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Abstract. In this paper, we introduce and study a new cryptographic primitive
that we callpuncturable key encapsulation mechanism(PKEM), which is a spe-
cial class of KEMs that satisfy some functional and security requirements that,
combined together, imply chosen ciphertext security (CCA security). The pur-
pose of introducing this primitive is to capture certain common patterns in the
security proofs of the several existing CCA secure public key encryption (PKE)
schemes and KEMs based on general cryptographic primitives which (explic-
itly or implicitly) use the ideas and techniques of the Dolev-Dwork-Naor (DDN)
construction (STOC’91), and “break down” the proofs into smaller steps, so that
each small step is easier to work with/verify/understand than directly tackling
CCA security.
To see the usefulness of PKEM, we show (1) how several existing constructions
of CCA secure PKE/KEM constructed based on general cryptographic primitives
can be captured as a PKEM, which enables us to understand these constructions
via a unified framework, (2) their connection to detectable CCA security (Hohen-
berger et al. EUROCRYPT’12), and (3) a new security proof for a KEM-analogue
of the DDN construction from a set of assumptions:sender non-committing en-
cryption(SNCE) and non-interactive witness indistinguishable proofs.
Then, as our main technical result, we show how to construct a PKEM satisfying
our requirements (and thus a CCA secure KEM) from a new set of general crypto-
graphic primitives:SNCEandsymmetric key encryption secure for key-dependent
messages(KDM secure SKE). Our construction realizes the “decrypt-then-re-
encrypt”-style validity check of a ciphertext which is powerful but in general has
a problem of the circularity between a plaintext and a randomness. We show how
SNCE and KDM secure SKE can be used together to overcome the circularity.
We believe that the connection among three seemingly unrelated notions of en-
cryption primitives, i.e. CCA security, the sender non-committing property, and
KDM security, to be of theoretical interest.

Keywords: public key encryption, puncturable key encapsulation mechanism,
chosen ciphertext security, sender non-committing encryption, key-dependent mes-
sage secure symmetric-key encryption.

1 Introduction

In this paper, we continue a long line of work studying the constructions of public key
encryption (PKE) schemes and its closely related primitive calledkey encapsulation



mechanism(KEM) that are secure against chosen ciphertext attacks (CCA) [53, 57, 24]
from general cryptographic primitives. CCA secure PKE/KEM is one of the most im-
portant cryptographic primitives that has been intensively studied in the literature, due
to not only its implication to strong and useful security notions such as non-malleability
[24] and universal composability [16], but also its resilience and robustness against
practical attacks such as Bleichenbacher’s attack [12].

There have been a number of works that show CCA secure PKE/KEMs from gen-
eral cryptographic primitives: These include trapdoor permutations [24, 30, 31] (with
some enhanced property [32]), identity-based encryption [19] and a weaker primitive
called tag-based encryption [43, 40], lossy trapdoor function [56] and trapdoor func-
tions with weaker functionality/security properties [59, 49, 41, 61], PKE with weaker
than but close to CCA security [38, 42, 21], a combination of chosen plaintext secure
(CPA secure) PKE and a hash function with some strong security [48], and techniques
from program obfuscation [60, 47].

One of the ultimate goals of this line of researches is to clarify whether one can
construct CCA secure PKE only from CPA secure one (and in fact, a partial negative
result is known [29]). This problem is important from both theoretical and practical
points of view. To obtain insights into this problem, clarifying new classes of primitives
that serve as building blocks is considered to be important, because those new class
of primitives can be a new target that we can try constructing from CPA secure PKE
schemes (or other standard primitives such as one-way injective trapdoor functions and
permutations).

Our Motivation. Although differing in details, the existing constructions of CCA secure
PKE schemes and KEMs from general cryptographic primitives [24, 56, 59, 61, 47, 48,
21] often employ the ideas and techniques of the Dolev-Dwork-Naor (DDN) construc-
tion [24], which is the first construction of CCA secure PKE from general primitives.
The security proofs of these constructions are thus similar in a large sense, and it is
highly likely that not a few future attempts to constructing CCA secure PKE/KEMs
from general cryptographic primitives will also follow the DDN-style construction and
security proof. Therefore, it will be useful and helpful for future research and also for
understanding the existing works of this research direction if we can extract and abstract
the common ideas and techniques behind the security proofs of the original DDN and
the existing DDN-like constructions, and formalize them as a cryptographic primitive
with a few formal functionality and security requirements (rather than heuristic ideas
and techniques), so that most of the existing DDN-style constructions as well as po-
tential future constructions are captured/explained/understood in a unified way, and in
particular these are more accessible and easier-to-understand.

Our Contributions.Based on the motivation mentioned above, in this paper, we intro-
duce and study a new cryptographic primitive that we callpuncturable key encapsu-
lation mechanism(PKEM). This is a class of KEMs that has two kinds of decryption
procedures, and it is required to satisfy three simple security requirements,decapsula-
tion soundness, punctured decapsulation soundness, andextended CPA securitywhich
we show in Section 3.3 that, combined together, implies CCA security. The intuition of
these security notions as well as their formal definitions are explained in Section 3.2.
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The purpose of introducing this primitive is to capture certain common patterns in the
security proofs of the several existing CCA secure PKE schemes and KEMs based on
general cryptographic primitives which (explicitly or implicitly) use the ideas and tech-
niques of the DDN construction [24], and “break down” the proofs into smaller steps,
so that each small step is easier to work with/verify/understand than directly tackling
CCA security. Our formalization of PKEM is inspired (and in some sense can be seen
an extension of) the notion ofpuncturable tag-based encryption[48] (which is in turn
inspired by the notion ofpuncturable pseudorandom function[60]), and we explain the
difference from [48] in the paragraph “Related Work” below.

To see the usefulness of our framework of PKEM, we show (1) how the KEM-
analogue of the original DDN [24] and several existing DDN-like constructions (e.g.
[56, 59, 61, 47, 48]) can be understood as a PKEM in Section 3.4, (2) its connection
to detectable CCA security which is a weaker security notion than CCA security in-
troduced by Hohenberger et al. [38] in Section 3.5, and (3) a new security proof for
a KEM-analogue of the DDN construction from a set of assumptions that are differ-
ent from the one used in its known security proof:sender non-committing encryption
(SNCE, see below) and non-interactive witness indistinguishable proofs. (For the pur-
pose of exposition, this last result is shown in Section 5.)

Then, as our main technical result, in Section 4 we show how to construct a PKEM
satisfying our requirements (and thus a CCA secure KEM) from a new set of general
cryptographic primitives:SNCEandsymmetric key encryption secure for key-dependent
messages(KDM secure SKE) [11]. Roughly speaking, a SNCE scheme is a special
case of non-committing encryption [18] and is a PKE scheme which is secure even
if the sender’s randomness used to generate the challenge ciphertext is corrupted by
an adversary. See Section 2.1 where we define SNCE formally, explain the difference
among related primitives, and how it can be realized from the standard cryptographic
assumptions such as the decisional Diffie-Hellman (DDH), quadratic residuosity (QR),
and decisional composite residuosity (DCR). The function class with respect to which
we require the building block SKE scheme to be KDM secure, is a class of efficiently
computable functions whose running time is a-priori fixed. Due to Applebaum’s result
[1, 3] (and its efficient variant [6,§7.2]) we can realize a KDM secure SKE scheme
satisfying our requirement from standard assumptions such as DDH, QR, DCR. For
more details on KDM secure SKE, see Section 2.2.

Our proposed PKEM has a similalriy with the “double-layered” construction of
Myers and Shelat [51] and its variants [38, 45, 21], in which a plaintext is encrypted
twice: firstly by the “inner” scheme, and secondly by “outer” scheme. Strictly speak-
ing, however, our construction is not purely double-layered, but in some sense is closer
to “hybrid encryption” of a PKE (seen as a KEM) and a SKE schemes, much simi-
larly to the recent constructions by Matsuda and Hanaoka [47, 48]. Furthermore, our
construction realizes the “decrypt-then-re-encrypt”-style validity check of a ciphertext,
which is a powerful approach that has been adopted in several existing constructions
that construct CCA secure PKE/KEM from general cryptographic primitives [27, 56,
59, 51, 41, 38, 47, 48, 21]. In general, however, this approach has a problem of the cir-
cularity between a plaintext and a randomness, and previous works avoid such a circu-
larity using a random oracle [27], a trapdoor function [56, 59, 41], a PKE scheme which

3



achieves some security which is (weaker than but) close to CCA security [51, 38, 21], or
a power of additional building blocks with (seemingly very strong) security properties
[47, 48]. We show how SNCE and KDM secure SKE can be used together to overcome
the circularity. Compared with the structurally similar constructions [38, 47, 48, 21], the
assumptions on which our construction is based could be seen weak, in the sense that
the building blocks are known to be realizable from fairly standard computational as-
sumptions such as the DDH, QR, and DCR assumptions. We believe that the connection
among three seemingly unrelated notions of encryption primitives, i.e. CCA security,
the sender non-committing property, and KDM security, to be of theoretical interest.

Open Problems.We believe that our framework of PKEM is useful for constructing
and understanding the current and the potential future constructions of CCA secure
PKE/KEMs based on the DDN-like approach, and motivates further studies on it. Our
work leaves several open problems. Firstly, our framework of PKEM actually does not
capture the recent construction by Dachman-Soled [21] who constructs a CCA secure
PKE scheme from a PKE scheme that satisfies (standard model) plaintext awareness
and some simulatability property. The construction in [21] is similar to our proposed
(P)KEM in Section 4 and the recent similar constructions [47, 48]. (Technically, to cap-
ture it in the language of PKEM, slight relaxations of some of the security requirements
will be necessary, due to its double-layered use of PKE schemes similarly to [51].)

Secondly and perhaps more importantly, it will be worth clarifying whether it is
possible to construct a PKEM satisfying our requirements only from CPA secure PKE
or (an enhanced variant of) trapdoor permutations in a black-box manner. Note that
a negative answer to this question will also give us interesting insights, as it shows
that to construct a CCA secure PKE/KEM from these standard primitives, we have to
essentially avoid the DDN-like construction.

Finally, it would also be interesting to find applications of a PKEM other than CCA
secure PKE/KEMs.

Related Work.The notion of CCA security for PKE was formalized by Naor and Yung
[53] and Rackoff and Simon [57]. We have already listed several existing constructions
of CCA secure PKE/KEMs from general primitives in the second paragraph of Intro-
duction. In our understanding, the works [24, 56, 59, 61, 47, 48, 21] are based on the
ideas and techniques from the DDN construction [24].

As mentioned above, our notion of PKEM is inspired by the notion ofpuncturable
tag-based encryption(PTBE) that was recently introduced by Matsuda and Hanaoka
[48]. Similarly to PKEM, PTBE is a special kind of tag-based encryption [43, 40] with
two modes of decryption. (Roughly, in PKEM, a secret key can be punctured by a ci-
phertext, but in PTBE, a secret key is punctured by a tag.) Matsuda and Hanaoka [48]
introduced PTBE as an abstraction of the “core” structure that appears in the original
DDN construction (informally, it is the original DDN construction without a one-time
signature scheme and a non-interactive zero-knowledge proof), and they use it to mainly
reduce the “description complexity” of their proposed construction [48] and make it
easier to understand the construction. However, they did not study it as a framework for
capturing and understanding the existing DDN-style constructions (as well as potential
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future constructions) in a unified manner as we do in this paper. We note that Mat-
suda and Hanaoka [48] also formalized the security requirement calledeCPA security
whose formalization is a PTBE-analogue ofeCPA security for a PKEM (and thus we
borrow the name). However, they did not formalize the security notions for PTBE that
correspond todecapsulation soundnessandpunctured decapsulation soundnessfor a
PKEM.

Paper Organization.The rest of the paper is organized as follows: In Section 2 and
(in Appendix A), we review the notation and definitions of cryptographic primitives. In
Section 3, we introduce and study PKEM, where in particular we show its implication
to CCA security and how some of the existing constructions of KEMs can be interpreted
and explained as a PKEM. In Section 4, we show our main technical result: a PKEM
from SNCE and KDM secure SKE, which by the result in Section 3 yields a new CCA
secure KEM from general assumptions. In Section 5, we show the CCA security of the
DDN-KEM based on SNCE and non-interactive witness indistinguishable arguments.

2 Preliminaries

In this section, we give the definitions for sender non-committing encryption (SNCE)
and symmetric key encryption (SKE) and its key-dependent message (KDM) security
that are used in our main result in Section 4. The definitions for standard cryptographic
primitives are given in Appendix A, which include PKE, KEMs, signature schemes,
non-interactive argument systems, and universal one-way hash functions (UOWHFs).
(The reader familiar with them need not check Appendix A at the first read, and can do
so when he/she wants to check the details of the definitions.)

Basic Notation.N denotes the set of all natural numbers, and Forn ∈ N, we define
[n] := {1, . . . , n}. “x ← y” denotes thatx is chosen uniformly at random fromy if y
is a finite set,x is output fromy if y is a function or an algorithm, ory is assigned tox
otherwise. Ifx andy are strings, then “|x|” denotes the bit-length ofx, “x∥y” denotes

the concatenationx andy, and “(x
?
= y)” is the operation which returns1 if x = y

and0 otherwise. “PPTA” stands for aprobabilistic polynomial time algorithm. For a
finite setS, “ |S|” denotes its size. IfA is a probabilistic algorithm then “y ← A(x; r)”
denotes thatA computesy as output by takingx as input and usingr as randomness.
AO denotes an algorithmA with oracle access toO. A function ϵ(·) : N → [0, 1] is
said to benegligibleif for all positive polynomialsp(·) and all sufficiently largek ∈ N,
we haveϵ(k) < 1/p(k). Throughout this paper, we use the character “k” to denote a
security parameter.

2.1 Sender Non-committing Public Key Encryption

Roughly, a SNCE scheme is a PKE scheme that remains secure even against an adver-
sary who may obtain sender’s randomness used to generate the challenge ciphertext.
This security is ensured by requiring that there be an algorithm that generates a “fake
transcript” pk and c that denote a public key and a ciphertext, respectively, so that
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ExptSNC- Real
Π,A (k) :

(m, st)← A1(1
k)

(pk, sk)← PKG(1k)
r ←Rk

c← Enc(pk,m; r)
b′ ← A2(st, pk, c, r)
Returnb′.

ExptSNC- Sim
Π,A (k) :

(m, st)← A1(1
k)

(pk, c, ω)← Fake(1k)
r ← Explain(ω,m)
b′ ← A2(st, pk, c, r)
Returnb′.

ExptOTKDME,F,A(k) :

(f, st)← A1(1
k)

K ← Kk

m1 ← f(K); m0 ←Mk

b← {0, 1}
c∗ ← SEnc(K,mb)
b′ ← A2(st, c

∗)

Return(b′
?
= b).

Fig. 1.Security experiments for defining theSNC security of a SNCE scheme (left and center) and
that for theF -OTKDM security of a SKE scheme (right).

the pair(pk, c) can be later explained as a transcript of an arbitrary messagem. Our
syntax of SNCE loosely follows that of sender-equivocable encryption [26, 39], but de-
parts from it because we need perfect correctness (or at least almost-all-keys-perfect
correctness [25]) so that error-less decryption is guaranteed, which cannot be achieved
by sender-equivocable encryption. We also note that recently, Hazay and Patra [35] in-
troduced (among other notions) the notion that they callNCE for the Sender(NCES),
which is a notion very close to SNCE we consider here. We will discuss the correctness
and the difference between our definition and that of [35] later in this subsection.

Formally, a sender non-committing (public key) encryption (SNCE) schemeΠ con-
sists of the five PPTAs(PKG,Enc,Dec,Fake,Explain) where(PKG,Enc,Dec) consti-
tutes a PKE scheme (where definitions for ordinary PKE can be found in Appendix A),
andFake andExplain are the simulation algorithms with the following syntax:

Fake: This is the “fake transcript” generation algorithm that takes1k as input, and
outputs a “fake” public key/ciphertext pair(pk, c) and a corresponding state infor-
mationω (that will be used in the next algorithm).

Explain: This is the (deterministic) “explanation” algorithm that takes a state informa-
tionω (whereω is computed by(pk, c, ω)← Fake(1k)) and a plaintextm as input,
and outputs a randomnessr that “explains” the transcript(pk, c) corresponding to
ω. Namely, it is required thatEnc(pk,m; r) = c hold.

SNC Security. For a SNCE schemeΠ = (PKG,Enc,Dec,Fake,Explain) (where the
randomness space ofEnc isR = (Rk)k∈N) and an adversaryA = (A1,A2), we define
theSNC- Real experimentExptSNC- Real

Π,A (k) and theSNC- Sim experimentExptSNC- Sim
Π,A (k)

as in Fig. 1 (left and center, respectively).

Definition 1. We say that a SNCE schemeΠ is SNC secure if for all PPTAsA,
AdvSNCΠ,A(k) := |Pr[Expt

SNC- Real
Π,A (k) = 1]− Pr[ExptSNC- Sim

Π,A (k) = 1]| is negligible.

The Difference among Non-committing Encryption and Related Primitives.The origi-
nal definition of non-committing encryption by Canetti et al. [18] ensures security under
both the sender and receiver’s corruption. This is ensured by requiring that the “explain-
ing” algorithm output not only the sender’s randomness but also receiver’s (i.e. random-
ness used to generate public/secret keys). The original definition in [18] (and several
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works [23, 28]) allows multi-round interaction between a sender and a receiver (and
even the multi-party case), but in this paper we only consider the public-key case (equiv-
alently, the one-round two-party protocol case). A SNCE scheme is a non-committing
encryption scheme that only takes care of the sender’s side corruption.

Sender-equivocable encryption [26, 39] is a special case of a SNCE scheme in which
a sender can, under an honestly generated public key, generate a fake ciphertext that
can be later explained as an encryption of an arbitrary message (while a SNCE scheme
allows that even a public key is a fake one).

Deniable encryption [17, 54, 10, 60] has an even stronger property in which an hon-
estly generated ciphertext under an honestly generated public key can be later explained
as an encryption of an arbitrary message. For details on deniable encryption, we refer
the reader to the papers [54, 10].

The difference among these primitives is very important in our paper, as we explain
below.

On Correctness of SNCE Schemes.In this paper, unlike most of the papers that treat
(sender) non-committing encryption schemes and related primitives such as sender-
equivocable encryption and deniable encryption, we require a SNCE scheme satisfy per-
fect correctness or at least almost-all-keys perfect correctness [25]. This is because our
proposed constructions follow the Dolev-Dwork-Naor-style construction [24] which re-
quires error-less decryption (under all but negligible fraction of key pairs) for a building
block PKE scheme. Here, the non-committing property and (perfect or almost-all-keys
perfect) correctness might sound contradicting. This is indeed the case for ordinary (i.e.
bi-) and “receiver” non-committing encryption, sender-equivocable encryption, and de-
niable encryption, and thus we cannot use these primitives in our proposed construc-
tions. However, “sender” non-committing encryption can avoid such an incompatibility,
because the fake transcript generation algorithmFake can generate(pk, c) such thatpk
is not in the range of the normal key generation algorithmPKG. Moreover, as we will
see below,SNC secure SNCE schemes with perfect correctness (and even practical effi-
ciency) can be realized from standard assumptions.

Concrete Instantiations of SNCE Schemes.Bellare et al. [8] formalized the notion of
lossy encryption[8], which is a PKE scheme that has the “lossy key generation” al-
gorithm. It outputs a “lossy public key” which is indistinguishable from a public key
generated by the ordinary key generation algorithm, and an encryption under a lossy
public key statistically hides the information of a plaintext. Bellare et al. [8] also intro-
duced an additional property for lossy encryption calledefficient openability, in which
the lossy key generation algorithm outputs a trapdoor in addition to a lossy public key,
and by using the trapdoor, an encryption under the lossy public key can be efficiently
“explained” as a ciphertext of any plaintext.

We note that any lossy encryption with efficient openability yields aSNC secure
SNCE scheme: the algorithmFake generates a lossy public keypk as well as an en-
cryptionc of some plaintext, and keeps the trapdoor corresponding topk asω.; the al-
gorithmExplain on inputω and a plaintextm outputs a randomnessr that explains that
c = Enc(pk,m; r) holds. Hence, we can use the existing lossy encryption schemes with
efficient openability that are based on standard assumptions. These include the scheme
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based on the quadratic residuosity (QR) assumption [8,§ 4.4] (which is essentially the
multi-bit version of the Goldwasser-Micali scheme [33]), the scheme based on the deci-
sional Diffie-Hellman (DDH) assumption [9,§ 5.4] (which is the “bit-wise” encryption
version of the DDH-based lossy encryption scheme [8,§ 4.1]), and the scheme based
on the decisional composite residuosity (DCR) assumption [36] (which shows that the
original Paillier scheme [55] and the Damgård-Jurik scheme [22] can be extended to
lossy encryption with efficient openability). In particular, the DCR-based schemes [55,
22, 36] have a compact ciphertext whose size does not grow linearly in the length of
plaintexts.

On the Difference from the Formalization of “NCE for the Sender” in [35].The defi-
nition of NCE for the Sender in [35] explicitly requires that the scheme have the “fake”
key generation algorithm that outputs a “fake” public key together with a trapdoor, with
which one can “equivocate” (or in our terminology, “explain”) any ciphertext as an en-
cryption of arbitrary plaintextm. Therefore, it seems to us that their formalization is
close to lossy encryption with efficient openability [8]. On the other hand, our formal-
ization requires that only a pair(pk, c) of public key and a ciphertext (or a “transcript”
in a one-round message transmission protocol between two parties) be explained. We
can construct a SNCE scheme in our formalization from NCE for the Sender of [35]
(in essentially the same manner as we do so from lossy encryption with efficient open-
ability), while we currently do not know if the converse implication can be established.
Therefore, in the sense that currently an implication of only one direction is known, our
formalization is weaker.

Some Useful Facts.For our result in Section 4, it is convenient to consider the so-
called “repetition construction,” in which a plaintext is encrypted multiple times by
independently generated public keys.

More specifically, given a SNCE schemeΠ = (PKG,Enc,Dec,Fake,Explain), the
n-wise repetition constructionΠn = (PKGn,Encn,Decn,Faken,Explainn) is defined
as follows: The key generation algorithmPKGn runs(pki, ski)← PKG for i ∈ [n] and
returns public keyPK = (pki)i∈[n] and secret keySK = (ski)i∈[n].; The encryption
algorithmEncn, on inputPK and a plaintextm, runsci ← Enc(pki,m; ri) for i ∈
[n] (where eachri is an independently chosen randomness), and outputs a ciphertext
C = (ci)i∈[n].; The decryption algorithmDecn, on inputSK andC, runsmi ←
Dec(ski, ci) for i ∈ [n], and returnsm1 if everymi is equal or⊥ otherwise.; The fake
transcript generation algorithmFaken runs(pki, ci, ωi) ← Fake(1k) for n ∈ [n], and
returnsPK = (pki)i∈[n], C = (ci)i∈[n], and a state informationW = (ωi)i∈[n].; The
explanation algorithmExplainn, on inputW andm, runsri ← Explain(ωi,m) for i ∈
[n], and returns the randomnessR = (ri)i∈[n] that explains thatC = Encn(PK,m;R).

By a straightforward hybrid argument, we can show that for any polynomialn =
n(k) > 0, if the underlying schemeΠ is SNC secure, then so is then-wise repetition
constructionΠn. (It is also a well-known fact that ifΠ is CPA secure, then so isΠn.)

We also note that the plaintext space of an SNCE scheme can be easily extended by
considering the straightforward “concatenation construction,” in which plaintextm =
(m1, . . . ,mn) is encrypted block-wise by independently generated public keys.
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More formal statements regarding the repetition construction and the concatenation
constructions are given in the full version.

2.2 Symmetric Key Encryption

A symmetric key encryption (SKE) schemeE with key spaceK = {Kk}k∈N and
plaintext spaceM = {Mk}k∈N

1 consists of the following two PPTAs(SEnc, SDec):

SEnc: The encryption algorithm that takes a keyK ∈ Kk and a plaintextm ∈ Mk as
input, and outputs a ciphertextc.

SDec: The (deterministic) decryption algorithm that takesK ∈ Kk andc as input, and
outputs a plaintextm which could be the special symbol⊥ (which indicates thatc
is an invalid ciphertext underK).

Correctness.We require for allk ∈ N, all keysK ∈ Kk, and all plaintextsm ∈ Mk,
it holds thatSDec(K, SEnc(K,m)) = m.

One-Time Key-Dependent Message Security.LetE = (SEnc, SDec) be a SKE scheme
with key spaceK = {Kk}k∈N and plaintext spaceM = {Mk}k∈N. LetF = {Fk}k∈N
be an ensemble (which we callfunction ensemble) where for eachk, Fk is a set of
efficiently computable functions with their domainKk and rangeMk.

For the SKE schemeE, the function ensembleF , and an adversaryA = (A1,A2),
we define theF-OTKDM experimentExptOTKDME,F,A(k) as in Fig. 1 (right). In the experiment,
it is required thatf ∈ Fk.

Definition 2. We say that a SKE schemeE isOTKDM secure with respect toF (F-OTKDM
secure, for short) if for all PPTAsA,AdvOTKDME,F,A(k) := 2·|Pr[ExptOTKDME,F,A(k) = 1]−1/2|
is negligible.

We would like to remark that our definition ofOTKDM security is considerably weak:
it is a single instance definition that need not take into account the existence of other
keys, and an adversary is allowed to make a KDM encryption query (which is captured
by f ) only once.

Concrete Instantiations ofOTKDM Secure SKE Schemes.In our proposed construction
in Section 4, the class of functions with respect to which a SKE scheme isOTKDM se-
cure needs to be rich enough to be able to compute the algorithmExplain in a SNCE
scheme multiple (an a-priori bounded number of) times. Fortunately, Applebaum [1]
showed how to generically convert any SKE scheme which is many-time KDM se-
cure (i.e. secure for many KDM encryption queries) with respect to “projections” (i.e.
functions each of whose output bit depends on at most one bit of inputs) into a SKE
scheme which is many-time KDM secure (and thusOTKDM secure), with respect to a

1 In this paper, for simplicity, we assume that the key spaceK and plaintext spaceM of a
SKE scheme satisfy the following conditions: For eachk ∈ N, (1) every element inKk has
the same length, (2) every element inMk has the same length, (3) bothKk andMk are
efficiently recognizable, and (4) we can efficiently sample a uniformly random element from
bothKk andMk.
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family of functions computable in a-priori fixed polynomial time. (We can also use a
more efficient construction shown by Bellare et al. [6,§7.2].) This notion is sufficient
for our proposed construction. Since most SKE and PKE schemes KDM secure with
respect to the class of affine functions can be interpreted as (or easily converted to)
“projection”-KDM secure SKE schemes [3,§A], we can use the existing (many-time)
“affine”-KDM secure SKE schemes as a building block, and apply Applebaum’s con-
version (or that of [6,§7.2]). Therefore, for example, one can realize aOTKDM secure
SKE scheme with respect to fixed poly-time computable functions, based on the DDH
assumption [13], the QR assumption [15], the DCR assumption [15, 44], the learning
with errors (LWE) assumption [4], and the learning parity with noise (LPN) assump-
tion [4, 2]. Very recently, Bellare et al. [5] introduced a notion of a family of hash func-
tion calleduniversal computational extractor(UCE) which is seemingly quite strong
(almost random oracle-like) but a standard model assumption, and then they showed
(among many other things) how to construct a SKE scheme which is non-adaptively
KDM secure (in which encryption queries have to be made in parallel) with respect to
any efficiently computable functions.OTKDM security is the special case of non-adaptive
KDM security, and hence we can also use the result of [5] in our proposed construction.

3 Chosen Ciphertext Security from Puncturable KEMs

In this section, we introduce the notion of apuncturable KEM(PKEM) and show sev-
eral results on it.

This section is organized as follows: In Sections 3.1 and 3.2, we define the syntax
and the security requirements of a PKEM, respectively. Then in Sections 3.3 and 3.5,
we show the implication of a PKEM to aCCA secure KEM and aDCCA secure detectable
KEM, respectively. We also explain how a wide class of the existing constructions of
CCA secure KEMs can be understood via a PKEM in Section 3.4.

3.1 Syntax

Informally, a PKEM is a KEM that has additional procedures for “puncturing secret
keys according to a ciphertext” and “punctured decapsulation.” In a PKEM, one can
generate a “punctured” secret keŷskc∗ from an ordinarysk and a ciphertextc∗ via the
“puncturing” algorithmPunc. Intuitively, although an ordinary secret keysk defines a
map (viaDecap) whose domain is the whole of the ciphertext space,ŝkc∗ only defines
a map whose domain is the ciphertext space that has a “hole” produced by the puncture
of the ciphertextc∗. This “punctured” secret keŷskc∗ can be used in the “punctured”
decapsulation algorithmPDecap to decapsulate all ciphertexts that are “far” fromc∗ (or,
those that are not in the “hole” produced byc∗), while ŝkc∗ is useless for decapsulating
ciphertexts that are “close” toc∗ (or, those that are in the “hole” includingc∗ itself),
where what it means for a ciphertext to be close to/far fromc∗ is decided according to
a publicly computable predicateF, which is also a part of a PKEM.

Formally, a puncturable KEM consists of the six PPTAs(KKG,Encap,Decap,F,
Punc,PDecap), where(KKG,Encap,Decap) constitute a KEM, and the latter three
algorithms are deterministic algorithms with the following interface:
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F: The predicate that takes a public keypk (output byKKG(1k)) and two ciphertextsc
andc′ as input, wherec has to be in the range ofEncap(pk) (but c′ need not), and
outputs0 or 1.

Punc: The “puncturing” algorithm that takes a secret keysk (output byKKG(1k)) and
a ciphertextc∗ (output byEncap(pk)) as input, and outputs a punctured secret key
ŝkc∗ .

PDecap: The “punctured” decapsulation algorithm that takes a punctured secret key
ŝkc∗ (output byPunc(sk, c∗)) and a ciphertextc as input, and outputs a session-key
K which could be the special symbol⊥ (meaning that “c cannot be decapsulated
by ŝkc∗”).

The predicateF is used to definedecapsulation soundnessandpunctured decapsula-
tion soundness, which we explain in the next subsection. Its role is very similar to the
predicate used to defineDCCA security and unpredictability of detectable PKE in [38].
As mentioned above, intuitively, the predicateF(pk, c∗, ·) divides the ciphertext space
into two classes: ciphertexts that are “close” toc∗ and those that are “far” fromc∗, and
for each of the classes, we expect the decapsulation algorithmsDecap andPDecap to
work “appropriately,” as we will see below.

3.2 Security Requirements

For a PKEM, we consider the three kinds of security notions:decapsulation soundness,
punctured decapsulation soundness, andextended CPA security. The intuition for each
of the security notions as well as formal definitions are explained below. Furthermore,
for the first two notions, we consider two flavors: the ordinary version and the strong
version (where the latter formally implies the former). We only need the ordinary no-
tions for showing theCCA security of a PKEM, while the strong notions are usually
easier to test/prove.

Decapsulation Soundness.This security notion is intended to capture the intuition that
the only valid ciphertext which is “close” toc∗ is c∗ itself: It requires that given the
challenge ciphertext/session-key pair(c∗,K∗), it is hard to come up with another ci-
phertextc′ ̸= c∗ that is (1) “close” toc∗ (i.e. F(pk, c∗, c′) = 1), and (2) valid (i.e.
Decap(sk, c′) ̸= ⊥).

Formally, for a PKEMΓ and an adversaryA, consider the decapsulation soundness
(DSND) experimentExptDSNDΓ,A (k) and the strong decapsulation soundness (sDSND) exper-
imentExptsDSNDΓ,A (k) defined as in Fig. 2 (left-top/bottom). The adversaryA’s advantage
in each experiment is defined as in Fig. 2 (right-bottom). Note that in the “strong” ver-
sion (sDSND), an adversary is even given a secret key (which makes achieving the notion
harder, but makes the interface of the adversary simpler).

Definition 3. We say that a PKEMΓ satisfiesdecapsulation soundness(resp.strong
decapsulation soundness) if for all PPTAsA, AdvDSNDΓ,A (k) (resp.AdvsDSNDΓ,A (k)) is negli-
gible.
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ExptDSNDΓ,A(k) :

(pk, sk)← KKG(1k)
(c∗,K∗)← Encap(pk)

c′ ← ADecap(sk,·)(pk, c∗,K∗)
Return1 iff (a)∧ (b) ∧ (c):
(a) F(pk, c∗, c′) = 1
(b) c′ ̸= c∗

(c)Decap(sk, c′) ̸= ⊥

ExptPDSNDΓ,A (k) :

(pk, sk)← KKG(1k)
(c∗,K∗)← Encap(pk)

ŝkc∗ ← Punc(sk, c∗)

c′ ← APDecap(ŝkc∗ ,·)(pk, c∗,K∗)
Return1 iff (a)∧ (b):
(a) F(pk, c∗, c′) = 0
(b) Decap(sk, c′) ̸=

PDecap(ŝkc∗ , c
′)

ExpteCPAΓ,A(k) :

(pk, sk)← KKG(1k)
(c∗,K∗

1 )← Encap(pk)

ŝkc∗ ← Punc(sk, c∗)
K∗

0 ← {0, 1}k
b← {0, 1}
b′ ← A(pk, ŝkc∗ , c

∗,K∗
b )

Return(b′
?
= b).

ExptsDSNDΓ,A (k) :

(pk, sk)← KKG(1k)
(c∗,K∗)← Encap(pk)
c′ ← A(pk, sk, c∗,K∗)
Return1 iff (a)∧ (b) ∧ (c):
(a) F(pk, c∗, c′) = 1
(b) c′ ̸= c∗

(c)Decap(sk, c′) ̸= ⊥

ExptsPDSNDΓ,A (k) :

(pk, sk)← KKG(1k)
(c∗,K∗)← Encap(pk)
c′ ← A(pk, sk, c∗,K∗)
Return1 iff (a)∧ (b):
(a) F(pk, c∗, c′) = 0
(b) Decap(sk, c′) ̸=

PDecap(Punc(sk, c∗), c′)

Definitions of Advantages:
ForXXX ∈ {DSND, sDSND,

PDSND, sPDSND} :
AdvXXXΓ,A(k) :=

Pr[ExptXXXΓ,A(k) = 1]

eCPA security:
AdveCPAΓ,A(k) := 2×
|Pr[ExpteCPAΓ,A(k) = 1]− 1

2
|

Fig. 2. Security experiments for a PKEM and the definition of an adversary’s advantage in each
experiment.

Punctured Decapsulation Soundness.This security notion is intended to capture the
intuition that the “punctured” decapsulation byPDecap(ŝkc∗ , ·) works as good as the
normal decapsulation byDecap(sk, ·) for all “far” ciphertextsc′: It requires that given
the challenge ciphertext/session-key pair(c∗,K∗), it is hard to come up with another
ciphertextc′ that is (1) “far” fromc∗ (i.e.F(pk, c∗, c′) = 0), and (2) the decapsulations
under two algorithmsDecap(sk, c′) andPDecap(ŝkc∗ , c′) disagree.

Formally, for a PKEMΓ and an adversaryA, consider the punctured decapsulation
soundness (PDSND) experimentExptPDSNDΓ,A (k) and the strong punctured decapsulation
soundness (sPDSND) experimentExptsPDSNDΓ,A (k) defined as in Fig. 2 (center-top/bottom).
The adversaryA’s advantage in each experiment is defined as in Fig. 2 (right-bottom).
Note that as in thesDSND experiment, in the “strong” version (sPDSND), an adversary
is even given a secret key (which makes achieving the notion harder, but makes the
interface of the adversary simpler).

Definition 4. We say that a PKEMΓ satisfiespunctured decapsulation soundness(resp.
strong punctured decapsulation soundness) if for all PPTAsA, AdvPDSNDΓ,A (k) (resp.
AdvsPDSNDΓ,A (k)) is negligible.

Extended CPA Security: CPA security in the presence of a punctured secret key. Ex-
tended CPA security(eCPA security, for short) requires that the CPA security hold even
in the presence of the punctured secret keyŝkc∗ corresponding to the challenge cipher-
text c∗.

Formally, for a PKEMΓ and an adversaryA, consider theeCPA experiment
ExpteCPAΓ,A (k) defined as in Fig. 2 (right-top). We define the advantage of an adversary as
in Fig. 2 (right-bottom).
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Definition 5. We say that a PKEMΓ is eCPA secure if for all PPTAsA, AdveCPAΓ,A (k) is
negligible.

3.3 CCA Secure KEM from a Puncturable KEM

Here, we show that a PKEM satisfying all security notions introduced in Section 3.2
yields aCCA secure KEM. (The formal proof is given in the full version.)

Theorem 1. Let Γ = (KKG,Encap,Decap,F,Punc,PDecap) be a PKEM satisfying
decapsulation soundness, punctured decapsulation soundness, andeCPA security. Then,
Γ ∗ = (KKG,Encap,Decap) is aCCA secure KEM.

Specifically, for any PPTAA that attacks theCCA security ofΓ ∗ and makes in total
Q = Q(k) > 0 decapsulation queries, there exist PPTAsBd, Ba, andBe such that

AdvCCAΓ∗,A(k) ≤ 2 · AdvDSNDΓ,Bd
(k) + 2Q · AdvPDSNDΓ,Ba

(k) + AdveCPAΓ,Be
(k). (1)

Proof Sketch of Theorem 1.LetA be any PPTA adversary that attacks the KEMΓ ∗ in
the sense ofCCA security. Consider the following sequence of games:

Game 1: This is theCCA experimentExptCCAΓ∗,A(k) itself.
Game 2: Same as Game 1, except that all decapsulation queriesc satisfyingF(pk, c∗, c)

= 1 are answered with⊥.
Game 3: Same as Game 2, except that all decapsulation queriesc satisfyingF(pk, c∗, c)

= 0 are answered withPDecap(ŝkc∗ , c), whereŝkc∗ = Punc(sk, c∗).

For i ∈ [3], let Succi denote the event that in Gamei, A succeeds in guessing
the challenge bit (i.e.b′ = b occurs). We will show that|Pr[Succi] − Pr[Succi+1]| is
negligible for eachi ∈ [2] and that|Pr[Succ3] − 1/2| is negligible, which proves the
theorem.

Firstly, note that Game 1 and Game 2 proceed identically unlessA makes a de-
capsulation queryc satisfyingF(pk, c∗, c′) = 1 andDecap(sk, c) ̸= ⊥, and hence
|Pr[Succ1]−Pr[Succ2]| is upperbounded by the probability ofAmaking such a query
in Game 1 or Game 2. Recall that by the rule of theCCA experiment,A’s queriesc must
satisfyc ̸= c∗. But F(pk, c∗, c′) = 1, c ̸= c∗, andDecap(sk, c) ̸= ⊥ are exactly the
conditions of violating the decapsulation soundness, and the probability ofAmaking a
query satisfying these conditions is negligible.

Secondly, note that Game 2 and Game 3 proceed identically unlessA makes a de-
capsulation queryc satisfyingF(pk, c∗, c) = 0 andDecap(sk, c) ̸= PDecap(ŝkc∗ , c),
whereŝkc∗ = Punc(sk, c∗). Hence|Pr[Succ2] − Pr[Succ3]| is upperbounded by the
probability ofA making such a query in Game 2 or Game 3. However, since these
conditions are exactly those of violating the punctured decapsulation soundness, the
probability ofA making a query satisfying the above conditions is negligible.

Finally, we can upperbound|Pr[Succ3]−1/2| to be negligible directly by theeCPA
security of the PKEMΓ . More specifically, anyeCPA adversaryBe, which receives
(pk, ŝkc∗ , c

∗,K∗
b ) as input, can simulate Game 3 forA, whereA’s decapsulation oracle

in Game 3 is simulated perfectly by usinĝskc∗ , so thatBe’s eCPA advantage is exactly
2 · |Pr[Succ3]− 1/2|. This shows that|Pr[Succ3]− 1/2| is negligible. ⊓⊔
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On the Tightness of the Reduction.In the equation (1) of the above proof, the reason
why we have the factorQ (the number of aCCA adversaryA’s decapsulation queries) in
front of the advantageAdvPDSNDΓ,Ba

(k) of the reduction algorithmBa attacking punctured
decapsulation soundness, is that the reduction algorithmBa cannot check whether a ci-
phertextc′ satisfies the condition (b) of violating punctured decapsulation soundness,
i.e. Decap(sk, c′) ̸= PDecap(ŝkc∗ , c

′), and thusBa picks one ofA’s decapsulation
queries randomly. However, if we instead use a PKEM withstrongpunctured decapsu-
lation soundness, then, when proving security, a reduction algorithm attackingstrong
punctured decapsulation soundness is given the secret keysk as input, which enables it
to check whether the conditionDecap(sk, c′) ̸= PDecap(ŝkc∗ , c

′) is satisfied. There-
fore, the reduction algorithm need not pick one of the decapsulation queries randomly,
but can find a ciphertextc′ that violates the conditions of strong punctured decapsu-
lation soundness whenever the adversaryA asks such a ciphertext as a decapsulation
query, which leads to a tight security reduction. We will explain this in more details in
the full version.

3.4 Understanding the Existing Constructions ofCCA Secure KEMs via
Puncturable KEM

To see the usefulness of a PKEM and the result in Section 3.3, here we demonstrate
how the existing constructions ofCCA secure KEMs can be understood via a PKEM.

The Dolev-Dwork-Naor KEM.We first show how a security proof of the KEM version
of the DDN construction [24], which we call theDDN-KEM, can be understood via a
PKEM. This is the KEM obtained from the original DDN construction (which is a PKE
scheme) in which we encrypt a random value and regard it as a session-key.

Let Π = (PKG,Enc,Dec) be a PKE scheme whose plaintext space is{0, 1}k and
whose randomness space (for security parameterk) isRk. Consider the NP language
L = {Lk}k∈N where eachLk is defined as follows:

Lk :=
{
((pki)i∈[k], (ci)i∈[k])

∣∣∣ ∃((ri)i∈[k],K) ∈ (Rk)
k × {0, 1}k s.t.

∀i ∈ [k] : Enc(pki,K; ri) = ci

}
.

Let P = (CRSG,Prove,PVer) be a non-interactive argument system for the language
L. Moreover, letΣ = (SKG, Sign, SVer) andH = (HKG,H) be a signature scheme
and a UOWHF, respectively. (The definitions of an ordinary PKE scheme, a signa-
ture scheme, a UOWHF, and a non-interactive argument system can be found in Ap-
pendix A.) Then we construct the PKEMΓDDN = (KKGDDN,EncapDDN,DecapDDN,FDDN,
PuncDDN,PDecapDDN), which is based on the DDN-KEM, as in Fig. 3. The original
DDN-KEM Γ ∗

DDN is (KKGDDN,EncapDDN,DecapDDN).
For the PKEMΓDDN, the three security requirements are shown as follows:

Lemma 1. If H is a UOWHF andΣ is aSOT secure signature scheme, then the PKEM
ΓDDN satisfies strong decapsulation soundness.

Lemma 2. If the non-interactive argument systemP satisfies adaptive soundness, then
the PKEMΓDDN satisfies strong punctured decapsulation soundness.
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KKGDDN(1
k) :

∀(i, j) ∈ [k]× {0, 1} :
(pk

(j)
i , sk

(j)
i )← PKG(1k)

crs← CRSG(1k)
κ← HKG(1k)

PK ← ((pk
(j)
i )i,j , crs, κ)

SK ← ((sk
(j)
i )i,j , PK)

Return(PK,SK).
EncapDDN(PK) :

((pk
(j)
i )i,j , crs, κ)← PK

K ← {0, 1}k
r1, . . . , rk ←Rk

(vk, sigk)← SKG(1k)
h← Hκ(vk)
Let hi be thei-th bit of h.
∀i ∈ [k] :

ci ← Enc(pk
(hi)
i ,K; ri)

x← ((pk
(hi)
i )i, (ci)i)

w ← ((ri)i,K)
π ← Prove(crs, x, w)
σ ← Sign(sigk, ((ci)i, π))
C ← (vk, (ci)i, π, σ).
Return(C,K).

DecapDDN(SK,C) :

((sk
(j)
i )i,j , PK)← SK

((pk
(j)
i )i,j , crs, κ)

← PK
(vk, (ci)i, π, σ)← C
If SVer(vk, ((ci)i, π), σ)

= ⊥ then return⊥.
h← Hκ(vk)
Let hi be thei-th bit of h.
x← ((pk

(hi)
i )i, (ci)i)

If PVer(crs, x, π) = ⊥
then return⊥

K ← Dec(sk
(h1)
1 , c1)

ReturnK.
FDDN(PK,C,C′) :

((pk
(j)
i )i,j , crs, κ)

← PK
(vk, (ci)i, π, σ)← C
(vk′, (c′i)i, π

′, σ′)← C′

h← Hκ(vk)
h′ ← Hκ(vk

′)

Return(h
?
= h′).

PuncDDN(SK,C∗) :

((sk
(j)
i )i,j , PK)← SK

((pk
(j)
i )i,j , crs, κ)← PK

(vk∗, (c∗i )i, π
∗, σ∗)← C

h∗ ← Hκ(vk
∗)

Let h∗
i be thei-th bit of h∗.

ŜKC∗ ← (h∗, (sk
(1−h∗

i )
i )i, PK)

ReturnŜKC∗ .

PDecapDDN(ŜKC∗ , C) :

(h∗, (sk
(1−h∗

i )
i )i, PK)← ŜKC∗

((pk
(j)
i )i,j , crs, κ)← PK

(vk, (ci)i, π, σ)← C
If SVer(vk, ((ci)i, π), σ) = ⊥

then return⊥.
h← Hκ(vk)
If h∗ = h then return⊥.
Let h∗

i be thei-th bit of h∗.
Let hi be thei-th bit of h.
ℓ← min{i ∈ [k] | h∗

i ̸= hi}
x← ((pk

(hi)
i )i, (ci)i)

If PVer(crs, x, π) = ⊥
then return⊥.

ReturnK ← Dec(sk
(1−h∗

ℓ )

ℓ , cℓ).

Fig. 3. The PKEMΓDDN based on a PKE schemeΠ and a non-interactive argument systemP. In
the figure, “(ri)i” and “(pk(j)

i )i,j” are the abbreviations of “(ri)i∈[k]” and “(pk(j)
i )i∈[k],j∈{0,1}”,

respectively, and we use a similar notation for other values.

Lemma 3. If the PKE schemeΠ is CPA secure and the non-interactive argument sys-
temP is ZK secure, then the PKEMΓDDN is eCPA secure.

The formal proofs of these lemmas are given in the full version, and here we give some
intuitions below.

The first two lemmas are almost trivial. Specifically, letC∗ = (vk∗, (c∗i )i, π
∗, σ∗)

be the challenge ciphertext, and letC ′ = (vk′, (c′i)i, π
′, σ′) be a ciphertext output by

an adversary in thesDSND experiment or thesPDSND experiment (recall that the in-
terface of an adversary in these experiments is the same). Then, a simple observation
shows that ifC ′ is a successful ciphertext that violates strong decapsulation soundness,
thenC ′ must satisfy one of the following two conditions: (1)Hκ(vk

∗) = Hκ(vk
′) and

vk∗ ̸= vk′, or (2)SVer(vk′, ((c′i)i, π
′), σ′) = ⊤, ((c∗i )i, π

∗, σ∗) ̸= ((c′i)i, π
′, σ′), and

vk∗ = vk′. However, a ciphertext with the first condition is hard to find due to the se-
curity of the UOWHFH, and a ciphertext with the second condition is hard to find due
to theSOT security of the signature schemeΣ. Similarly, again a simple observation
shows that in order forC ′ to be a successful ciphertext that violates strong punctured
decapsulation soundness,C ′ has to satisfyPVer(crs, x′, π′) = ⊤ andx′ /∈ Lk where

x′ = ((pk
(h′

i)
i )i, (c

′
i)i), and hence the adaptive soundness of the non-interactive argu-
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ment systemP guarantees that the probability that an adversary coming up with such
a ciphertext in thesPDSND experiment is negligible. TheeCPA security is also easy to
see. Specifically, we can first consider a modified experiment in whichcrs andπ are
respectively generated by using the simulation algorithmsSimCRS andSimPrv which
exist by theZK security ofP. By theZK security, aneCPA adversary cannot notice this
change. Then, theCPA security of the underlying PKE scheme directly shows that the
information of a session-key does not leak, leading to theeCPA security.

Capturing Other Existing Constructions.Our framework with a PKEM can explain
other existing constructions that, explicitly or implicitly, follow a similar security proof
to the DDN construction. For example, the Rosen-Segev construction based on an in-
jective trapdoor function (TDF) secure under correlated inputs [59], the Peikert-Waters
construction [56] based on a lossy TDF and an all-but-one lossy TDF (ABO-TDF) in
which the ABO-TDF is instantiated from a lossy TDF (see this construction in [56,
§2.3]). Moreover, the construction based on CPA secure PKE and an obfuscator for
point functions (with multi-bit output) by Matsuda and Hanaoka [47] and one based on
CPA secure PKE and a hash function family satisfying the strong notion (called UCE
security [5]) from the same authors [48] can also be captured as a PKEM.

Furthermore, our framework with a PKEM can also capture KEMs based onall-
but-one extractable hash proof systems(ABO-XHPS) by Wee [61] (and its extension
by Matsuda and Hanaoka [46]), by introducing some additional property for underlying
ABO-XHPS. Although the additional property that we need is quite subtle, it is satisfied
by most existing ABO-XHPS explained in [61, 46]. Since a number of recent practical
CCA secure KEMs (e.g. [14, 20, 34, 37]) are captured by the framework of ABO-XHPS,
our result is also useful for understanding practical KEMs. We expand the explanation
for capturing ABO-XHPS-based KEMs in the full version.

3.5 DCCA Secure Detectable KEM from a Puncturable KEM

Here, we show that even if a PKEM does not have decapsulation soundness, it still
yields aDCCA secure detectable KEM [38, 45]. Therefore, if a PKEM satisfying punc-
tured decapsulation soundness andeCPA security additionally satisfies the property
calledunpredictability[38, 45] it can still be used as a building block in the construc-
tions [38, 45] to obtain fullyCCA secure PKE/KEM.2

Theorem 2. Let Γ = (KKG,Encap,Decap,F,Punc,PDecap) be a PKEM satisfying
punctured decapsulation soundness andeCPA security. Then,Γ † = (KKG,Encap,
Decap,F) is aDCCA secure detectable KEM.

Proof Sketch of Theorem 2.The proof of this theorem is straightforward given the proof
of Theorem 1 (it is only simpler), and thus we omit a formal proof. The reason why we
do not need decapsulation soundness is that an adversary in theDCCA experiment is not
allowed to ask a decapsulation queryc with F(pk, c∗, c) = 1, and we need not care

2 We note that the DDN-KEM reviewed in Section 3.4 and our proposed KEM in Section 4
achieve strong unpredictability (based on the security of the building blocks), which we show
in the full version.

16



the behavior ofDecap for “close” ciphertexts. Thus, as in the proof of Theorem 1, the
punctured decapsulation soundness guarantees thatPDecap(ŝkc∗ , ·) works as good as
Decap(sk, ·) for all “far” ciphertextsc with F(pk, c∗, c) = 0, and then theeCPA security
guarantees the indistinguishability of a real session-keyK∗

1 and a randomK∗
0 . ⊓⊔

4 Puncturable KEM from Sender Non-committing Encryption
and KDM Secure SKE

In this section, we show our main technical result: a PKEM that uses a SNCE scheme
and aOTKDM secure SKE scheme (with respect to efficiently computable functions). By
Theorem 1, this yields aCCA secure KEM. Therefore, this result clarifies a new set of
general cryptographic primitives that impliesCCA secure PKE/KEM.

The construction of the proposed PKEM is as follows: LetΠ = (PKG,Enc,Dec,
Fake,Explain) be a SNCE scheme such that the plaintext space is{0, 1}n (for some
polynomialn = n(k) > 0) and the randomness space ofEnc isRk. Let E = (SEnc,
SDec) be a SKE scheme whose key space and plaintext space (for security parameter
k) areKk andMk, respectively. We requireKk ⊆ {0, 1}n and(Rk)

k+1 × {0, 1}k ⊆
Mk. Furthermore, letH = (HKG,H) be a hash function family (which is going to be

assumed to be a UOWHF). Then we construct a PKEMΓ̂ = (K̂KG, Êncap, D̂ecap, F̂,

P̂unc, P̂Decap) as in Fig. 4.

Function Ensemble forOTKDM Security. For showing theeCPA security ofΓ̂ , we need
to specify a function ensembleF = {Fk}k∈N with respect to whichE is OTKDM secure.
For eachk ∈ N, define a setFk of efficiently computable functions as follows:

Fk :={
fz : Kk →Mk given by
fz(α) := ((Explain(ωi, α))i∈[k+1],K)

∣∣∣∣ z = ((ωi)i∈[k+1],K) whereK ∈ {0, 1}k
and eachωi is output fromFake(1k)

}
Note that each function inFk is parameterized byz, and is efficiently computable.

Security ofΓ̂ . The three security requirements of the PKEM̂Γ can be shown as follows:
(The formal proofs of Lemmas 4, 5, and 6 are given in Appendices B.1, B.2, and B.3,
respectively.)

Lemma 4. If H is a UOWHF, then the PKEM̂Γ satisfies strong decapsulation sound-
ness.

Lemma 5. The PKEMΓ̂ satisfies strong punctured decapsulation soundness (even
against computationally unbounded adversaries) unconditionally.

Lemma 6. If the SNCE schemeΠ is SNC secure and the SKE schemeE is F-OTKDM
secure, then the PKEM̂Γ is eCPA secure.
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K̂KG(1k) :

∀(i, j) ∈ [k]× {0, 1} :
(pk

(j)
i , sk

(j)
i )← PKG(1k)

(pkk+1, skk+1)← PKG(1k)
κ← HKG(1k)

PK ← ((pk
(j)
i )i,j , pkk+1, κ)

SK ← ((sk
(j)
i )i,j , PK)

Return(PK,SK).

Êncap(PK) :

((pk
(j)
i )i,j , pkk+1, κ)← PK

α← Kk; K ← {0, 1}k
r1, . . . , rk+1 ←Rk

β ← ((ri)i∈[k+1],K)
c̃← SEnc(α, β)
ck+1 ← Enc(pkk+1, α; rk+1)
h← Hκ(ck+1∥c̃)
Let hi be thei-th bit of h.
∀i ∈ [k] :

ci ← Enc(pk
(hi)
i , α; ri)

C ← (h, (ci)i, c̃).
Return(C,K).

D̂ecap(SK,C) :

((sk
(j)
i )i,j , PK)← SK

((pk
(j)
i )i,j , pkk+1, κ)← PK

(h, (ci)i, c̃)← C
Let hi be thei-th bit of h.
α← Dec(sk

(h1)
1 , c1)

If α = ⊥ then return⊥.
β ← SDec(α, c̃)
If β = ⊥ then return⊥.
((ri)i∈[k+1],K)← β
ck+1 ← Enc(pkk+1, α; rk+1)
If (a)∧ (b) then returnK

else return⊥:
(a)Hκ(ck+1∥c̃) = h
(b) ∀i ∈ [k] :

Enc(pk
(hi)
i , α; ri) = ci

F̂(PK,C,C′) :

(h, (ci)i, c̃)← C
(h′, (c′i)i, c̃

′)← C′

Return(h
?
= h′).

P̂unc(SK,C∗) :

((sk
(j)
i )i,j , PK)← SK

(h∗, (c∗i )i, c̃
∗)← C∗

Let h∗
i be thei-th bit of h∗.

ŜKC∗ ←
(h∗, (sk

(1−h∗
i )

i )i, PK)

ReturnŜKC∗ .

P̂Decap(ŜKC∗ , C) :

(h∗, (sk
(1−h∗

i )
i )i, PK)

← ŜKC∗

(h, (ci)i, c̃)← C
If h∗ = h then return⊥.
Let h∗

i be thei-th bit of h∗.
Let hi be thei-th bit of h.
ℓ← min{i ∈ [k] | h∗

i ̸= hi}
α← Dec(sk

(1−h∗
ℓ )

ℓ , cℓ)

Run exactly aŝDecap from
the sixth step and return

the result.

Fig. 4. The PKEMΓ̂ based on a SNCE schemeΠ and a SKE schemeE. In the figure, “(ri)i”
and “(pk(j)

i )i,j” are the abbreviations of “(ri)i∈[k]” and “(pk(j)
i )i∈[k],j∈{0,1}”, respectively, and

we use similar notation for other values.

Here, we explain high-level proof sketches for each lemma. Regarding strong de-
capsulation soundness (Lemma 4), recall that in thesDSND experiment, in order for a
ciphertextC ′ = (h′, (c′i)i, c̃

′) to violate (strong) decapsulation soundness, it must sat-

isfy F̂(PK,C∗, C ′) = 1 (which impliesh∗ = h′),C ′ ̸= C∗, andD̂ecap(SK,C ′) ̸= ⊥,
which (among other conditions) impliesh∗ = Hκ(c

∗
k+1∥c̃∗) = Hκ(c

′
k+1∥c̃′) = h′,

where the values with asterisk are those related to the challenge ciphertextC∗ =
(h∗, (c∗i )i, c̃

∗) and c′k+1 is the intermediate value calculated during the computation

of D̂ecap(SK,C ′). On the other hand, a simple observation shows that the above con-
ditions also imply another condition(c∗k+1, c̃

∗) ̸= (c′k+1, c̃
′). This means that a success-

ful ciphertext that violates (strong) decapsulation soundness leads to a collision for the
UOWHFH, which is hard to find by the security of the UOWHFH.

Regarding punctured decapsulation soundness (Lemma 5), we show that for any
(possibly invalid) ciphertextC ′ = (h′, (c′i)i, c̃

′), if h′ ̸= h∗, then it always holds that

D̂ecap(SK,C ′) = P̂Decap(ŜKC∗ , C ′). This can be shown due to the correctness of
the building block SNCE schemeΠ and the validity check by re-encryption performed
at the last step of̂Decap andP̂Decap. In particular, the validity check by re-encryption
works like a non-interactive proof with perfect soundness in the DDN construction, and
hence for any adversary, itssPDSND advantage is zero.
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Finally, we explain how theeCPA security (Lemma 6) is proved. LetA be anyeCPA
adversary. Consider the following sequence of games:

Game 1: This is theeCPA experiment itself. To make it easier to define the subsequent
games, we change the ordering of the operations as follows (note that this does not
changeA’s view):

α∗ ← Kk;
For i ∈ [k + 1] :

(pk′
i, sk

′
i)← PKG(1k);

r∗i ←Rk;
c∗i ← Enc(pk′

i, α
∗; r∗i );

End For
K∗

1 ← {0, 1}k;
β∗ ← ((r∗i )i∈[k+1],K

∗
1 );

c̃∗ ← SEnc(α∗, β∗);
κ← HKG(1k);
h∗ = (h∗

1∥ . . . ∥h∗
k)← Hκ(c

∗
k+1∥c̃∗);

(Continue to the right column↗)

For i ∈ [k] :

pk
(h∗

i )
i ← pk′

i;

(pk
(1−h∗

i )
i , sk

(1−h∗
i )

i )← PKG(1k);
End For
PK ← ((pk

(j)
i )i,j , pk

′
k+1, κ);

C∗ ← (h∗, (c∗i )i, c̃
∗);

ŜKC∗ ← (h∗, (sk
(1−h∗

i )
i )i, PK);

K∗
0 ← {0, 1}k;

b← {0, 1};
b′ ← A(PK, ŜKC∗ , C∗,K∗

b )

Game 2: Same as Game 1, except that we generate each tuple(pk
(h∗

i )
i , c∗i , r

∗
i ) and

(pkk+1, c
∗
k+1, r

∗
k+1) by using the simulation algorithmsFake andExplain of the

SNCE schemeΠ. More precisely, in this game, the step with the underlinein
Game 1 is replaced with: “(pk′i, c

∗
i , ω

∗
i )← Fake(1k); r∗i ← Explain(ω∗

i , α
∗).”

Game 3: Same as Game 2, except that the information ofβ∗ = ((r∗i )i∈k+1,K
∗
1 ) is

erased from̃c∗. More precisely, in this game, the step “c̃∗ ← SEnc(α∗, β∗)” in
Game 2 is replaced with the steps “β′ ←Mk; c̃∗ ← SEnc(α∗, β′).”

For i ∈ [3], let Succi be the event thatA succeeds in guessing the challenge bit (i.e.
b′ = b occurs). We will show that|Pr[Succi] − Pr[Succi+1]| is negligible for each
i ∈ [2], and thatPr[Succ3] = 1/2, which proves theeCPA security of the PKEMΓ̂ .

Firstly, we can show that|Pr[Succ1] − Pr[Succ2]| is negligible due to theSNC
security of the(k + 1)-repetition constructionΠk+1, which in turn follows from the
SNC security of the underlying SNCE schemeΠ by a standard hybrid argument (see the
explanation in the last paragraph of Section 2.1).

Secondly, we can show that|Pr[Succ2] − Pr[Succ3]| is negligible due to theF-
OTKDM security of the SKE schemeE. Here, the key idea is that we view the plaintextβ∗

= ((r∗i )i∈[k+1],K
∗
1 ) = ((Explain(ω∗

i , α
∗)i∈[k+1],K

∗) which will be encrypted under
the keyα∗ as a “key-dependent message” of the keyα∗. More specifically, in the full
proof we show how to construct aOTKDM adversaryBe that uses the KDM function
f ∈ Fk defined byf(α∗) = ((Explain(ω∗

i , α
∗)i∈[k+1],K

∗) (where(ω∗
i )i∈[k+1] and

K∗
1 are viewed as fixed parameters hard-coded inf ) for the challenge KDM query, and

depending onBe’s challenge bit,Be simulates Game 2 or Game 3 perfectly forA so
thatAdvOTKDME,F,Be

(k) = |Pr[Succ2]− Pr[Succ3]|.
Finally, observe that in Game 3, the challenge ciphertextC∗ is independent ofK∗

1 ,
and the input(PK, ŜKC∗ , C∗,K∗

b ) toA is distributed identically for bothb ∈ {0, 1}.
This impliesPr[Succ3] = 1/2.
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Our construction of the PKEM̂Γ , and the combination of Lemmas 4 to 6 and The-
orem 1 lead to our main result in this paper:

Theorem 3. If there exist aSNC secure SNCE scheme and a SKE scheme that isOTKDM

secure with respect to efficiently computable functions, then there exist aCCA secure
PKE scheme/KEM.

Finally, it would be worth noting that our construction of aCCA secure PKE (via
a PKEM) is black-box, in the sense that the construction uses the building blocks in a
black-box manner, while our security reductions of theeCPA security is non-black-box,
in the sense that our reduction algorithm needs to use the description of theExplain al-
gorithm as a KDM encryption query. Such a situation was encountered in [50, 21] where
these constructions use the building block PKE scheme in a black-box manner, while
the security proof (reduction) is non-black-box because they need to rely on plaintext
awareness.

5 Dolev-Dwork-Naor KEM Revisited

In this section, we show that theeCPA security of the DDN-PKEMΓDDN (Fig. 5) that we
reviewed in Section 3.4 can be shown from different assumptions on the PKE scheme
Π and the non-interactive argument systemP. More specifically, we show that ifΠ is
aSNC secure SNCE scheme andP is WI secure, then we can still show that the PKEM
ΓDDN is eCPA secure. We emphasize that this change of assumptions doesnot affect
the other assumptions used for decapsulation soundness and punctured decapsulation
soundness, and thus we see that this result is a concrete evidence of the usefulness of
“breaking down” the steps in a security proof into small separate steps. By Theorem 1,
we obtain a newCCA security proof for the DDN-KEM based on a SNCE scheme and
a non-interactive witness indistinguishable argument system (in the common reference
string model).

We believe this new proof for the classical construction with different set of assump-
tions to be theoretically interesting, and another qualitative evidence of the usefulness
of SNCE in the context of constructingCCA secure PKE/KEM. In particular, compared
with the original DDN-KEM, our result here shows a trade-off among assumptions on
building blocks: a stronger assumption on a PKE scheme and instead a weaker assump-
tion on a non-interactive argument system. Our result shows that the difference between
aCPA secure PKE scheme and aSNC secure SNCE scheme is as large/small as the dif-
ference between theZK security andWI security of a non-interactive argument system.

Lemma 7. If Π is aSNC secure SNCE scheme and the non-interactive argument system
P is WI secure, then the PKEMΓDDN is eCPA secure.

The formal proof is given in the full version, and here we give a proof sketch. Recall
that in the proof of Lemma 3, we first use theZK security ofP to “cut” the relation
between the components(c∗i )i and the proofπ∗, and then use theCPA security of the
k-repetition constructionΠk (which in turn follows from theCPA security ofΠ) to
“hide” the information of the challenge bit. The proof of Lemma 7 uses the properties
of the building blocks in the reversed order.
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Proof Sketch of Lemma 7.LetA be any PPTA adversary that attacks theeCPA security
of ΓDDN. Consider the following sequence of games:

Game 1: This is theeCPA experiment itself. To make it easier to define the subsequent
games, we change the ordering of the operations as follows (note that this does not
changeA’s view):

K∗
1 ← {0, 1}k;

For i ∈ [k] :

(pk′
i, sk

′
i)← PKG(1k);

r∗i ← Rk;
c∗i ← Enc(pk′

i,K
∗
1 ; r

∗
i );

End For
x∗ ← ((pk′

i)i, (c
∗
i )i);

w∗ ← ((r∗i )i,K
∗
1 );

crs← CRSG(1k);
π∗ ← Prove(crs, x∗, w∗);
(vk∗, sigk∗)← SKG(1k);
σ∗ ← Sign(sigk∗, ((c∗i )i, π

∗));
(Continue to the right column↗)

κ← HKG(1k);
h∗ = (h∗

1∥ . . . ∥h∗
k)← Hκ(vk

∗);
For i ∈ [k] :

pk
(h∗

i )
i ← pk′

i;

(pk
(1−h∗

i )
i , sk

(1−h∗
i )

i )← PKG(1k);
End For
PK ← ((pk

(j)
i )i,j , crs, κ);

C∗ ← (vk∗, (c∗i )i, π
∗, σ∗);

ŜKC∗ ← (h∗, (sk
(1−h∗

i )
i )i, PK);

K∗
0 ← {0, 1}k;

b← {0, 1};
b′ ← A(PK, ŜKC∗ , C∗,K∗

b )

Game 2: Same as Game 1, except that we generate each tuple(pk
(h∗

i )
i , c∗i , r

∗
i ) by us-

ing the simulation algorithmsFake andExplain of the SNCE schemeΠ. More
precisely, in this game, the step with the underlinein Game 1 is replaced with:
“(pk′i, c

∗
i , ω

∗
i )← Fake(1k) andr∗i ← Explain(ω∗

i ,K
∗
1 ).”

Game 3: Same as Game 2, except that the information ofK∗
1 is erased from the witness

w∗. More precisely, in this game, the steps “r∗i ← Explain(ω∗
i ,K

∗
1 )” and “w∗ ←

((r∗i )i,K
∗
1 )” in Game 2 are replaced with the steps “r′i ← Explain(ω∗

i , 0
k)” and

“w′ ← ((r′i)i, 0
k),” respectively.

For i ∈ [3], let Succi be the event thatA succeeds in guessing the challenge bit (i.e.
b′ = b occurs). We will show that|Pr[Succi] − Pr[Succi+1]| is negligible for each
i ∈ [2] and thatPr[Succ3] = 1/2, which proves theeCPA security of the PKEMΓDDN.

Firstly, we can show that|Pr[Succ1] − Pr[Succ2]| is negligible due to theSNC se-
curity of thek-repetition constructionΠk, which in turn follows from theSNC security
of the underlying SNCE schemeΠ (see the explanation in the last paragraph of Sec-
tion 2.1).

Secondly, we can show that|Pr[Succ2] − Pr[Succ3]| is negligible due to theWI
security of the non-interactive argument systemP. Note that in Game 2 (and Game 3),

every pair(pk(h
∗
i )

i , c∗i ) is generated by the simulation algorithmFake, and hence can be
explained as an encryption of an arbitrary plaintext (by usingExplain). This in particu-

lar means that there are many witnesses for the statementx∗ = ((pk
(h∗

i )
i )i, (c

∗
i )i) ∈ Lk,

and we exploit this fact. Specifically, fori ∈ [n], let ωi be the state information corre-

sponding to(pk(h
∗
i )

i , c∗i ), and letw1 = (K∗
1 , (r

∗
i )i) (resp.w0 = (0k, (r′i)i)) be a witness

for the fact that “eachc∗i encryptsK∗
1 (resp.0k),” where eachr∗i (resp.r′i) is computed

by r∗i = Explain(ωi,K
∗
i ) (resp.r′i = Explain(ωi, 0

k)). We can construct a reduction
algorithm that attacks theWI security ofP so that it uses the above witnessesw1 and
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w0 as its challenge, simulates Game 2 and Game 3 forA depending on its challenge
bit, and has advantage exactly|Pr[Succ2]− Pr[Succ3]|.

Finally, observe that in Game 3, the challenge ciphertextC∗ is independent ofK∗
1 ,

and the input(PK, ŜKC∗ , C∗,K∗
b ) to A is distributed independently for bothb ∈

{0, 1}. This impliesPr[Succ3] = 1/2. ⊓⊔.
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A Basic Cryptographic Primitives

Public Key Encryption.A public key encryption (PKE) schemeΠ consists of the three
PPTAs(PKG,Enc,Dec) with the following interface:

Key Generation: Encryption: Decryption:
(pk, sk)← PKG(1k) c← Enc(pk,m) m (or⊥)← Dec(sk, c)

whereDec is a deterministic algorithm,(pk, sk) is a public/secret key pair, andc is a
ciphertext of a plaintextm underpk. We require for allk ∈ N, all (pk, sk) output by
PKG(1k), and allm, it holds thatDec(sk,Enc(pk,m)) = m.
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ExptCPAΠ,A(k) :

(pk, sk)← PKG(1k)
(m0,m1, st)← A1(pk)
b← {0, 1}
c∗ ← Enc(pk,mb)
b′ ← A2(st, c

∗)

Return(b′
?
= b).

ExptATKΓ,A(k) :

(pk, sk)← KKG(1k)
(c∗,K∗

1 )← Encap(pk)
K∗

0 ← {0, 1}k
b← {0, 1}
b′ ← ADecap(sk,·)(st, c∗,K∗

b )

Return(b′
?
= b).

ExptSOTΣ,A(k) :

(vk, sigk)← SKG(1k)
(m, st)← A1(vk)
σ ← Sign(sigk,m)
(m′, σ′)← A2(st, σ)
Return1 iff (a)∧ (b) :
(a) SVer(vk,m′, σ′) = ⊤
(b) (m′, σ′) ̸= (m,σ)

Fig. 5.TheCPA security experiment for a PKE schemeΠ (left), theATK security experiment (with
ATK ∈ {CCA, DCCA, CPA}) for a (detectable) KEMΓ (center), and theSOT security experiment
(right).

We say that a PKE schemeΠ is CPA secure if for all PPTAsA = (A1,A2),
AdvCPAΠ,A(k) := 2 · |Pr[ExptCPAΠ,A(k) = 1] − 1/2| is negligible, where the experi-
mentExptCPAΠ,A(k) is defined as in Fig. 5 (left). In the experiment, it is required that
|m0| = |m1|.

(Detectable) Key Encapsulation Mechanism.A key encapsulation mechanism (KEM)
Γ consists of the three PPTAs(KKG,Encap,Decap) with the following interface:

Key Generation: Encapsulation: Decapsulation:
(pk, sk)← KKG(1k) (c,K)← Encap(pk) K (or⊥)← Decap(sk, c)

whereDecap is a deterministic algorithm,(pk, sk) is a public/secret key pair, andc is a
ciphertext of a session-keyK ∈ {0, 1}k underpk. We require for allk ∈ N, all (pk, sk)
output byKKG(1k), and all(c,K)← Encap(pk), it holds thatDecap(sk, c) = K.

A tuple of PPTAsΓ = (KKG,Encap,Decap,F) is said to be adetectableKEM
if the tuple(KKG,Encap,Decap) constitutes a KEM, andF is a predicate that takes a
public keypk and two ciphertextsc, c′ as input and outputs either0 or 1. (The interface
is exactly the same as that of the predicateF of a PKEM introduced in Section 3.)
The predicateF is used to definedetectable CCA (DCCA) security(and another notion
unpredictability) for a detectable KEM.3

ForATK ∈ {CCA, DCCA, CPA}, we say that a (detectable) KEMΓ is ATK secure if for
all PPTAsA, AdvATKΓ,A(k) := 2 · |Pr[ExptATKΓ,A(k) = 1] − 1/2| is negligible, where the
ATK experimentExptATKΓ,A(k) is defined as in Fig. 5 (center). In the experiment,A is not
allowed to submit “prohibited” queries that are defined based onATK: If ATK = CCA,
then the prohibited query isc∗.; If ATK = DCCA, then the prohibited queries arec such
thatF(pk, c∗, c) = 1.; If ATK = CPA, thenA is not allowed to submit any query.

Signature.A signature schemeΣ consists of the three PPTAs(SKG, Sign, SVer) with
the following interface:

Key Generation: Signing: Verification:
(vk, sigk)← SKG(1k) σ ← Sign(sigk,m) ⊤ or⊥ ← SVer(vk,m, σ)

3 In this proceedings version we do not recallunpredictabilityof a detectable KEM. For its
formal definition, see the full version (or the papers [38, 45]).
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whereSVer is a deterministic algorithm,(vk, sigk) is a verification/signing key pair,
andσ is a signature on a messagem under the key pair(vk, sigk). The symbol⊤ (resp.
⊥) indicates “accept” (resp. “reject”). We require for allk ∈ N, all (vk, sigk) output
by SKG(1k), and allm, it holds thatSVer(vk,m, Sign(vk,m)) = ⊤.

We say that a signature schemeΣ is strongly one-time secure (SOT secure, for short)
if for all PPTAsA = (A1,A2), Adv

SOT
Σ,A(k) := Pr[ExptSOTΣ,A(k) = 1] is negligible,

where the experimentExptSOTΣ,A(k) is defined as in Fig. 5 (right).
A SOT secure signature scheme can be built from any one-way function [52, 58].

Universal One-Way Hash Function.We say that a pair of PPTAsH = (HKG,H) is a
universal one-way hash function (UOWHF) if the following two properties are satisfied:
(1) On input1k, HKG outputs a hash-keyκ. For any hash-keyκ output fromHKG(1k),
H defines an (efficiently computable) function of the formHκ : {0, 1}∗ → {0, 1}k. (2)
For all PPTAsA = (A1,A2), Adv

UOW
H,A(k) := Pr[ExptUOWH,A(k) = 1] is negligible, where

the experiment is defined as follows:

ExptUOWH,A(k) : [ (m, st)← A1(1
k); κ← HKG(1k); m′ ← A2(st, κ);

Return1 iff Hκ(m
′) = Hκ(m) ∧m′ ̸= m. ].

A UOWHF can be built from any one-way function [52, 58].

Non-interactive Argument Systems.Let L = {Lk}k∈N be an NP language (for sim-
plicity, we assume thatL consists of setsLk parameterized by the security parame-
ter k). A non-interactive argument systemP for L consists of the three algorithms
(CRSG,Prove,PVer) with the following interface:

CRS Generation: Proving: Verification:
crs← CRSG(1k) π ← Prove(crs, x, w) ⊤ or⊥ ← PVer(crs, x, π)

wherePVer is a deterministic algorithm,crs is a common reference string (CRS),x
is a statement,w is a witness for the fact thatx ∈ Lk, andπ is a proof string (that is
supposed to prove thatx ∈ Lk). The symbol⊤ (resp.⊥) indicates “accept” (resp. “re-
ject”). We require for allk ∈ N, all crs output byCRSG(1k), and all statement/witness
pairs(x,w) ∈ Lk × {0, 1}∗ (wherew is a witness for the fact thatx ∈ Lk), it holds
thatPVer(crs, x,PVer(crs, x, w)) = ⊤.

We say that a non-interactive argument systemP for a languageL satisfiesadaptive
soundnessif for all PPTAsA, AdvSoundP,A (k) := Pr[ExptSoundP,A (k) = 1] is negligible,
where theSound experimentExptSoundP,A (k) is defined as in Fig. 6 (leftmost).

We say that a non-interactive argument systemP for an NP languageL satisfies
witness indistinguishability(WI security, for short) if for all PPTAsA = (A1,A2),
AdvWIP,A(k) := 2 · |Pr[ExptWIP,A(k) = 1]− 1/2| is negligible, where theWI experiment
ExptWIP,A(k) is defined as in Fig. 6 (second-left), and it is required thatx ∈ Lk, and both
w0 andw1 are witnesses for the fact thatx ∈ Lk in theWI experiment.4

4 We note that unlike soundness, we donotneed a version of theWI security in which a statement
(and witnesses) may depend on a common reference string.
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ExptSoundP,A (k) :

crs← CRSG(1k)
(x, π)← A(crs)
Return1 iff (a)∧ (b):
(a) x /∈ Lk

(b) PVer(crs, x, π)
= ⊤

ExptWIP,A(k) :

(x,w0, w1, st)
← A1(1

k)

crs← CRSG(1k)
b← {0, 1}
π ← Prove(crs, x, wb)
b′ ← A2(st, crs, π)

Return(b′
?
= b).

ExptZK- Real
P,A (k) :

(x,w, st)← A1(1
k)

crs← CRSG(1k)
π ← Prove(crs, x, w)
b′ ← A2(st, crs, π)
Returnb′.

ExptZK- Sim
P,S,A(k) :

(x,w, st)← A1(1
k)

(crs, td)

← SimCRS(1k)
π ← SimPrv(td, x)
b′ ← A2(st, crs, π)
Returnb′.

Fig. 6.Security experiments for a non-interactive argument system.

Finally, we recall the definition of thezero-knowledge property(ZK security, for
short). We say that a non-interactive argument systemP for an NP languageL satisfies
thezero-knowledgeproperty (ZK secure, for short) if there exists a pair of PPTAsS =
(SimCRS, SimPrv) satisfying the following properties:

– (Syntax:) SimCRS is the “simulated common reference string” generation algo-
rithm that takes1k as input, and outputscrs and a corresponding trapdoortd.;
SimPrv is the “simulated proof” generation algorithm that takestd (output by
SimCRS) and a statementx ∈ {0, 1}∗ (which may not belong toLk) as input,
and outputs a “simulated proof”π.

– (Zero-Knowledge:) For all PPTAsA = (A1,A2), Adv
ZK
P,S,A(k) :=

|Pr[ExptZK- Real
P,A (k) = 1]−Pr[ExptZK- Sim

P,S,A(k) = 1]| is negligible, where theZK- Real

experimentExptZK- Real
P,A (k) and theZK- Sim experimentExptZK- Sim

P,S,A(k) are defined
as in Fig. 6 (second-right and rightmost, respectively), and furthermore it is required
thatx ∈ Lk andw is a witness for the fact thatx ∈ Lk in both of the experiments.

B Postponed Proofs

B.1 Proof of Lemma 4: Strong Decapsulation Soundness of̂Γ

LetA be a PPTAsDSND adversary. Let(PK,SK,C∗,K∗) be a tuple that is input toA
in thesDSND experiment, wherePK = ((pk

(j)
i )i,j , pkk+1, κ),SK = ((sk

(j)
i )i,j , PK),

andC∗ = (h∗, (c∗i )i, c̃
∗).

Let us callA’s outputC ′ = (h′, (c′i)i, c̃
′) in the sDSND experimentsuccessfulif

C ′ satisfies the conditions that make the experiment output1, i.e. F̂(PK,C∗, C ′) = 1

(which is equivalent toh′ = h∗), C ′ ̸= C∗, and D̂ecap(SK,C ′) ̸= ⊥. Below, we
use asterisk (*) to denote the values generated/chosen during the generation ofC∗, and
prime (′) to denote the values generated during the calculation of̂Decap(SK,C ′).

We first confirm that a successful ciphertextC ′ must additionally satisfy(c′k+1, c̃
′) ̸=

(c∗k+1, c̃
∗). To see this, assume the opposite, i.e.(c′k+1, c̃

′) = (c∗k+1, c̃
∗). Here,c′k+1 =

c∗k+1 impliesα′ = α∗ (due to the correctness of the SNCE schemeΠ). This and̃c′ = c̃∗

imply (r′i)i∈[k+1] = (r∗i )i∈[k+1] (due to the correctness of the SKE schemeE), which in
turn implies(c′i)i = (c∗i )i. Hence, it holds thatC ′ = (h′, (c′i)i, c̃

′) = (h∗, (c∗i )i, c̃
∗) =

C∗, but this contradictsC ′ ̸= C∗.
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So far, we have seen that a successful ciphertextC ′ must satisfyHκ(c
′
k+1∥c̃′) =

h′ = h∗ = Hκ(c
∗
k+1∥c̃∗) and (c′k+1, c̃

′) ̸= (c∗k+1, c̃
∗), which means that(c′k+1∥c̃′)

and (c∗k+1∥c̃∗) constitute a collision pair forHκ. Using this fact, we can construct a
PPTABh whose advantage in theUOW experiment regardingH is exactly the probability
thatA outputs a successful ciphertext in thesDSND experiment, which combined with
the security of the UOWHFH, proves the lemma. Since the reduction algorithm is
straightforward given the explanation here, we omit its description. (In the full version,
we provide the details of the reduction algorithm.) ⊓⊔

B.2 Proof of Lemma 5: Strong Punctured Decapsulation Soundness of̂Γ

Let (PK,SK) be a key pair output bŷKKG(1k), wherePK = ((pk
(j)
i )i,j , pkk+1, κ)

andSK = ((sk
(j)
i )i,j , PK). Let C∗ = (h∗, (c∗i )i, c̃

∗) be any ciphertext output by

Êncap(PK), and letŜKC∗ = (h∗, (sk
(1−h∗

i )
i )i, PK) be the punctured secret key gen-

erated byP̂unc(SK,C∗). We show that for any ciphertextC = (h, (ci)i, c̃) (which

might be outside the range of̂Encap(PK)) satisfyingF̂(PK,C∗, C) = 0 (i.e.h ̸= h∗),

it holds thatD̂ecap(SK,C) = P̂Decap(ŜKC∗ , C). Note that this implies that there
exists no ciphertext that violates (strong) punctured decapsulation soundness of the
PKEM Γ̂ , and thus for any (even computationally unbounded)sPDSND adversaryA,
AdvsPDSND

Γ̂ ,A (k) = 0, which will prove the lemma.

To show the above, fix arbitrarily a ciphertextC = (h, (ci)i, c̃) satisfyingF̂(PK,
C∗, C) = 0 (and henceh∗ ̸= h) and letℓ = min{i ∈ [k] | h∗

i ̸= hi}, where each
of hi andh∗

i are thei-th bit of h andh∗, respectively. For notational convenience, let

α1 = Dec(sk
(h1)
1 , c1) andαℓ = Dec(sk

(1−h∗
ℓ )

ℓ , cℓ) = Dec(sk
(hℓ)
ℓ , cℓ), where the latter

equality is becauseh∗
ℓ ̸= hℓ implies1−h∗

ℓ = hℓ. We consider the following two cases,

and show that the results from both of the algorithmŝDecap andP̂Decap always agree.

Caseα1 = αℓ: Both D̂ecap and P̂Decap proceed identically after they respectively
computeα1 andαℓ, and thus the outputs from these algorithms agree.

Caseα1 ̸= αℓ: In this case, botĥDecap andP̂Decap return⊥. Specifically,α1 ̸= αℓ

and the correctness of the SNCE schemeΠ imply that there does not existrℓ such
thatEnc(pk(hℓ)

ℓ , α1; rℓ) = cℓ, and thuŝDecap returns⊥ in its last step at the latest
(it may return⊥ earlier ifα1 = ⊥ or SDec(α1, c̃) = ⊥). Symmetrically, there does

not existr1 such thatEnc(pk(h1)
1 , αℓ; r1) = c1, and thusP̂Decap returns⊥ in its

last step at the latest (it may return⊥ earlier as above).

This completes the proof of Lemma 5. ⊓⊔

B.3 Proof of Lemma 6:eCPA Security of Γ̂

Let A be any PPTA adversary that attacks theeCPA security of Γ̂ . For thisA, we
consider the sequence of games described in the explanation in Section 4. Here, we
only show that|Pr[Succ1] − Pr[Succ2]| and |Pr[Succ2] − Pr[Succ3]| are negligible,
which should be sufficient for the proof of Lemma 6, given the intuitive explanation in
Section 4.
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Claim 1 There exists a PPTABp such thatAdvSNCΠk+1,Bp
(k) = |Pr[Succ1]−Pr[Succ2]|.

Proof of Claim 1. We show how to construct a PPTA adversaryBp that attacks the
SNC security of the(k+1)-repetition constructionΠk+1 of the SNCE scheme with the
claimed advantage. The description ofBp = (Bp1,Bp2) as follows:

Bp1(1k): Bp1 picksα∗ ∈ Kk uniformly at random, and setsstB ← (Bp1’s entire view).
ThenBp1 terminates with output(α∗, stB) (whereα∗ is regarded asBp’s challenge
message).

Bp2(stB, PK ′ = (pk′i)i∈[k+1], C
′∗ = (c∗i )i∈[k+1], R

′∗ = (r∗i )i∈[k+1]): Bp2 picksK∗
1 ←

{0, 1}k uniformly at random, setsβ∗ ← ((r∗i )i∈[k+1],K
∗
1 ), and runs̃c∗ ← SEnc(α∗,

β∗), κ ← HKG(1k), andh∗ = (h∗
1∥ . . . ∥h∗

k) ← Hκ(c
∗
k+1∥c̃∗). For eachi ∈ [k],

Bp2 setspk(h
∗
i )

i ← pk′i and runs(pk(1−h∗
i )

i , sk
(1−h∗

i )
i ) ← PKG(1k). Next Bp2

setsPK ← ((pk
(j)
i )i,j , pk

′
k+1, κ), C

∗ ← (h∗, (c∗i )i, c̃
∗), and ŜKC∗ ← (h∗,

(sk
(1−h∗

i )
i )i, PK). ThenBp2 picks K∗

0 ∈ {0, 1}k and b ∈ {0, 1} uniformly at

random, runsb′ ← A(PK, ŜKC∗ , C∗,K∗
b ), and terminates with output(b′

?
= b).

The above completes the description ofBp. Note thatBp2 outputs1 only whenb′ = b
occurs.Bp’s SNC advantage can be estimated as follows:

AdvSNCΠk+1,Bp
(k) = |Pr[ExptSNC- Real

Πk+1,Bp
(k) = 1]− Pr[ExptSNC- Sim

Πk+1,Bp
(k) = 1]|

= |Pr[ExptSNC- Real
Πk+1,Bp

(k) : b′ = b]− Pr[ExptSNC- Sim
Πk+1,Bp

(k) : b′ = b]|.

Consider the case whenBp runs inExptSNC- Real
Πk+1,Bp

(k). It is easy to see that in this

case,Bp perfectly simulates Game 1 forA. In particular, everypk(j)i and pkk+1 in
PK are generated honestly by runningPKG(1k), and everyc∗i in C∗ is generated as

c∗i ← Enc(pk
(h∗

i )
i , α∗; r∗i ) whereα∗ ∈ Kk and each ofr∗i ∈ Rk are chosen uniformly

at random, as done in Game 1. Under this situation, the probability thatb′ = b occurs
is exactly the same as the probability thatA succeeds in guessing its challenge bit in
Game 1, i.e.,Pr[ExptSNC- Real

Πk+1,Bp
(k) : b′ = b] = Pr[Succ1].

WhenBp runs inExptSNC- Sim
Πk+1,Bp

(k), on the other hand, each of pairs(pk(h
∗
i )

i , c∗i )
and eachr∗i are generated by using the simulation algorithmsFake andExplain of the
underlying SNCE schemeΠ, in such a way that the plaintext corresponding toc∗i is
“explained” asα∗ ∈ Kk that is chosen uniformly at random, as done in Game 2. The rest
of the procedures remains unchanged from the above case. Therefore, the probability
thatb′ = b occurs is exactly the same as the probability thatA succeeds in guessing its
challenge bit in Game 2, i.e.,Pr[ExptSNC- Sim

Πk+1,Bp
(k) : b′ = b] = Pr[Succ2].

In summary, we haveAdvSNCΠk+1,Bp
(k) = |Pr[Succ1] − Pr[Succ2]|. This completes

the proof of Claim 1. ⊓⊔

Claim 2 There exists a PPTABe such thatAdvOTKDME,F,Be
(k) = |Pr[Succ2]− Pr[Succ3]|.

Proof of Claim 2. We show how to construct a PPTA adversaryBe that attacks the
F-OTKDM security of the underlying SKE schemeE with the claimed advantage. The
description ofBe = (Be1,Be2) is as follows:
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Be1(1k): For everyi ∈ [k + 1], Be runs(pk′i, c
∗
i , ω

∗
i ) ← Fake(1k). Then,Be1 picks

K∗
1 ∈ {0, 1}k uniformly at random. Next,Be1 specifies the functionf : Kk →Mk

which is used as an encryption query in theOTKDM experiment, defined by:α
f7→

(Explain(ω∗
i , α)i∈[k+1],K

∗
1 ), where eachω∗

i andK∗
1 are treated as fixed parameters

hard-coded inf . (Note thatf ∈ Fk.) Finally,Be1 setsstB ← (Be1’s entire view),
and terminates with output(f, stB).

Be2(stB, c̃∗): Be2 runs κ ← HKG(1k) and h∗ = (h∗
1∥ . . . ∥h∗

k) ← Hκ(c
∗
k+1∥c̃∗).

Next, for everyi ∈ [k], Be2 setspk(h
∗
i )

i ← pk′i and runs(pk(1−h∗
i )

i , sk
(1−h∗

i )
i ) ←

PKG(1k). Then,Be2 setsPK ← ((pk
(j)
i )i,j , pk

′
k+1, κ), C

∗ ← (h∗, (c∗i )i, c̃
∗), and

ŜKC∗ ← (h∗, (sk
(1−h∗

i )
i )i, PK). Be2 picksK∗

0 ∈ {0, 1}k andb ∈ {0, 1} uni-
formly at random, runsb′ ← A(PK, ŜKC∗ , C∗,K∗

b ), and terminates with output

γ′ ← (b′
?
= b).

The above completes the description ofBe. Let γ ∈ {0, 1} beBe’s challenge bit.Be’s
F-OTKDM advantage is estimate as follows:

AdvOTKDME,F,Be
(k) = 2 · |Pr[γ′ = γ]− 1

2
| = |Pr[γ′ = 1|γ = 1]− Pr[γ′ = 1|γ = 0]|

= |Pr[b′ = b|γ = 1]− Pr[b′ = b|γ = 0]|.

Let α∗ ∈ Kk be the key, andM1 = f(α∗) andM0 ∈ Mk be the plaintexts calcu-
lated/chosen inBe’s OTKDM experiment. Consider the case whenγ = 1, i.e. c̃∗ is an en-
cryption ofM1 = f(α∗) = ((r∗i )i∈[k+1],K

∗
1 ). Note that by the definition of the experi-

mentExptOTKDME,F,Be
(k), if we regard the keyα∗ ∈ Kk andM∗

1 = f(α∗) in ExptOTKDME,F,Be
(k)

asα∗ andβ∗ in Game 2, then eachr∗i is generated byr∗i ← Explain(ω∗
i , α

∗), so that
the plaintext corresponding to eachc∗i is α∗, which is how these values are generated
in Game 2. Moreover, the public keyPK, the values(c∗i )i∈[k+1] used in the challenge

ciphertextC∗, and the punctured secret keŷSKC∗ are distributed identically to those
in Game 2. Hence,Be simulates Game 2 perfectly forA. Under this situation, the prob-
ability that b′ = b occurs is exactly the same as the probability thatA succeeds in
guessing the challenge bit in Game 2, i.e.Pr[b′ = b|γ = 1] = Pr[Succ2].

Next, consider the case whenγ = 0. In this case,̃c∗ is an encryption of a random
messageM0 ∈ Mk that is independent of any other values. Then, if we regard the key
α∗ and the random messageM0 in ExptOTKDME,Be

(k) asα∗ andβ′ in Game 3, respectively,
thenA’s challenge ciphertextC∗ is generated in such a way that they are distributed
identically to those in Game 3, and thusBe simulates Game 3 perfectly forA. Therefore,
with a similar argument to the above, we havePr[b′ = b|γ = 0] = Pr[Succ3].

In summary, we haveAdvOTKDME,F,Be
(k) = |Pr[Succ2] − Pr[Succ3]|. This completes

the proof of Claim 2. ⊓⊔

Due to our assumptions on the building blocks, and theSNC security of the(k+1)-
repetition constructionΠk+1 (see the explanation in Section 2.1), we can conclude that
|Pr[Succ1] − Pr[Succ2]| and|Pr[Succ2] − Pr[Succ3]| are negligible. Combined with
the intuitive explanations given in Section 4, this completes the proof of Lemma 6.⊓⊔
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