
Tamper Detection and Continuous
Non-Malleable Codes

Zahra Jafargholi and Daniel Wichs?

Northeastern University

Abstract. WeN consider a public and keyless code (Enc,Dec) which is
used to encode a message m and derive a codeword c = Enc(m). The
codeword can be adversarially tampered via a function f ∈ F from some
“tampering function family” F , resulting in a tampered value c′ = f(c).
We study the different types of security guarantees that can be achieved
in this scenario for different families F of tampering attacks.
Firstly, we initiate the general study of tamper-detection codes, which
must detect that tampering occurred and output Dec(c′) = ⊥. We show
that such codes exist for any family of functions F over n bit codewords,
as long as |F| < 22n is sufficiently smaller than the set of all possible
functions, and the functions f ∈ F are further restricted in two ways:
(1) they can only have a few fixed points x such that f(x) = x, (2) they
must have high entropy of f(x) over a random x. Such codes can also be
made efficient when |F| = 2poly(n).
Next, we revisit non-malleable codes, which were introduced by Dziem-
bowski, Pietrzak and Wichs (ICS ’10) and require that Dec(c′) either
decodes to the original message m, or to some unrelated value (possibly
⊥) that doesn’t provide any information about m. We give a modu-
lar construction of non-malleable codes by combining tamper-detection
codes and leakage-resilient codes. The resulting construction matches
that of Faust et al. (EUROCRYPT ’14) but has a more modular proof
and improved parameters.
Finally, we initiate the general study of continuous non-malleable codes,
which provide a non-malleability guarantee against an attacker that can
tamper a codeword multiple times. We define several variants of the prob-
lem depending on: (I) whether tampering is persistent and each succes-
sive attack modifies the codeword that has been modified by previous at-
tacks, or whether tampering is non-persistent and is always applied to the
original codeword, (II) whether we can “self-destruct” and stop the ex-
periment if a tampered codeword is ever detected to be invalid or whether
the attacker can always tamper more. In the case of persistent tampering
and self-destruct (weakest case), we get a broad existence results, essen-
tially matching what’s known for standard non-malleable codes. In the
case of non-persistent tampering and no self-destruct (strongest case), we
must further restrict the tampering functions to have few fixed points
and high entropy. The two intermediate cases correspond to requiring
only one of the above two restrictions.

? Supported by NSF grants 1347350, 1314722, 1413964.

1 Introduction

Motivating Example. Consider a security-sensitive device such as a smart-
card implementing a digital signature scheme. The user gives it messages as
inputs and receives signatures as outputs. The computation relies on a secret
signing key stored on the card. Moreover, the user’s name, say “Eve”, is stored
on the card and the card only signs message that begin with the name “Eve”.
The security of signature schemes ensures that Eve cannot sign a message with
any other name if she is given this card and uses it as a black-box. However,
Boneh, DeMillo and Lipton [BDL01] show a surprising result: if the above is
implemented using RSA signatures with Chinese remaindering, and Eve is able
to simply flip a single bit of the signing key on the smart card and observe the
resulting incorrectly generated signature, then she can factor the RSA modulus
and completely recover the signing key. Alternatively, no matter which signature
scheme is used, Eve may be able to flip a few bits of the name stored on the
card (e.g., change the value from “Eve” to “Eva”) without changing the signing
key and then use the card to sign messages under a different name.

The above are examples of tampering attacks. By tampering with the internal
state of a device (without necessarily knowing what it is) and then observing
the outputs of the tampered device, an attacker may be able to learn additional
sensitive information which would not be available otherwise. A natural approach
to protecting against such attacks is to encode the data on the device in some
way. For example, [BDL01] suggest using error-detection codes to thwart an
attack that flips a small number of bits. This raises the question of what kind
of codes are needed to achieve protection and what classes of tampering attacks
can they protect against?

A Coding Problem. We can translate the above scenario into a coding prob-
lem. We would like to design a code (Enc,Dec) consisting of a possibly random-
ized encoding function and a decoding function with the correctness guarantee
that Dec(Enc(m)) = m. There are no secret keys and anybody can encode and
decode. We model tampering as a family of functions F that an attacker can
apply to modify codewords.1 We consider a “tampering experiment” with some
message m and function f ∈ F . The experiment begins by probabilistically en-
coding c ← Enc(m), then tampers c′ = f(c) and finally outputs the decoded
value m′ = Dec(c′). We consider different types of security guarantees on the
outcome m′ of the experiment.

1.1 Tamper Detection Codes

Perhaps the simplest property that we could ask for is that tampering can always
be detected with overwhelming probability, meaning that the decoded value is

1 This is a departure from standard coding theory problems by focusing on the process
(family of functions) F that modifies a codeword rather than on some notion of
distance between the original and modified codeword.

some special symbol m′ = ⊥ indicating an error. In other words, a tamper-
detection code for a family F ensures that for any message m and any tampering
function f ∈ F we have Pr[Dec(f(c)) 6= ⊥ : c← Enc(m)] is negligible. We ask
for which function families F do such codes exist.

Surprisingly, this natural problem has not been studied at this level of gen-
erality and relatively little is known beyond a few specific function families.
Standard error-detection codes provide this guarantee for the family of all func-
tions f such that the hamming distance between c and f(c) is always small,
but non-zero. The algebraic manipulation detection (AMD) codes of Cramer et
al. [CDF+08], consider this type of guarantee for functions f that can flip an
arbitrary number of bits of c, but the error pattern is independent of c. In other
words, AMD codes consider the family FAMD = {f∆(c) := c⊕∆ | ∆ 6= 0n}.

In this work, we show that tamper-detection codes exist for any function
family F over n-bit codewords as long as the size of the family is bounded
|F| < 22

αn

for some constant α < 1 and the functions f ∈ F satisfy two
additional restrictions:

– High Entropy: For each f ∈ F , we require that f(c) has sufficiently high
min-entropy when c ∼ {0, 1}n is uniformly random.

– Few Fixed Points: For each f ∈ F , we require that there aren’t too many
fixed points c s.t. f(c) = c.

Moreover, we show that such codes can achieve a rate (defined as the ratio of
message size to codeword size) of (1 − α). We also show that the restrictions
on the tampering functions (high entropy, few fixed points) in the above result
cannot be removed.

This existence result relies on a probabilistic method argument and, in gen-
eral, such codes may not be efficient. However, when the size of the function fam-
ily is |F| ≤ 2s(n) for some polynomial s, then we can use a probabilistic method
argument with limited independence to get efficient codes. More precisely, this
yields a family of efficient codes (Ench,Dech) indexed by some hash function h
from a t-wise independent function family (for a polynomial t depending on s),
such that a random member of the family is a secure tamper-detection code for
F with overwhelming probability. We can also think of this as a construction
of efficient tamper-detection codes in the common random string (CRS) model,
where the random choice of h is specified in the CRS and known to everyone.
The construction of this code family is extremely simple and it matches a con-
struction proposed by Faust et al. [FMVW14] in the context of non-malleable
codes. However, our analysis is fairly delicate and departs significantly from that
of Faust et al.

This result generalizes AMD codes which which provide tamper-detection
for the family FAMD of size |FAMD| = 2n − 1 that has full entropy n, and no
fixed points. For example, using this result, we can get efficient tamper-detection
codes (in the CRS model) for the class F−poly,d of polynomials f over F2n of some
bounded degree d = poly(n), as long as we exclude the identity polynomial
f(x) = x and the constant (degree 0) polynomials. Alternatively, we get also get
such tamper-detection codes for the class F−affine,r of all affine functions when we

interpret x ∈ {0, 1}n as an (n/r)-dimensional vector over the field F2r with a
sufficiently large r, and we exclude the identity and the constant functions.

1.2 Non-Malleable Codes

The work of Dziembowski, Pietrzak and Wichs [DPW10] introduced the notion
of non-malleable codes, which asks for a weaker guarantee on the outcome of the
tampering experiment. Instead of insisting that the decoded value after tamper-
ing is always m′ = ⊥, non-malleable security requires that either m′ = m is
equal to the original message, or m′ is a completely unrelated value (possibly
⊥) that contains no information about the original message m. Moreover, the
choice of which of these two options occurs is also unrelated to m. For example,
non-malleability ensures that it should not be possible to tamper c to c′ = f(c) in
such a way as to just flip a bit of the encoded message. Alternatively, it shouldn’t
be possible to tamper the codeword in such a way as to get either m′ = m or
m′ = ⊥ depending on (say) the first bit of m.

Non-malleable codes offer strong protection against tampering. By encoding
the data on an device with a non-malleable code for F , we ensure that an
attacker cannot learn anything more by tampering with the data on the device
via functions f ∈ F and interacting with the tampered device, beyond what
could be learned given black-box access to the device without the ability to
tamper. Moreover, such codes can also protect against continuous tampering
attacks, where the attacker repeatedly tampers with the data on the device and
observes its outputs. On each invocation, the device must first decode the secret
data, run the underlying functionality with the decoded value to produce some
output, and then freshly re-encode the decoded value. This last step is important
for security and ensures that each tampering attack acts on a fresh codeword.
On the downside, this step usually requires fresh randomness and also requires
that device is now stateful even if the underlying functionality is stateless.

Prior Work on Non-Malleable Codes. The work of [DPW10], gives a
broad existence result showing that for any family F of tampering functions
over n-bit codewords having size |F| < 22

αn

for α < 1 there exists a (possibly
inefficient) non-malleable code for F . This covers various complex types of tam-
pering attacks. The work of Cheraghchi and Guruswami [CG13a] further show
that such codes can achieve a rate of 1− α, which is optimal. These results rely
on a probabilistic method argument, where the code is defined via a completely
random function.

The works of [CG13a,FMVW14] also give efficient scaled-down versions
of the above existence results for function families of singly-exponential size
|F| ≤ 2s(n) for some polynomial s. For example, F could be the class of all cir-
cuits of size at most s(n). These results are derived using a probabilistic method
argument with limited independence, where the code (Ench,Dech) is parameter-
ized by some efficient hash function h chosen from a t-wise independent family
for some polynomial t depending on s. The code is secure with overwhelming

probability over the choice of h, which we can think of as a common random
string (CRS).

Several other works [DPW10,CKM11,LL12,DKO13,ADL13,CG13b,FMNV14]
and [CZ14] construct explicit non-malleable codes for interesting families that
are restricted through their granularity. In particular, these works envision that
the codeword consists of several components, each of which can be tampered
arbitrarily but independently of the other components. The strongest variant of
this is the split-state model, where the codeword consists of just two components
that are tampered independently of each other. Such codes were recently con-
structed in the information theoretic setting in the works of [DKO13,ADL13].
Another recent result [AGM+14] shows how to construct non-malleable codes
against functions that can permute (and perturbe) the bits of the codeword.

Our Results. We show a general way of obtaining non-malleable codes for
general function families by combining tamper-detection codes for restricted
function families (with few fixed points and high entropy) and a certain type
of leakage-resilient codes, defined by Dav̀ı, Dziembowski and Venturi [DDV10].
The resulting non-malleable code construction matches that of Faust et al.
[FMVW14] but with an optimized modular analysis. We show that this con-
struction can simultaneously achieve optimal rate (1 − α) for function families
of size |F| = 22

αn

and also efficient encoding/decoding that scales polynomially
in the security parameter and n when |F| = 2poly(n). Previously, each of these
properties was known to be achievable individually but by different constrictions
shown in [CG13a] and [FMVW14] respectively.

1.3 Continuous Non-Malleable Codes

As mentioned, standard non-malleable codes already provide protection against
continuous tampering attacks on a device, if the device freshly re-encodes its
state after each invocation to ensure that tampering is applied to a fresh code-
word each time. However, this is undesirable since it requires that: (1) the device
has access to fresh randomness on each invocation, and (2) the device is stateful
and updates its state on each invocation. This is the case even if the underlying
functionality that the device implements (e.g., a signature scheme) is determinis-
tic and stateless. This brings up the natural question (posed as an open problem
by [DPW10]) whether we can achieve security against continuous tampering of
a single codeword without re-encoding. We consider four variants of such con-
tinuous non-malleable codes depending on:

– Whether tampering is persistent, meaning that each tampering attack is
applied to the current version of the codeword that has been modified by
previous attacks, and the original codeword is otherwise lost once tampered.
Alternatively, we can consider non-persistent tampering, where tampering is
always applied to the original codeword.

– Whether tampering to an invalid codeword (one that decodes to ⊥) causes a
“self-destruct” meaning that the experiment stops and the attacker cannot

gain any additional information, or whether the attacker can always continue
tampering more. We can think of this as corresponding to a physical device
“self-destructing” (e.g., by erasing all internal data) if it detects that it has
been tampered. This in turn corresponds to a very limited form of state,
where the data on the device can only be erased but not updated otherwise.

Note that persistent tampering and self-destruct is the weakest variant, non-
persistent tampering and no self destruct is the strongest variant, and the re-
maining two variants lie in between and are incomparable to each other. All of
these variants are already stronger than standard non-malleable codes.

The notion of continuous non-malleable codes was first introduced in the
work of Faust et al. [FMNV14], which considered the case of non-persistent
tampering and self-destruct. It focused on tampering in the split-state model,
where two halves of a codeword are tampered independently of each other, and
showed that although such codes cannot exist information theoretically, they
can be constructed under computational assumptions. The reason for focusing
on non-persistent tampering is that this models attacks that have access to some
“auxiliary memory” on the device beyond the n bits of “active memory” used to
store the codeword. The initial tampering attack can make a copy the original
codeword onto this auxiliary memory. Each subsequent attack can then tamper
the original codeword from the auxiliary memory and place the tampered code-
word into the active memory. In the case of persistent tampering, we implicitly
assume that there is no such auxiliary memory on the device.

In this work, we give a general definition of continuous non-malleable codes
that captures all of the above variants. We initiate the comprehensive study of
what type of tampering attacks we can protect against under each variant in the
information theoretic setting.

Our Results. We use the same template that we employed for constructing
standard non-malleable codes to also construct continuous non-malleable codes.
Depending on which of the four variants of continuous non-malleable codes we
consider, we show that our construction achieves security for different classes of
tampering attacks.

In the setting of persistent tampering and self-destruct (weakest), we show
broad existence results which essentially match the existence results of [DPW10]
and [CG13a] for standard non-malleable codes. In particular, we show that such
codes exist (inefficiently) for any family F of tampering functions over n-bits,
whose size is |F| = 22

αn

for α < 1. Moreover, such codes achieve a rate of 1−α.
For example, this result shows existence of such codes (albeit inefficient) in the
split-state model with rate 1/2. Furthermore, we give an efficient scaled-down
versions of the above existence results for function families of singly-exponential
size |F| = 2poly(n). Unfortunately, in this case the efficiency of the code also
depends polynomially on the number of tampering attacks we want to protect
against. We conjecture that this dependence can be removed, and leave this
fascinating problem for future work.

In the setting of non-persistent tampering and no self destruct (strongest),
we must place additional restrictions on the function family F to ensure that the
functions have high entropy and few fixed points, as in tamper-detection codes.
In fact, a tamper-detection code is continuous non-malleable in this setting since
each tampering attack simply leaves the codeword invalid (decodes to ⊥) and so
the attacker does not learn anything. However, in contrast to tamper-detection
codes, continuous non-malleable codes in this setting can also trivially tolerate
the “identity function” fid(x) = x and the “always constant” functions fc(x) =
c. Therefore, we (e.g.,) get continuous non-malleable codes in this setting for
the class Fpoly,d of all low-degree polynomials or the class Faffine,r of all affine
functions over a sufficiently large field.

In the two intermediate settings, we only need to impose one of the two
restrictions on high entropy and few fixed points. For the case of persistent
tampering and no self destruct we only require that the functions have few fixed
points but can have arbitrary entropy. For the case of non-persistent tampering
and self destruct we only require that the functions have high entropy but can
have many fixed points.

1.4 Other Related Work and RKA Security

There is a vast body of literature that considers tampering attacks using other
approaches besides (non-malleable) codes.See, e.g., [BK03,GLM+04,IPSW06]
[BC10,BCM11,FPV11] [KKS11,AHI11,GOR11,Pie12,Wee12,BPT12,DFMV13]
[ABPP14,GIP+14] etc.

One highly relevant line of work called related key attacks (RKA) security
[BK03,BC10,BCM11,Wee12,BPT12,ABPP14] considers tampering with the se-
cret key of a cryptographic primitive such as a pseudorandom function or a
signature scheme. The definitions in those works usually require the schemes to
be stateless, consider non-persistent tampering (tampering is always applied to
the original key), and do not allow for self-destruct. These works focus on giv-
ing clever constructions of specific primitives that satisfy RKA security based on
specific computational assumptions. We note that our results on continuous non-
malleable codes in the setting of non-persistant tampering and no self-destruct
provide a generic way of achieving qualitatively similar results to these works for
any cryptographic scheme. In particular, by encoding the key of the scheme with
such codes, we can achieve protection against the types of attacks that were con-
sidered in the RKA literature (e.g., additive tampering, low-degree polynomials)
as well as many other interesting families.

Nevertheless, we note that the RKA constructions from the literature main-
tain some advantages, such as having uniformly random secret keys, whereas
we would require the secret key to be a structured codeword. Also, the exact
definitions of RKA security in the literature vary from one primitive to another
and sometimes impose additional properties that our constructions would not
satisfy. For example, definitions of RKA security for PRFs usually require that
outputs under both the original and the tampered keys remain pseudorandom,
whereas our solution would only guarantee that outputs under the original key

remain pseudorandom even given outputs under a tampered key, but the lat-
ter may not be pseudorandom (they may just be ⊥). It is not clear whether
these differences are important in the envisioned applications, and therefore we
view our results as providing qualitatively similar (but not equivalent) security
guarantees to those studied in the context of RKA security.

2 Preliminaries

Notation. For a positive integer n, we define the set [n] := {1, . . . , n}. LetX,Y
be random variables with supports S(X), S(Y), respectively. We define their
statistical distance by SD(X,Y) = 1

2

∑
s∈S(X)∪S(Y) |Pr[X = s]− Pr[Y = s]|. We

write X ≈ε Y and say that X and Y are ε-statistically close to denote that
SD(X,Y) ≤ ε. We let Un denote the uniform distribution over {0, 1}n. We use
the notation x← X to denote the process of sampling a value x according to the
distribution X. For a set S, we write s← S to denote the process of sampling s
uniformly at random from S.

Tail Bound. We recall the following lemma from [BR94] which gives us a
Chernoff-type tail bound for limited independence.

Lemma 1 (Lemma 2.3 of [BR94]). Let t ≥ 4 be an even integer. Sup-
pose X1, . . . , Xn are t-wise independent random variables over {0, 1}. Let X :=∑n
i=1Xi and define µ := E[X] be the expectation of the sum. Then, for any

A > 0, Pr[|X−µ| ≥ A] ≤ 8
(
tµ+t2

A2

)t/2
. In particular, if A ≥ µ then Pr[|X−µ| ≥

A] ≤ 8
(
2t
A

)t/2
.

It is easy to check by observing the proof of the lemma that it also holds even
when X1, . . . , Xn are not truly t-wise independent but for any S ⊆ [n] of size
|S| ≤ t they satisfy Pr[

∧
i∈S{Xi = 1}] ≤

∏
i∈S Pr[Xi = 1]. This is because the

only use of independence in the proof is to bound E[
∏
i∈S Xi] ≤

∏
i∈S E[Xi]

which holds under the above condition.

Coding Schemes. It will be useful to define the following general notion of a
coding scheme.

Definition 1. A (k, n)-coding scheme consists of two functions: a randomized

encoding function Enc : {0, 1}k → {0, 1}n, and a deterministic decoding function

Dec : {0, 1}n → {0, 1}k∪{⊥} such that, for each m ∈ {0, 1}k, Pr[Dec(Enc(m)) =
m] = 1. For convenience, we also define Dec(⊥) = ⊥.

2.1 Leakage-Resilient Codes

The following definition of leakage-resilient codes is due to [DDV10]. Intuitively,
it allows us to encode a message m into a codeword c in such a way that learning
f(c) from some class of leakage functions f ∈ F will not reveal anything about

the message m. For convenience, we actually insist on a stronger guarantee that
f(c) is indistinguishable from f applied to the uniform distribution over n bit
strings.

Definition 2. Let (lrEnc, lrDec) be a (k, n)-coding scheme. For a function
family F , we say that (lrEnc, lrDec) is (F , ε)-leakage-resilient, if for any f ∈ F
and any m ∈ {0, 1}k we have f(lrEnc(m)) ≈ε f(Un) where Un is the uniform
distribution over n bit strings.

Construction. We recall the following construction from [DDV10,FMVW14].
Let H be a t-wise independent hash function family consisting of functions
h : {0, 1}v → {0, 1}k. For any h ∈ H we define the (k, n = k + v)-coding
scheme (lrEnch, lrDech) where: (1) lrEnch(m) := (r, h(r)⊕m) for r ← {0, 1}v;
(2) lrDech((r, z)) := z ⊕ h(r).

We give an improved analysis of this construction: to handle a leakage family
F with `-bits of leakage (i.e., the output size of f ∈ F is `-bits), the best prior
analysis in [FMVW14] required overhead (roughly) v = log log |F|+ `, whereas
our improved analysis only requires overhead (roughly) v = max{log log |F|, `}.
This can yield up to a factor of 2 improvement and will be crucial in getting
optimal rate for our non-malleable and continuous non-malleable codes.

Theorem 1. Fix any function family F consisting of functions f : {0, 1}n →
{0, 1}`. With probability 1 − ρ over the choice of a random h ← H from a t-
wise independent family H, the coding scheme (lrEnch, lrDech) above is (F , ε)-
leakage-resilient as long as v ≥ vmin and t ≥ tmin, when B := log |F|+k+log (1/ρ)
and

either vmin = log(B + 2`) + log `+ 2 log (1/ε) +O(1) and tmin = O(B),

or vmin = log(B + 2`) + 2 log (1/ε) +O(1) and tmin = O(B + 2`).

In particular, if ρ = ε = 2−λ for security parameter λ and, |F| ≥ max
{

2k, 2λ
}

,
` ≤ 2λ we get: vmin = max{log log |F|, `}+O(λ) and tmin = O(log |F|).

See the full version [JW15] for the proof.

3 Tamper Detection Codes

We begin by defining the notion of a tamper-detection code, which ensures that
if a codeword is tampered via some function f ∈ F then this is detected and
the modified codeword decodes to ⊥ with overwhelming probability. We give
two flavors of this definition: a default (“standard”) version which guarantees
security for a worst-case message m and a weak version which only guarantees
security for a random message m.

Definition 3. Let (Enc,Dec) be a (k, n)-coding scheme and let F be a family of
functions of the form f : {0, 1}n → {0, 1}n ∪ ⊥. We say that (Enc,Dec) is a:

– (F , ε)-secure tamper detection code if for any function f ∈ F and any mes-
sage m ∈ {0, 1}k, we have Pr [Dec(f(Enc(m))) 6= ⊥] ≤ ε, where the probabil-
ity is over the randomness of the encoding procedure.

– (F , ε)-weak tamper detection code if for any function f ∈ F we have
Prm←Uk [Dec(f(Enc(m))) 6= ⊥] ≤ ε, where the probability is over a random
message m and the randomness of the encoding procedure.

It is easy to see that there are some small function families for which tamper
detection (or even weak tamper detection) is impossible to achieve. One example
is the family consisting of a single identity function fid(x) = x. Another example
is the family consisting of all constant function Fconst = {fc(x) = c : c ∈
{0, 1}n}. This family is of size only |Fconst| = 2n but no matter what code is
used there is some function fc ∈ Fconst corresponding to a valid codeword c
which breaks the tamper detection guarantee. Of course, there are other “bad”
functions such as ones which are close to identity or close to some constant
function. But we will show that these are the only bad cases. We begin by
defining two restrictions on functions which ensure that they are far from the
above bad cases.

Definition 4. A function f : {0, 1}n → {0, 1}n ∪ ⊥ is a ϕ-few fix points, µ-
entropy function if

– Prx←Un [f(x) = x] ≤ ϕ. (ϕ-few fixed points)
– ∀y ∈ {0, 1}n, Prx←Un [f(x) = y] ≤ 2−µ. (µ-entropy)

The first property restricts the number of fixed points x : f(x) = x to be
less than ϕ · 2n. This ensures that the function is sufficiently far from being
an identity function. The second property is equivalent to saying that the min-
entropy H∞(f(Un)) ≥ µ. This ensures that the function is far from being a
constant function.

3.1 Weak Tamper-Detection Codes

We begin by constructing weak tamper-detection codes. We will then show how
to use weak tamper-detection codes to also construct standard tamper-detection
codes.

Construction. Our construction of weak tamper detection codes will have a
deterministic encoding. Let {0, 1}k be the message space and {0, 1}n to be the
codeword space where n = k + w for some w > 0. For a function h : {0, 1}k →
{0, 1}w define (Ench,Dech) as follow, Ench(m) := (m,h(m)) and Dech(c) checks
whether c = (m, z) where z = h(m): if so, it outputs m and otherwise it outputs
⊥.

Theorem 2. Let F be any finite family of ϕ-few fix points, µ-entropy functions
and H =

{
h | h : {0, 1}k → {0, 1}w

}
be a family of 2t-wise independent hash

functions, then

Pr
h←H

[(Dech,Ench) is a (F , ε)-weak tamper detection code] > 1− ρ

when the parameters satisfy

t ≥ tmin where tmin = log |F|+ k + log(1/ρ) + 5

µ ≥ log(tmin) + w + log (1/ε) + 6

w ≥ log (1/ε) + 3

ϕ ≤ ε/4

For example, if ρ = ε = 2−λ for security parameter λ and, |F| ≥ max
{

2k, 2λ
}

we get:

t = O(log |F|) , µ = log log |F|+ 2λ+O(1) , w = λ+O(1) , ϕ = 2−(λ+O(1))

See the full version [JW15] for the proof.

Proof. Define the event BAD to occur if (Dech,Ench) is not a (F , ε)-weak tamper
detection code. Then, by the union bound:

Pr
h←H

[BAD] = Pr
h←H

[
∃f ∈ F , Pr

m←Uk
[Dech(f(Ench(m))) 6= ⊥] > ε

]
≤
∑
f∈F

Pr
h←H

[
Pr

m←Uk
[Dech(f(Ench(m))) 6= ⊥] > ε

]
︸ ︷︷ ︸

Pf

(3.1)

Let’s fix some particular function f ∈ F and find a bound on the value of Pf . De-
fine the indicator random variables {Xm}m∈{0,1}k asXm = 1 if Dech(f(Ench(m)))
6= ⊥, where the randomness is only over the choice of h. Let’s also define the
variables {Ym,z}(m,z)∈{0,1}n as Ym,z = 1 if h(m) = z and h(m′) = z′ where
(m′, z′) = f(m, z). Then Xm =

∑
z Ym,z and therefore:

Pf = Pr

 ∑
m∈{0,1}k

Xm > 2kε

 = Pr

 ∑
(m,z)∈{0,1}n

Ym,z ≥ 2kε

 . (3.2)

We can ignore variables Ym,z for values (m, z) such that f(m, z) = ⊥ since in
that case Ym,z = 0 always. Otherwise, we have Pr[Ym,z = 1] = Pr[h(m) =
z ∧ h(m′) = z′] ≤ 2−2w if f(m, z) = (m′, z′) 6= (m, z) is not a fixed point and
Pr[Ym,z = 1] = Pr[h(m) = z] = 2−w if f(m, z) = (m, z) is a fixed point.

We might hope that the random variables Ym,z are t-wise independent but
they are not. For example, say c = (m, z) and c′ = (m′, z′) are two values
such that f(c) = c′ and f(c′) = c then Ym,z = 1 ⇔ Ym′,z′ = 1. In order
to analyze the dependence between these random variables we represent the
tampering function f as a directed graph. We define a graph G with vertices
V = {0, 1}n, representing the codewords, and edges E = {(c, c′) | c′ = f(c), c =
(m, z), m ∈ {0, 1}k, z ∈ {0, 1}w}, representing the tampering function. Note
that every vertex has at most one outgoing edge, so we can label each edge em,z
with the value (m, z) of its unique origin vertex. Using this representation we
can associate each Ym,z to the unique edge em,z.

Now consider any subset E′ ⊆ E of edges such that the origin c = (m, z)
and destination c′ = (m′, z′) = f(c) of each edge (c, c′) in E′ is disjoint from the
origin or destination of all other edges in E′. We call such sets E′ vertex-disjoint.
Then for any S ⊆ E′ of size |S| = t we have:

Pr

 ∧
(m,z)∈S

Ym,z = 1

 ≤ ∏
(m,z)∈S

Pr [Ym,z = 1] (3.3)

This is because Ym,z = 1 iff h(m) = z∧h(m′) = z′ where (m′, z′) = f(m, z). Let

S̃ ⊆ V be all the vertices contained in either the origin or destination of edges in
E (so |S̃| = 2S since S ⊆ E′ is vertex-disjoint). If two vertices (m, z) and (m, z′)
in S̃ share the same m, then it cannot be the case that h(m) = z and h(m) = z′

so Pr[
∧

(m,z)∈S Ym,z = 1] = 0. Otherwise, if the values m contained in S̃ are all
disjoint, then variables Ym,z are independent since h is 2t-wise independent.

Now we will partition the set E of edges into smaller subsets each of which
is vertex-disjoint. Firstly, let Esl be the set of all self-loops (fixed point) edges
e(m,z) such that f(m, z) = (m, z). It is clear that Esl is vertex-disjoint. Since f is
a ϕ-few fix points, µ-entropy function, we know that |Esl| ≤ ϕ2n. Furthermore,
E[
∑
e(m,z)∈Esl

∑
Ym,z] ≤ ϕ2n−w ≤ ϕ2k. By applying Lemma 1, with some tmin ≤

t we get:

Pr

 ∑
e(m,z)∈Esl

Ym,z ≥
ε

2
2k

 ≤ Pr

 ∑
e(m,z)∈Esl

Ym,z ≥ ϕ2k + (
ε

2
− ϕ)2k

≤ Pr

 ∑
e(m,z)∈Esl

Ym,z ≥ ϕ2k + (
ε

4
)2k

 (3.4)

≤ 8

(
2tmin

(ε4)2k

)tmin/2

≤ 8

(
1

2

)tmin

(3.5)

where inequality 3.4 follow by requiring that ϕ ≤ ε/4 and the right hand in-
equality of 3.5 follows by requiring that (ε/4)2k ≥ 8tmin. This in turn follows by
observing that k ≥ µ ≥ log(tmin) + w + log(1/ε) + 5.

Next we define Ensl = E \ Esl to be the set of edges that are not self loops.
Let Gnsl be the corresponding graph consisting of G with all self-loops removed.
Since f is a ϕ-few fix points, µ-entropy function, we know that each vertex in
graph G has in-degree of at most 2n−µ and out-degree 1, and therefore total
degree at most 2n−µ+1. By a theorem of Shannon [Sha49] on edge-colorings, we
can color the edges of such a graph using at most q ≤ (3/2)2n−µ + 1 ≤ 2n−µ+1

colors so that no two neighboring edges (ignoring direction) are colored with the
same color. In other words, we can partition Ensl into exactly q := 2n−µ+1 subsets
E1, . . . , Eq such that each Ei is vertex-disjoint (we can always add dummy colors
to make this exact). Further, recall that E[Ym,z] ≤ 2−2w for edges e(m,z) ∈ Ensl

that are not self loops. This implies that:

Pr

 ∑
em,z∈Ensl

Ym,z ≥
(ε

2

)
2k

≤ Pr

∃i ∈ [q] :
∑

em,z∈Ei

Ym,z ≥
(ε

2

)
2k
(

1

2

)(
|Ei|
2n

+
1

q

) (3.6)

≤
∑
i∈[q]

Pr

 ∑
em,z∈Ei

Ym,z ≥
(ε

4

)
2−w

(
|Ei|+ 2µ−1

) (3.7)

≤
∑
i∈[q]

Pr

 ∑
em,z∈Ei

Ym,z ≥ |Ei|2−2w +A

 (3.8)

where A =
(ε

4

)
2k−n

(
|Ei|+ 2µ−1

)
− |Ei|2−2w.

Inequality 3.6 follows by observing that
∑
i∈[q]

(
|Ei|
2n + 1

q

)
≤ 2, inequality 3.7

follows by substituting q = 2n−µ+1 and w = n− k, and inequality 3.8 follows by
the union bound. We can also bound:

A =
(ε

4

)
2−w

(
|Ei|+ 2µ−1

)
− |Ei|2−2w

≥ |Ei|2−w
(ε

4
− 2−w

)
+
ε

4
2−w2µ−1

≥ |Ei|2−2w +
ε

4
2−w2µ−1 (3.9)

where equation 3.9 follows by requiring that 2−w ≤ ε
8 ⇔ w ≥ log(1/ε) + 3 and

therefore
(
ε
4 − 2−w

)
≥ ε

8 ≥ 2−w. This shows that A ≥ |Ei|2−2w. Continuing
from equation 3.8 and applying Lemma 1 with tmin ≤ t we get:

Pr

 ∑
em,z∈Ensl

Ym,z ≥
(ε

2

)
2k

 ≤ q8(2tmin
ε
42−w2µ−1

)tmin/2

≤ 2n−µ+18

(
1

2

)tmin

(3.10)

where 3.10 follows by requiring ε
42−w2µ−1 ≥ 8tmin ⇔ µ ≥ log(tmin) + w +

log(1/ε) + 6.

Finally, combining 3.1, 3.2, 3.5 and 3.10 we have:

Pr[BAD] ≤
∑
f∈F

Pf =
∑
f∈F

Pr

 ∑
(m,z)∈{0,1}n

Ym,z ≥ 2kε

≤
∑
f∈F

Pr

 ∑
em,z∈Esl

Ym,z ≥
(ε

2

)
2k

+ Pr

 ∑
em,z∈Ensl

Ym,z ≥
(ε

2

)
2k

≤ |F|

(
8

(
1

2

)tmin

+ 2n−µ+18

(
1

2

)tmin
)

≤ 16|F|2n−µ+1

(
1

2

)tmin

≤ ρ

where the last line follows by requiring that tmin ≥ log |F|+n−µ+ log(1/ρ) + 5
where n = k + w. This proves the theorem.

3.2 Upgrading Weak Tamper-Detection Codes

We now show how to convert weak tamper-detection codes to (standard) tamper-
detection codes with security for a worst-case message. We do so via a “composed
code” construction following Figure 3.1, which will be useful throughout the
paper. The idea of such composed constructions, is to choose the inner code
according to the weaknesses of the outer code; in other words the inner code
complements the outer code to achieve a stronger notion of security which is
expected from the composed code. In our case, the composed code is obtained by
composing an inner “leakage-resilient (LR) code” and an outer “weak tamper-
detection (WTD) code”. The weakness of the outer WTD code comes from
the fact that it only guarantees security for a uniformly random message. On
the other hand, the inner LR code ensures that one cannot tell between a LR
encoding of some worst-case message and a uniformly random inner codeword
in the context of the tampering experiment.

Definition 5. For a function f and a coding scheme (E,D) define the binary
leakage function of f on (E,D), denoted by bLf [(E,D)] as follows,

bLf [(E,D)] (x) =

{
1 if D(f(E(x))) = ⊥
0 otherwise.

For a family of functions F , define binary leakage function family as BLF [(E,D)]
= {bLf [(E,D)] |∀ f ∈ F}. When the coding scheme is implicit we omit the index
(E,D) and write bLf , BLF .

Theorem 3. Let F be a family of functions, let (wtdEnc, wtdDec) be a (k′, n)-
coding scheme which is (F , ε)-weak tamper detection code and let (lrEnc, lrDec)
be a (k, k′)-coding scheme which is (BLF [(wtdEnc, wtdDec)] , γ)-leakage resilient
code. Then the composed code (Enc,Dec) of Figure 3.1 is a (k, n) coding scheme
which is (F , γ + ε)-secure tamper detection code.

Let (lrEnc, lrDec) be a (k, k′)-code such that lrDec never outputs ⊥.
Let (wtdEnc, wtdDec) be a deterministic (k′, n)-code. We define the composed (k, n)-
code (Enc,Dec) via:

– Enc(m): Let cin ← lrEnc(m) and output c = wtdEnc(cin).
– Dec(c): Let cin = wtdDec(c). If cin = ⊥, output ⊥ else output m = lrDec(cin).

In particular, let (lrEnch1 , lrDech1) and (wtdEnch2 , wtdDech2) be given by:

lrEnch1(m) = (r, h1(r)⊕m) : r ← Uv1 , lrDech1(r, x) = (h1(r)⊕ x)
wtdEnch2(cin) = (cin, h2(cin)) , wtdDech2(cin, z) = cin if z = h2(cin) and ⊥ if not.

where h1 : {0, 1}v1 → {0, 1}k, h2 : {0, 1}k
′
→ {0, 1}v2 , k′ := k + v1, n := k′ + v2.

Then the composed code (Ench1,h2 ,Dech1,h2) is defined as:

Ench1,h2(m) =

{
r ← Uv1 , x := m⊕ h1(r),

z := h2(r, x), output (r, x, z)

}
Dech1,h2(r, x, z) =

{
If z 6= h2(r, x), output ⊥

otherwise output x⊕ h1(r).

}
Fig. 3.1. Composed Code Construction

See the full version [JW15] for the proof. Combining the results of theorems
1, 2 and 3 gives us the following corollary.

Corollary 1. Let (Ench1,h2
,Dech1,h2

) be the construction in Figure 3.1 where
h1 is chosen from a t-wise independent hash family H1, and h2 is chosen from a
t-wise independent hash family H2. Then, for any family of ϕ-few fix points, µ-
entropy functions F , the code (Ench1,h2 ,Dech1,h2) is an (F , 2ε)-tamper detection
code with probability 1− ρ over the choice of h1 and h2, as long as:

t ≥ tmin, tmin := O(log |F|+ k + v1 + log (1/ρ))

v1 ≥ log(tmin) + 2 log (1/ε) +O(1), v2 ≥ log (1/ε) +O(1).

µ ≥ log(tmin) + v2 + log (1/ε) +O(1), ϕ ≤ ε/4

For example, if ρ = ε = 2−λ for security parameter λ and, |F| ≥ max
{

2k, 2λ
}

we get:

t = O(log |F|) , µ = log log |F|+ 2λ+O(1) , ϕ = 2−(λ+O(1))

v1 = log log |F|+ 2λ+O(1) , v2 = λ+O(1).

See the full version [JW15] for the proof. When |F| ≤ 22
αn

for some constant α <
1, then the overhead of the code is n−k = v1+v2 = αn+O(λ) and therefore the
rate of the code approaches k/n ≈ (1−α). The above codes can be made efficient
when |F| ≤ 2s(n) for some polynomial s, where the efficiency of the code depends
on s (and in this case, the rate approaches 1). In particular, we get an efficient
family of codes indexed by hash functions h1, h2 such that a random member of

the family is a tamper-detection code for F with overwhelming probability. We
can also think of this as an efficient construction in the common random string
(CRS) model, where h1, h2 are given in the CRS.

Example: Tampering via Polynomials. Let F−poly,d be the set of all poly-
nomials p(x) over the field F2n of degree d, excluding the identity polynomial
p(x) = x and the degree 0 polynomials {p(x) = c : c ∈ F2n}. Then F−poly,d

is an ϕ-few fix points, µ-entropy function where ϕ = d/2n and µ = n − log d.
Furthermore |F−poly,d| = 2n(d+1).

Using corollary 1, we see that there exist (F−poly,d, ε)-tamper-detection codes

for degrees up to d = 2αn, for constant α < 1
2 , with security ε negligible in

n. The rate of such codes approaches (1 − α). Furthermore, when the degree
d = d(n) is polynomial in n, then we get an efficient construction in the CRS
model with a rate that approaches 1.

Example: Tampering via Affine Functions. Let F−affine,r be the set of all
affine tampering functions when we identify {0, 1}n as the vector space Fm2r with
m = n/r. We exclude the identity and constant functions. In particular, F−affine,r

consists of all functions fA,b(x) = Ax + b where A ∈ Fm×m2r , b ∈ Fm2r , and (1) A
is not the all 0 matrix, (2) if A is the identity matrix then b 6= 0 is a non-zero
vector.

In particular the family F−affine,r is a ϕ-few fix points, µ-entropy function where

ϕ = 2−r and µ = r. Furthermore the size of the family is |F−affine,r| ≤ 2n
2+n.

The high-entropy requirement is guaranteed by (1) and the few-fixed points
requirement is guaranteed by (2) as follows. If x is a fixed point then Ax+ b = x
means that (A − In)x = b; if A is identity then this cannot happen since b 6= 0
and if A is not identity then this happens with probability at most 2−r over a
random x.

Using corollary 1, we get (F−affine,r, ε)-tamper-detection codes where ε is neg-
ligible in r and the rate of the code approaches 1. Furthermore, we get efficient
constructions of such codes in the CRS model.

A similar result would also hold if we considered all affine functions over the
vector space Fn2 , given by fA,b(x) = Ax+ b where A ∈ Fn×n2 , b ∈ Fn2 , but in this
case we would need to add the additional requirement that rank of A is at least
r (to ensure high entropy), and either b is not in the column-span of (A− In) or
the rank of (A− In) is at least r (to ensure few fixed points).

3.3 Predictable Codes

So far, we saw that tamper-detection codes are (only) achievable for “restricted”
function families with few fixed points and high entropy. However, we now ob-
serve that such tamper-detection codes for restricted families can also provide
a meaningful security guarantee for function families that don’t have the above
restrictions. The idea is to consider how tamper-detection can “fail”. Firstly, it
is possible that the tampering function gets a codeword which is a fixed-point c

such that f(c) = c. In that case, tampering does not change the codeword and
therefore will not get detected. In some sense this failure is not too bad since the
codeword did not change. Secondly, it is possible that f(c) = c∗ where c∗ is some
“heavy” value that has many pre-images (responsible for low-entropy of f) and
is a valid codeword. Fortunately, there cannot be too many such heavy values
c∗. In other words, we can essentially predict what will happen as a result of
tampering: either the codeword will not change at all, or it will be tampered to
an invalid value that decodes to ⊥, or it will be tampered to one of a few “heavy”
values c∗. We capture this via the following definition of a “predictable code”
(a similar notion called “bounded malleable codes” was defined in [FMVW14])
which says that the outcome of tampering a codeword via some function f lies
in some “small” set P(f) which only depends on f and not on the message that
was encoded.

Definition 6 (Predictable Codes). Let (Enc,Dec) be a (k, n)-coding scheme.

For a tampering function f : {0, 1}n → {0, 1}n and message m ∈ {0, 1}k
consider a distribution tamperf,m that chooses c← Enc(m), sets c′ := f(c), and
if c′ = c it outputs a special symbol same, if Dec(c′) = ⊥ it outputs ⊥, and
otherwise it outputs c′.

For a family of tampering functions F and a predictor P : F → powerset({0, 1}n
∪ same ∪ ⊥) we say that the code is (F ,P, ε)-predictable if for all f ∈ F ,m ∈
{0, 1}k: Pr[tamperf,m 6∈ P(f)] ≤ ε. We say that the code is (F , `, ε)-predictable

if it is (F ,P, ε)-predictable for some P such that for all f ∈ F , |P(f)| ≤ 2`.

Let F be a function family consisting of functions f : {0, 1}n → {0, 1}n
and µ ∈ [n], ϕ > 0 be two parameters. We say that c′ ∈ {0, 1}n is µ-heavy if
Pr[f(c) = c′ : c← {0, 1}n] > 1/2µ. Define

Hf (µ) := {c : c ∈ {0, 1}n is µ-heavy}.

Note that |Hf (µ)| ≤ 2µ. For any function f ∈ F define the restricted function
f ′ by setting f ′(c) := f(c) unless

(I) if f(c) ∈ Hf (µ) then f ′(c) := ⊥.
(II) if Prx∈{0,1}n [f(x) = x] > ϕ and f(c) = c then we set f ′(c) := ⊥.

It is clear that f ′ is a ϕ-few fix points, µ-entropy function. Define the family
F [restrict(µ, ϕ)] = {f ′ : f ∈ F}.

Theorem 4. For any function family F , if (Enc,Dec) is an (F [restrict(µ, ϕ)], ε)-
TDC then it is also an (F ,P, ε)-predictable code where P(f) = {⊥, same} ∪
Hf (µ). In particular, it is (F , µ+ 1, ε)-predictable.

Furthermore, if F has µ-high entropy, then P(f) = {⊥, same}. If F has ϕ-
few fixed points then P(f) = {⊥} ∪Hf (µ). If F has µ-high entropy and ϕ-few
fixed points then P(f) = {⊥}.

See the full version [JW15] for the proof. Combining the results of Theorem
4 and Corollary 1 gives us the following corollary.

Corollary 2. Let (Ench1,h2
,Dech1,h2

) be the construction in Figure 3.1 where
h1 is chosen from a t-wise independent hash family H1, and h2 is chosen from
a t-wise independent hash family H2. For any family of functions, F , the code
(Ench1,h2 ,Dech1,h2) is an (F , `, ε)-predictable code with probability 1−ρ over the
choice of h1 and h2, as long as:

t > tmin where tmin = O(log |F|+ k + v1 + log (1/ρ))

v1 ≥ log(tmin) + 2 log (1/ε) +O(1) , v2 ≥ log (1/ε) +O(1).

` ≥ log(tmin) + v2 + log (1/ε) +O(1)

For example, if ρ = ε = 2−λ for security parameter λ and, |F| ≥ max
{

2k, 2λ
}

we get:

t = O(log |F|), ` = log log |F|+ 2λ+O(1),

v1 = log log |F|+ 2λ+O(1), v2 = λ+O(1).

Furthermore, if F has µ-high entropy for some µ ≥ log log |F|+ 2λ+O(1), then
the code is (F ,P, ε)-predictable with P(f) = {⊥, same} and if F has ϕ-few fixed
points for some ϕ ≤ 2−(λ+O(1)) then same 6∈ P(f). If F has µ-high entropy and
ϕ-few fixed points then P(f) = {⊥}.

A similar result to the above corollary was also shown in [FMVW14] for
“bounded malleable codes” via a direct proof that did not go through tamper-
detection codes. Here, we achieve some important improvements in parameters.
Most importantly, our overhead is v1+v2 = log log |F|+O(λ) whereas previously
it was at least 3 log log |F| + O(λ). In other words, when the function family is
of size |F| = 22

αn

then we get a rate ≈ (1−α) whereas the result of [FMVW14]
would get a rate of (1− 3α). This improvement in parameters will also translate
to our constructions of non-malleable and continuous non-malleable codes.

4 Basic Non-malleable codes

We now review the definition of non-malleable codes. Several different definitions
(standard, strong, super) were proposed in [DPW10,FMVW14] and here we will
by default use the strongest of these which was called “super” non-malleable
codes in [FMVW14]. This notion considers the tampering experiment tamperf,m
that we previously used to define predictable codes: it chooses c← Enc(m), sets
c′ := f(c), and if c′ = c it outputs a special symbol same, if Dec(c′) = ⊥ it outputs
⊥, and otherwise it outputs c′. Non-malleable codes ensure that the output of
the experiment is independent of the message m: for any two messages m0,m1

the distributions tamperf,m0
and tamperf,m1

should be statistically close.2

2 For a weaker definition in [DPW10], the experiment tamperf,m either outputs same
if c′ = f(c) or Dec(c′). In contrast, in our definition it outputs c′ in full when
Dec(c′) 6= ⊥ which provides more information and makes the definition stronger.

Definition 7 (Non-malleable Code). Let (Enc,Dec) be a (k, n)-coding scheme
and F be a family of functions f : {0, 1}n → {0, 1}n. We say that the scheme
is (F , ε)-non-malleable if for any m0,m1 ∈ {0, 1}k and any f ∈ F , we have
tamperf,m0

≈ε tamperf,m1
where

tamperf,m :=

{
c← Enc(m), c′ := f(c)

output same if c′ = c, output ⊥ if Dec(c′) = ⊥, else output c′.

}
We will argue that the composed code construction in Figure 3.1 already

achieves non-malleability. Intuitively, we will rely on two facts: (1) we already
showed that the composed code is predictable meaning that the outcome of the
tampering experiment can be thought of as providing at most small amount of
leakage, (2) the inner code is leakage-resilient so the small amount of leakage
cannot help distinguish between two messages m and m′.

To make the above intuition formal, we need to translate a class of tampering
functions into a related class of leakage functions for which we need the inner
code to be leakage resilient. This translation is given in the following definition.

Definition 8. Let (wtdEnc, wtdDec) be a deterministic coding scheme, let F =
{f : {0, 1}n → {0, 1}n} be a family of functions, and let P(f) : F → powerset
{{0, 1}n ∪ same ∪ ⊥} be a predictor. For a tampering function f ∈ F , define the
the corresponding leakage function Lf (x) as:

Lf (x) :=

{
Rf (x) if Rf (x) ∈ P(f)

minP(f) otherwise.

where

Rf (x) :=

 ⊥ if wtdDec(f(wtdEnc(x)))) = ⊥
same else if f(wtdEnc(x))) = wtdEnc(x),

f(wtdEnc(x)) otherwise.

where minP(f) denotes the minimal value in P(f) according to some ordering.
Define the leakage family
Lf [(wtdEnc, wtdDec),P] := {Lf | ∀f ∈ F}. When the coding scheme and the
predictor function are implicit we simply write LF .

Next we argue that the composed code construction in Figure 3.1 is non-malleable
for F as long as the composed code is predictable for F and the inner code is
leakage resilient for LF . Intuitively, the outer predictable code ensures that tam-
pering can only result in a few possible values, while the inner leakage-resilient
code ensures that the choice of which of these few values is the actual outcome
of tampering does not reveal anything about the underlying message.

Theorem 5. Let F be a finite family of functions and let (Enc,Dec) be the com-
posed coding scheme of Figure 3.1 constructed using an inner code (lrEnc, lrDec)
and an outer code (wtdEnc, wtdDec). If (Enc,Dec) is (F ,P, ε)-predictable and
(lrEnc, lrDec) is a (Lf [(wtdEnc, wtdDec),P] , γ)-leakage resilient for some pre-
dictor P, then (Enc,Dec) is a (F , 2(γ + ε))-non-malleable code.

Proof. For all m0,m1 ∈ {0, 1}k and for all f ∈ F , we have:

tamperm0,f ≡ Rf (lrEnc(m0))

≈ε Lf (lrEnc(m0)) (4.1)

≈γ Lf (Uk′) (4.2)

≈γ Lf (lrEnc(m1)) (4.3)

≈ε Rf (lrEnc(m1)) (4.4)

≡ tamperm1,f

where ≡ denotes distributional equivalence. Lines 4.1 and 4.4 follow from the
fact that Pr[Rf (lrEnc(m)) 6= Lf (lrEnc(m))] ≤ Pr[tamperf,m 6∈ P(f)] ≤ ε since
the combined code is (F ,P, ε)-predictable. Lines 4.2 and 4.3 follow from the fact
that (lrEnc, lrDec) is a (LF , γ)-leakage resilient code.

Corollary 3. Let (Ench1,h2 ,Dech1,h2) be the construction in Figure 3.1 where
h1 is chosen from a hash family H1 which is t-wise independent, and h2 is chosen
from a hash family H2 which is t-wise independent. For any family of functions
F , the composed code (Ench1,h2

,Dech1,h2
) is a (F , ε)-non-malleable code with

probability 1−ρ over the choice of h1 and h2, as long as the following holds: v2 =
log (1/ε)+O(1), v1 ≥ vmin and t ≥ tmin for B := log |F|+k+v1+log (1/ρ)+O(1)
and

either tmin = O(B) and vmin = log(B) + log log(B/ε2) + 4 log (1/ε) +O(1)

or tmin = O(B/ε2) and vmin = log(B) + 4 log (1/ε) +O(1).

In particular, if ρ = ε = 2−λ and |F| ≥ {2k, 2λ}, λ ≥ log log log |F| then we get:

tmin = O(log |F|) and vmin = log log |F|+O(λ)

See the full version [JW15] for the proof.
The above corollary tells us that, for any tampering function family F of size
up to |F| = 22

αn

for α < 1 there exist (inefficient) non-malleable codes for F
with additive overhead v1 + v2 = αn + O(λ) and therefore rate approaching
(1 − α). This matches the positive results on the rate of non-malleable codes
of [CG13a] and is known to be optimal. Furthermore, if |F| = 2s(n) for some
polynomial s(n), then we can get an efficient family of codes such that a random
member of the family is an (F , 2−λ) non-malleable code for F with overwhelming
probability, where the efficiency of the code is poly(s(n), n, λ) and the additive
overhead of the code is v1 +v2 = O(log n+λ), and therefore the rate approaches
1. For example, F could be the family of all circuits of size at most s(n) and
we can view our construction as giving an efficient non-malleable code for this
family in the CRS model, where the random choice of h1, h2 is specified by the
CRS. This matches the positive results of [FMVW14]. Therefore, we get a single
construction and analysis which achieves the “best of both worlds” depending
on the setting of parameters.

5 Continuous Non-malleable Codes

Intuitively, a continuous non-malleable code guarantees security against an at-
tacker that can continuously tamper with a codeword without the codeword
being refreshed. We give a unified definition of four variants of such codes de-
pending on two binary variables: (I) a “self-destruct” flag sd which indicates
whether the game stops if a codeword is ever detected to be invalid (correspond-
ing to a device self-destructing or erasing its internals) or whether the attacker
can continue tampering no matter what, (II) a “persistent” flag prs indicating
whether each successive attack modifies the codeword that has been modified by
previous attacks, or whether tampering can also always be applied to the origi-
nal codeword (corresponding to the case where a copy of the original codeword
may remain in some auxiliary memory on the device).

In more detail, the definition of continuous non-malleable codes considers a
tampering experiment where a codeword c← Enc(m) is chosen in the beginning.
The attacker repeatedly chooses tampering functions fi and we set the i’th
tampered codeword to either be ci = fi(c) if the “persistent” flag prs is off or
ci = fi ◦ fi−1 ◦ · · · ◦ f1(c) if prs is on. Just like the non-continuous definition, we
give the attacker the special symbol same if the codeword remains unchanged
ci = c, we give the attacker ⊥ if Dec(ci) = ⊥ and we give the attacker the
entire codeword ci otherwise. In the case where the “self-destruct” flag sd is on,
the experiment immediately stops if we give the attacker ⊥ to capture that the
device self-destructs and the attacker has no more opportunity to tamper. In
the case where the “persistent” flag prs is on, we also stop the experiment if the
attacker ever gets the entire tampered codeword ci (and not same or ⊥) in some
period i. This is without loss of generality since any future tampering attempts
can be answered using ci alone and hence there is no point in continuing the
experiment.

Definition 9. Let (Enc,Dec) be a (k, n)-coding scheme and let F be a family
of tampering functions f : {0, 1}n → {0, 1}n. We define four types of contin-
uous non-malleable codes (CNMC) parameterized by the flags sd ∈ {0, 1} (self
destruct) and prs ∈ {0, 1} (persistent tampering). We say that the scheme is

a (F , T, ε)-CNMC[prs, sd] if for any two messages m0,m1 ∈ {0, 1}k, for any
F-legal adversary A we have ConTamperA,T,m0

≈ε ConTamperA,T,m1
where the

experiment ConTamperA,T,m is defined in figure 5.1. For prs = 0, an adversary
A is F-legal, if the tampering functions chosen in each round i ∈ [T] satisfy
fi ∈ F . For prs = 1, an adversary A is F-legal if the tampering functions fi
chosen in each round i satisfy (fi ◦ . . . ◦ f1) ∈ F .

Tamper-Resilience via Continuous Non-malleable Codes. We note that
the above definition of continuous non-malleable codes directly guarantees strong
protection against continuous tampering attacks on a device implementing an
arbitrary cryptographic scheme. We imagine that the secret key sk of the cryp-
tographic scheme is encoded using such a code and the codeword is stored on
the device; on each invocation, the device first decodes to recover the key and

ConTamperA,T,m[prs, sd]

c← Enc(m)

f0 := identity

Repeat i = 1, . . . , T

A chooses a function f ′i

if prs
?
= 1 : fi := f ′i ◦ fi−1 else fi := f ′i

c′ := fi(c)

if c′
?
= c : A receives same

else if Dec(c′)
?
= ⊥ : { A receives ⊥, if sd

?
= 1 experiment stops}

else : { A receives c′, if prs
?
= 1 experiment stops}

The output of the experiment is the view of A.

Fig. 5.1. Continuous Non-Malleability Experiment

then executes the original scheme. The device never needs to update the code-
word. In the setting of “self-destruct” we need the device to erase the stored
codeword or simply stop functioning if on any invocation it detects that the
codeword decodes to ⊥. In the setting of non-persistent tampering, we assume
the tampering attacks have access to the original codeword rather than just the
current value on the device (e.g., because a copy of the original codeword may
remain somewhere on the device in some auxiliary memory).

We guarantee that whatever an attacker can learn by continuously tampering
with the codeword stored on the device and interacting with the tampered device,
could be simulated given only black-box access to the original cryptographic
scheme with the original secret key sk and without the ability to tamper. The
main idea is that the information that the attacker can learn by interacting
with a tampered device is completely subsumed by the information provided by
the experiment ConTamperA,T,sk and interaction with the original untampered
device: if the tampering results in ⊥ then the attacker learns nothing from the
tampered device beyond that this happened, if it results in same the attacker
gets the outputs of the original device, and if it results in a new valid codeword c′

then the attacker at most learns c′. On the other hand, ConTamperA,T,sk does not
provide any additional information about sk by the security of the continuous
non-malleable codes.

A similar connection between standard non-malleable codes and tamper-
resilience was formalized by [DPW10] in the case where the device updates the
stored codeword after each invocation and the above claim simply says that
the connection extends to the setting where the device does not update the
codeword after each invocation and we use a continuous non-malleable code.
The formalization of the above claim and formal proof would be essentially the
same as in [DPW10].

5.1 Tool: Repeated Leakage Resilience

Towards the goal of constructing continuous non-malleable codes, we will rely
on a new notion of leakage-resilient codes which we call “repeated leakage re-
silience”.

Consider a family F consisting of leakage functions f : {0, 1}n → {0, 1}`
where each function f ∈ F has an associated unique “repeat” value repeatf ∈
{0, 1}`. An attacker can specify a vector of functions (f1, . . . , fT) with fi ∈ F . We
apply the functions to the codeword c one-by-one: if the output if fi(c) = repeatfi
we continue to the next function until we get the first i for which fi(c) 6= repeatfi
in which case we output fi(c). As in the case of standard leakage-resilient codes,
we don’t want the attacker to be able to distinguish between an encoding of a
particular message m versus a random codeword.

Definition 10. Let (lrEnc, lrDec) be a (k, n)-coding scheme. Let F be a fam-

ily of functions f : {0, 1}n → {0, 1}` where each function f ∈ F has an

associated “repeat value” repeatf ∈ {0, 1}
`
. For an integer T ≥ 1, we say that

(lrEnc, lrDec) is (F , T, ε)-repeated-leakage-resilient, if for any f̄ = (f1, . . . , fT) ∈
FT and any m ∈ {0, 1}k we have RLeakage(f̄ , lrEnc(m)) ≈ε RLeakage(f̄ , Un),
where we define RLeakage(f̄ , c) to output the value (i, fi(c)) for the smallest i
such that fi(c) 6= repeatfi , or ⊥ if no such i exists.

Notice that if we allow T to be as large as T = 2n then there is a simple family
F of only 2n leakage functions with just 1-bit output such RLeakage(f̄ , lrEnc(m))
completely revealsm. In particular consider the family F of functions fc′ : {0, 1}n
→ {stop, repeat} that have a hard-coded value c′ ∈ {0, 1}n and we define fc′(c) =
stop if c′ = c and fc′(c) = repeat otherwise (1 bit output). Let f̄ be a vector of
all functions in F . Then RLeakage(f̄ , c) completely reveals c.

In general, we can always view repeated-leakage resilience as a special case
of standard leakage resilience. In particular, for any family of leakage functions
F with associated repeat values repeatf we can define the family Frepeat,T :=

{RLeakage(f̄ , ·) : f̄ ∈ FT }. It is clear that an (Frepeat,T , ε)-leakage-resilient code
is also (F , T, ε)-repeated-leakage-resilient. If the function-family F consists of
functions with `-bits of leakage then the functions in Frepeat,T have ≤ `+log T+1

bits of leakage (e.g., the range of f ∈ Frepeat,T is [T] × {0, 1}` ∪ {⊥}). In other
words, the amount of leakage only increases by log T + 1 which is not very large.
Unfortunately, even though the amount of leakage is not much larger, the quality
of the leakage measured as the size of the leakage family is substantially larger:
|Frepeat,T | = |F|T . This hurts our parameters and requires the efficiency of our
codes to depend on and exceed T . Summarizing the above discussion with the
parameters of standard leakage-resilient codes from Section 2.1: Theorems 1 we
get the following.

Theorem 6. Let F be a family of functions of the form f : {0, 1}n → {0, 1}`

where each function f has an associated “repeat” value repeatf ∈ {0, 1}
`
. If

(lrEnc, lrDec) is a (k, n)-coding scheme which is (Frepeat,T , ε)-leakage-resilient

then it is also (F , T, ε)-repeated-leakage-resilient. In particular let (lrEnch, lrDech)
be the family of (k, n = k+v)-codes defined in Section 2.1. Then with probability
1− ρ over the choice of h← H chosen from a t-wise independent hash function
family, the code (lrEnch, lrDech) is (F , T, ε)-repeated-leakage-resilient as long
as:

t ≥ tmin := O(T · log |F|+ k + log(1/ρ))

v ≥ log
(
tmin + (2`+1 · T)

)
+ log(`+ log T + 1) + 2 log (1/ε) +O(1)

In the natural setting where ε = ρ = 2−λ and T, ` ≤ 2λ, |F| ≥ max{2λ, 2k}, for
security parameter λ, we have

t =O(T · log |F|) v = max{`, log log |F|}+O(λ)

Recall that in standard leakage-resilient codes, if we have |F| = 2s(n) for some
polynomial s(n), then our construction was efficient and we required polynomial
independence t = O(s(n)). Unfortunately, for repeated leakage resilience, the
above theorem requires us to now set t = O(Ts(n)) depending on T . In general,
we would like to have a fixed efficient construction which is secure for any poly-
nomial number of repeated leakage queries T , rather than the reverse quantifiers
where for any polynomial T we have an efficient construction which depends on
T . We believe that our analysis of repeated-leakage resilience is sub-optimal and
that the above goal is possible. Intuitively, we believe that the sub-optimality
of the analysis comes from the fact that it completely ignores the structure of
the function family Frepeat,T and only counts the number of functions. However,
the functions RLeakage(f̄ , ·) in the family have significantly restricted structure
and are not much more complex than the functions f ∈ F . Indeed, we can think
of RLeakage(f̄ , ·) as first computing f1(c), . . . , fT (c) and then computing some
shallow circuit on top of the T outputs. We put forward the following conjecture,
and leave it as an interesting open problem to either prove or refute it.

Conjecture 1. Theorem 6 holds in the setting ε = ρ = 2−λ and T, ` ≤ 2λ,
|F| ≥ max{2λ, 2k}, with t = O(λ log |F|) instead of t = O(T log |F|).

5.2 Abstract Construction of Continuous Non-Malleable
Codes

We now show how to construct continuous non-malleable codes for all four
cases depending on self-destruct (yes/no) and persistent tampering (yes/no).
Our constructions follow the same template as the construction of standard
non-malleable codes. In particular, to get continuous non-malleability for some
function family F we will use the composed code construction from Figure 3.1
and rely on the fact that the combined code is “predictable” for F with some
predictor P satisfying certain properties and that the inner code is repeated
leakage resilient for a corresponding leakage family. Intuitively, we want to en-
sure that if the predictor P(f) outputs a large set of possible values that might

be the outcomes of any single tampering attempt via a function f , there is at
most one value repeatf ∈ P(f) which causes the continuous tamper experiment
in figure 5.1 to continue and not stop. Therefore, the adversary does no learn
much information during the tampering experiment.

Theorem 7. Let F be a family of tampering functions of the form f : {0, 1}n →
{0, 1}n. Let (Enc,Dec) be the composed code from Figure 3.1, constructed us-
ing an inner code (lrEnc, lrDec) and an outer code (wtdEnc, wtdDec). Assume
(Enc,Dec) is (F ,P, ε1)-predictable code with some predictor P satisfying the con-
ditions below, and (lrEnc, lrDec) a (LF , T, ε2)-repeated leakage resilient code for
the leakage family LF = LF [(wtdEnc, wtdDec),P] (see Definition 8) and where
each Lf ∈ LF has an associated repeat value repeatf as defined below. Then the
composed code (Enc,Dec) is (F , T, ε)-CNMC[sd, prs] with ε = 2T · ε1 + 2ε2.

– For case sd = 0, prs = 0 we require that for all f ∈ F , |P(f)| = 1. In this
case, the leakage-resilience requirement is vacuous since the leakage family
LF has 0-bit output.

– For case sd = 1, prs = 0 we require that for all f ∈ F , either |P(f)| = 1 or
P(f) = {⊥, same}. For each Lf ∈ LF , we define repeatf = P(f) if |P(f)| = 1
or repeatf = same otherwise.

– For case sd = 0, prs = 1 we require that for all f ∈ F , either |P(f)| = 1 or
same 6∈ P(f). For each Lf ∈ LF , we define repeatf = P(f) if |P(f)| = 1 or
repeatf = ⊥ otherwise.

– For case sd = 1, prs = 1, we have no requirements on P(f). For each Lf ∈ LF ,
we define repeatf = same.

See the full version [JW15] for the proof.

5.3 Construction Results and Parameters

We now summarize what we get when we instantiate the above construction
with the code (Ench1,h2

,Dech1,h2
) from Figure 3.1. We characterize the type

of function families for which we achieve the various cases of continuous non-
malleable security in terms of whether the family has “few fixed points” and
“high entropy”.

Corollary 4. Let (Ench1,h2
,Dech1,h2

) be the (k, n)-coding scheme construction
in Figure 3.1 where h1 is chosen from a t1-wise independent hash family H1,
and h2 is chosen from a t2-wise independent hash family H2.

Let F be a family of ϕ-few fix points, µ-entropy functions and assume that
|F| ≥ max

{
2k, 2λ

}
. Then for any T ≤ 2λ the code (Ench1,h2

,Dech1,h2
) is an

(F , T, T · 2−λ)-CNMC[sd, prs] with probability 1− 2−λ over the choice of h1 and
h2 with the following parameters for each of the four options, where sd = 1 in-
dicates self-destruct and prs = 1 indicates persistent tampering:

[sd, prs] ϕ ≤ µ ≥ t1 = t2 =

[0 , 0] 2−(λ+O(1)) log log |F|+ 2λ+O(1) O(log |F |) O(log |F |)
[0 , 1] 2−(λ+O(1)) No restriction O(T · log |F|) O(log |F |)
[1 , 0] No restriction log log |F|+ 2λ+O(1) O(T · log |F|) O(log |F |)
[1 , 1] No restriction No restriction O(T · log |F|) O(log |F |)

In all four cases, parameter t2 = O(log |F|) and parameter v1+v2 = log log |F|+
O(λ). All results in the table also hold if F includes the always identity function
fid(x) = x or the always constant functions {fc(x) = c : c ∈ {0, 1}n}.

If Conjecture 1 holds then we can set t1 = O(λ · log |F|) for the last three
rows of the table.

Proof. Theorem 7 tells us how to build continuous non-malleable codes using
predictable codes and repeated-leakage resilient codes. Corollary 2 gives us the
parameters for predictable codes and the type of predictability they achieve.
Furthermore, we can always add the identity and constant functions f to any
family and maintain predictability with |P(f)| = 1 for these functions. Theorem
6 gives us the parameters for repeated-leakage-resilient codes. By plugging in
the parameters, the corollary follows.

We explore the consequences of the above corollary in each of the four set-
tings.

No Self-Destruct, Non-Persistent Tampering (Strongest). We begin
with the strongest setting, where we assume no self-destruct and non-persistent
tampering. In this case, an (F , ε)-tamper-detection code is also an (F ,P, ε)-
predictable code with P(f) = ⊥ for each f ∈ F , and hence it is also an (F , T, 2T ·
ε)-continuous non-malleable code in this setting. In particular, we get such codes
for families of functions with high entropy and few fixed points. However, we
can also add the “always identity” function fid(x) = x or the “always constant”
functions {fc(x) = c : c ∈ {0, 1}n} to F and maintain “predictability” and
therefore also continuous non-malleable security in this setting.

As an example, we can achieve continuous non-malleable codes in this setting
for the function families discusses in Section 3 in the context of tamper-detection.
By adding in the “always identity” and the “always constant” functions to these
families we get such continuous non-malleable codes for:

– The family Fpoly,d consisting of all polynomials p(x) of degree d over the
field F2n . For inefficient codes, we can set the degree as high as d = 2αn, for
constant α < 1

2 and get rate (1−α). For efficient codes (in the CRS model),
the degree must be set to some polynomial d = d(n) and the rate approaches
1.

– The family Faffine,r consisting of all affine tampering functions when we
identify {0, 1}n as the vector space Fm2r with m = n/r: i.e., all functions
fA,b(x) = Ax+ b where A ∈ Fm×m2r , b ∈ Fm2r . Such codes are efficient (in the
CRS model) and their security is 2−r+O(1).

The number of tampering attacks T that such codes protect against can
even be set to exponential in the security parameter T = 2λ without hurting
efficiency.

Self Destruct, Persistent Tampering (Weakest). In the weakest setting,
where we assume self-destruct and persistent tampering, we show the existence of
(inefficient) continuous non-malleable codes which essentially matches the known
results for standard non-malleable codes. In particular, for a function family F
of size |F| = 22

αn

we can protect against even an exponential number T = 2λ

tampering attempts with security ε = 2−λ and get a rate which approaches
(1 − α). For example, we show the existence of such (inefficient) codes in the
split-state model where the n-bit codeword is divided into two halves and the
attacker can tamper each half of the codeword arbitrarily but independently of
the other half.

Furthermore, if we take a function family of size |F| = 2s for some polynomial
s and want to protect against some polynomial T number of tampering attempts,
then we get efficient constructions (in the CRS model) where the efficiency is
poly(s, T, λ). For example, the family F could be all circuits of size s. The rate of
such codes approaches 1. We know that the dependence between the efficiency
of the code and s is necessary - for example, if the tampering functions are all
circuits of size s then we know that the circuit-size of the code must exceed O(s)
as otherwise the tampering function could simply decode, flip the last bit, and
re-encode. However, we do not know if the dependence between the efficiency
of the code and T is necessary. This dependence comes from the parameters of
repeated leakage-resilient codes and, if we could improve the parameters there as
conjectured (see conjecture 1) we would get security for up to T = 2λ tampering
attempts with a code having efficiency poly(s, λ).

Intermediate Cases. The two intermediate cases lie between the strongest
and the weakest setting and correspond to either (I) having persistent tampering
but no self-destruct or (II) having self-destruct but non-persistent tampering.
These cases are incomparable to each other.

In case (I) we can allow function families with arbitrarily low-entropy but
we need to require that the function only have few fixed points. The few-fixed
points requirement is necessary in this setting as highlighted by the following
attack. Consider the family Fnextbit consisting of n functions {fi(x) : i ∈ [n]}
where fi(x) looks at the i’th bit of x and if it a 0 then keeps x as is and otherwise
it flips the (i+1)’st bit (if i = n then the first bit) of x. We also add the identity
function to the family. This family has full entropy µ = n but the functions
(even the non-identity ones) have many fixed points ϕ = 1/2. The attacker does
the following for i = 1, . . . , n: he applies the function fi and sees whether he
gets back same. If so, he learns the i’th bit of the original codeword is a 0 and
otherwise he learns that it was a 1. Either way the attacker applies fi again to
set the codeword back to the original. This is a legal attacker since if we compose
the functions chosen by the attacker we get fi ◦ · · · ◦ f1 ◦ f1 which is either just

fi or identity and therefore in the family Fnextbit. After n iterations the attacker
completely learns the codeword and therefore also the encoded message. Notice
that this attack crucially relies on the fact that there is no self-destruct, since
each tampering attempt could result in ⊥.

In case (II) we can allow function families with many fixed points but require
entropy. Intuitively, the high entropy requirement is necessary in this setting to
prevent the following attack. Consider the family F2const consisting of n22n

functions {fi,c0,c1(x) : c0, c1 ∈ {0, 1}n, i ∈ [n]} which output c0 if the ith bit
of x is a 0 and c1 if the ith bit of x is a 1. This family has ϕ = 2−n+1 few
fixed points but has low entropy µ = 1. Given any code (Enc,Dec) the attacker
simply chooses any two distinct valid codewords c0 6= c1, Dec(c0),Dec(c1) 6= ⊥.
For i = 1, . . . , n: he applies the tampering function fi,c0,c1 and depending on
whether he gets back c0 or c1, he learns the i’th bit of the original codeword c.
After n iterations the attacker completely learns the codeword. Notice that this
attack crucially relies on the fact that tampering is non-persistent, since each
tampering attempt completely overwrites the codeword but the next tampering
attempt still tampers the original codeword.

The parameters of our continuous non-malleable codes in these settings
matches that of the weakest case. In particular, for a function family F of size
|F| = 22

αn

satisfying the appropriate entropy and fixed-point requirements, we
can inefficiently protect against even an exponential number T = 2λ tampering
attempts with security ε = 2−λ and get a rate which approaches (1 − α). Fur-
thermore, if we take a function family of size |F| = 2s for some polynomial s
and want to protect against some polynomial T number of tampering attempts,
then we get efficient constructions (in the CRS model) where the efficiency is
poly(s, T, λ). Under conjecture 1, we would get security for up to T = 2λ tam-
pering attempts with a code having efficiency poly(s, λ).

6 Conclusion

In this paper, we introduced several new notions of codes that offer protection
against tampering attacks. Most importantly, we defined a general notion of
tamper-detection codes and various flavors of continuous non-malleable codes
and explored the question of what families of functions admit such codes. Al-
though some of our constructions can be made efficient, all of the constructions
are Monte-Carlo constructions, which can also be interpreted as constructions in
the CRS model. It remains an open problem to construct explicit and efficient
codes (without a CRS) for interesting families, such as low-degree polynomials
or affine functions (etc.).

References

[ABPP14] Michel Abdalla, Fabrice Benhamouda, Alain Passelègue, and Kenneth G.
Paterson. Related-key security for pseudorandom functions beyond the
linear barrier. In Juan A. Garay and Rosario Gennaro, editors, Advances

in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, volume 8616
of Lecture Notes in Computer Science, pages 77–94. Springer, 2014.

[ADL13] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable
codes from additive combinatorics. Electronic Colloquium on Computa-
tional Complexity (ECCC), 20:81, 2013.

[AGM+14] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and
Manoj Prabhakaran. Explicit non-malleable codes resistant to permuta-
tions and perturbations. Cryptology ePrint Archive, Report 2014/841,
2014. http://eprint.iacr.org/.

[AHI11] Benny Applebaum, Danny Harnik, and Yuval Ishai. Semantic security
under related-key attacks and applications. In ICS, pages 45–60, 2011.

[BC10] Mihir Bellare and David Cash. Pseudorandom functions and permutations
provably secure against related-key attacks. In CRYPTO, pages 666–684,
2010.

[BCM11] Mihir Bellare, David Cash, and Rachel Miller. Cryptography secure against
related-key attacks and tampering. In ASIACRYPT, pages 486–503, 2011.

[BDL01] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the impor-
tance of eliminating errors in cryptographic computations. J. Cryptology,
14(2):101–119, 2001.

[BK03] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-
key attacks: RKA-PRPs, RKA-PRFs, and applications. In EUROCRYPT,
pages 491–506, 2003.

[BPT12] Mihir Bellare, Kenneth G. Paterson, and Susan Thomson. RKA security
beyond the linear barrier: IBE, encryption and signatures. In ASIACRYPT,
pages 331–348, 2012.

[BR94] Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling.
In FOCS, pages 276–287. IEEE Computer Society, 1994.

[CDF+08] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel
Wichs. Detection of algebraic manipulation with applications to robust
secret sharing and fuzzy extractors. In Nigel P. Smart, editor, EURO-
CRYPT, volume 4965 of Lecture Notes in Computer Science, pages 471–
488. Springer, 2008.

[CG13a] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable
codes. Electronic Colloquium on Computational Complexity (ECCC),
20:118, 2013.

[CG13b] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding
against bit-wise and split-state tampering. IACR Cryptology ePrint
Archive, 2013:565, 2013.

[CKM11] Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. BiTR: Built-in tamper
resilience. In ASIACRYPT, pages 740–758, 2011.

[CZ14] Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against
constant split-state tampering. Electronic Colloquium on Computational
Complexity (ECCC), 21:102, 2014.

[DDV10] Francesco Dav̀ı, Stefan Dziembowski, and Daniele Venturi. Leakage-
resilient storage. In Juan A. Garay and Roberto De Prisco, editors,
SCN, volume 6280 of Lecture Notes in Computer Science, pages 121–137.
Springer, 2010.

[DFMV13] Ivan Damg̊ard, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi.
Bounded tamper resilience: How to go beyond the algebraic barrier. In
ASIACRYPT (2), pages 140–160, 2013.

[DKO13] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-
malleable codes from two-source extractors. In CRYPTO (2), pages 239–
257, 2013.

[DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable
codes. In ICS, pages 434–452, 2010.

[FMNV14] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele
Venturi. Continuous non-malleable codes. In TCC, 2014. To appear.

[FMVW14] Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel
Wichs. Efficient non-malleable codes and key-derivation for poly-size
tampering circuits. In EUROCRYPT, 2014. To appear. Available:
http://eprint.iacr.org/2013/702.

[FPV11] Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi. Tamper-proof
circuits: How to trade leakage for tamper-resilience. In ICALP (1), pages
391–402, 2011.

[GIP+14] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran
Tromer. Circuits resilient to additive attacks with applications to secure
computation. In David B. Shmoys, editor, Symposium on Theory of Com-
puting, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
495–504. ACM, 2014.

[GLM+04] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal
Rabin. Algorithmic tamper-proof (ATP) security: Theoretical foundations
for security against hardware tampering. In TCC, pages 258–277, 2004.

[GOR11] Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-input secure
hash functions. In TCC, pages 182–200, 2011.

[IPSW06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private
circuits II: Keeping secrets in tamperable circuits. In EUROCRYPT, pages
308–327, 2006.

[JW15] Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous non-
malleable codes [full version]. 2015. http://eprint.iacr.org/2014/956.

[KKS11] Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai. Cryptography
with tamperable and leaky memory. In CRYPTO, pages 373–390, 2011.

[LL12] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in
the split-state model. In CRYPTO, pages 517–532, 2012.

[Pie12] Krzysztof Pietrzak. Subspace LWE. In TCC, pages 548–563, 2012.
[Sha49] Claude E. Shannon. A theorem on coloring the lines of a network. Jour-

nal of mathematics and physics / Massachusetts Institute of Technology,
28:148–151, 1949.

[Wee12] Hoeteck Wee. Public key encryption against related key attacks. In Public
Key Cryptography, pages 262–279, 2012.

