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Abstract. In this paper, we introduce and study a new cryptographic primitive
that we callpuncturable key encapsulation mechan(®KEM), which is a spe-

cial class of KEMs that satisfy some functional and security requirements that,
combined together, imply chosen ciphertext security (CCA security). The pur-
pose of introducing this primitive is to capture certain common patterns in the
security proofs of the several existing CCA secure public key encryption (PKE)
schemes and KEMs based on general cryptographic primitives which (explic-
itly or implicitly) use the ideas and techniques of the Dolev-Dwork-Naor (DDN)
construction (STOC’'91), and “break down” the proofs into smaller steps, so that
each small step is easier to work with/verify/understand than directly tackling
CCA security.

To see the usefulness of PKEM, we show (1) how several existing constructions
of CCA secure PKE/KEM constructed based on general cryptographic primitives
can be captured as a PKEM, which enables us to understand these constructions
via a unified framework, (2) their connection to detectable CCA security (Hohen-
berger etal. EUROCRYPT'12), and (3) a new security proof for a KEM-analogue
of the DDN construction from a set of assumptiossnder non-committing en-
cryption(SNCE) and non-interactive witness indistinguishable proofs.

Then, as our main technical result, we show how to construct a PKEM satisfying
our requirements (and thus a CCA secure KEM) from a new set of general crypto-
graphic primitivesSNCEandsymmetric key encryption secure for key-dependent
message$KDM secure SKE). Our construction realizes the “decrypt-then-re-
encrypt’-style validity check of a ciphertext which is powerful but in general has

a problem of the circularity between a plaintext and a randomness. We show how
SNCE and KDM secure SKE can be used together to overcome the circularity.
We believe that the connection among three seemingly unrelated notions of en-
cryption primitives, i.e. CCA security, the sender non-committing property, and
KDM security, to be of theoretical interest.

Keywords: public key encryption, puncturable key encapsulation mechanism,
chosen ciphertext security, sender non-committing encryption, key-dependent mes-
sage secure symmetric-key encryption.

1 Introduction

In this paper, we continue a long line of work studying the constructions of public key
encryption (PKE) schemes and its closely related primitive caddencapsulation



mechanisnfKEM) that are secure against chosen ciphertext attacks (CCA) [53, 57, 24]
from general cryptographic primitives. CCA secure PKE/KEM is one of the most im-
portant cryptographic primitives that has been intensively studied in the literature, due
to not only its implication to strong and useful security notions such as non-malleability
[24] and universal composability [16], but also its resilience and robustness against
practical attacks such as Bleichenbacher’s attack [12].

There have been a number of works that show CCA secure PKE/KEMs from gen-
eral cryptographic primitives: These include trapdoor permutations [24, 30, 31] (with
some enhanced property [32]), identity-based encryption [19] and a weaker primitive
called tag-based encryption [43, 40], lossy trapdoor function [56] and trapdoor func-
tions with weaker functionality/security properties [59, 49,41, 61], PKE with weaker
than but close to CCA security [38,42, 21], a combination of chosen plaintext secure
(CPA secure) PKE and a hash function with some strong security [48], and techniques
from program obfuscation [60, 47].

One of the ultimate goals of this line of researches is to clarify whether one can
construct CCA secure PKE only from CPA secure one (and in fact, a partial negative
result is known [29]). This problem is important from both theoretical and practical
points of view. To obtain insights into this problem, clarifying new classes of primitives
that serve as building blocks is considered to be important, because those new class
of primitives can be a new target that we can try constructing from CPA secure PKE
schemes (or other standard primitives such as one-way injective trapdoor functions and
permutations).

Our Motivation. Although differing in details, the existing constructions of CCA secure
PKE schemes and KEMs from general cryptographic primitives [24, 56,59, 61,47, 48,
21] often employ the ideas and techniques of the Dolev-Dwork-Naor (DDN) construc-
tion [24], which is the first construction of CCA secure PKE from general primitives.
The security proofs of these constructions are thus similar in a large sense, and it is
highly likely that not a few future attempts to constructing CCA secure PKE/KEMs
from general cryptographic primitives will also follow the DDN-style construction and
security proof. Therefore, it will be useful and helpful for future research and also for
understanding the existing works of this research direction if we can extract and abstract
the common ideas and techniques behind the security proofs of the original DDN and
the existing DDN-like constructions, and formalize them as a cryptographic primitive
with a few formal functionality and security requirements (rather than heuristic ideas
and techniques), so that most of the existing DDN-style constructions as well as po-
tential future constructions are captured/explained/understood in a unified way, and in
particular these are more accessible and easier-to-understand.

Our Contributions. Based on the motivation mentioned above, in this paper, we intro-
duce and study a new cryptographic primitive that we palthcturable key encapsu-
lation mechanisnfPKEM). This is a class of KEMs that has two kinds of decryption
procedures, and it is required to satisfy three simple security requirendectgsula-

tion soundnesspunctured decapsulation soundneasdextended CPA securityhich

we show in Section 3.3 that, combined together, implies CCA security. The intuition of
these security notions as well as their formal definitions are explained in Section 3.2.



The purpose of introducing this primitive is to capture certain common patterns in the
security proofs of the several existing CCA secure PKE schemes and KEMs based on
general cryptographic primitives which (explicitly or implicitly) use the ideas and tech-
niques of the DDN construction [24], and “break down” the proofs into smaller steps,
so that each small step is easier to work with/verify/understand than directly tackling
CCA security. Our formalization of PKEM is inspired (and in some sense can be seen
an extension of) the notion @iuncturable tag-based encryptig#8] (which is in turn
inspired by the notion gbuncturable pseudorandom functif80]), and we explain the
difference from [48] in the paragrapiRélated Workbelow.

To see the usefulness of our framework of PKEM, we show (1) how the KEM-
analogue of the original DDN [24] and several existing DDN-like constructions (e.g.
[56,59,61,47,48]) can be understood as a PKEM in Section 3.4, (2) its connection
to detectable CCA security which is a weaker security notion than CCA security in-
troduced by Hohenberger et al. [38] in Section 3.5, and (3) a new security proof for
a KEM-analogue of the DDN construction from a set of assumptions that are differ-
ent from the one used in its known security prosgnder non-committing encryption
(SNCE, see below) and non-interactive witness indistinguishable proofs. (For the pur-
pose of exposition, this last result is shown in Section 5.)

Then, as our main technical result, in Section 4 we show how to construct a PKEM
satisfying our requirements (and thus a CCA secure KEM) from a new set of general
cryptographic primitivesSNCEandsymmetric key encryption secure for key-dependent
message¢KDM secure SKE) [11]. Roughly speaking, a SNCE scheme is a special
case of non-committing encryption [18] and is a PKE scheme which is secure even
if the sender’s randomness used to generate the challenge ciphertext is corrupted by
an adversary. See Section 2.1 where we define SNCE formally, explain the difference
among related primitives, and how it can be realized from the standard cryptographic
assumptions such as the decisional Diffie-Hellman (DDH), quadratic residuosity (QR),
and decisional composite residuosity (DCR). The function class with respect to which
we require the building block SKE scheme to be KDM secure, is a class of efficiently
computable functions whose running time is a-priori fixed. Due to Applebaum’s result
[1,3] (and its efficient variant [6§7.2]) we can realize a KDM secure SKE scheme
satisfying our requirement from standard assumptions such as DDH, QR, DCR. For
more details on KDM secure SKE, see Section 2.2.

Our proposed PKEM has a similalriy with the “double-layered” construction of
Myers and Shelat [51] and its variants [38, 45, 21], in which a plaintext is encrypted
twice: firstly by the “inner” scheme, and secondly by “outer” scheme. Strictly speak-
ing, however, our construction is not purely double-layered, but in some sense is closer
to “hybrid encryption” of a PKE (seen as a KEM) and a SKE schemes, much simi-
larly to the recent constructions by Matsuda and Hanaoka [47, 48]. Furthermore, our
construction realizes the “decrypt-then-re-encrypt’-style validity check of a ciphertext,
which is a powerful approach that has been adopted in several existing constructions
that construct CCA secure PKE/KEM from general cryptographic primitives [27, 56,
59,51,41, 38,47, 48, 21]. In general, however, this approach has a problem of the cir-
cularity between a plaintext and a randomness, and previous works avoid such a circu-
larity using a random oracle [27], a trapdoor function [56, 59, 41], a PKE scheme which



achieves some security which is (weaker than but) close to CCA security [51, 38, 21], or
a power of additional building blocks with (seemingly very strong) security properties
[47, 48]. We show how SNCE and KDM secure SKE can be used together to overcome
the circularity. Compared with the structurally similar constructions [38, 47, 48, 21], the
assumptions on which our construction is based could be seen weak, in the sense that
the building blocks are known to be realizable from fairly standard computational as-
sumptions such as the DDH, QR, and DCR assumptions. We believe that the connection
among three seemingly unrelated notions of encryption primitives, i.e. CCA security,
the sender non-committing property, and KDM security, to be of theoretical interest.

Open Problems.We believe that our framework of PKEM is useful for constructing
and understanding the current and the potential future constructions of CCA secure
PKE/KEMs based on the DDN-like approach, and motivates further studies on it. Our
work leaves several open problems. Firstly, our framework of PKEM actually does not
capture the recent construction by Dachman-Soled [21] who constructs a CCA secure
PKE scheme from a PKE scheme that satisfies (standard model) plaintext awareness
and some simulatability property. The construction in [21] is similar to our proposed
(P)KEM in Section 4 and the recent similar constructions [47, 48]. (Technically, to cap-
ture it in the language of PKEM, slight relaxations of some of the security requirements
will be necessary, due to its double-layered use of PKE schemes similarly to [51].)

Secondly and perhaps more importantly, it will be worth clarifying whether it is
possible to construct a PKEM satisfying our requirements only from CPA secure PKE
or (an enhanced variant of) trapdoor permutations in a black-box manner. Note that
a negative answer to this question will also give us interesting insights, as it shows
that to construct a CCA secure PKE/KEM from these standard primitives, we have to
essentially avoid the DDN-like construction.

Finally, it would also be interesting to find applications of a PKEM other than CCA
secure PKE/KEMs.

Related Work.The notion of CCA security for PKE was formalized by Naor and Yung
[53] and Rackoff and Simon [57]. We have already listed several existing constructions
of CCA secure PKE/KEMs from general primitives in the second paragraph of Intro-
duction. In our understanding, the works [24, 56,59, 61, 47,48, 21] are based on the
ideas and techniques from the DDN construction [24].

As mentioned above, our notion of PKEM is inspired by the notiopwfcturable
tag-based encryptio(PTBE) that was recently introduced by Matsuda and Hanaoka
[48]. Similarly to PKEM, PTBE is a special kind of tag-based encryption [43, 40] with
two modes of decryption. (Roughly, in PKEM, a secret key can be punctured by a ci-
phertext, but in PTBE, a secret key is punctured by a tag.) Matsuda and Hanaoka [48]
introduced PTBE as an abstraction of the “core” structure that appears in the original
DDN construction (informally, it is the original DDN construction without a one-time
signature scheme and a non-interactive zero-knowledge proof), and they use it to mainly
reduce the “description complexity” of their proposed construction [48] and make it
easier to understand the construction. However, they did not study it as a framework for
capturing and understanding the existing DDN-style constructions (as well as potential



future constructions) in a unified manner as we do in this paper. We note that Mat-
suda and Hanaoka [48] also formalized the security requirement caligdsecurity
whose formalization is a PTBE-analogueeafPA security for a PKEM (and thus we
borrow the name). However, they did not formalize the security notions for PTBE that
correspond talecapsulation soundnessid punctured decapsulation soundndes a
PKEM.

Paper Organization.The rest of the paper is organized as follows: In Section 2 and
(in Appendix A), we review the notation and definitions of cryptographic primitives. In
Section 3, we introduce and study PKEM, where in particular we show its implication
to CCA security and how some of the existing constructions of KEMs can be interpreted
and explained as a PKEM. In Section 4, we show our main technical result: a PKEM
from SNCE and KDM secure SKE, which by the result in Section 3 yields a new CCA
secure KEM from general assumptions. In Section 5, we show the CCA security of the
DDN-KEM based on SNCE and non-interactive witness indistinguishable arguments.

2 Preliminaries

In this section, we give the definitions for sender non-committing encryption (SNCE)
and symmetric key encryption (SKE) and its key-dependent message (KDM) security
that are used in our main result in Section 4. The definitions for standard cryptographic
primitives are given in Appendix A, which include PKE, KEMs, signature schemes,
non-interactive argument systems, and universal one-way hash functions (UOWHFs).
(The reader familiar with them need not check Appendix A at the first read, and can do
so when he/she wants to check the details of the definitions.)

Basic Notation. N denotes the set of all natural numbers, and#af N, we define
[n] :=={1,...,n}. “z « y" denotes that: is chosen uniformly at random fromif y
is a finite sety is output fromy if y is a function or an algorithm, ay is assigned ta:
otherwise. Ifz andy are strings, then||” denotes the bit-length of, “z||y” denotes

the concatenation andy, and {x z y)" is the operation which returnsif z = y
and0 otherwise. “PPTA’ stands for probabilistic polynomial time algorithmFor a
finite setS, “|.S|” denotes its size. If4 is a probabilistic algorithm theny< A(z;r)”
denotes thatd computesy as output by taking: as input and using as randomness.
A® denotes an algorithmil with oracle access t@. A functione(-) : N — [0,1] is
said to benegligibleif for all positive polynomialg(-) and all sufficiently largé: € N,
we havee(k) < 1/p(k). Throughout this paper, we use the charactértty denote a
security parameter.

2.1 Sender Non-committing Public Key Encryption

Roughly, a SNCE scheme is a PKE scheme that remains secure even against an adver-
sary who may obtain sender’s randomness used to generate the challenge ciphertext.
This security is ensured by requiring that there be an algorithm that generates a “fake
transcript” pk and ¢ that denote a public key and a ciphertext, respectively, so that



Exptiroo (k) : lExpt%{c;‘Si’“(k) : Expth 2 4 (k) :
(m,st) + A1 (1%) (m,st) + A1 (1%) (f,st) + A1 (1%)
(pk, sk) < PKG(1%), (pk,c,w) < Fake(1¥)| K « Kx

7+ Rk r + Explain(w, m) my < f(K); mo + My
b+ As(st,pk,c,r) * Returnd’. ¢* + SEnc(K,ms)

Returnd’. b <+ As(st,c”)

¢ + Enc(pk,m;r) ' b <+ As(st,pk,c,7) b+« {0,1}
: Return(b’ = b).

Fig. 1. Security experiments for defining tlS&iC security of a SNCE scheme (left and center) and
that for the7-0TKDM security of a SKE scheme (right).

the pair(pk, ¢) can be later explained as a transcript of an arbitrary messageur

syntax of SNCE loosely follows that of sender-equivocable encryption [26, 39], but de-

parts from it because we need perfect correctness (or at least almost-all-keys-perfect

correctness [25]) so that error-less decryption is guaranteed, which cannot be achieved

by sender-equivocable encryption. We also note that recently, Hazay and Patra [35] in-

troduced (among other notions) the notion that they N&E for the SendefNCES),

which is a notion very close to SNCE we consider here. We will discuss the correctness

and the difference between our definition and that of [35] later in this subsection.
Formally, a sender non-committing (public key) encryption (SNCE) schi&roen-

sists of the five PPTASPKG, Enc, Dec, Fake, Explain) where(PKG, Enc, Dec) consti-

tutes a PKE scheme (where definitions for ordinary PKE can be found in Appendix A),

andFake andExplain are the simulation algorithms with the following syntax:

Fake: This is the “fake transcript” generation algorithm that takésas input, and
outputs a “fake” public key/ciphertext paipk, ¢) and a corresponding state infor-
mationw (that will be used in the next algorithm).

Explain: This is the (deterministic) “explanation” algorithm that takes a state informa-
tion w (wherew is computed bypk, ¢, w) < Fake(1¥)) and a plaintextn as input,
and outputs a randomnesshat “explains” the transcrifipk, ¢) corresponding to
w. Namely, it is required thenc(pk, m; r) = ¢ hold.

SNC Security. For a SNCE schemé& = (PKG, Enc, Dec, Fake, Explain) (where the
randomness space Bficis R = (Ry)ren) and an adversamt = (A1, Az ), we define
thesSNC- Real experimenExpt$;%**** (k) and thesNC- Sim experimenExpti<, " (k)

as in Fig. 1 (left and center, respectively).

Definition 1. We say that a SNCE scherfleis SNC secure if for all PPTAsA,
Adv%’f’A(k) = \Pr[Expt?%‘i;lReal(k) =1] - Pr[Expt?#f’jm(k) = 1]| is negligible.

The Difference among Non-committing Encryption and Related PrimitiVes.origi-

nal definition of non-committing encryption by Canetti et al. [18] ensures security under
both the sender and receiver’s corruption. This is ensured by requiring that the “explain-
ing” algorithm output not only the sender’s randomness but also receiver’s (i.e. random-
ness used to generate public/secret keys). The original definition in [18] (and several



works [23, 28]) allows multi-round interaction between a sender and a receiver (and
even the multi-party case), but in this paper we only consider the public-key case (equiv-
alently, the one-round two-party protocol case). A SNCE scheme is a non-committing
encryption scheme that only takes care of the sender’s side corruption.

Sender-equivocable encryption [26, 39] is a special case of a SNCE scheme in which
a sender can, under an honestly generated public key, generate a fake ciphertext that
can be later explained as an encryption of an arbitrary message (while a SNCE scheme
allows that even a public key is a fake one).

Deniable encryption [17, 54, 10, 60] has an even stronger property in which an hon-
estly generated ciphertext under an honestly generated public key can be later explained
as an encryption of an arbitrary message. For details on deniable encryption, we refer
the reader to the papers [54, 10].

The difference among these primitives is very important in our paper, as we explain
below.

On Correctness of SNCE Schemés.this paper, unlike most of the papers that treat
(sender) non-committing encryption schemes and related primitives such as sender-
equivocable encryption and deniable encryption, we require a SNCE scheme satisfy per-
fect correctness or at least almost-all-keys perfect correctness [25]. This is because our
proposed constructions follow the Dolev-Dwork-Naor-style construction [24] which re-
quires error-less decryption (under all but negligible fraction of key pairs) for a building
block PKE scheme. Here, the non-committing property and (perfect or almost-all-keys
perfect) correctness might sound contradicting. This is indeed the case for ordinary (i.e.
bi-) and “receiver” non-committing encryption, sender-equivocable encryption, and de-
niable encryption, and thus we cannot use these primitives in our proposed construc-
tions. However, “sender” non-committing encryption can avoid such an incompatibility,
because the fake transcript generation algorifake can generatépk, ¢) such thapk

is notin the range of the normal key generation algoritRKG. Moreover, as we will

see belowsNC secure SNCE schemes with perfect correctness (and even practical effi-
ciency) can be realized from standard assumptions.

Concrete Instantiations of SNCE SchemBellare et al. [8] formalized the notion of
lossy encryptiori8], which is a PKE scheme that has the “lossy key generation” al-
gorithm. It outputs a “lossy public key” which is indistinguishable from a public key
generated by the ordinary key generation algorithm, and an encryption under a lossy
public key statistically hides the information of a plaintext. Bellare et al. [8] also intro-
duced an additional property for lossy encryption caéiéiicient openabilityin which

the lossy key generation algorithm outputs a trapdoor in addition to a lossy public key,
and by using the trapdoor, an encryption under the lossy public key can be efficiently
“explained” as a ciphertext of any plaintext.

We note that any lossy encryption with efficient openability yieldsNa secure
SNCE scheme: the algorithfeke generates a lossy public key: as well as an en-
cryption ¢ of some plaintext, and keeps the trapdoor correspondipg tsw.; the al-
gorithmExplain on inputw and a plaintextn outputs a randomnesshat explains that
¢ = Enc(pk, m;r) holds. Hence, we can use the existing lossy encryption schemes with
efficient openability that are based on standard assumptions. These include the scheme



based on the quadratic residuosity (QR) assumptiof) 484] (which is essentially the
multi-bit version of the Goldwasser-Micali scheme [33]), the scheme based on the deci-
sional Diffie-Hellman (DDH) assumption [9,5.4] (which is the “bit-wise” encryption
version of the DDH-based lossy encryption scheme; [8,1]), and the scheme based

on the decisional composite residuosity (DCR) assumption [36] (which shows that the
original Paillier scheme [55] and the Daérd-Jurik scheme [22] can be extended to
lossy encryption with efficient openability). In particular, the DCR-based schemes [55,
22, 36] have a compact ciphertext whose size does not grow linearly in the length of
plaintexts.

On the Difference from the Formalization of “NCE for the Sender” in [39]he defi-

nition of NCE for the Sender in [35] explicitly requires that the scheme have the “fake”
key generation algorithm that outputs a “fake” public key together with a trapdoor, with
which one can “equivocate” (or in our terminology, “explain”) any ciphertext as an en-
cryption of arbitrary plaintexin. Therefore, it seems to us that their formalization is
close to lossy encryption with efficient openability [8]. On the other hand, our formal-
ization requires that only a palipk, ¢) of public key and a ciphertext (or a “transcript”

in a one-round message transmission protocol between two parties) be explained. We
can construct a SNCE scheme in our formalization from NCE for the Sender of [35]
(in essentially the same manner as we do so from lossy encryption with efficient open-
ability), while we currently do not know if the converse implication can be established.
Therefore, in the sense that currently an implication of only one direction is known, our
formalization is weaker.

Some Useful FactsFor our result in Section 4, it is convenient to consider the so-
called “repetition construction,” in which a plaintext is encrypted multiple times by
independently generated public keys.

More specifically, given a SNCE scheme= (PKG, Enc, Dec, Fake, Explain), the
n-wise repetition constructiol” = (PKG", Enc™, Dec"”, Fake™, Explain™) is defined
as follows: The key generation algoritHPiKG" runs(pk;, sk;) < PKG for i € [n] and
returns public keyP K = (pk;);c[n) and secret ke K = (sk;);c(,)-; The encryption
algorithmEnc”, on input PK and a plaintextn, runsc; + Enc(pk;, m;r;) for i €
[n] (where eachr; is an independently chosen randomness), and outputs a ciphertext
C = (¢i)ien)- The decryption algorithnDec™, on inputSK and C, runsm; <
Dec(sk;, ¢;) for i € [n], and returnsn, if every m; is equal orL otherwise.; The fake
transcript generation algorithifeke™ runs (pk;, c;,w;) <+ Fake(1*) for n € [n], and
returnsPK = (pki)icin), C = (¢i)icn)» and a state informatiol” = (w;);cpn).; The
explanation algorithnexplain™, on inputW andm, runsr; < Explain(w;, m) fori €
[n], and returns the randomnels= (;);c[,) that explains that’ = Enc" (PK, m; R).

By a straightforward hybrid argument, we can show that for any polynomial
n(k) > 0, if the underlying schemé/ is SNC secure, then so is thewise repetition
construction/7™. (Itis also a well-known fact that if] is CPA secure, then so iF™.)

We also note that the plaintext space of an SNCE scheme can be easily extended by
considering the straightforward “concatenation construction,” in which plaimtext
(mq,...,my) is encrypted block-wise by independently generated public keys.



More formal statements regarding the repetition construction and the concatenation
constructions are given in the full version.

2.2 Symmetric Key Encryption

A symmetric key encryption (SKE) schenie with key spacell = {Kj}ren and
plaintext spaceM = { M, }ren? consists of the following two PPTASENc, SDec):

SEnc: The encryption algorithm that takes a kEye K and a plaintextn € M, as
input, and outputs a ciphertext

SDec: The (deterministic) decryption algorithm that tak€s= KC;. andc as input, and
outputs a plaintextn which could be the special symbal (which indicates that
is an invalid ciphertext undek’).

Correctness.We require for allk € N, all keysK € K}, and all plaintextsn € My,
it holds thatSDec(K, SEnc(K,m)) = m.

One-Time Key-Dependent Message Secutigt.E = (SEnc, SDec) be a SKE scheme
with key spac&C = {K}, }ren and plaintext spacet = { My} ren. LetF = {Fi ren
be an ensemble (which we cdiinction ensemb)ewhere for eachk, F; is a set of
efficiently computable functions with their domdi), and rangeM,,.

For the SKE schem&, the function ensembl&, and an adversa = (A, As),
we define theF-0TKDM experimenExpty; 2 4 (k) as in Fig. 1 (right). In the experiment,

it is required thatf € Fy.

Definition 2. We say that a SKE scherfids 0TKDM secure with respect td (F-0TKDM
secure, for short) if for all PPTAg!, Advy; 2" (k) := 2-| Pr[Expty 2 4 (k) = 1]—1/2]
is negligible.

We would like to remark that our definition 0fKDM security is considerably weak:
it is a single instance definition that need not take into account the existence of other
keys, and an adversary is allowed to make a KDM encryption query (which is captured
by f) only once.

Concrete Instantiations afTKDM Secure SKE Schemel our proposed construction

in Section 4, the class of functions with respect to which a SKE sche@EKM se-

cure needs to be rich enough to be able to compute the algoE#phain in a SNCE
scheme multiple (an a-priori bounded number of) times. Fortunately, Applebaum [1]
showed how to generically convert any SKE scheme which is many-time KDM se-
cure (i.e. secure for many KDM encryption queries) with respect to “projections” (i.e.
functions each of whose output bit depends on at most one bit of inputs) into a SKE
scheme which is many-time KDM secure (and tlad&DM secure), with respect to a

LIn this paper, for simplicity, we assume that the key spkicand plaintext space of a
SKE scheme satisfy the following conditions: For eéck N, (1) every element i, has
the same length, (2) every elementM; has the same length, (3) boif, and M, are
efficiently recognizable, and (4) we can efficiently sample a uniformly random element from
both IC, and M.



family of functions computable in a-priori fixed polynomial time. (We can also use a
more efficient construction shown by Bellare et al.{8,2].) This notion is sufficient

for our proposed construction. Since most SKE and PKE schemes KDM secure with
respect to the class of affine functions can be interpreted as (or easily converted to)
“projection”-KDM secure SKE schemes [3A], we can use the existing (many-time)
“affine”-KDM secure SKE schemes as a building block, and apply Applebaum’s con-
version (or that of [6§7.2]). Therefore, for example, one can realizeTXDM secure

SKE scheme with respect to fixed poly-time computable functions, based on the DDH
assumption [13], the QR assumption [15], the DCR assumption [15, 44], the learning
with errors (LWE) assumption [4], and the learning parity with noise (LPN) assump-
tion [4, 2]. Very recently, Bellare et al. [5] introduced a notion of a family of hash func-
tion calleduniversal computational extractdtJCE) which is seemingly quite strong
(almost random oracle-like) but a standard model assumption, and then they showed
(among many other things) how to construct a SKE scheme which is non-adaptively
KDM secure (in which encryption queries have to be made in parallel) with respect to
any efficiently computable function8TKDM security is the special case of non-adaptive
KDM security, and hence we can also use the result of [5] in our proposed construction.

3 Chosen Ciphertext Security from Puncturable KEMs

In this section, we introduce the notion opancturable KEM(PKEM) and show sev-
eral results on it.

This section is organized as follows: In Sections 3.1 and 3.2, we define the syntax
and the security requirements of a PKEM, respectively. Then in Sections 3.3 and 3.5,
we show the implication of a PKEM to@&A secure KEM and 8CCA secure detectable
KEM, respectively. We also explain how a wide class of the existing constructions of
CCA secure KEMs can be understood via a PKEM in Section 3.4.

3.1 Syntax

Informally, a PKEM is a KEM that has additional procedures for “puncturing secret
keys according to a ciphertext” and “punctured decapsulation.” In a PKEM, one can
generate a “punctured” secret k@yc* from an ordinarysk and a ciphertext* via the
“puncturing” algorithmPunc. Intuitively, although an ordinary secret key defines a
map (viaDecap) whose domain is the whole of the ciphertext spa/é@,; only defines
a map whose domain is the ciphertext space that has a “hole” produced by the puncture
of the ciphertext*. This “punctured” secret keﬁc* can be used in the “punctured”
decapsulation algorithidDecap to decapsulate all ciErjertexts that are “far” frotr(or,
those that are not in the “hole” produced &y, while sk« is useless for decapsulating
ciphertexts that are “close” t&* (or, those that are in the “hole” including itself),
where what it means for a ciphertext to be close to/far fréris decided according to
a publicly computable predicate which is also a part of a PKEM.

Formally, a puncturable KEM consists of the six PPT&IG, Encap, Decap, F,
Punc, PDecap), where (KKG, Encap, Decap) constitute a KEM, and the latter three
algorithms are deterministic algorithms with the following interface:
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F: The predicate that takes a public kely (output byKKG(1%)) and two ciphertexts
andc’ as input, where has to be in the range &hcap(pk) (but¢’ need not), and
outputs0 or 1.

Punc: The “puncturing” algorithm that takes a secret kéy(output byKKG(1*)) and
a ciphertext:* (output byEncap(pk)) as input, and outputs a punctured secret key
Skc* .

PDecap: The “punctured” decapsulation algorithm that takes a punctured secret key
EEC* (output byPunc(sk, ¢*)) and a ciphertext as input, and outputs a session-key
K \Lv\hich could be the special symbal (meaning that ¢ cannot be decapsulated
by skq").

The predicatd- is used to definglecapsulation soundnesasd punctured decapsula-
tion soundnesswvhich we explain in the next subsection. Its role is very similar to the
predicate used to defircCA security and unpredictability of detectable PKE in [38].
As mentioned above, intuitively, the predic&gk, ¢*, -) divides the ciphertext space
into two classes: ciphertexts that are “close¢tand those that are “far” frora*, and

for each of the classes, we expect the decapsulation algorfeaae andPDecap to
work “appropriately,” as we will see below.

3.2 Security Requirements

For a PKEM, we consider the three kinds of security noticiesapsulation soundness
punctured decapsulation soundneasdextended CPA securityhe intuition for each

of the security notions as well as formal definitions are explained below. Furthermore,
for the first two notions, we consider two flavors: the ordinary version and the strong
version (where the latter formally implies the former). We only need the ordinary no-
tions for showing thecCA security of a PKEM, while the strong notions are usually
easier to test/prove.

Decapsulation Soundnesghis security notion is intended to capture the intuition that
the only valid ciphertext which is “close” to* is ¢* itself: It requires that given the
challenge ciphertext/session-key péit, K*), it is hard to come up with another ci-
phertextc’ # c¢* that is (1) “close” toc* (i.e. F(pk,c*,¢’) = 1), and (2) valid (i.e.
Decap(sk,c’) # 1).

Formally, for a PKEMI" and an adversary, consider the decapsulation soundness

(DSND) experimenExpt[ﬁ”AP(k) and the strong decapsulation soundnebsi{D) exper-

imentExpt?5” (k) defined as in Fig. 2 (left-top/bottom). The adversary advantage
in each experiment is defined as in Fig. 2 (right-bottom). Note that in the “strong” ver-
sion (sDSND), an adversary is even given a secret key (which makes achieving the notion

harder, but makes the interface of the adversary simpler).

Definition 3. We say that a PKEM™ satisfiesdecapsulation soundnefgsp. strong
DSND sDSND

decapsulation soundngstfor all PPTAs A, Adv (k) (resp.Advy >, (k)) is negli-
gible.
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Expti (k) : Expt?oP (k) : ExptiA(k) :

(pk, sk) < KKG(1%) (pk, sk) < KKG(1%) (pk, sk) < KKG(1%)

(¢*, K*) < Encap(pk) (c*, K*) < Encap(pk) (c*, KT) < Encap(pk)

¢ APePER) (pk ¢* K™ | skes < Punc(sk, c*) ske+ + Punc(sk, c*)

Returnl iff @) A (b) A (C): | — APDecap(s/ECw)(pk’C*’K*) K« {0,1}"

(@) F(pk,c™,c') =1 Returnl iff (a) A (b): b {0,1}

(b) ' # ¢ , (@) F(pk,c*,c')y =0 b <+ A(pk, skex,c®, Ky)

(¢) Decap(sk, ') # L (b) Decap(sk,c’) # Return(b’ = b).
PDecap(skc=,c')

Expt7 ol (k) : Exptia” (k) : Definitions of Advantages:

(pk, sk) < KKG(1*) (pk, sk) < KKG(1*) ForXxx € {DSND, sDSND,

(¢*, K*) < Encap(pk) (¢*, K*) < Encap(pk) PDSND, sPDSND} :

c + A(pk,sk,c*, K*) c «— A(pk,sk,c*, K*) AdvEY (k) ==

Returnl iff (@) A (b) A (c):  |Returnliff (@A (b): | PrlExpt’y (k) = 1]

(@) F(pk,c*, ) =1 (@) F(pk,c*,c) =0 eCPA security:

(b)c #c* (b) Decap(sk, ¢') # Advih (k) := 2x

(c) Decap(sk,c’) # L PDecap(Punc(sk, c*),c') | | PrlExptiia(k) = 1] — 5

Fig. 2. Security experiments for a PKEM and the definition of an adversary’s advantage in each
experiment.

Punctured Decapsulation Soundnesghis security notion is intended to capture the
intuition that the “punctured” decapsulation BYDecap(sk.«,-) works as good as the
normal decapsulation byecap(sk, -) for all “far” ciphertextsc’: It requires that given
the challenge ciphertext/session-key fair, K*), it is hard to come up with another
ciphertextc’ that is (1) “far” fromc* (i.e. F(pk, c*,¢’) = 0), and (2) the decapsulations
under two algorithm®ecap(sk, ¢') andPDecap(EEc* ,¢) disagree.

Formally, for a PKEMI" and an adversary, consider the punctured decapsulation
soundnessPPSND) experimentExpt‘}Ifﬂ“D(k) and the strong punctured decapsulation
soundnesssPDSND) experimenExpt 4 (k) defined as in Fig. 2 (center-top/bottom).
The adversary!’s advantage in each experiment is defined as in Fig. 2 (right-bottom).
Note that as in theDSND experiment, in the “strong” versiors¥DSND), an adversary
is even given a secret key (which makes achieving the notion harder, but makes the
interface of the adversary simpler).

Definition 4. We say that a PKEN' satisfiegppunctured decapsulation soundngssp.

strong punctured decapsulation soundhider all PPTAsA, Advi 1" (k) (resp.

AdvioP™ (k) is negligible.

Extended CPA Security: CPA security in the presence of a punctured secret key. Ex-
tended CPA securitfeCPA security, for short) requires that the CPA security hold even
in the presence of the punctured secret:ké(y corresponding to the challenge cipher-
textc*.

Formally, for a PKEMI" and an adversary, consider th&CPA experiment
Expt%‘fi{‘(k) defined as in Fig. 2 (right-top). We define the advantage of an adversary as
in Fig. 2 (right-bottom).
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Definition 5. We say that a PKEM" is eCPA secure if for all PPTA$4, Adv?‘fi{‘(k) is
negligible.

3.3 CCA Secure KEM from a Puncturable KEM

Here, we show that a PKEM satisfying all security notions introduced in Section 3.2
yields aCCA secure KEM. (The formal proof is given in the full version.)

Theorem 1. Let I' = (KKG, Encap, Decap, F, Punc, PDecap) be a PKEM satisfying
decapsulation soundness, punctured decapsulation soundnessFEsecurity. Then,
I'* = (KKG, Encap, Decap) is aCCA secure KEM.

Specifically, for any PPTA that attacks the&CA security of/™ and makes in total
Q@ = Q(k) > 0 decapsulation queries, there exist PPT#s BB,, and 5. such that

AdVi 4 (k) <2 AdViR (k) +2Q - Advige (k) + Advig (k). (1)

Proof Sketch of Theorem 1Let A be any PPTA adversary that attacks the KEMin
the sense ofCA security. Consider the following sequence of games:

Game 1: This is theCCA experimenExpti= 4 (k) itself.

Game 2: Same as Game 1, except that all decapsulation quesassfyingF (pk, ¢*, ¢)
= 1 are answered with..

Game 3: Same as Game 2, except that all decapsulation quesassfyingF (pk, ¢*, ¢)

= 0 are answered WitﬁDecap(EEc* ,C), wheresk.. = Punc(sk, ¢*).

Fori € [3], let Succ; denote the event that in Gamg.A succeeds in guessing
the challenge bit (i.eb’ = b occurs). We will show thattPr[Succ;] — Pr[Succ;;4]| is
negligible for each € [2] and that| Pr[Succs] — 1/2] is negligible, which proves the
theorem.

Firstly, note that Game 1 and Game 2 proceed identically undessakes a de-
capsulation query satisfyingF(pk, c*,¢’) = 1 and Decap(sk,c) # L, and hence
| Pr[Succ;] — Pr[Succs]| is upperbounded by the probability ¢fmaking such a query
in Game 1 or Game 2. Recall that by the rule oftida experiment,A’s queriesc must
satisfyc # ¢*. ButF(pk,c*, ') = 1, ¢ # ¢*, andDecap(sk,c) # L are exactly the
conditions of violating the decapsulation soundness, and the probabilityhwdking a
query satisfying these conditions is negligible.

Secondly, note that Game 2 and Game 3 proceed identically uAlesakes a de-
capsulation query satisfyingF(pk, ¢*, ¢) = 0 andDecap(sk, ¢) # PDecap(gEc*,c),
wheresk,. = Punc(sk, ¢*). Hence| Pr[Succs] — Pr[Succs]| is upperbounded by the
probability of A making such a query in Game 2 or Game 3. However, since these
conditions are exactly those of violating the punctured decapsulation soundness, the
probability of 4 making a query satisfying the above conditions is negligible.

Finally, we can upperboundr[Succs] — 1/2]| to be negligible directly by theCPA
secu/ri\ty of the PKEMI". More specifically, anyeCPA adversaryB3., which receives
(pk, ske~, c*, K}) as input, can simulate Game 3 fdy whereA’s decapsulation oracle
in Game 3 is simulated perfectly by usic*, so that3.'s eCPA advantage is exactly
2 - | Pr[Succs] — 1/2|. This shows thatPr[Succs] — 1/2] is negligible. O
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On the Tightness of the Reductiolm the equation (1) of the above proof, the reason
why we have the factap (the number of &CA adversary4d’s decapsulation queries) in
front of the advantag&dvi>3” (k) of the reduction algorithnB, attacking punctured
decapsulation soundness, is that the reduction algofithoannot check whether a ci-
phertextc’ satisfies the condition (b) of violating punctured decapsulation soundness,
i.e. Decap(sk,c’) # PDecap(EEc*,c’), and thusB, picks one ofA’'s decapsulation
queries randomly. However, if we instead use a PKEM wsitbngpunctured decapsu-
lation soundness, then, when proving security, a reduction algorithm attastkamgy
punctured decapsulation soundness is given the secre/k\lwinput, which enables it

to check whether the conditidbecap(sk, ¢’) # PDecap(sk.+,c’) is satisfied. There-
fore, the reduction algorithm need not pick one of the decapsulation queries randomly,
but can find a ciphertext’ that violates the conditions of strong punctured decapsu-
lation soundness whenever the adversdrgsks such a ciphertext as a decapsulation
query, which leads to a tight security reduction. We will explain this in more details in
the full version.

3.4 Understanding the Existing Constructions ofcCA Secure KEMs via
Puncturable KEM

To see the usefulness of a PKEM and the result in Section 3.3, here we demonstrate
how the existing constructions 0€A secure KEMs can be understood via a PKEM.

The Dolev-Dwork-Naor KEMWe first show how a security proof of the KEM version
of the DDN construction [24], which we call tHeDN-KEM, can be understood via a
PKEM. This is the KEM obtained from the original DDN construction (which is a PKE
scheme) in which we encrypt a random value and regard it as a session-key.

Let IT = (PKG, Enc, Dec) be a PKE scheme whose plaintext spacfisl }* and
whose randomness space (for security paramgtey R,.. Consider the NP language
L = {Ly}reny Where eachly, is defined as follows:

L= { (kidica (o) | 500 [kf ' E(ﬁp)/ix K{O rl)}k:sct }

Let P = (CRSG, Prove, PVer) be a non-interactive argument system for the language
L. Moreover, letY = (SKG, Sign, SVer) andH = (HKG, H) be a signature scheme
and a UOWHF, respectively. (The definitions of an ordinary PKE scheme, a sigha-
ture scheme, a UOWHF, and a non-interactive argument system can be found in Ap-
pendix A.) Then we construct the PKEFpy = (KKGppy, Encapppy, Decapppy, Foon,
Puncppy, PDecapppy), Which is based on the DDN-KEM, as in Fig. 3. The original
DDN-KEM I7qy is (KKGppy, Encapppy, Decapppy)-

For the PKEMI ppy, the three security requirements are shown as follows:

Lemma 1. If H is a UOWHF and¥ is aSOT secure signature scheme, then the PKEM
Iy satisfies strong decapsulation soundness.

Lemma 2. If the non-interactive argument systéfrsatisfies adaptive soundness, then
the PKEMIppy satisfies strong punctured decapsulation soundness.
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KKGoon (17) -

Y(i,7) € [k] x {0,1} :
(k) sk)) + PKG(1*)

crs + CRSG(1%)

K + HKG(1%)

PK + ((pk‘l(j))i#j,crs,m)
SK « ((sk)) 5, PK)
Return(PK, SK).

Decappyy (SK,C) :

PUI’]CDDN(SK, C*) :

Encappy, (PK) :
((pkgj))i7j,crs,n) +— PK
K« {0,1}*
T1y,...,Tk — R
(vk, sigk) < SKG(1%)
h < H.(vk)
Let h; be thei-th bit of h.
Vi € [k] :

ci Enc(pkﬁhi)7K;m)
z < ((pk{")i, (c:):)
w <+ ((r:):, K)
7 <— Prove(ers, z, w)
o <« Sign(sigk, ((¢i)i,m))

((sk9)i 5, PK) + SK
((k)i.s, crs, 5)
+— PK
(vk, (¢i)i,m,0) « C
If SVer(vk, ((¢i)i,m),0)
= 1 thenreturnl.
h < H.(vk)
Let h; be thei-th bit of h.
z 4 ((k{")i, (ci):)
If PVer(crs,z,m) = L
then returnlL
K« Dec(skihl),cl)
ReturnK.

((sk9)i;, PK) + SK
((pkgj))i,]-,crs,n) +— PK

(vk™, (¢j)sym™,0") «+ C

h* + Hy(vk™)

Let b} be thei-th bit of A*.
SKc» + (h*, sk "y, PK)

—

ReturnSK ¢+.

PDecapyp(SKc+,C) :

FDDN(]D[(7 C, C/) :

((pk"z(j))i,jv crs, K’)

+— PK
(vk, (¢i)iym,0) «+ C
(vk', (c})i, 7', 0") + C’
h  Hy(vk)
B < H, (k')

(0", (sk{"~"))i, PK) + SK -

((pkgj))i,j,crs,/i) +— PK

(vk, (¢i)sym,0) « C

If SVer(vk, ((¢i)i,7),0) = L
then returnl.

h + H.(vk)

If h* = hthen returnl.

Let k] be thei-th bit of h*.

Let h; be thei-th bit of A.

¢+ min{i € [k] | k] # hi}

@ ((pk"))s, (ci):)

If PVer(crs,z,m) = L

C « (vk,(ci)i, T, 0). Return(h = 1).

Return(C, K).

then returnl.
ReturnK <+ Dec(skf*h”,@).

Fig. 3. The PKEM I'ppy based on a PKE schenié and a non-interactive argument systémin
the figure, (r;);” and “(pk\?), ;" are the abbreviations of(#i);ex)” and “(pki”)ie[k],je{o,l}”,
respectively, and we use a similar notation for other values.

Lemma 3. If the PKE scheméI is CPA secure and the non-interactive argument sys-
temP is ZK secure, then the PKEN,y is eCPA secure.

The formal proofs of these lemmas are given in the full version, and here we give some
intuitions below.

The first two lemmas are almost trivial. Specifically, & = (vk*, (¢});, 7*,0*)
be the challenge ciphertext, and & = (vk’, (¢});, 7', o’) be a ciphertext output by
an adversary in theDSND experiment or thesPDSND experiment (recall that the in-
terface of an adversary in these experiments is the same). Then, a simple observation
shows that ifC” is a successful ciphertext that violates strong decapsulation soundness,
thenC’ must satisfy one of the following two conditions: @), (vk*) = H,(vk’) and
vk* # vk/, or (2) SVer(vk', ((c})i, '), 0") = T, ((¢})i, 7*,0%) # ((¢})i, 7', 0’), and
vk* = vk’. However, a ciphertext with the first condition is hard to find due to the se-
curity of the UOWHF#H, and a ciphertext with the second condition is hard to find due
to the SOT security of the signature schem& Similarly, again a simple observation
shows that in order fo€”’ to be a successful ciphertext that violates strong punctured
decapsulation soundness, has to satisiPVer(crs,2’,7') = T andz’ ¢ Ly where

' = ((pkEhé))i, (c});), and hence the adaptive soundness of the non-interactive argu-
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ment systemP guarantees that the probability that an adversary coming up with such
a ciphertext in thesPDSND experiment is negligible. TheCPA security is also easy to
see. Specifically, we can first consider a modified experiment in whigtand = are
respectively generated by using the simulation algoritBmsCRS andSimPrv which

exist by thezk security ofP. By theZK security, areCPA adversary cannot notice this
change. Then, thePA security of the underlying PKE scheme directly shows that the
information of a session-key does not leak, leading tcettF security.

Capturing Other Existing Construction®ur framework with a PKEM can explain
other existing constructions that, explicitly or implicitly, follow a similar security proof
to the DDN construction. For example, the Rosen-Segev construction based on an in-
jective trapdoor function (TDF) secure under correlated inputs [59], the Peikert-Waters
construction [56] based on a lossy TDF and an all-but-one lossy TDF (ABO-TDF) in
which the ABO-TDF is instantiated from a lossy TDF (see this construction in [56,
§2.3]). Moreover, the construction based on CPA secure PKE and an obfuscator for
point functions (with multi-bit output) by Matsuda and Hanaoka [47] and one based on
CPA secure PKE and a hash function family satisfying the strong notion (called UCE
security [5]) from the same authors [48] can also be captured as a PKEM.
Furthermore, our framework with a PKEM can also capture KEMs basedllon
but-one extractable hash proof systefABO-XHPS) by Wee [61] (and its extension
by Matsuda and Hanaoka [46]), by introducing some additional property for underlying
ABO-XHPS. Although the additional property that we need is quite subtle, it is satisfied
by most existing ABO-XHPS explained in [61, 46]. Since a number of recent practical
CCA secure KEMs (e.g. [14, 20, 34, 37]) are captured by the framework of ABO-XHPS,
our result is also useful for understanding practical KEMs. We expand the explanation
for capturing ABO-XHPS-based KEMs in the full version.

3.5 DCCA Secure Detectable KEM from a Puncturable KEM

Here, we show that even if a PKEM does not have decapsulation soundness, it still
yields aDCCA secure detectable KEM [38, 45]. Therefore, if a PKEM satisfying punc-
tured decapsulation soundness ar@PA security additionally satisfies the property
calledunpredictability[38, 45] it can still be used as a building block in the construc-
tions [38, 45] to obtain fullycCA secure PKE/KEM.

Theorem 2. Let I' = (KKG, Encap, Decap, F, Punc, PDecap) be a PKEM satisfying
punctured decapsulation soundness amPA security. ThenI't = (KKG, Encap,
Decap, F) is aDCCA secure detectable KEM.

Proof Sketch of Theorem 2I'he proof of this theorem is straightforward given the proof
of Theorem 1 (itis only simpler), and thus we omit a formal proof. The reason why we
do not need decapsulation soundness is that an adversaryniathexperiment is not
allowed to ask a decapsulation querwith F(pk,c*,¢) = 1, and we need not care

2 We note that the DDN-KEM reviewed in Section 3.4 and our proposed KEM in Section 4
achieve strong unpredictability (based on the security of the building blocks), which we show
in the full version.
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the behavior oDecap for “close” ciphertexts. Thus, as in the proof of Theorem 1, the
punctured decapsulation soundness guarantee®fratp(sk.-,-) works as good as
Decap(sk, -) for all “far” ciphertextsc with F(pk, ¢*, ¢) = 0, and then theCPA security
guarantees the indistinguishability of a real session#&¢yand a randond;. O

4 Puncturable KEM from Sender Non-committing Encryption
and KDM Secure SKE

In this section, we show our main technical result: a PKEM that uses a SNCE scheme
and a0TKDM secure SKE scheme (with respect to efficiently computable functions). By
Theorem 1, this yields acA secure KEM. Therefore, this result clarifies a new set of
general cryptographic primitives that impliesA secure PKE/KEM.

The construction of the proposed PKEM is as follows: [et= (PKG, Enc, Dec,
Fake, Explain) be a SNCE scheme such that the plaintext spadé,is}™ (for some
polynomialn = n(k) > 0) and the randomness spacebok is Ry. Let E = (SEnc,
SDec) be a SKE scheme whose key space and plaintext space (for security parameter
k) areC;, and M,,, respectively. We requirk;, C {0,1}™ and(Ry)* ! x {0,1}* C
M. Furthermore, let{ = (HKG, H) be a hash function family (which is going to be

~

assumed to be a UOWHF). Then we construct a PKEM- (ﬂ(\G, ﬁ&), D/ec?p, F,
Punc, PDecap) as in Fig. 4.

Function Ensemble fdBTKDM Security. For showing thesCPA security ofl", we need
to specify a function ensemblE = { ¥}, } e with respect to whiclE is 0TKDM secure.
For each: € N, define a sef}, of efficiently computable functions as follows:

Fi =
f» 1 K — My given by z = ((wi)iep+1), K) whereK € {0, 1}*
J=(a) := ((Explain(w;, @))iefpt1], K) and eachw; is output fromFake(1%)

Note that each function iF; is parameterized by, and is efficiently computable.

Security off". The three security requirements of the PKEMan be shown as follows:
(The formal proofs of Lemmas 4, 5, and 6 are given in Appendices B.1, B.2, and B.3,
respectively.)

Lemma 4. If H is a UOWHF, then the PKENT satisfies strong decapsulation sound-
ness.

Lemma5. The PKEMI satisfies strong punctured decapsulation soundness (even
against computationally unbounded adversaries) unconditionally.

Lemma 6. If the SNCE schem# is SNC secure and the SKE scherfeis F-0TKDM
secure, then the PKEM is eCPA secure.
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KKG(1*%) : Decap(SK,C) : Punc(SK,C™) :

V(i ) € [k] x {0,1} ((sk¥)i;, PK) « SK ((sk)i;, PK) + SK
(P, k) PRKGF) | ((pkD)Y, 5, phiyr, k) < PK | (W7, (c])i, &) + C

(Pkk+1, skik+1) < PKG(l’“) (h, (¢i)i,¢) « C Let ] be thei-th bit of A*.

K+ HKG(1*) Let h; be thei-th bit of h. SKc+ +

PK « ((pkz@)i,jypkkﬂ,li) o + Dec(sk{™) ¢) (h*, (Skil_h:))i,PK)

SK + ((skg“)i,j, PK) If « = L then returnl. ReturnSK ¢ .

Return(PK, SK). B + SDec(a, ¢) PDecap(§I\(c* 0 -

Encap(PK) : If 5= L thenreturnl. n (Sk(lihb)' PK)

@)y, . ((ri)iep+1), K) < B PP v J_
((pkz )1,J7pkk+17/€) «— PK . — SK o«
o Ko K {0 1}k Ci+1 < Enc(pk:kﬂ,a,rkﬂ) C

’“' ’ If (@) A (b) then returnk’ (h, (ci)isc) < C
Tl Thtl S Rk else returnl: If h* =h then returnl.
B ((ri)ietrty, (@) Hx(cky1][d) = h Let b} be thei-th bit of b*.

¢ < SEnc(a, B)

b) Vi € [k] : Let ; be thei-th bit of h.
ck+1  Enc(pkr+1, a;m6+1) (b) Vi € [K]

(hi) ...\ _ .| £« min{i € [k] | h] # h;
h < He(crs [[0) Enc(pk{"”, asr) = i { (1[_]%) # ha}
Leth, be theith bitofh. | F(PK,C,C") : o« Dec(sk, ‘)
Vi € [k] : (h, (ci)i,c) « C Run exactly aPecap from
c Enc(pk:v”) ) (W', (c})i, @) « C' the sixth step and return
C + (h,(ci)i,C). ' Return(h z ). the result

Return(C, K).

Fig.4.The PKEMT based on a SNCE schenig and a SKE schemg. In the figure, {(r:);”
and “(pk:ﬁ”)i,j” are the abbreviations of(;);c[x” and “(pk?))ie[k],je{o,l}", respectively, and
we use similar notation for other values.

Here, we explain high-level proof sketches for each lemma. Regarding strong de-
capsulation soundness (Lemma 4), recall that instb&\ND experiment, in order for a
ciphertextC’ = (k/,(c}):, ') to violate (strong) decapsulation soundness, it must sat-
isfy F(PK, C*,C") = 1 (which impliesh* = k'), C" # C*, andDecap(SK, C") # L,
which (among other conditions) impligs’ = H,(c;,lI¢*) = Hu(ciiqlld) = 1/,
where the values with asterisk are those related to the challenge ciph@fitext
(h*,(c})i, ¢*) and ¢y, is the intermediate value calculated during the computation

of I%c?p(SK, C"). On the other hand, a simple observation shows that the above con-
ditions also imply another conditicfa;, , ,, ¢*) # (¢} 1, ¢'). This means that a success-

ful ciphertext that violates (strong) decapsulation soundness leads to a collision for the
UOWHF H, which is hard to find by the security of the UOWHRE

Regarding punctured decapsulation soundness (Lemma 5), we show that for any
(possibly invalid) ciphertexC’ = (b/, (¢});,c), if A’ # h*, then it always holds that
@(SK, ) = Pﬁéap@?w ,C"). This can be shown due to the correctness of
the building block SNCE schemié and the validity check by re-encryption performed
at the last step dﬂéa} and P@p. In particular, the validity check by re-encryption
works like a non-interactive proof with perfect soundness in the DDN construction, and
hence for any adversary, ¥®DSND advantage is zero.
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Finally, we explain how theCPA security (Lemma 6) is proved. Let be anyeCPA
adversary. Consider the following sequence of games:

Game 1: This is theeCPA experiment itself. To make it easier to define the subsequent
games, we change the ordering of the operations as follows (note that this does not
changeA'’s view):

K+ HKG(1%);
h* = (hill .- Ihk) < Ha(chyalle);
(Continue to the right colump*)

b+ A(PK,SKc-,C*, K)

o — Kg; + Fori € [k] :
Forie [k+1]: : pk§h$> — pk':

(pk}, ski) < PKG(1%); ! (pkgkh;{‘)’Skg h7)) « PKG(1H);

ri < Ri; " End For '

c; < Enc(pk;, a*;7}); . PK - ((pky))i,hpk;ﬁqw‘i);
o T (),
Kiefons | SKe- (0, sk, PE);
g — ((Ti)ie£k+1lz.[(1)v | KG {0, 1}; ‘
¢" < SEnc(a*, 8"); ' be {0,1);

Game 2: Same as Game 1, except that we generate each (tpbj@:),c;‘,r;*) and
(Pkr+1,¢yq,74q) DY using the simulation algorithm&ke and Explain of the
SNCE schemd]. More precisely, in this game, the step with the underiime
Game 1 is replaced with{pk!, cf,w}) < Fake(1¥); ¥ «+ Explain(w}, a*).”

Game 3: Same as Game 2, except that the informatioBof= ((r})icr+1, K7) is
erased front™. More precisely, in this game, the ste*“< SEnc(a*, 8*)" in

Game 2 is replaced with the step® “— My,; ¢* < SEnc(a*, 5)”

Fori € [3], let Succ; be the event thatl succeeds in guessing the challenge bit (i.e.
b = b occurs). We will show thatPr[Succ;] — Pr[Succ;+1]| is negligible for each
i € [2], and thafPr[Succ;] = 1/2, which proves theCPA security of the PKEM .

Firstly, we can show thatPr[Succ;] — Pr[Succo]| is negligible due to thesNC
security of the(k + 1)-repetition constructiod7**+*, which in turn follows from the
SNC security of the underlying SNCE schermieby a standard hybrid argument (see the
explanation in the last paragraph of Section 2.1).

Secondly, we can show th&Pr[Succs] — Pr[Succs]| is negligible due to theF-
OTKDM security of the SKE schem@. Here, the key idea is that we view the plaintgxt
= ((r})iemh+11, K7) = ((Explain(w;, a*);ep+1], K*) which will be encrypted under
the keya* as a “key-dependent message” of the k€y More specifically, in the full
proof we show how to construct @'KDM adversaryB3. that uses the KDM function
[ € Fi defined byf(a*) = ((Explain(w;, @)icppt1), K*) (Where (w]);c k1) and
K7 are viewed as fixed parameters hard-codef)ifor the challenge KDM query, and
depending or3.'s challenge bit3. simulates Game 2 or Game 3 perfectly fdrso
thatAdvDETf(]?}:[Be(k) = | Pr[Succq] — Pr[Succs]|.

Finally, observe that in Game 3, the challenge ciphe&xis independent of},
and the inpu{ PK, SK -, C*, K}) to Ais distributed identically for both € {0, 1}.
This impliesPr[Succs] = 1/2.
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Our construction of the PKEI\Z?, and the combination of Lemmas 4 to 6 and The-
orem 1 lead to our main result in this paper:

Theorem 3. If there exist &8NC secure SNCE scheme and a SKE scheme tlgakizM
secure with respect to efficiently computable functions, then there egit aecure
PKE scheme/KEM.

Finally, it would be worth noting that our construction of@A secure PKE (via
a PKEM) is black-box, in the sense that the construction uses the building blocks in a
black-box manner, while our security reductions of éd2A security is non-black-box,
in the sense that our reduction algorithm needs to use the descriptionBdthén al-
gorithm as a KDM encryption query. Such a situation was encountered in [50, 21] where
these constructions use the building block PKE scheme in a black-box manner, while
the security proof (reduction) is non-black-box because they need to rely on plaintext
awareness.

5 Dolev-Dwork-Naor KEM Revisited

In this section, we show that tk&PA security of the DDN-PKEM py (Fig. 5) that we
reviewed in Section 3.4 can be shown from different assumptions on the PKE scheme
11 and the non-interactive argument syst®mMore specifically, we show that iif is

asNC secure SNCE scheme afitlis WI secure, then we can still show that the PKEM

Ippy is eCPA secure. We emphasize that this change of assumptionsnaibedfect

the other assumptions used for decapsulation soundness and punctured decapsulation
soundness, and thus we see that this result is a concrete evidence of the usefulness of
“breaking down” the steps in a security proof into small separate steps. By Theorem 1,
we obtain a neveCA security proof for the DDN-KEM based on a SNCE scheme and

a non-interactive witness indistinguishable argument system (in the common reference
string model).

We believe this new proof for the classical construction with different set of assump-
tions to be theoretically interesting, and another qualitative evidence of the usefulness
of SNCE in the context of constructirgfA secure PKE/KEM. In particular, compared
with the original DDN-KEM, our result here shows a trade-off among assumptions on
building blocks: a stronger assumption on a PKE scheme and instead a weaker assump-
tion on a non-interactive argument system. Our result shows that the difference between
aCPA secure PKE scheme andBC secure SNCE scheme is as large/small as the dif-
ference between th&X security andiI security of a non-interactive argument system.

Lemma 7. If IT is aSNC secure SNCE scheme and the non-interactive argument system
P isWI secure, then the PKENIy is eCPA secure.

The formal proof is given in the full version, and here we give a proof sketch. Recall
that in the proof of Lemma 3, we first use tB®g security of P to “cut” the relation
between the components}); and the proofr*, and then use thePA security of the
k-repetition constructiodZ* (which in turn follows from theCPA security of IT) to
“hide” the information of the challenge bit. The proof of Lemma 7 uses the properties
of the building blocks in the reversed order.
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Proof Sketch of Lemma 7Let A be any PPTA adversary that attacks #&@A security
of I'ppy. Consider the following sequence of games:

Game 1: This is theeCPA experiment itself. To make it easier to define the subsequent
games, we change the ordering of the operations as follows (note that this does not
changeA'’s view):

Ki + {0,1}"; Kk <+ HKG(1%);
Fori € [k] : h* = (hi|| ... ||hE) < He(vk™);
(pk}, sk}) < PKG(1%); Fori € [k] :
ri < R Pk ph;
c; <+ Enc(pk;, K{;77); (pkl(lfhf)’skglfh;k)) « PKG(1%):
End For End For

) K O (k" (&) 7", 0°)
CCS - (1 ), P gkc* — (h*v(Skglihﬁ)iaPK);
7 « Prove(crs,z*,w"); K& « {0,1}": @
* . * ky. 0 ) 1
(vk™, sigk™) < SKG(1%); b {0,1};

o « Sign(sigk™, ((¢})i,7™)); , _ .
(Continue to the right colump): U ¢ APK, SKe-, O, Kp)

" = ((Pk2)is (c1)a); . PK « ((pkgj))q;,j,crs,n);

Game 2: Same as Game 1, except that we generate each(@;ﬁl@), cr,ry) by us-
ing the simulation algorithm&ake and Explain of the SNCE schemé/. More
precisely, in this game, the step with the underlinegGame 1 is replaced with:
“(pkl, ct,wf) + Fake(1%) andr} < Explain(w}, K7).”

Game 3: Same as Game 2, except that the informatioR pis erased from the witness
w*. More precisely, in this game, the steps “— Explain(w}, K7)" and “w* «
((r}):, K7)” in Game 2 are replaced with the stepg % Explain(w}, 0¥)” and
“w’ « ((r});,0F),” respectively.

Fori € [3], let Succ; be the event thatl succeeds in guessing the challenge bit (i.e.
b = b occurs). We will show thatPr[Succ;] — Pr[Succ;+1]| is negligible for each
i € [2] and thatPr[Succs] = 1/2, which proves theCPA security of the PKEM ppy.

Firstly, we can show thgtPr[Succ;] — Pr[Succs]| is negligible due to th&NC se-
curity of thek-repetition constructiodl*, which in turn follows from thesNC security
of the underlying SNCE schenig (see the explanation in the last paragraph of Sec-
tion 2.1).

Secondly, we can show th&Pr[Succe] — Pr[Succs]| is negligible due to th&I
security of the non-interactive argument systBniNote that in Game 2 (and Game 3),
every pair(pkgh”, ;) is generated by the simulation algorittiake, and hence can be
explained as an encryption of an arbitrary plaintext (by u&irgain). This in particu-
lar means that there are many witnesses for the statemeﬁt((pkghr))i, (cf)i) € Ly,
and we exploit this fact. Specifically, fere [n], letw; be the state information corre-
sponding tapk!" | ¢1), and letw; = (K7, (r});) (respavo = (0%, (r1);)) be a witness
for the fact that “eacl; encryptsK; (resp.0%),” where each} (resp.r’) is computed
by 7¥ = Explain(w;, K}) (resp.r; = Explain(w;, 0¥)). We can construct a reduction
algorithm that attacks theI security of P so that it uses the above witnessesand
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wy as its challenge, simulates Game 2 and Game 3Afolepending on its challenge
bit, and has advantage exactlyr[Succs] — Pr[Succs]|.

Finally, observe that in Game 3, the challenge cipherd&xis independent oi},

and the input(PK, STI\{C*,C*,K;;) to A is distributed independently for both

{0,1}. This impliesPr[Succs] = 1/2. 0.
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A Basic Cryptographic Primitives

Public Key Encryption.A public key encryption (PKE) schenié consists of the three
PPTAs(PKG, Enc, Dec) with the following interface:

Key Generation: Encryption: Decryption:
(pk, sk) + PKG(1%) ¢ < Enc(pk,m) m (or L) < Dec(sk,c)

whereDec is a deterministic algorithm(pk, sk) is a public/secret key pair, andis a
ciphertext of a plaintext: underpk. We require for allk € N, all (pk, sk) output by
PKG(1%), and allm, it holds thatDec(sk, Enc(pk, m)) = m.
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Expt(};fA(k) : Expt’ﬁ&(k) : Expts‘ECJTA(k) :

(pk, sk) < PKG(1%F) | (pk, sk) + KKG(1¥) (vk, sigk) < SKG(1%)

(mo, m1,st) < Ai(pk) | (c*, K7) < Encap(pk) (m,st) « Ai(vk)

b+ {0,1} K« {0,1}* o <« Sign(sigk, m)

c* < Enc(pk, msp) b+ {0,1} (m’,0") + As(st, o)

b+ Ax(st,c”) b« APtk (st oK) | Returnl iff (a) A (b) :

Return(b’ = b). Return(b/ = b). () SVer(vk,m’,0") =T
(b) (m',0") # (m, o)

Fig. 5. TheCPA security experiment for a PKE scherfie(left), theATK security experiment (with
ATK € {CCA,DCCA,CPA}) for a (detectable) KEM™ (center), and th&0T security experiment

(right).

We say that a PKE schem® is CPA secure if for all PPTASA = (A1, As),
Advirh (k) == 2 - |Pr[Exptfi*y (k) = 1] — 1/2| is negligible, where the experi-
ment Expt%’f‘A(k) is defined as in Fig. 5 (left). In the experiment, it is required that
Imol = [ma].

(Detectable) Key Encapsulation Mechanisikey encapsulation mechanism (KEM)
I" consists of the three PPTAKKG, Encap, Decap) with the following interface:

Key Generation: Encapsulation: Decapsulation:
(pk, sk) < KKG(1F) (¢, K) + Encap(pk) K (or 1) < Decap(sk,c)

whereDecap is a deterministic algorithmi{pk, sk) is a public/secret key pair, anrds a
ciphertext of a session-kdy < {0, 1}* underpk. We require for alk € N, all (pk, sk)
output byKKG(1%), and all(c, K') + Encap(pk), it holds thatDecap(sk, c) = K.

A tuple of PPTASI" = (KKG, Encap, Decap, F) is said to be aletectableKEM
if the tuple (KKG, Encap, Decap) constitutes a KEM, ané is a predicate that takes a
public keypk and two ciphertexts, ¢’ as input and outputs eithéror 1. (The interface
is exactly the same as that of the predichtef a PKEM introduced in Section 3.)
The predicaté is used to defineletectable CCADCCA) security(and another notion
unpredictability for a detectable KEM.

ForATK € {CCA,DCCA, CPA}, we say that a (detectable) KEMis ATK secure if for
all PPTAs A, Advy 'y (k) := 2 - | Pr[Exptyiy (k) = 1] — 1/2| is negligible, where the
ATK experimenExpt‘}fﬁ(k) is defined as in Fig. 5 (center). In the experimehis not
allowed to submit “prohibited” queries that are defined basedT If ATK = CCA,
then the prohibited query is'.; If ATK = DCCA, then the prohibited queries aresuch
thatF(pk, ¢*,¢) = 1.; If ATK = CPA, then.A is not allowed to submit any query.

Signature. A signature schemg’ consists of the three PPTASKG, Sign, SVer) with
the following interface:

Key Generation: Signing: Verification:
(vk, sigk) + SKG(1¥) o « Sign(sigk,m) T or L « SVer(vk, m, o)

% In this proceedings version we do not recatfipredictabilityof a detectable KEM. For its
formal definition, see the full version (or the papers [38, 45]).
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whereSVer is a deterministic algorithm(uk, sigk) is a verification/signing key pair,
ando is a signature on a messageunder the key paifvk, sigk). The symbolT (resp.
1) indicates “accept” (resp. “reject”). We require for &lle N, all (vk, sigk) output
by SKG(1*), and allm, it holds thatSVer(vk, m, Sign(vk,m)) = T.

We say that a signature scheés strongly one-time secur8T secure, for short)
if for all PPTAs A = (A1, Ap), Advi (k) := Pr[Expty; 4 (k) = 1] is negligible,
where the experimeriixpt$)", (k) is defined as in Fig. 5 (right).

A SOT secure signature scheme can be built from any one-way function [52, 58].

Universal One-Way Hash FunctionVe say that a pair of PPTAR = (HKG,H) is a
universal one-way hash function (UOWHF) if the following two properties are satisfied:
(1) On inputl*, HKG outputs a hash-key. For any hash-key output fromHKG(1%),

H defines an (efficiently computable) function of the fop : {0,1}* — {0, 1}*. (2)
Forall PPTASA = (A1, Ap), Adviy 4 (k) := Pr[Expty)", (k) = 1] is negligible, where

the experiment is defined as follows:

Exptira (k) : [ (m,st) A1(1%); Kk HKG(1%); m/ « Ax(st, k);
Returnl iff H,(m') = H.(m) Am' # m.].

A UOWHF can be built from any one-way function [52, 58].

Non-interactive Argument Systemiset L = {L; }xen be an NP language (for sim-

plicity, we assume thal consists of setd, parameterized by the security parame-
ter k). A non-interactive argument systef for L consists of the three algorithms

(CRSG, Prove, PVer) with the following interface:

CRS Generation: Proving: Verification:
crs < CRSG(1F) 7 < Prove(crs, z,w) T or L < PVer(crs, z,m)

wherePVer is a deterministic algorithm;rs is a common reference string (CRS),
is a statementy is a witness for the fact that € L, andr is a proof string (that is
supposed to prove thate L;). The symbolT (resp..L) indicates “accept” (resp. “re-
ject”). We require for alk € N, all crs output byCRSG(1%), and all statement/witness
pairs (z,w) € Ly x {0,1}* (wherew is a witness for the fact that € L), it holds
thatPVer(crs, z, PVer(crs, z,w)) = T.

We say that a non-interactive argument sysfefor a languagéd. satisfiesadaptive
soundnessf for all PPTAs A, Advisi?(k) = Pr[Expts"i%(k) = 1] is negligible,
where thesound experimenExptis 4% (k) is defined as in Fig. 6 (leftmost).

We say that a non-interactive argument systerfor an NP languagd. satisfies
witness indistinguishabilitywI security, for short) if for all PPTAsA = (A4, As),
Adviy 4 (k) :=2-|Pr[Exptp 4(k) = 1] — 1/2|is negligible, where th&I experiment
Expt"g’A(k) is defined as in Fig. 6 (second-left), and it is required that L, and both
wo andw; are witnesses for the fact thatc Ly, in thewI experiment?

4 We note that unlike soundness, werdtineed a version of thel security in which a statement
(and witnesses) may depend on a common reference string.
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ZK- Real ZK- Sim

Expty™ (k) : Expty 4 (k) : Exptp 47 (k) : : Exptp 54 (k)

crs < CRSG(1%) (z, wo, w1, st) (z,w,st) < A1 (1%) 1 (z,w,st) < A1 (1)

(x,m) < A(crs) + A1 (1%) | ers + CRSG(1%) (crs, td)

Returnl iff (a) A (b): | ers < CRSG(1%) 7 < Prove(crs, z,w), +— SimCRS(1%)

@z ¢ Ly b+ {0,1} b« As(st,ers,m) 'm <+ SimPrv(id, z)

(b) PVer(crs,xz,m) |7 < Prove(crs,z,wy) | Returnd’. b < As(st,crs, )
=TIV «+ As(st,crs,m) ' Returnt’.

Return(b’ = b). :

Fig. 6. Security experiments for a non-interactive argument system.

Finally, we recall the definition of theero-knowledge propert{Zk security, for
short). We say that a non-interactive argument systefor an NP languagé satisfies
the zero-knowledg@roperty ¢K secure, for short) if there exists a pair of PPTAs=
(SimCRS, SimPrv) satisfying the following properties:

— (Syntax:) SimCRS is the “simulated common reference string” generation algo-
rithm that takesl” as input, and outputsrs and a corresponding trapdott.;
SimPrv is the “simulated proof” generation algorithm that takes(output by
SimCRS) and a statement € {0,1}* (which may not belong td.;) as input,
and outputs a “simulated prooft.

— (Zero-Knowledge)) For all PPTASA = (Ay, Az), Advi 5 4 (k) =
| Pr[Expth 4°*! (k) = 1]—Pr[Expt} &3 (k) = 1]| is negligible, where thek- Real
experimentExpt? 4°* (k) and thezk- Sim experimentExpt? &% (k) are defined
asinFig. 6 (second-right and rightmost, respectively), and furthermore it is required
thatx € L andw is a witness for the fact that € L, in both of the experiments.

B Postponed Proofs

B.1 Proof of Lemma 4: Strong Decapsulation Soundness dt

Let.4 be a PPTAsDSND adversary. LetPK, SK,C*, K*) be a tuple that is input tal
in thesDSND experiment, wher®K = ((pk\?); ;, pkry1, 1), SK = ((sk?); ;, PK),
andC* = (h*, (cf);, ¢*).

Let us callA’s outputC’ = (I, (c});,¢") in the sDSND experimentsuccessfuif
(' satisfies the conditions that make the experiment outp'ue.?(PK, cHC) =1
(which is equivalent tah’ = h*), ¢’ # C*, and D/ec?p(SK, C') # L. Below, we
use asterisk (*) to denote the values generated/chosen during the generatigrantl
prime () to denote the values generated during the calculatidb/eo?p(SK, ch.

We first confirm that a successful ciphertéXtmust additionally satisfyc; , ,, ") #
(chy1,C*)- To see this, assume the opposite, (. ,,¢') = (c;,,,¢"). Here,c, | =
Ciy1 IMpliesa’ = o* (due to the correctness of the SNCE schédif)eThis and”’ = ¢*
imply (77)icik+1] = (7 )icie+1) (due to the correctness of the SKE scheff)ewhich in
turn implies(c}); = (c);. Hence, it holds tha®” = (1, (c});, &) = (h*, (c})s, ¢*) =
C*, but this contradicts”’ # C*.
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So far, we have seen that a successful ciphe@&xnust satisfyH . (c;,, ,[|c') =
h' = h* = Hu(cj,llc*) and (¢} 1, ¢) # (ciyq1,¢"), which means thatc) (")
and (c;_,[|c*) constitute a collision pair foH,.. Using this fact, we can construct a
PPTAB, whose advantage in thi@w experiment regardingy is exactly the probability
that 4 outputs a successful ciphertext in thBSND experiment, which combined with
the security of the UOWHRPH, proves the lemma. Since the reduction algorithm is
straightforward given the explanation here, we omit its description. (In the full version,
we provide the details of the reduction algorithm.) a0

B.2 Proof of Lemma 5: Strong Punctured Decapsulation Soundness i

Let (PK, SK) be a key pair output b@(lk), wherePK = ((pkgj))i7j,pkk+1, K)

and SK = ((sk(J))”,PK) Let C* = (h*,(cf);,¢*) be any ciphertext output by
@(PK), and letSK ¢ = (h*, (sk;glfhr))i, PK) be the punctured secret key gen-
erated byP/u?c(SK C*). We show that for any cipherte)(f (h, (ci)i,¢) (which

might be outside the range E/hoa\p(PK)) satlsfylngF(PK C*,C)=0(.e.h # h*),

it holds thatDecap(SK C) = PDecap(SKc* (). Note that this implies that there
exists no ciphertext that violates (strong) punctured decapsulation soundness of the
PKEM I, and thus for any (even computationally unbound&ei)SND adversaryA,
Advsf‘irjm(k) = 0, which will prove the lemma.

To show the above, fix arbitrarily a cipherteXt= (h, (¢;);, ¢) satisfying?(PK,
C*,C) = 0 (and hencé.* # h) and let! = min{: € [k] | hf # h;}, where each
of h; andh} are thei-th bit of h andh*, respectively. For notational convenience, let
oy = Dec(sk§h1)7c1) anday = Dec(sk(1 he) ,Co) = Dec(sk( 2 ,ce), where the latter
equality is becausk; # h, implies1l — h; = hy. We consider the following two cases,
and show that the results from both of the aIgoritH?Teé?p andPﬁéap always agree.

Casea; = ay: Both m and Pﬁéap proceed identically after they respectively
computer; anday, and thuswutputs from these algorithms agree.

Casea; # ay: In this case, botlDecap and Pﬁéap return_L. Specifically,a; # ay
and the correctness of the SNCE schdm'enply that there does not exigt such
thatEnc(pk:é 2 ,aq;70) = ¢g, and thUSDecap returns.L in its last step at the latest
(it may returnl earlier ifo; = 1 orSDec(a,¢) = L). Symmetrically, there does
not existr; such thatEnc(pkghl),ag; r1) = ¢1, and thusPﬁéap returns_L in its

last step at the latest (it may retutnearlier as above).

This completes the proof of Lemma 5. ad

B.3 Proof of Lemma 6:eCPA Security of I

Let A be any PPTA adversary that attacks #GPA security of I'. For this A, we
consider the sequence of games described in the explanation in Section 4. Here, we
only show thatl Pr[Succ;] — Pr[Succs]| and | Pr[Succs] — Pr[Succs]| are negligible,

which should be sufficient for the proof of Lemma 6, given the intuitive explanation in
Section 4.
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Claim 1 There exists a PPTE, such that\dvy;i'1: 5, (k) = | Pr[Succi] — Pr[Succy]|.

Proof of Claim 1. We show how to construct a PPTA advers#ythat attacks the
SNC security of the(k + 1)-repetition constructiod/ *** of the SNCE scheme with the
claimed advantage. The descriptionf= (B, By2) as follows:

Bp1(1%): By picksa* € Ky, uniformly at random, and sesss < (Bp1's entire view.
ThenB,; terminates with outpuin*, stz) (Wherea* is regarded a8;’s challenge
message).

Bea(stg, PK' = (pki)ic(e+1), O™ = (€] )iels+11, B™ = (1] )iek+1]): Bp2 PICKSKT <
{0,1}"* uniformly at random, set8* < ((r);c(k+1], K1), and rung™* < SEnc(a*,
B*), k < HKG(1%), andh* = (hi| ... |h}) < Hw(ci,,llc*). For eachi € [k],
B2 setspk!") « pkj and runs(pk' " sk ")) PKG(1%). Next B2
setsPK + ((pk\"))ij, ok 1,5), C* < (h*,(¢})i, &), and SKe- + (h*,
(sk' ")), PK). ThenB,, picks Ki € {0,1}* andb € {0,1} uniformly at
random, run$’ < A(PK, SKc-,C*, K}), and terminates with outpd’ < b).

The above completes the description5yf Note thatB,, outputsl only whend’ = b
occurs.By's SNC advantage can be estimated as follows:

AdviTi s, (k) = | PrExptiiaioh (k) = 1] — Pr[Exptiit's, (k) = 1]]
= | Pr[Exptiiiioh (k) : ' = b — PriExptyiais (k) : 0 = b]|.

Consider the case whef, runs in Exptjiii°s (k). It is easy to see that in this

case,B, perfectly simulates Game 1 fod. In particular, ever)pklm and pky.1 in
PK are generated honestly by runniR¢G(1*), and everyc; in C* is generated as
cf Enc(pk:gh:), a*;rF) wherea™ € Ky, and each off € R, are chosen uniformly
at random, as done in Game 1. Under this situation, the probability'tkath occurs

is exactly the same as the probability thétsucceeds in guessing its challenge bit in
Game 1, i.e.Pr[Exptiiii’y (k) : b = b] = Pr[Succy].

When B, runs in Exptyiiiis (k), on the other hand, each of paigk", ct)
and eachr} are generated by using the simulation algorittralse and Explain of the
underlying SNCE schemé#, in such a way that the plaintext corresponding:tds
“explained” asx* € Ky thatis chosen uniformly at random, as done in Game 2. The rest
of the procedures remains unchanged from the above case. Therefore, the probability
thatd’ = b occurs is exactly the same as the probability tAaucceeds in guessing its
challenge bitin Game 2, i.ePr[Exptyiis} (k) : b = b] = Pr[Succy).

In summary, we hav8dvy;isi 5 (k) = | Pr[Succi] — Pr[Succ,]|. This completes
the proof of Claim 1. O

Claim 2 There exists a PPTA. such thatAdvy?; (k) = | Pr[Succo] — Pr[Succs]].

Proof of Claim 2. We show how to construct a PPTA advers#iythat attacks the
JF-0TKDM security of the underlying SKE schentewith the claimed advantage. The
description of3e = (Be1, Be2) is as follows:
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Be1(1%): For everyi € [k + 1], Be runs (pk!, ct,w?) < Fake(1¥). Then,B.; picks

K3 € {0,1}* uniformly at random. Next3.; specifies the functioff : K, — M
which is used as an encryption query in tEXDM experiment, defined byx EN
(Explain(w;, a)iemnt1), K1), where eachy} andKf are treated as fixed parameters
hard-coded inf. (Note thatf € Fj.) Finally, B.; setsstp < (Be1's entire view),
and terminates with outpdy, stg).
Bea(stg, ¢): Bez runsk < HKG(1%) andh* = (h||...||h}) < Hy(chyqllc").
Next, for everyi € [k], Bey setspk!"") « pk/ and runs(pk!" ") sk ")) «
PKG(1%). Then,Bes setsPK « ((pk\”)); j, k1, k), C* < (h*,(¢});,&), and
SKco « (h*, (s ")), PK). Bey picks K& € {0,1}* andb € {0,1} uni-
formly at random, rung’ «<— A(PK,SK ¢+, C*, K[), and terminates with output

Y (0 Eb),

The above completes the descriptionfaf Lety € {0, 1} be B.'s challenge bit3.’s
JF-0TKDM advantage is estimate as follows:

1
AdVE R, (k) = 2+ | Prly =] = 5| = [Prly = 1}y = 1] = Prly’ = 1]y = 0]|
= | Pr[t) = bly = 1] — Pr[t/ = b|y = 0]].

Leta* € Kk be the key, and/; = f(a*) andM, € M be the plaintexts calcu-
lated/chosen i8.'s 0TKDM experiment. Consider the case wheg- 1, i.e.¢* is an en-
cryption of My = f(a*) = ((r])iek+1), K7). Note that by the definition of the experi-
mentExpty 2 . (k), if we regard the kew* € K, andM; = f(o*) in Expty 2 5. (k)
aso* and5* in Game 2, then eactf is generated by « Explain(w}, o*), so that
the plaintext corresponding to eachis a*, which is how these values are generated
in Game 2. Moreover, the public kéykK, the valuegc;);c[x+1) used in the challenge

ciphertextC*, and the punctured secret ké/y\{c* are distributed identically to those
in Game 2. Hence3, simulates Game 2 perfectly fot. Under this situation, the prob-
ability thatd’ = b occurs is exactly the same as the probability tHasucceeds in

guessing the challenge bit in Game 2, Re[t/ = b|y = 1] = Pr[Succs].

Next, consider the case when= 0. In this case¢* is an encryption of a random
messagé/y € My, that is independent of any other values. Then, if we regard the key
o and the random messagé, in Expty 5 (k) asa* and3’ in Game 3, respectively,
then A’s challenge ciphertext'™ is generated in such a way that they are distributed
identically to those in Game 3, and thBssimulates Game 3 perfectly fot. Therefore,
with a similar argument to the above, we ha&ugl’ = b|y = 0] = Pr[Succs].

In summary, we havAdvy 2z (k) = | Pr[Succs] — Pr[Succs]|. This completes

the proof of Claim 2. ad

Due to our assumptions on the building blocks, andsti@security of the(k + 1)-
repetition constructiod/**+! (see the explanation in Section 2.1), we can conclude that
| Pr[Succ;] — Pr[Succg]| and| Pr[Succy] — Pr[Succs]| are negligible. Combined with
the intuitive explanations given in Section 4, this completes the proof of Lemmai6.
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