m): On input a private key sk and a message m ∈ M, the
signing algorithm outputs a signature σ.

6

– SIG.Vfy(vk,m, σ): On input a verification key vk, a message m, and a pur-
ported signature σ, the verification algorithm returns b ∈ {0, 1}.

We note that our security definition below assumes a trusted setup of public
parameters (using SIG.Setup). Moreover, throughout the paper, we will assume
signature schemes with message space {0, 1}∗ for simplicity. It is well-known
that such a scheme can be constructed from a signature scheme with arbitrary
message space M by applying a collision-resistant hash function H : {0, 1}∗ →
M to the message before signing.

Security Definitions. The standard security notion for signature schemes in the
single user setting is existential unforgeability under chosen-message attacks, as
proposed by Goldwasser, Micali and Rivest [22]. We consider natural extensions
of this notion to the multi-user setting with or without adaptive corruptions.

Consider the following game between a challenger C and an adversary A,
which is parametrized by the number of public keys µ.

1. For each i ∈ [µ], C runs (vk(i), sk(i)) ← SIG.Gen(Π), where Π are public
parameters. Furthermore, the challenger initializes a set Scorr to keep track
of corrupted keys, and µ sets S1, . . . ,Sµ, to keep track of chosen-message
queries. All sets are initially empty. Then it outputs (vk(1), . . . , vk(µ)) to A.

2. A may now issue two different types of queries. When A outputs an index
i ∈ [µ], then C updates Scorr := Scorr ∪ {i} and returns ski. When A outputs
a tuple (m, i), then C computes σ := SIG.Sign(ski,m), adds (m,σ) to Si, and
responds with σ.

3. Eventually A outputs a triple (i∗,m∗, σ∗).

Now we can derive various security definitions from this generic experiment.
We start with existential unforgeability under chosen-message attacks in the
multi-user setting with corruptions.

Definition 2. Let A be an algorithm that runs in time t. We say that A (t, ε, µ)-
breaks the MU-EUF-CMACorr-security of SIG, if in the above game it holds that

Pr

[
(m∗, i∗, σ∗)← AC :

i∗ 6∈ Scorr ∧ (m∗, ·) 6∈ Si∗

∧SIG.Vfy(vk(i
∗),m∗, σ∗) = 1

]
≥ ε

In order to construct an MU-EUF-CMACorr-secure signature scheme, we will
also need the following weaker definition of EUF-CMA security in the multi-user
setting without corruptions. We note that this definition was also considered
in [32].

Definition 3. Let A be an algorithm that runs in time t. We say that A (t, ε, µ)-
breaks the MU-EUF-CMA-security of SIG, if in the above game it holds that

Pr

[
(m∗, i∗, σ∗)← AC :

Scorr = ∅ ∧ (m∗, ·) 6∈ Si∗

∧SIG.Vfy(vk(i
∗),m∗, σ∗) = 1

]
≥ ε

7

Note that both MU-EUF-CMACorr and MU-EUF-CMA security notions are
polynomially equivalent to the standard (single user) EUF-CMA security notion
for digital signatures. However, the reduction is not tight.

Finally, we need strong existential unforgeability in the multi-user setting
without corruptions for one-time signatures.

Definition 4. Let A be an algorithm that runs in time t. We say that A (t, ε, µ)-
breaks the MU-sEUF-1-CMA-security of SIG, if in the above game it holds that

Pr

[
(m∗, i∗, σ∗)← AC :

Scorr = ∅ ∧ |Si| ≤ 1,∀i ∧ (m∗, σ∗) 6∈ Si∗

∧SIG.Vfy(vk(i
∗),m∗, σ∗) = 1

]
≥ ε

2.2 MU-EUF-CMACorr-Secure Signatures from General
Assumptions

In this section we give a generic construction of a MU-EUF-CMACorr-secure
signature scheme, based on a MU-EUF-CMA-signature scheme and a non-inter-
active witness-indistinguishable proof of knowledge that allows a tight security
proof. The main purpose of this construction is to resolve the “paradox” ex-
plained in the introduction.

NIWI Proofs of Knowledge. Let R be a binary relation. If (x,w) ∈ R, then
we call x the statement and w the witness. R defines a language LR := {x : ∃w :
(x,w) ∈ R}. A non-interactive proof system NIPS = (NIPS.Gen,NIPS.Prove,
NIPS.Vfy) for R consists of the following efficient algorithms.
– Algorithm NIPS.Gen takes as input the security parameter and ouputs a

common reference string CRS
$← NIPS.Gen(1κ).

– Algorithm NIPS.Prove takes as input the CRS, a statement x and a witness

w, and outputs a proof π
$← NIPS.Prove(CRS, x, w).

– The verification algorithm NIPS.Vfy(CRS, x, π) ∈ {0, 1} takes as input the
CRS, a statement x, and a purported proof π. It outputs 1 if the proof is
accepted, and 0 otherwise.

Definition 5. We call NIPS a witness indistinguishable proof of knowledge
(NIWI-PoK) for R, if the following conditions are satisfied:

Perfect completeness. For all (x,w) ∈ R, κ ∈ N, CRS
$← NIPS.Gen(1κ), and

all proofs π computed as π
$← NIPS.Prove(CRS, x, w) holds that

Pr [NIPS.Vfy(CRS, x, π) = 1] = 1

Perfect Witness Indistinguishability. For all CRS
$← NIPS.Gen(1κ), for all

(x,w0, w1) such that (x,w0) ∈ R and (x,w1) ∈ R, and all algorithms A it
holds that

Pr [A(π0) = 1] = Pr [A(π1) = 1] (1)

where π0
$← NIPS.Prove(CRS, x, w0) and π1

$← NIPS.Prove(CRS, x, w1).

8

Simulated CRS. There exists an algorithm E0, which takes as input κ and
outputs a simulated common reference string CRSsim and a trapdoor τ .

Perfect Knowledge Extraction on Simulated CRS. There exists an algo-

rithms E1 such that for all (CRSsim, τ)
$← E0(1κ) and all (π, x) ← A such

that NIPS.Vfy(CRSsim, x, π) = 1

Pr
[
w

$← E1(CRSsim, π, x, τ) : (x,w) ∈ R
]

= 1

Security Definition for NIWI-PoK. An algorithm (t, εCRS)-breaks the secu-

rity of a NIWI-PoK if it runs in time t and for all κ ∈ N, CRSreal
$←

NIPS.Gen(1κ), all (CRSsim, τ)
$← E0(1κ), it holds that

Pr
[
A(CRSreal) = 1)

]
− Pr

[
A(CRSsim) = 1

]
≥ εCRS

We note that perfect witness indistinguishability is preserved if the algo-
rithm A sees more than one proof. That is, let Oqb (x,w0, w1) denote an oracle
which takes as input (x,w0, w1) with (x,w0) ∈ R and (x,w1) ∈ R, and out-
puts NIPS.Prove(CRS, x, wb) for random b ∈ {0, 1}. Consider an algorithm A
which asks Oqb at most q times. The following is proven in the full version of our
paper [3].

Lemma 1. Equation 1 implies for all q ∈ N:

Pr
[
AO

q
1 = 1 : CRS

$← NIPS.Gen(1κ)
]

= Pr
[
AO

q
0 = 1 : CRS

$← NIPS.Gen(1κ)
]

Generic Construction. In this section we show how to generically construct an
MU-EUF-CMACorr-secure (Definition 2) signature scheme SIGMU from a signa-
ture scheme SIG that is MU-EUF-CMA-secure (Definition 3) and a NIWI-PoK.

In the sequel let NIPS = (NIPS.Gen,NIPS.Prove,NIPS.Vfy) denote a NIWI-
PoK for relation

R :=

{
((vk0, vk1,m), (σ0, σ1)) :

SIG.Vfy(vk0,m, σ0) = 1

∨SIG.Vfy(vk1,m, σ1) = 1

}
.

That is, R consists of statements of the form (vk0, vk1,m), where (vk0, vk1) are
verification keys for signature scheme SIG, and m is a message. Witnesses are
tuples (σ0, σ1) such that either σ0 is a valid signature for m under vk0, or σ1 is
a valid signature for m under vk1, or both.

The new signature scheme SIGMU = (SIG.SetupMU,SIG.GenMU,SIG.SignMU,
SIG.VfyMU) works as follows:

– ΠSIGMU

$← SIG.SetupMU(1κ): The setup algorithm runs ΠSIG
$← SIG.Setup(1κ)

and CRS
$← NIPS.Gen(1κ). It outputs ΠSIGMU

:= (ΠSIG,CRS).
– SIG.GenMU(ΠSIGMU

): The key generation algorithm generates two key pairs
by running the key generation algorithm of SIG twice: For i ∈ {0, 1}, it

runs (vki, ski)
$← SIG.Gen(ΠSIG). Then it flips a random coin δ

$← {0, 1} and
returns (vk, sk) =

(
(vk0, vk1), (skδ, δ)

)
. Observe that sk1−δ is discarded.

9

– SIG.SignMU(sk,m): The signing algorithm generates a SIG-signature σδ
$←

SIG.Sign(skδ,m). Then it defines a witness w as

w :=

{
(σδ,⊥), if δ = 0,

(⊥, σδ), if δ = 1,

where ⊥ is an arbitrary constant (e.g., a fixed element from the signature
space). Note that ((vk0, vk1,m), w) ∈ R. Finally it returns a signature as

σ = π
$← NIPS.Prove

(
CRS, (vk0, vk1,m), w

)
.

– SIG.VfyMU(vk,m, σ): The verification algorithm parses vk as (vk0, vk1) and
returns whatever NIPS.Vfy

(
CRS, (vk0, vk1,m), σ

)
returns.

Theorem 1. Let SIGMU be as described above. From any attacker ASIGMU
that

(t, ε, µ)-breaks the MU-EUF-CMACorr-security (with corruptions) of SIGMU, we
can construct algorithms BNIPS and BSIG such that either BNIPS (tCRS, εCRS)-breaks
the security of NIWI-PoK or BSIG (tSIG, εSIG, µ)-breaks the MU-EUF-CMA-secu-
rity (without corruptions) of SIG, where

ε < 2 · εSIG + εCRS

We have tCRS = t + t′CRS and tSIG = t + t′SIG, where t′CRS and t′SIG correspond to
the respective runtimes required to provide ASIGMU

with the simulated experiment
as described below.

Proof. We proceed in a sequence of games. The first game is the real game
that is played between an attacker A and a challenger C, as described in Sec-
tion 2.1. We denote by χi the event that ASIGMU

outputs (m∗, i∗, σ∗) such that
SIG.Vfy(vk(i

∗),m∗, σ∗) ∧ i∗ /∈ Scorr ∧ (m∗, ·) /∈ Si∗ in Game i.

Game 0. This is the real game that is played between A and C. We set

Pr[χ0] = ε.

Game 1. In this game we change the way keys are generated and chosen-message
queries are answered by the challenger.

When generating a key pair by running SIG.GenMU, the challenger does not
discard sk1−δ but keeps it. However, corruption queries by the attacker are still
answered by responding only with skδ. Therefore this change is completely obliv-
ious to A.

To explain the second change, recall that a SIGMU-signature in Game 0 con-

sists of a proof π
$← NIPS.Prove

(
CRS, (vk0, vk1,m), w

)
, where either w = (σδ,⊥)

or w = (⊥, σδ) for σδ
$← SIG.Sign(skδ,m). In Game 1 the challenger now de-

fines w as follows. It first computes two signatures σ0
$← SIG.Sign(sk0,m) and

σ1
$← SIG.Sign(sk1,m), and sets w := (σ0, σ1). Then it proceeds as before, by

computing π as π
$← NIPS.Prove

(
CRS, (vk0, vk1,m), w

)
. Thus, in Game 1 two

10

valid signatures are used as witnesses. Due to the perfect witness indistinguisha-
bility property of NIPS we have:

Pr[χ0] = Pr[χ1]

Game 2. This game is very similar to the previous game, except that we change

the way the CRS is generated. Now, we run (CRSsim, τ)
$← E0 and all proofs are

generated with respect to CRSsim. Since the contrary would allow BNIPS to break
the (t, εCRS)-security of NIPS we have∣∣Pr[χ1]− Pr[χ2]

∣∣ < εCRS

Game 3. This game is similar to Game 2 except for the following. We abort
the game (and A loses) if the forgery (i∗,m∗, σ∗) returned by A is valid, i.e.,
satisfies SIG.VfyMU

(
vk(i

∗),m∗, σ∗
)

= 1, but the extractor E1 is not able to extract
a witness (s0, s1) from σ∗. Due to the perfect knowledge extraction property of
NIPS on a simulated CRS we have:

Pr[χ2] = Pr[χ3]

Game 4. In this game we raise event abortδ(i∗) and abort (and A loses) if A
outputs a forgery (i∗,m∗, σ∗) such that the following holds.

Given (i∗,m∗, σ∗), the challenger first runs the extractor (s0, s1)
$← E1(τ, σ∗).

Then it checks whether

SIG.Vfy
(
vk

(i∗)

1−δ(i∗) ,m
∗, s1−δ(i∗)

)
= 0.

Recall here that δ(i
∗) denotes the random bit chosen by the challenger for the

generation of the long-term secret of user i∗. If this condition is satisfied, then
the game is aborted. Putting it differently, the challenger aborts, if the witness

s1−δ(i∗) is not a valid signature for m∗ under vk
(i∗)

1−δ(i∗) .

Since A is not allowed to corrupt the secret key of user i∗, and the adver-
sary sees only proofs which use two valid signatures (s0, s1) as witnesses (cf.
Game 1), the random bit δ(i

∗) is information-theoretically perfectly hidden from
A. Therefore, we have Pr[abortδ(i∗)] ≤ 1/2 and

Pr[χ3] ≤ 2 · Pr[χ4]

Claim. For any attackerASIGMU
that breaks the (t,Pr[χ4], µ)-MU-EUF-CMACorr-

security of SIGMU in Game 4 there exists an attacker BSIG that breaks the
(tSIG, εSIG, µ)-MU-EUF-CMA-security of SIG with tSIG ≈ t and εSIG ≥ Pr[χ4].

Given the above claim, we can conclude the proof of Theorem 1. In summary
we have ε ≤ εCRS + 2 · εSIG..

11

Proof of 4. Attacker BSIG simulates the challenger for an adversary ASIGMU
in

Game 4. We show that any successful forgery that is output by ASIGMU
can be

used by BSIG to win the SIG security game.
BSIG receives µ public verification keys vk(i), i ∈ [µ], and public parame-

ters ΠSIG from the SIG challenger. Next, it samples µ key pairs (vk(i), sk(i))
$←

SIG.Gen(ΠSIG), i ∈ {µ + 1, . . . , 2µ}. Moreover, it chooses a random vector δ =
(δ(1), . . . , δ(µ)) ∈ {0, 1}µ. It sets

(vk(i), sk(i))←
((

vk(δ
(i)µ+i), vk((1−δ(i))µ+i)

)
,
(
skµ+i, 1− δ(i)

))
.

Note that now each SIGMU-verification key contains one SIG-verification key that
ASIG has obtained from its challenger, and one that was generated by BSIG. We
note further that, given vk(i), sk(i) is distributed correctly and may be returned
by BSIG when ASIGMU

issues a corrupt query (since it is generated by BSIG itself).
Over that BSIG generates a “simulated” CRS for the NIWI-PoK along with a

trapdoor by running (CRSsim, τ)
$← E0. ASIGMU

receives as input {vk(i) : i ∈ [µ]},
ΠSIG and CRS.

Now, when asked to sign a message m under public key vk(i), ASIG pro-
ceeds as follows. Let δ(i) = 0 without loss of generality. Then it computes
σ1 = SIG.Sign(sk(µ+i),m). Moreover it requests a signature for public key vk(i)

and message m from its SIG-challenger. Let σ0 be the response. ASIG computes
the signature for m using both signatures w = (σ0, σ1) as witnesses. Note that
this is a perfect simulation of Game 4.

If Game 4 is not aborted, then any valid forgery of ASIGMU
can be used by

BSIG as a forgery in the SIG security game. The claim follows. ut

(Somewhat Inefficient) Instantiation From Existing Building Blocks
The generic construction SIGMU above can be instantiated conveniently from
existing building blocks:
– Suitable tightly secure MU-EUF-CMA-secure signatures can be found in

[26,1] (based on the DLIN assumption in pairing-friendly groups).
– A suitable tightly MU-sEUF-1-CMA-secure one-time signature scheme is

described in [26, Section 4.2]. Its security is based on the discrete logarithm
assumption.

– Finally, a compatible NIWI-PoK is given by Groth-Sahai proofs [24]. (In a
Groth-Sahai proof system, there exist “hiding” and “binding” CRSs. These
correspond to our honestly generated, resp. simulated CRSs.) The security
of Groth-Sahai proofs can be based on a number of assumptions, including
the DLIN assumption in pairing-friendly groups.

When used in our generic construction, this yields a signature scheme whose
MU-EUF-CMACorr security can be tightly (i.e., with a small constant loss) re-
duced to the DLIN assumption in pairing-friendly groups. However, we note that
the resulting scheme is not overly efficient. In particular, the scheme suffers from
public keys and signatures that contain a linear – in the security parameter –
number of group elements.

12

Thus, in the next section, we offer an optimized, significantly more efficient
MU-EUF-CMACorr-secure signature scheme.

2.3 Efficient and Almost Tightly MU-EUF-CMACorr-Secure
Signatures

Here, we present a very efficient signature scheme whose MU-EUF-CMACorr secu-
rity can be almost tightly (i.e., with a reduction loss that is linear in the security
parameter) reduced to a number of standard assumptions in cyclic groups. In
fact, we prove security under any matrix assumption [20], which encompasses,
e.g., the SXDH, DLIN, and k-Linear assumptions. The following definitions are
taken from [11].

Pairing Groups and Matrix Diffie-Hellman Assumption. Let GGen be a proba-
bilistic polynomial time (PPT) algorithm that on input 1κ returns a description
G = (G1,G2,GT , q, g1, g2, e) of asymmetric pairing groups where G1, G2, GT are
cyclic groups of order q for a κ-bit prime q, g1 and g2 are generators of G1 and
G2, respectively, and e : G1×G2 is an efficiently computable (non-degenerated)
bilinear map. Define gT := e(g1, g2), which is a generator in GT .

We use implicit representation of exponents by group elements as introduced
in [20]. For s ∈ {1, 2, T} and a ∈ Zq define [a]s = gas ∈ Gs as the implicit
representation of a in Gs. More generally, for a matrix A = (aij) ∈ Zn×mq we
define [A]s as the implicit representation of A in Gs:

[A]s :=

ga11s ... ga1ms

gan1
s ... ganm

s

 ∈ Gn×ms

We will always use this implicit notation of elements in Gs, i.e., we let [a]s ∈
Gs be an element in Gs. Note that under the discrete logarithm assumption
in Gs it is hard to compute a from [a]s ∈ Gs Further, from [b]T ∈ GT it is
hard to compute the value [b]1 ∈ G1 and [b]2 ∈ G2 (pairing inversion problem).
Obviously, given [a]s ∈ Gs and a scalar x ∈ Zq, one can efficiently compute
[ax]s ∈ Gs. Further, given [a]1, [a]2 one can efficiently compute [ab]T using the
pairing e. For a,b ∈ Zkq define e([a]1, [b]2) := [a>b]T ∈ GT .

We recall the definition of the Matrix Diffie-Hellman (MDDH) assumption
[20].

Definition 6 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distri-

bution if it outputs matrices in Z(k+1)×k
q of full rank k in polynomial time.

For B ∈ Z(k+1)×n
q , we define B ∈ Zk×nq as the first k rows of B and B ∈ Z1×n

q as
the last row vector of B. Without loss of generality, we assume the first k rows

A of A
$← Dk form an invertible matrix.

The Dk-Matrix Diffie-Hellman problem is to distinguish the two distributions

([A], [Aw]) and ([A], [u]) where A
$← Dk, w

$← Zkq and u
$← Zk+1

q .

13

Definition 7 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let Dk
be a matrix distribution and s ∈ {1, 2, T}. We say that A (ε, t)-breaks the Dk-
Matrix Diffie-Hellman (Dk-MDDH) Assumption relative to GGen in group Gs if
it runs in time at most t and

Pr[A(G, [A]s, [Aw]s) = 1]− Pr[A(G, [A]s, [u]s) = 1]| ≤ ε,

where the probability is taken over G ← GGen(1λ), A← Dk,w
$← Zkq ,u

$← Zk+1
q

and the random coins of A.

The Construction and its Security Let GGen be a pairing group gener-
ator and let Dk be a matrix distribution. The new signature scheme SIGC =
(SIG.SetupC,SIG.GenC,SIG.SignC,SIG.VfyC) for message m ∈ {0, 1}` is based on
a tightly-secure signature scheme from [11]. Whereas [11] obtained their sig-
nature scheme from a tightly-secure single-user algebraic MAC, we implicitly
construct a tightly-secure multi-user algebraic MAC. More precisely, the signa-
tures consist of the algebraic MAC part (elements [r]2, [u]2) plus a NIZK proof
[v]2 showing that the MAC is correct with respect to the committed MAC secret
key [c]1.

The scheme works as follows.
– Π

$← SIG.SetupC(1κ): The parameter generation algorithm SIG.SetupC runs

G $← GGen, A,A′
$← Dk and defines B := A′ ∈ Zk×kq , the k × k matrix

consisting of the k top rows of A′. For 0 ≤ i ≤ `, 0 ≤ b ≤ 1 it picks xi,b
$← Zkq ,

Yi,b
$← Zk×kq , and defines Zi,b = (Y>i,b||xi,b) ·A ∈ Zk×kq . It outputs

Π :=
(
G, [A]1, [B]2, ([Zi,b]1, [x

>
i,bB]2, [Yi,bB]2)1≤i≤`,0≤b≤1

)
.

For a message m = (m1, . . . ,m`) ∈ {0, 1}`, define the following functions

x(m) :=
∑̀
i=1

x>i,mi
∈ Z1×k

q , Y(m) :=
∑̀
i=1

Yi,mi
∈ Zk×kq ,

Z(m) :=
∑̀
i=1

Zi,mi
= (Y(m)>||x(m)>) ·A ∈ Zk×kq . (2)

– SIG.GenC(Π): The key generation algorithm picks a
$← Zq, b

$← Zkq , and

defines c> = (b>||a) · A ∈ Z1×k
q . It returns (vk, sk) =

(
[c]1, ([a]2, [b]2)

)
∈

Gk1 ×Gk+1
2 .

– SIG.SignC(Π, sk,m): The signing algorithm parses sk as sk = ([a]2, [b]2).

Next, it picks r′
$← Zkq and defines

r := B · r′ ∈ Zkq , u = a+ x(m) · r ∈ Zq, v = b + Y(m) · r ∈ Zkq . (3)

The signature for message m is σ := ([r]2, [u]2, [v]2) ∈ G2k+1
2 . Note that

[u]2, [v]2 can be computed from r′ and Π.

14

– SIG.VfyC(Π, vk = [c]1,m, σ = ([r]2, [u]2, [v]2)): The verification algorithm

picks s
$← Zkq and returns 1 iff the equation

e([c> · s]1, [1]2) = e([A · s]1,

[
v
u

]
2

) · e([Z(m) · s]1, [r]2)−1 (4)

holds, where e([z]1, [z
′]2) := [z> · z′]T .

Instantiated under the SXDH assumption (i.e., k = 1 and DDH in G1 and G2)
we obtain a signature scheme with |vk| = 1×G1 and |σ| = 3×G2. Instantiated
under the k-Lin assumption, we obtain a signature scheme with vk| = k × G1

and |σ| = (2k + 1)×G2. In both cases the public parameters contain `k2 group
elements.

Theorem 2. For any attacker A that (t, ε, µ)-breaks the MU-EUF-CMACorr-
security of SIGC, there exists an algorithm B = (B1,B2) such that B1 (t1, ε1)-
breaks the Dk-MDDH assumption in G1, and B2 (t2, ε2)-breaks the Dk-MDDH
assumption in G2 where ε < ε1 + 2`ε2 + 2/q. We have t1 = t+ t′1 and t2 = t+ t2,
where t′1 and t′2 correspond to the respective runtimes required to provide ASIGMU

with the simulated experiment as described below.

Proof. As before, we proceed in a sequence of games where the first game is the
MU-EUF-CMACorr-security game that is played between an attacker A and a
challenger C, as described in Section 2.1. We denote by χi the event that ASIGMU

outputs (m∗, i∗, σ∗) such that SIG.Vfy(vk(i
∗),m∗, σ∗) ∧ i∗ /∈ Scorr ∧ (m∗, ·) /∈ Si∗

in Game i.

Game 0. This is the real game that is played between A and C. We use
(vki, ski) =

(
[ci]1, ([ai]2, [bi]2)

)
to denote the verification/signing key of the i-th

user. We have

Pr[χ0] = ε.

Game 1. In this game we change the way the experiment treats the final
forgery σ∗ = ([r∗]2, [u

∗]2, [v
∗]2) for user i∗ on message m∗. The experiment picks

s∗
$← Zkq and defines t∗ = A · s∗. Next, it changes verification equation (4) and

returns 1 iff equation

e([(b>i∗ ||ai∗) · t∗]1, [1]2) = e([t∗]1,

[
v∗

u∗

]
2

) · e([(Y>(m∗)||x(m∗)>) · t∗]1, [r∗]2)−1

(5)
holds. By equation (2) and by the definition of c>i∗ = (b>i∗ ||ai∗) ·A, equations (4)
and (5) are equivalent. Hence,

Pr[χ1] = Pr[χ0].

Game 2. In this game, we again change the way the experiment treats the final

forgery. Instead of defining t∗ = A · s∗, we pick t∗
$← Zk+1

q . Clearly, there exists

15

an adversary B1 such that B1 (t1, ε1)-breaks the Dk-MDDH assumption in G1

with t ≈ t1 and
Pr[χ2]− Pr[χ1] = ε1.

Game 3. In this game, we make a change of variables by substituting all Yi,b

and bi using the formulas

Y>i,b = (Zi,b − xi,b ·A)A
−1
, b>i = (c>i − ai ·A)A

−1
, (6)

respectively. The concrete changes are as follows. First, the public parameters
Π are computed by picking Zi,b and xi,b at random and then defining Yi,b using
(6). Second, the verification keys vki for user i are computed by picking ci and
ai at random and then defining bi using (6).

Third, on a signing query (m, i), the values r and u are computed as before,
but the value v is computed as

v> = (r>Z(m) + c>i − u ·A) ·A−1. (7)

Fourth, the verification query for message m∗ and user i∗ is answered by picking

h∗
$← Zq and t∗

$← Zkq , defining t∗ = h∗ + AA
−1

t∗ and changing equation (5)
to

e([c>i∗ ·A
−1

t∗ + ai∗ · h∗]1, [1]2)

=e([t∗]1,

[
v∗

u∗

]
2

) · e([Z(m∗)A
−1

t∗ + x(m∗)h∗]1, [r
∗]2)−1

(8)

By the substitution formulas for Yi,b and bi and be the definition of h and t∗,
equations (3) and (7) and equations (5) and (8) are equivalent. Hence,

Pr[χ3] = Pr[χ2].

Game 4. In this game, the answer σ = ([r]2, [u]2, [v]2) to a signing query (m, i)
is computed differently. Concretely, the values r and v are computed as before,

but the value u is chosen as u
$← Zq.

The remaining argument is purely information-theoretic. Note that in Game
4, the value ai∗ from ski∗ only leaks through vki∗ via c>i∗ = (b>i∗ ||ai∗) · A. As
the uniform t∗ 6∈ span(A) (except with probability 1/q) the value (b>i∗ ||ai∗) · t∗
from (5) (which is equivalent to (8)) is uniform and independent from A’s view.
Hence,

Pr[χ4] = 2/q.

The following lemma which essentially proves that the underlying message
authentication code is tightly secure in a multi-user setting with corruptions
completes the proof of the Theorem 2. It follows [11,15].

Lemma 2. There exists an adversary B2 such that B2 (t2, ε2)-breaks the Dk-
MDDH assumption in G2 with t ≈ t1 and

Pr[χ4]− Pr[χ3] ≤ 2`ε2.

16

To prove the lemma, we define the following hybrid games Hj , 0 ≤ j ≤ ` that
are played with an adversary C. All variables are distributed as in Game 4.
For m ∈ {0, 1}∗, define m|j as the j-th prefix of m. (By definition, m|0 is the
empty string ε.) Let RFi,j : {0, 1}j → Zq be independent random functions.
(For concreteness, one may think of RFi,0(ε) := ai, the MAC secret key skMAC of
the i-th user. In each hybrid Hj , we will double the number of secret-keys used
in answering the queries until each query uses an independent secret key.) In
Hybrid Hj , adversary C first obtains the values [B]2 and ([x>i,bB]2)i,b, which can
be seen as the public MAC parameters ΠMAC. Next, adversary C can make an
arbitrary number of tagging and corruption queries, plus one forgery query. On
a tagging query called with (m, i), hybrid Hj picks a random r ∈ Zkq , computes
u = RFi,j(m|j) + x(m) · r and returns ([r]2, [u]2) (the MAC tag) to adversary
C. Note that the value v is not provided by the oracle. On a Corrupt query
called with i, hybrid Hj returns [ai]2 = [RFi,j(m(i)|j)]2 to C, where m(i) is
the first message for which the tagging oracle was called for with respect to
user i. (We make one dummy query if m(i) is undefined.) Further, user i is
added to the list of corrupted users. The adversary is also allowed to make one
single forgery query (i∗,m∗) for an uncorrupted user i∗ which is answered with

([h∗]1, [h
∗ ·RFi∗,j(m∗|j)]1, [h

∗ · x(m∗)]1), for h∗
$← Zq. Finally, hybrid Hj outputs

whatever adversary C outputs.

Note that Game 3 can be perfectly simulated using the oracles provided by

hybrid H0. The reduction picks A
$← Dk, inputs [B]2 and ([xi,bB]2)i,b from

the hybrid game H0, picks Zi,b at random, and computes [Yi,bB]2 via (6). The
public verification keys vki = [ci]1 are picked at random, without knowing ski =
([ai]2, [bi]2). To simulate a signing query on (m, i), the reduction queries the
tagging oracle to obtain ([r]2, [u]2) and computes the value [v]2 as in Game 3
via (7). Forgery and Corrupt queries can be simulated the same way by defining
RFi,0(ε) =: ai. Hence Pr[χ3] = Pr[H0 = 1]. Similarly, Pr[χ4] = Pr[H` = 1] as in
hybrid H` are values u = RFi,`(m) + x(m) · r are uniform.

We make the following claim:

Claim. |Pr[Hj−1 = 1]− Pr[Hj = 1]| ≤ 2ε2, for a suitable adversary B2.

The proof of this claim essentially follows verbatim from Lemma B.3 of [11]. The
reduction uses the fact that the Dk-MDDH assumption is random self-reducible.
There is a multiplicative loss of 2 since the reduction has to guess m∗j , the j-th
bit of the forgery m∗.

Fix 0 ≤ j ≤ `−1. Let Q be the maximal number of tagging queries. Adversary

B2 inputs a Q-fold Dk-MDDH challenge ([A′]2, [H]2) ∈ G(k+1)×k
2 × G(k+1)×Q

2

and has to distinguish H = A′W for W ∈ Zk×Qq from H
$← Z(k+1)×Q

q . The Q-
fold Dk-MDDH assumption has been proved tightly equivalent to the Dk-MDDH
assumption in [20].

Adversary B2 defines B := A′ and picks a random bit α which is a guess
for m∗j , the j-th bit of m∗. We assume that this guess is correct, which happens

17

with probability 1/2. For each user i, define the random function RFi,j(·) via

RFi,j(m|j) :=

{
RFi,j−1(m|j−1) mj = α

RFi,j−1(m|j−1) +Ri,m|j mj = 1− α
, (9)

where Ri,m|j
$← Zq. Let πi,j : {0, 1}j → Q be arbitrary injective functions. Next,

for i = 1, . . . , `, b = 0, 1 with (i, b) 6= (j, 1−α), B2 picks xi,b
$← Zkq and implicitly

defines x>j,1−αB := x′>A′ for x′
$← Zk+1

q . Note that xj,1−α is not known to B2,

only [x>j,1−αB]2. Adversary B2 returns the values ΠMAC = ([B]2, ([x
>
i,bB]2)i,b).

A signing query on (i,m) is simulated as follows. We distinguish two cases.
Case 1, if mj = α, then pick random r ∈ Zkq and define u = RFi,j−1(m|j−1) +
x(m) · r. By (9), the value u has the same distribution in Hj−1 and Hj . Case 2,
if mj 6= α (i.e., only [x>j,mj

B]2 is known, xj,mj not), then pick random r′ ∈ Zkq ,

define r := Br′+Hβ and u := RFi,j−1(m|j−1) +
∑
l 6=j x>l,ml

· r+x′>(A′r′+Hβ).
Here Hβ is the β-th column of H and β = πi,j(m|j). Let Hβ = A′Wβ + Rβ ,

where Rβ = 0 or Rβ is uniform. Then r = A′(r′ + Wβ) + Rβ and

x′>(A′r′ + Hβ) =x′>A′(r′ + Wβ) + x′>Rβ

=x>j,mj
B(r′ + Wβ) + x′>Rβ

=x>j,mj
r + x′>Rβ

such that u = RFi,j−1(m|j−1) +
∑
l x
>
l,ml
· r + x′>Rβ . Hence, if H comes from

the Q-fold MDDH distribution, then Rβ = 0 and u is distributed as in Hj−1;
if H comes from the uniform distribution, then u is distributed as in Hj with
Ri,m|j := x′>Rβ .

A verification query on (i∗,m∗, σ∗) is answered with ([h∗]1, [h
∗ ·RFi∗,j(m∗|j)]1,

[h∗ ·x(m∗)]1), for uniform h∗. Note that x(m∗) can be computed as all xl,m∗l are
known to B2.

Finally, a Corrupt query for user i is answered with [ai]2 = [RFi,j(m(i)|j)]2.
Note that [RFi,j(m|j)]2 can be computed for all m.

3 KEMs in the Multi-User Setting with Corruptions

In this section we will describe a generic construction of a key encapsulation
mechanism (KEM) with tight MU-IND-CPACorr-security proof, based on any
public-key encryption scheme with tight security proof in the multi-user setting
without corruptions. Encryption schemes with the latter property were described
in [4,25]. In particular, a tight security proof for the DLIN-based scheme from [12]
is given in [25]. A similar scheme was generalized to hold under any MDDH-
assumption [20].

Due to space limitations, we refer to the full version of our paper [3] for
standard definitions of public key encryption (PKE) and KEMs.

Before we proceed let us first recall public key encryption and key encapsu-
lation mechanisms.

18

3.1 Public-Key Encryption

A PKE scheme is a four-tuple of algorithms PKE = (PKE.Setup,PKE.KGen,
PKE.Enc, PKE.Dec) with the following syntax:

– Π
$← PKE.Setup(1κ): The algorithm PKE.Setup, on input the security pa-

rameter 1κ, outputs a set, Π, of system parameters. Π determines the mes-
sage spaceM, the ciphertext space C, the randomness space R, and the key
space PK × SK.

– (sk, pk)
$← PKE.KGen(Π): This algorithm takes as input Π and outputs a

key pair (sk, pk) ∈ SK × PK.

– c
$← PKE.Enc(pk,m): This probabilistic algorithm takes as input a public

key and a message m ∈M, and outputs a ciphertext c ∈ C.
– m = PKE.Dec(sk, c): This deterministic algorithm takes as input a secret key
sk and a ciphertext c, and outputs a plaintext m ∈ M or an error symbol,
⊥.

Security. The standard security notions for public key encryption in the multi-
user setting (without corruptions) go back to Bellare, Boldyreva and Micali [4].
Security is formalized by a game that is played between an attacker A and a
challenger C.
1. After running Π

$← PKE.Setup(1κ), C generates µ · ` key pairs (sksi , pk
s
i)

$←
PKE.KGen(Π) for (i, s) ∈ [µ] × [`], and chooses b

$← {0, 1} uniformly at
random.

2. A receives Π and pk11, . . . , pk
`
µ, and may now adaptively query an oracle

OEncrypt, which takes as input (pksi ,m0,m1), computes c
$← PKE.Enc(pksi ,mb)

and responds with c.
3. Eventually A ouputs a bit b′.

Definition 8. We say that A (t, ε, µ, `)-breaks the MU-IND-CPA security of
PKE, if it runs in time t in the above security game and

Pr[b′ = b] ≥ 1/2 + ε

3.2 Key Encapsulation Mechanisms

Definition 9. A key encapsulation mechanism consists of four probabilistic al-
gorithms:

– Π
$← KEM.Setup(1κ): The algorithm KEM.Setup, on input the security pa-

rameter 1κ, outputs public parameters Π, which determine the session key
space K, the ciphertext space C, the randomness space R, and key space
SK × PK.

– (sk, pk)
$← KEM.Gen(Π): This algorithm takes as input parameters Π and

outputs a key pair (sk, pk) ∈ SK × PK.

– (K,C)
$← KEM.Encap(pk) takes as input a public key pk, and outputs a

ciphertext C ∈ C along with a key K ∈ K.

19

– K = KEM.Decap(sk, C) takes as input a secret key sk and a ciphertext C,
and outputs a key K ∈ K or an error symbol ⊥.

We require the usual correctness properties.

Multi User Security of KEMs. We extend the standard indistinguishability under
chosen-plaintext attacks (IND-CPA) security for KEMs to a multi-user setting
with µ ≥ 1 public keys and adaptive corruptions of secret keys. We will refer to
this new notion as MU-IND-CPACorr-security.

Consider the following game played between a challenger C and an attacker
A.

1. At the beginning C generates parameters Π
$← KEM.Setup(1κ). Then, for

each (i, s) ∈ [µ]× [`], it generates a key pair (sksi , pk
s
i)

$← KEM.Gen(Π) and

chooses an independently random bit bsi
$← {0, 1}. Finally, the challenger

initializes a set Scorr := ∅ to keep track of corrupted keys. The attacker
receives as input (pk11, . . . , pk

`
µ).

2. Now the attacker may adaptively query two oracles. OCorrupt takes as input
a public key pksi . It appends (i, s) to Scorr and responds with sksi . Oracle
OEncap takes as input a public key pksi . It generates a ciphertext-key-pair as

(Csi ,K
s
i,1)

$← KEM.Encap(pksi) and chooses a random key Ks
i,0. It responds

with (Csi ,K
s
i,bsi

).

3. Finally, the attacker outputs a pair (i, s, b).

Definition 10 (MU-IND-CPACorr-security). Algorithm A (t, ε, µ, `)-breaks the
MU-IND-CPACorr-security of the KEM, if it runs in time at most t and it holds
that

Pr [bsi = b ∧ (i, s) 6∈ Scorr] ≥ 1/2 + ε

Remark 1. It is easy to see that security in the sense of Definition 10 can effi-
ciently be reduced to standard IND-CPA security. However, the reduction incurs
a loss of 1/(µ · `). We will describe a KEM with tight security proof.

3.3 Generic KEM Construction

Our KEM KEMMU is based on a PKE-scheme PKE = (PKE.Setup,PKE.KGen,
PKE.Enc,PKE.Dec). It works as follows:

– Π
$← KEM.SetupMU(1κ): The parameter generation algorithm KEM.SetupMU

on input κ runs ΠPKE
$← PKE.Setup(1κ). The session key space K is set to

M, the message space of PKE that is determined by ΠPKE.

– (sk, pk)
$← KEM.SetupMU(Π): The key generation algorithm generates two

keys of the PKE scheme by running (ski, pki)
$← PKE.KGen(Π) for i ∈

{0, 1}. It furthermore flips a random coin δ
$← {0, 1} and returns (sk, pk) =(

(skδ, δ), (pk0, pk1)
)
.

20

– (K,C)
$← KEM.EncapMU(pk): On input pk = (pk0, pk1) the encapsulation

algorithm samples a random key K
$← K, computes two ciphertexts (C0, C1)

as Ci
$← PKE.Enc(pki,K) for i ∈ {0, 1}, sets C := (C0, C1), and outputs

(K,C).
– K ← KEM.DecapMU(sk, C): The decapsulation algorithm parses the secret

key as sk = (skδ, δ) and C = (C0, C1). It computes K ← PKE.Dec(skδ, Cδ)
and returns K.

Theorem 3. Let KEMMU be as described above. For each attacker AKEM that
(εkem, tkem, µ, `)-breaks the MU-IND-CPACorr-security of KEMMU there exists an
attacker APKE that (εpke, tpke, µ, `)-breaks the MU-IND-CPA-security of PKE with
tkem = tpke + t′kem and εkem ≤ εpke. Here t′kem is the runtime required to provide
AKEM with the simulation described below.

Due to space limitations we omit the proof of Theorem 3 here. It can be
found in the full version of our paper [3]. ut

4 A Tightly-Secure AKE Protocol

4.1 Secure Authenticated Key-Exchange

In this section we present a formal security model for authenticated key-exchange
(AKE) protocols. We follow the approach of Bellare and Rogaway [5] and use
oracles to model concurrent and multiple protocol executions within a party and
the concept of matching conversations to define partnership between oracles.

Essentially our model is a strenghtened version of the AKE-security model
of [27], which allows an additional RegisterCorrupt-query. Moreover, we let the
adversary issue more than one Test-query, in order to achieve tightness also in
this dimension.

Execution Environment. In our security model, we consider µ parties P1, . . . , Pµ.
In order to formalize several sequential and parallel executions of an AKE proto-
col, each party Pi is represented by a set of ` oracles, {π1

i , . . . , π
`
i}, where ` ∈ N

is the maximum number of protocol executions per party.
Each oracle πsi has access to the long-term key pair (sk(i), pk(i)) of party Pi

and to the public keys of all other parties. Let K be the session key space. Each
oracle πsi maintains a list of internal state variables that are described in the
following:
– Pidsi stores the identity of the intended communication partner.
– Ψsi ∈ {accept, reject} is a boolean variable indicating wether oracle πsi

succesfully completed the protocol execution.
– ksi ∈ K is used to store the session key that is computed by πsi .
– Γ si is a variable that stores all messages sent and received by πsi in the order

of appearance. We call Γ si the transcript.
For each oracle πsi these variables are initialized as (Pidsi , Ψ

s
i , k

s
i , Γ

s
i) = (∅, ∅, ∅,

∅), where ∅ denotes the empty string. The computed session key is assigned to
the variable ksi if and only if πsi reaches the accept state, i.e., if Ψsi = accept.

21

Adversarial Model. The attacker A interacts with these oracles through oracle
queries. We consider an active attacker that has full control over the commu-
nication network, i.e., A can schedule all sessions between the parties, delay,
drop, change or replay messages at will and inject own generated messages of its
choice. This is modeled by the Send-query defined below.

To model further real world capabilites of A, such as break-ins, we provide
further types of queries. The Corrupt-query allows the adversary to compromise
the long-term key of a party. The Reveal-query may be used to obtain the session
key that was computed in a previous protocol instance. The RegisterCorrupt
enables the attacker to register maliciously-generated public keys. Note that
we do not require the adversary to know the corresponding secret key. The
Test-query does not correspond to a real world capability of A, but it is used
to evaluate the advantage of A in breaking the security of the key exchange
protocol.

More formally, the attacker may ask the following queries:
– Send(i, s,m): A can use this query to send any message m of its choice to

oracle πsi . The oracle will respond according to the protocol specification and
depending on its internal state. If m = (>, j) is sent to πsi , then πsi will send
the first protocol message to Pj .
If Send(i, s,m) is the τ -th query asked by A, and oracle πsi sets variable
Ψsi = accept after this query, then we say that πsi has τ -accepted.

– Corrupt(i): This query returns the long-term secret key ski of party Pi. If the
τ -th query of A is Corrupt(Pi), then we call Pi τ -corrupted. If Corrupt(Pi)
has never been issued by A, then we say that party i is ∞-corrupted.

– RegisterCorrupt(Pi, pk
(i)): This query allows A to register a new party Pi,

i > µ, with public key pk(i). If the same party Pi is already registered
(either via RegisterCorrupt-query or i ∈ [µ]), a failure symbol ⊥ is returned
to A. Otherwise, Pi is registered, the pair (Pi, pk

(i)) is distributed to all
other parties, and the symbol > is returned.
Parties registered by this query are called adversarially-controlled.
All adversarially-controlled parties are defined to be 0-corrupted.

– Reveal(i, s): In response to this query πsi returns the contents of ksi . Recall
that we have ksi 6= ∅ if and only if Ψsi = accept. If Reveal(i, s) is the τ -th
query issued by A, we call πsi τ -revealed. If Reveal(i, s) has never been issued
by A, then we say that party i is ∞-revealed.

– Test(i, s): If Ψsi 6= accept, then a failure symbol ⊥ is returned. Otherwise

πsi flips a fair coin bsi , samples k0
$← K at random, sets k1 = ksi , and returns

kbsi .
If Test(i, s) is the τ -th query issued by A, we call πsi τ -tested. If Test(i, s)
has never been issued by A, then we say that party i is ∞-tested.
The attacker may ask many Test-queries to different oracles, but only once
to each oracle.

Security Definitions. We recall the concept of matching conversations here that
was first introduced by Bellare and Rogaway [5]. We adopt the refinement
from [27].

22

Recall that Γ si be the transcript of oracle πsi . By |Γ si | we denote the number
of the messages in Γ si . Assume that there are two transcripts, Γ si and Γ tj , where
|Γ si | = w and |Γ tj | = n. We say that Γ si is a prefix of Γ tj if 0 < w ≤ n and the
first w messages in transcripts Γ si and Γ tj are identical.

Definition 11 (Matching conversations). We say that πsi has a matching
conversation to oracle πtj, if
– πsi has sent all protocol messages and Γ tj is a prefix of Γ si , or
– πtj has sent all protocol messages and Γ si = Γ tj .

We say that two oracles, πsi and πtj , have matching conversations if πsi has a
matching conversation to process πtj and vice versa.

Definition 12 (Correctness). We say that a two-party AKE protocol, Σ, is
correct, if for any two oracles, πsi and πtj, that have matching conversations it

holds that Ψsi = Ψ tj = accept, Pidsi = j and Pidtj = i and ksi = ktj.

Security Game. Consider the following game that is played between an adver-
sary, A, and a challenger, C, and that is parametrized by two numbers, µ (the
number of honest identities) and ` (the maximum number of protocol executions
per identity).
1. At the beginning of the game, C generates system parameters that are spec-

ified by the protocol and µ long-term key pairs (sk(i), pk(i)), i ∈ [µ]. Then C
implements a collection of oracles {πsi : i ∈ [µ], s ∈ [`]}. It passes to A all
public keys, pk(1), . . . , pk(µ), and the public parameters.

2. Then A may adaptively issue Send, Corrupt, Reveal, RegisterCorrupt and Test
queries to C.

3. At the end of the game, A terminates with outputting a tuple (i, s, b′) where
πsi is an oracle and b′ is its guess for bsi .

For a given protocol Σ by GΣ(µ, `) we denote the security game that is carried
out with parameters µ, ` as described above and where the oracles implement
protocol Σ.

Definition 13 (Freshness). Oracle πsi is said to be τ -fresh if the following
requirements satisfied:
– πsi has τ̃ -accepted, where τ̃ ≤ τ .
– πsi is τ̂ -revealed, where τ̂ > τ .
– If there is an oracle, πtj, that has matching conversation to πsi , then πtj is
∞-revealed and ∞-tested.

– If Pidsi = j then Pj is τ (j)-corrupted with τ (j) > τ 6.

Definition 14 (AKE Security).
We say that an attacker (t, µ, `, ε)-breaks the security of a two-party AKE

protocol, Σ, if it runs in time t in the above security game GΣ(µ, `) and it holds
that:

6 We note that for any Pi, i > µ, we have τ (i) = 0. Therefore for any τ ≥ 1, the
intended partner of a τ - fresh oracle must not be adversarially controlled.

23

1. Let Q denote the event that there exists a τ and a τ -fresh oracle πsi and there
is no unique oracle πtj such that πsi and πtj have matching conversations.
Then Pr[Q] ≥ ε, or

2. When A returns (i, s, b′) such that Test(πsi) was As τ -th query and πsi is
a τ -fresh oracle that is ∞-revealed throughout the security game then the
probability that b′ equals bsi is upper bounded by

|Pr[bsi = b′]− 1/2| ≥ ε.

We discuss and highlight properties of the model in the full version of our pa-
per [3, Remark 2]

4.2 Our Tightly Secure AKE Protocol

Here, we construct an AKE-protocol AKE, which is based on three building
blocks: a key encapsulation mechanism, a signature scheme, and a one-time
signature scheme.

The protocol is a key transport protocol that needs three messages to au-
thenticate both participants and to establish a shared session key between both
parties. Informally, the key encapsulation mechanism guarantees that session
keys are indistinguishable from random keys. The signature scheme is used to
guarantee authentication: The long-term keys of all parties consist of verification
keys of the signature scheme. Finally, the one-time signature scheme prevents
oracles from accepting without having a (unique) partner oracle.

In the sequel let SIG and OTSIG be signature schemes and let KEM be

a key-encapsulation mechanism. We will assume common parameters ΠSIG
$←

SIG.Setup(1κ), ΠOTSIG
$← OTSIG.Setup(1κ), and ΠKEM

$← KEM.Setup(1κ).

Long-term secrets. Each party possesses a key pair (vk, sk)
$← SIG.Gen(ΠSIG)

for signature scheme SIG. In the sequel let (vk(i), sk(i)) and (vk(j), sk(j)) denote
the key pairs of parties Pi, Pj , respectively.

Protocol execution. In order to establish a key, parties Pi, Pj execute the follow-
ing protocol.

1. First, Pi runs (sk
(i)
KEM, pk

(i)
KEM)

$← KEM.Gen(ΠKEM) and (vk
(i)
OTS, sk

(i)
OTS)

$←
OTSIG.Gen(ΠOTSIG) and computes a signature σ(i) := SIG.Sign(sk(i), vk

(i)
OTS).

It defines Pid = j and m1 := (vk
(i)
OTS, σ(i), pk

(i)
KEM, Pid, i) and transmits m1

to Pj .

2. Upon receiving m1, Pj parses m1 as the tuple (vk
(i)
OTS, σ(i), pk

(i)
KEM, Pid, i).

Then it checks whether Pid = j and SIG.Vfy (vk(i), vk
(i)
OTS, σ(i)) = 1. If at

least one of both check is not passed, then Pj outputs ⊥ and rejects.

Otherwise it runs (vk
(j)
OTS, sk

(j)
OTS)

$← OTSIG.Gen(ΠOTSIG), encapsulates a

key as (K,C)
$← KEM.Encap(pk

(i)
KEM) and computes a signature σ(j) :=

SIG.Sign(sk(j), vk
(j)
OTS). Then it sets m2 := (vk

(j)
OTS, σ

(j), C) and computes

24

a one-time signature σ
(j)
OTS := OTSIG.Sign(sk

(j)
OTS, (m1,m2)) and transmits

the tuple (m2, σ
(j)
OTS) to Pi.

3. Upon receiving the message (m2, σ
(j)
OTS), Pi parses m2 as (vk

(j)
OTS, σ

(j), C)

and checks whether SIG.Vfy (vk(j), vk
(j)
OTS, σ(j)) = 1 and OTSIG.Vfy (vk

(j)
OTS,

(m1,m2), σ
(j)
OTS) = 1. If at least one of both check is not passed, then Pi

outputs ⊥ and rejects.

Otherwise it computes σ
(i)
OTS := OTSIG.Sign (sk

(i)
OTS, (m1,m2)) and sends

σ
(i)
OTS to Pj . Pi outputs the session key as Ki,j := KEM.Decap(sk

(i)
KEM, C).

4. Upon receiving σ
(i)
OTS, Pj checks whether OTSIG.Vfy(vk

(i)
OTS, (m1,m2), σ

(i)
OTS)

= 1. If this fails, then ⊥ is returned. Otherwise Pj outputs the session key
Ki,j := K.

In the full version of the paper [3], we elaborate on the efficiency of our protocol
when it is instantiated with building blocks from the literatur.

4.3 Proof of Security.

Theorem 4. Let AKE be as described above. If there is an attacker AAKE that
(t, µ, `, εAKE)-breaks the security of AKE in the sense of Definition 14 then there
is an algorithm B = (BKEM,BSIG,BOTSIG) such that either BKEM (t′, µ · `, εKEM)-
breaks the MU-IND-CPACorr-security of KEM (Definition 10), or BSIG (t′, εSIG, µ)-
breaks the MU-EUF-CMA-security of SIG (Definition 2), or BOTSIG (t′, εOTSIG, µ·
`)-breaks the MU-sEUF-1-CMA-security of OTSIG (Definition 4) where

εAKE ≤ 4εOTSIG + 2εSIG + εKEM.

Here, t′ = t + t′′ where t′′ corresponds to the runtime required to provide AAKE

with the simulated experiment as described below.

Proof. We prove the security of the proposed protocol AKE using the sequence-
of-games approach, following [35,7]. The first game is the original attack game
that is played between a challenger and an attacker. We then describe a sequence
of games where we modify the original game step by step. We show that the
advantage of distinguishing between two successive games is negligible.

We prove Theorem 4 in two stages. First, we show that the AKE protocol
is a secure authentication protocol except for probability εAuth. That is, the
protocol fulfills security property 1.) of the AKE security definition Definition 14.
Informally, the authentication property is guaranteed by the uniqueness of the
transcript and the security of the MU-EUF-CMA secure signature scheme SIG
and the security of the one-time signature scheme OTSIG. We show that for any
τ and any τ -accepted oracle πsi with internal state Ψsi = accept and Pidsi = j
there exists an oracle, πtj , such that πsi and πtj have matching conversations.
Otherwise the attacker A has forged a signature for either SIG or OTSIG.

In the next step, we show that the session key of the AKE protocol is secure
except for probability εInd in the sense of the Property 2.) of the AKE security
Definition 14. The security of the authentication protocol guarantees that there

25

can only be passive attackers on the test oracles, so that we can conclude the
security for key indistinguishability from the security of the underlying KEM.
We recall that µ denotes the number of honest identities and that ` denotes the
maximum number of protocol executions per party. In the proof of Theorem 4, we
consider the following two lemmas. Lemma 3 bounds the probability εAuth that
an attacker breaks the authentication property of AKE and Lemma 4 bounds the
probability εInd that an attacker is able to distinguish real from random keys. It
holds:

εAKE ≤ εAuth + εInd.

4.4 Authentication

Lemma 3. For all attackers A that (t, µ, `, εInd)-break the AKE protocol by break-
ing Property 1.) of Definition 14 there exists an algorithm B = (BSIG,BOTSIG)
such that either BSIG (t′, µ, εSIG)-breaks the security of SIG or BOTSIG (t′, εOTSIG,
µ`)-breaks the security of OTSIG where t ≈ t′ and

εAuth ≤ εSIG + 2 · εOTSIG.

Proof. Let break
(Auth)
δ be the event that there exists a τ and a τ -fresh oracle πsi

that has internal state Ψsi = accept and Pidsi = j, but there is no unique oracle

πtj such that πsi and πtj have matching conversations, in Game δ. If break
(Auth)
δ

occurs, we say that A wins in Game δ.

Game G0. This is the original game that is played between an attacker A and a
challenger C, as described in Section 4.1. Thus we have:

Pr[break
(Auth)
0] = εAuth

Game G1. In this game, the challenger proceeds exactly like in the previous
game, except that we add an abort rule. Let πsi be a τ -accepted oracle with
internal state Pidsi = j, where Pj is τ̂ -corrupted with τ̂ > τ . We want to ensure

that the OTSIG public key vk
(j)
OTSIG received by πsi was output by an oracle πtj

(and not generated by the attacker).
Technically, we abort and raise the event abortSIG, if the following condition

holds:
– there exists a τ and a τ -fresh oracle πsi with internal state Pidsi = j7 and

– πsi received a signature σ(j) that satisfies SIG.Vfy(vk(j), vk
(j)
OTS, σ

(j)), but
there exists no oracle πtj which has previously output a signature σ(j) over

vk
(j)
OTS.

Clearly we have ∣∣∣Pr[break
(Auth)
0]− Pr[break

(Auth)
1]

∣∣∣ ≤ Pr[abortSIG].

7 Since πs
i is τ -fresh it holds that Pj is τ̂ -corrupted, where τ̂ > τ .

26

Claim. Pr[abortSIG] ≤ εSIG.

We refer to the full version of the paper [3] for a proof of the claim. ut

Game G2. In this game, the challenger proceeds exactly like the challenger in
Game 1, except that we add an abort rule. Let abortcollision denote the event that
two oracles, πsi and πtj , sample the same verification key, vkOTS, for the one-time
signature scheme. More formally, let

abortcollision :=
{
∃(i, j) ∈ [µ · `]2 : vk

(i)
OTS = vk

(j)
OTS ∧ i 6= j

}
.

The simulator aborts if abortcollision occurs and A loses the game. Clearly, we
have ∣∣∣Pr[break

(Auth)
1]− Pr[break

(Auth)
2]

∣∣∣ ≤ Pr[abortcollision].

Claim. Pr [abortcollision] ≤ εOTSIG

We refer to the full version of the paper [3] for a proof of the claim. ut

Game G3. In this game, the challenger proceeds exactly like in the previous
game, except that we add an abort rule. Let πsi be a τ -accepted oracle, for some

τ , that received a one-time signature key, vk
(j)
OTS, from an uncorrupted oracle, πtj .

Informally, we want to make sure that if πsi accepts then πtj has previously output

the same one-time signature σ
(j)
OTS over (m1,m2) that is valid under vk

(j)
OTS. Note

that in this case πsi confirms the “view on the transcript” of πtj .
Technically, we raise the event abortOTSIG and abort (and A loses), if the

following condition holds:
– there exists a τ -fresh oracle πsi that has internal state Pidsi = j and

– πsi receives a valid one-time signature σ
(j)
OTS for (m1,m2) and accepts, but

there is no unique oracle, πtj , which has previously output
(

(m1,m2), σ
(j)
OTS

)
.

Clearly we have∣∣∣Pr[break
(Auth)
2]− Pr[break

(Auth)
3]

∣∣∣ ≤ Pr[abortOTSIG].

Claim. Pr[abortOTSIG] ≤ εOTSIG

We refer to the full version of the paper [3] for a proof of the claim. ut

Claim. Pr[break
(Auth)
3] = 0

Proof. Note that break
(Auth)
3 occurs only if there exists a τ -fresh oracle πsi and

there is no unique oracle πtj such that πsi and πtj have matching conversations.
Consider a τ -fresh oracle πsi . Due to Game 1 there exists (at least one) oracle

πtj which has output the verification key vk
(j)
OTS received by πsi , along with a

valid SIG-signature σ(j) over vk
(j)
OTS, as otherwise the game is aborted. vk

(j)
OTS

(and therefore also πtj) is unique due to Game 2.

27

πsi accepts only if it receives a valid one-time signature σ
(j)
OTS over the tran-

script (m1,m2) of messages. Due to Game 3 there must exist an oracle which

has output this signature σ
(j)
OTS. Since (m1,m2) contains vk

(j)
OTS, this can only be

πtj . Thus, if πsi accepts, then it must have a matching conversation to πtj .

Summing up we see that:

εAuth ≤ εSIG + 2εOTSIG

4.5 Key Indistinguishability

Lemma 4. For any attacker A that (t, µ, `, εInd)-break AKE by breaking Property
2.) of Definition 14 there exists an algorithm B = (BKEM,BSIG,BOTSIG) such that
either BKEM (t′, µ`, εKEM)-breaks the security of KEM, or BSIG (t′, µ, εSIG)- breaks
the security of SIG or BOTSIG (t′, εOTSIG, µ`)-breaks the security of OTSIG where
t ≈ t′ and

εInd ≤ εSIG + 2 · εOTSIG + εKEM.

The proof of Lemma 4 can be found in the full version of the paper [3].
Summing up probabilities, we obtain that

εInd ≤ εSIG + 2 · εOTSIG + εKEM
ut

References

1. Masayuki Abe, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and Miyako
Ohkubo. Tagged one-time signatures: Tight security and optimal tag size. In
PKC 2013: 16th International Workshop on Theory and Practice in Public Key
Cryptography, Lecture Notes in Computer Science, pages 312–331. Springer, 2013.

2. Christoph Bader. Efficient signatures with tight real world security in the random
oracle model. In Cryptology and Network Security. Springer, 2014.

3. Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike Kiltz, and Yong Li. Tightly
secure authenticated key exchange. Cryptology ePrint Archive, Report 2014/797,
2014. http://eprint.iacr.org/.

4. Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in
a multi-user setting: Security proofs and improvements. In Bart Preneel, editor,
Advances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in
Computer Science, pages 259–274. Springer, May 2000.

5. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO’93, volume 773 of
Lecture Notes in Computer Science, pages 232–249. Springer, August 1993.

6. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference
on Computer and Communications Security, pages 62–73. ACM Press, November
1993.

28

http://eprint.iacr.org/

7. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a frame-
work for code-based game-playing proofs. pages 409–426, 2006.

8. Daniel J. Bernstein. Proving tight security for Rabin-Williams signatures. In
Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008, volume
4965 of Lecture Notes in Computer Science, pages 70–87. Springer, April 2008.

9. Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement protocols
and their security analysis. In Michael Darnell, editor, 6th IMA International Con-
ference on Cryptography and Coding, volume 1355 of Lecture Notes in Computer
Science, pages 30–45. Springer, December 1997.

10. Simon Blake-Wilson and Alfred Menezes. Authenticated Diffie-Hellman key agree-
ment protocols (invited talk). In Stafford E. Tavares and Henk Meijer, editors,
SAC 1998: 5th Annual International Workshop on Selected Areas in Cryptogra-
phy, volume 1556 of Lecture Notes in Computer Science, pages 339–361. Springer,
August 1998.

11. Olivier Blazy, Eike Kiltz, and Jiaxin Pan. (hierarchical) identity-based encryption
from affine message authentication. In Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part I, pages 408–425, 2014.

12. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
Matthew Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume 3152
of Lecture Notes in Computer Science, pages 41–55. Springer, August 2004.

13. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology
– EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages
453–474. Springer, May 2001.

14. Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange
and secure channels. In Lars R. Knudsen, editor, Advances in Cryptology – EURO-
CRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 337–351.
Springer, April / May 2002.

15. Jie Chen and Hoeteck Wee. Fully, (almost) tightly secure IBE and dual system
groups. Lecture Notes in Computer Science, pages 435–460. Springer, August
2013.

16. T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Proposed
Standard), January 1999. Obsoleted by RFC 4346, updated by RFCs 3546, 5746.

17. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.1. RFC 4346 (Proposed Standard), April 2006. Obsoleted by RFC 5246, updated
by RFCs 4366, 4680, 4681, 5746.

18. T. Dierks and E. Rescorla. RFC 5246: The transport layer security (tls) protocol;
version 1.2, August 2008.

19. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

20. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An
algebraic framework for Diffie-Hellman assumptions. Lecture Notes in Computer
Science, pages 129–147. Springer, August 2013.

21. Eu-Jin Goh, Stanislaw Jarecki, Jonathan Katz, and Nan Wang. Efficient signa-
ture schemes with tight reductions to the Diffie-Hellman problems. Journal of
Cryptology, 20(4):493–514, October 2007.

22. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, April 1988.

29

23. M. Choudary Gorantla, Colin Boyd, and Juan Manuel González Nieto. Modeling
key compromise impersonation attacks on group key exchange protocols. In Stanis-
law Jarecki and Gene Tsudik, editors, PKC 2009: 12th International Conference
on Theory and Practice of Public Key Cryptography, volume 5443 of Lecture Notes
in Computer Science, pages 105–123. Springer, March 2009.

24. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008,
volume 4965 of Lecture Notes in Computer Science, pages 415–432. Springer, April
2008.

25. Dennis Hofheinz and Tibor Jager. Tightly secure signatures and public-key encryp-
tion. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology –
CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 590–607.
Springer, August 2012.

26. Dennis Hofheinz and Tibor Jager. Tightly secure signatures and public-key en-
cryption. Cryptology ePrint Archive, Report 2012/311, 2012. http://eprint.

iacr.org/.
27. Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security

of TLS-DHE in the standard model. In Reihaneh Safavi-Naini and Ran Canetti,
editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes
in Computer Science, pages 273–293. Springer, August 2012.

28. Saqib A. Kakvi and Eike Kiltz. Optimal security proofs for full domain hash, revis-
ited. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology
– EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages
537–553. Springer, April 2012.

29. Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In
Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of
Lecture Notes in Computer Science, pages 546–566. Springer, August 2005.

30. Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of
authenticated key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors,
ProvSec 2007: 1st International Conference on Provable Security, volume 4784 of
Lecture Notes in Computer Science, pages 1–16. Springer, November 2007.

31. Benoit Libert, Marc Joye, Moti Yung, and Thomas Peters. Concise multi-challenge
cca-secure encryption and signatures with almost tight security. In ASIACRYPT
2014, 2014. https://eprint.iacr.org/2014/743.pdf.

32. Alfred Menezes and Nigel P. Smart. Security of signature schemes in a multi-user
setting. Des. Codes Cryptography, 33(3):261–274, 2004.

33. Moni Naor and Moti Yung. Public-key cryptosystems provably secure against cho-
sen ciphertext attacks. In 22nd Annual ACM Symposium on Theory of Computing,
pages 427–437. ACM Press, May 1990.

34. Sven Schäge. Tight proofs for signature schemes without random oracles. In Ken-
neth G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011, volume
6632 of Lecture Notes in Computer Science, pages 189–206. Springer, May 2011.

35. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/.

30

http://eprint.iacr.org/
http://eprint.iacr.org/
https://eprint.iacr.org/2014/743.pdf
http://eprint.iacr.org/

	Tightly-Secure Authenticated Key Exchange
	Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike Kiltz, Yong Li

