
General Statistically Secure Computation with
Bounded-Resettable Hardware Tokens

Nico Döttling?,??1, Daniel Kraschewski? ? ?2, Jörn Müller-Quade3, and Tobias
Nilges3

1 Aarhus University, Denmark
2 TNG Technology Consulting GmbH, Munich, Germany

3 Karlsruhe Institute of Technology, Germany

Abstract. Universally composable secure computation was assumed to
require trusted setups, until it was realized that parties exchanging (un-
trusted) tamper-proof hardware tokens allow an alternative approach
(Katz; EUROCRYPT 2007). This discovery initialized a line of research
dealing with two different types of tokens. Using only a single stateful
token, one can implement general statistically secure two-party com-
putation (Döttling, Kraschewski, Müller-Quade; TCC 2011); though all
security is lost if an adversarial token receiver manages to physically
reset and rerun the token. Stateless tokens, which are secure by defini-
tion against any such resetting-attacks, however, do provably not suffice
for statistically secure computation in general (Goyal, Ishai, Mahmoody,
Sahai; CRYPTO 2010).

We investigate the natural question of what is possible if an adversary
can reset a token at most a bounded number of times (e.g., because each
resetting attempt imposes a significant risk to trigger a self-destruction
mechanism of the token). Somewhat surprisingly, our results come close
to the known positive results with respect to non-resettable stateful to-
kens. In particular, we construct polynomially many instances of statis-
tically secure and universally composable oblivious transfer, using only
a constant number of tokens. Our techniques have some abstract simi-
larities to previous solutions, which we grasp by defining a new security
property for protocols that use oracle access. Additionally, we apply our
techniques to zero-knowledge proofs and obtain a protocol that achieves
the same properties as bounded-query zero-knowledge PCPs (Kilian, Pe-
trank, Tardos; STOC 1997), even if a malicious prover may issue stateful
PCP oracles.

? Supported by European Research Commission Starting Grant no. 279447.
?? The authors acknowledge support from the Danish National Research Foundation

and The National Science Foundation of China (under the grant 61061130540) for the
Sino-Danish Center for the Theory of Interactive Computation, within which part of
this work was performed; and also from the CFEM research center (supported by the
Danish Strategic Research Council) within which part of this work was performed.

? ? ? Work done while at Technion, Israel. Supported by the European Union’s Tenth
Framework Programme (FP10/2010-2016) under grant agreement no. 259426 – ERC
Cryptography and Complexity.

1 Introduction

The model of untrusted tamper-proof hardware was introduced by Katz [38] to
circumvent trusted setup assumptions and has proven to be a strong tool for
creating cryptographic protocols, especially in the context of universally com-
posable (UC-secure) [6] multi-party computation. In the tamper-proof hardware
model, (possibly malicious) parties can create tokens and send them to other
parties, who then can interact with the tokens but not access any internal se-
crets.

In this line of research, there are two different types of tokens considered:
stateful and stateless/resettable tokens. Studies of the latter are usually moti-
vated by so-called resetting-attacks, meaning that an adversarial receiver could
physically reset a token’s internal state (e.g., by cutting off the power supply).
Döttling et al. [21] implemented multiple instances of statistically UC-secure
oblivious transfer (OT), using only a single stateful token. On the downside,
Goyal et al. [28] showed that with any number of stateless tokens statistical
OT is impossible, even if one only goes for stand-alone security. In fact, only a
few statistically secure protocols based on stateless tokens have been proposed,
namely stand-alone secure commitments [28] and a UC-secure variant [16], the
latter using bidirectional exchange of polynomially many tokens for each com-
mitment. These positive results are complemented again by [28], showing that
unconditional non-interactive commitments cannot be performed by using only
stateless tokens. Since all known approaches based on stateful tokens completely
break down if only a single resetting attempt is successful, and strong impossi-
bility results hold with respect to arbitrarily resettable tokens, it seems a natural
question to ask what is still possible if an a priori bound for successful resettings
is known. Therefore, similar in nature to the well-studied problems of bounded
leakage [39,24], bounded-resettable zero-knowledge [40,42,47,3], and bounded-
query zero-knowledge PCPs [41,35], we propose a bounded-resettable hardware
model.

The new model can also be seen as a variant of the PCP model [25,1] or in-
teractive PCP model [37], depending on whether a considered protocol contains
direct interaction between the token issuer and the token receiver. The differ-
ence to the (interactive) PCP model is that maliciously issued tokens/oracles
can be stateful. This seems reasonable, since it is hard to verify that a malicious
token is stateless. We show that this weakened version of the PCP model still al-
lows non-interactive zero-knowledge with O(1) rounds of oracle queries and even
general (interactive) secure computation. [28] also considered stateful malicious
PCP oracles, though without an a priori query bound. They constructed in that
model interactive zero-knowledge proofs with non-constant round complexity
and showed impossibility of general statistically secure computation. Moreover,
the result on ZK-PCPs by Kilian et al. [41] can be made robust against malicious
stateful oracles straightforwardly at the cost of issuing polynomially many ora-
cles and having the verifier query each oracle only once. It is not clear, however,
if the same result can be obtained by using only a constant amount of oracles.

Our Results. We define a bounded-resettable hardware model and achieve in this
model to a large extent the known positive results for stateful tokens. This is
surprising, because the corresponding stateful-token protocols from the literature
are all susceptible to resetting-attacks. We construct

– multiple commitments, based on a single token issued by the commitment
sender,

– a single string-commitment, based on one token issued by the commitment
receiver,

– multiple OT instances, based on O(1) tokens issued by the OT-sender, and
– a bounded-resettable zero-knowledge proof of knowledge, based on O(1) to-

kens issued by the prover.

All protocols are statistically UC-secure and efficient. The first commitment pro-
tocol can be made non-interactive, sacrificing UC-security against a corrupted
sender, remaining statistically binding. The zero-knowledge protocol can be im-
plemented such that the verifier does not communicate with the prover but only
with tokens sent by the prover. Moreover, if we assume that even malicious
provers can only issue stateless tokens, then all token functionalities in the zero-
knowledge protocol can be combined on a single token and we end up with the
same result as Kilian et al. [41].

Our Techniques. The main technical difficulty we have to deal with is that a
malicious token issuer can store an arbitrarily complicated function an a token.
We enforce (to some extent) honest programming by a simple challenge-response
protocol. The domain of allowed token functionalities is chosen such that it is
a linear space. The token receiver announces a random linear projection and
the token issuer has to reveal the token functionality under this projection. The
receiver can then check if the token reacts consistently, while learning only part
of the function parameters. We put forward an abstract notion of this technique,
which we call oracle validation. It has previously been used in a more ad-hoc
manner by [21,11], though their space of token functions is quite different from
ours: They use affine functions that map length-n bit-vectors to (n×n)-matrices,
whereas we use higher-degree univariate polynomials that operate on a large
finite field.

The composability proof for one of our commitment schemes also requires
some constructive algebraic geometry, namely efficient uniform sampling from
large finite varieties [9].

Related Work. The notion of resettable zero-knowledge was introduced by [7]. In
this model, a malicious verifier is allowed to reset the prover arbitrarily and rerun
the protocol. Constant-round black-box zero-knowledge protocols with resettable
provers were only achieved in various public key models where the verifier has
to register a public key, like Bare Public Key Model [7,14,46,19], Upperbounded
Public Key (UPK) Model [47], Weak Public Key (WPK) Model [42] and Counter
Public Key Model [15]. UPK and WPK assume that the amount of resets is a

priori bounded, similar to our model. Barak et al. [2] provided the first con-
struction of a (non-black-box) resettably-sound zero-knowledge argument sys-
tem, where soundness for a resettable verifier is achieved. This work was later
improved [5,13] and generalized to simultaneously resettable zero-knowledge pro-
tocols [18,17,10,5,12]. Since then resettability has found its way into general
multi-party computation [31,30].

Early works concerning tamper-proof hardware made computational assump-
tions and assumed stateful tokens [38,27]. This was later relaxed to resettable
or stateless tokens [8,23,11] and/or unconditional security [43,29,28,21,16].

2 Preliminaries

2.1 The UC-Framework

We state and prove the security of our protocols in the Universal Composability
(UC) framework of Canetti [6]. In this framework security is defined by compar-
ison of a real model and an ideal model. The protocol of interest Π is running
in the former, where an adversary A coordinates the behavior of all corrupted
parties. We assume static corruption, i.e., the adversary A cannot adaptively
change corruption during a protocol run. In the ideal model, which is secure by
definition, an ideal functionality F implements the desired protocol task and
a simulator S tries to mimic the actions of A. An environment Z is plugged
either to the ideal or the real model and has to guess which model it is ac-
tually plugged to. Denote the random variable representing the output of Z
when interacting with the real model by RealΠA(Z) and when interacting with
the ideal model by IdealFS (Z). Protocol Π is said to UC-implement F , if for
every adversary A there exists a simulator S, such that for all environments Z
the distributions of RealΠA(Z) and IdealFS (Z) are indistinguishable. Since we aim
at statistical security, all entities are computationally unbounded. However, the
(expected) runtime complexity of the ideal model has to be polynomial in the
runtime complexity of the real model.

2.2 Definitions and Notations

We write ∆(x, y) for the statistical distance between x and y. The inner product
of x, y is denoted as 〈x | y〉 and their concatenation as x‖y. By IFq we denote the
finite field with q elements.

We canonically extend the notion of polynomials over a field IF as follows.
By IFn[X] we denote the set of all n-tuples of polynomials p1, . . . , pn ∈ IF[X].
Each polynomial p := (p1, . . . , pn) ∈ IFn[X] can be seen as a function IF→ IFn,
x 7→

(
p1(x), . . . , pn(x)

)
, whose degree is deg(p) := maxni=1(deg(pi)). We treat

IFn[X] as an IF-linear vector space in the natural way.

All (close to) standard ideal functionalities for the UC-framework can be
found in Appendix A.

Protocol Πval
k-ind

Implicitly parametrized by a finite field IF and a dimension n ∈ N. The sender’s input
domain consists of all polynomials p ∈ IFn[X] of degree at most k − 1. The security
parameter is ` := log |IF|.

1. Sender: Let p ∈ IFn[X] be the sender’s input. Pick p′ ∈ IFn[X] of degree at most
k − 1 uniformly at random. Program the oracle such that on input x ∈ IF it
outputs

(
p(x), p′(x)

)
.

2. (a) Receiver: Pick λ ∈ IF uniformly at random and send it to the sender.
(b) Sender: Compute p̃ := λ · p+ p′ and send it to the receiver.

3. Receiver: Let x ∈ IF be the receiver’s input. Input x into the oracle; let (y, y′)
denote the response.

4. Receiver: Verify that deg(p̃) ≤ k−1 and λ·y+y′ = p̃(x). If so, output y; otherwise
reject.

Fig. 1. Construction of a query-once validation scheme for a k-wise independent oracle.

3 Query-Once Oracle Validation

We introduce now our abstract notion of enforcing honest token programming.
Consider a scenario consisting of an honest receiver party, a (possibly) malicious
sender party, and an oracle which is arbitrarily programmable by the sender in
a setup phase. All entities are computationally unbounded. The security fea-
ture we aim at is that the sender has to choose the oracle functionality from
some predefined class and otherwise is caught cheating, even though the receiver
queries the oracle only once. If this is achieved, we speak of a query-once oracle
validation scheme. More particularly, such a scheme consists of four stages (for
a concrete example protocol, where the domain of allowed functions consists of
bounded degree polynomials over a finite field, see Figure 1):

1. The sender programs the oracle.
2. Sender and receiver run an interactive protocol which is independent of the

receiver’s input.
3. The receiver chooses his input and queries the oracle.
4. The receiver either rejects or produces some output.

Let g denote the sender input and x the receiver input. We require the following
properties.

Efficiency: All computations by honest entities have polynomial complexity.

Correctness: If the sender is honest, then the receiver always outputs g(x) and
never rejects.

Privacy: The receiver does not learn anything else about g than g(x).

Extractability: Even if the sender is corrupted, an extractor Ext with access to
the oracle program T∗ and the message transcript τ of Stage 2 can compute
a valid sender input g such that a receiver R with uniformly random input

x with overwhelming probability (taken over the randomness of x and all of
R’s and Ext’s random choices) either rejects or outputs g(x). The extractor
has to be efficient in the sense that its expected runtime on any input (τ,T∗)
is asymptotically bounded by (` · |T∗|)O(1) ·ρ−1, where ` is a security param-
eter, |T∗| is the size of the oracle program, and ρ is R’s accept probability
conditioned on τ (still with random x).

Note that g(x′) can be information-theoretically reconstructed from the re-
ceiver’s view for any input x′ that matches his oracle query. It follows by the
privacy property that his input x must be uniquely determined by his message
to the oracle. Thus, w.l.o.g. he just sends x to the oracle.

Next, we show that the oracle validation schemeΠval
k-ind is indeed extractable—

efficiency, correctness, and privacy are straightforward to see. The extractor con-
struction is the main ingredient for our upcoming UC proofs.

Lemma 1. Figure 1 describes an oracle validation scheme. In particular, there
exists an extractor Ext, such for every pair (S∗,T∗) of a corrupted sender S∗ and
a corrupted oracle T∗ it holds:

– Provided arbitrarily rewindable access to T∗ and given a transcript τ = (λ, p̃)
of the messages between S∗ and an honest receiver R (i.e., with uniformly
random λ ∈ IF), Ext computes a polynomial p ∈ IFn[X] of degree at most
k − 1.

– If R’s input x is uniformly random, then with some overwhelming probability
1− ρ′ (taken over the randomness of λ, x, and Ext’s random tape), R either
rejects or outputs p(x). In particular, we have a failure probability ρ′ ≤
|IF|−Ω(1).

– For every possible transcript τ , the expected number of queries from Ext to
T∗ is k ·ρ−1, where ρ is R’s accept probability conditioned on τ and averaged
over all inputs x ∈ IF. The rest of Ext’s calculations have an overall time
complexity which is polynomial in n, k, log |IF|.

Proof (Sketch). The extractor Ext runs a simple trial-and-error approach. It
repeatedly samples a uniformly random oracle input x ∈ IF, until it has found
inputs x1, . . . , xk such that the corresponding oracle outputs (yi, y

′
i) := T∗(xi)

pass the consistency checks λ · yi + y′i
?
= p̃(xi). Then, Ext computes and outputs

the minimal-degree interpolation polynomial p ∈ IFn[X] with p(xi) = yi for
i = 1, . . . , k. Note that we do not enforce pairwise distinctness of x1, . . . , xk.

There are two things to show. Firstly, we have to show that R on random
input x basically either rejects or produces output p(x). Secondly, we have to
estimate the expected number of queries from Ext to T∗. We start with the latter.
The sampling of each xi is a stochastic process with geometric distribution of
the number of oracle queries: Given that ρ is R’s accept probability conditioned
on some transcript τ , the expected number of queries for sampling one xi is∑∞
j=1 j · (1− ρ)j−1 · ρ = ρ−1. The sampling of x1, . . . , xk hence requires k · ρ−1

queries to T∗ on average.

Next, we turn to the question of how well the extracted polynomial p approxi-
mates the functionality of a real protocol run. W.l.o.g., S∗ follows a deterministic
worst-case strategy and we can consider it as a function that maps each possible
challenge λ ∈ IF to a polynomial p̃λ ∈ IFn[X] with deg(p̃λ) ≤ k−1. Analogously,
T∗ implements a deterministic function by assumption. Thus, for each combina-
tion of λ and x it is fixed whether R finally rejects or not. This defines a relation
between challenges λ and oracle inputs x. It can be represented as a bipartite
graph, where a left-hand vertex λ is adjacent to a right-hand vertex x if R does
not reject the corresponding protocol run. Our proof now boils down to showing
that there exists a subset of “bad” edges E′ such that

1. uniformly random λ and x are adjacent via a “bad” edge only with negligible
probability, namely |E′|/|IF|2 ≤ |IF|−Ω(1), and

2. after removal of all “bad” edges from the graph, T∗ implements on each
neighborhood of a possible challenge λ a polynomial function of degree at
most k − 1.

For the existence proof of E′ see the full version [22]. The key observations used
there are

– that T∗ implements a polynomial function of low degree on the common
neighborhood N (λ) ∩N (λ′) of any distinct challenges λ, λ′ and

– that after removal of only a few edges, our graph decomposes into a disjoint
collection of complete bipartite subgraphs.

Once E′ is shown to exist, we finally need to argue that the following event has
probability |IF|−Ω(1):

– The receiver does not reject and
– one of the oracle inputs x1, . . . , xk sampled by Ext is adjacent via a “bad”

edge to the challenge λ given by τ , or xi = xj for some i 6= j.

This implies that ρ′ ≤ |IF|−Ω(1). However, since |E′|/|IF|2 ≤ |IF|−Ω(1), we already
have with probability 1 − |IF|−Ω(1) (taken over the randomness of λ) that the
given challenge λ is only adjacent to an |IF|−Ω(1)-fraction of all inputs x ∈ IF
or λ is adjacent to |IF|Ω(1) edges of which only an |IF|−Ω(1)-fraction is “bad”. It
follows that the event above has the claimed negligible probability. ut

4 Bounded-Resettable Tamper-Proof Hardware

In this section we define and discuss the ideal functionality for bounded-reset-
table tamper-proof hardware (q.v. Figure 2). It is a slightly modified version of
the Fwrap-functionality introduced by [38]. The token sender provides a (w.l.o.g.,
deterministic) Turing machine and the receiver can then run it once on an input
word of his choice, staying oblivious of any internal secrets. A malicious receiver
can reset the token and query it repeatedly, until some bound q is reached
and the functionality does not respond any more. The query bound q models

Functionality Fb-r
wrap

Implicitly parametrized by a query bound q. The variable resets left is initialized by
resets left ← q − 1.

Creation:

1. Await an input (create,M, b) from the token issuer, where M is a determinis-
tic Turing program and b ∈ N. Then, store (M, b) and send (created) to the
adversary.

2. Await a message (delivery) from the adversary. Then send (ready) to the token
receiver.

Execution:

3. Await an input (run, w) from the receiver. Run M on input w. When M halts
without generating output or b steps have passed, send a special symbol ⊥ to the
receiver; else send the output of M.

Reset (adversarial receiver only):

4. Upon receiving a message (reset) from a corrupted token receiver, verify that
resets left > 0. If so, decrease resets left by 1 and go back to Step 3; otherwise
ignore that message.

Fig. 2. The wrapper functionality by which we model bounded-resettable tamper-proof
hardware. The runtime bound b is merely needed to prevent malicious token senders
from providing a perpetually running program code M; it will be omitted throughout
the rest of the paper.

an estimation for how often an adversary could reset a token that is meant
to shut down for good after the first query. All our protocols rely on q being
polynomially bounded in the security parameter and a smaller bound q implies
better efficiency.

We stress that tokens are not actually required to contain a state that counts
the number of queries. Our definition of Fb-r

wrap is just the most general way to
model any kind of token for which an upper bound of resets can be derived. E.g.,
it suffices that (1−ρ)q is negligible, where ρ is an upper bound for the probability
that the token successfully self-destructs after a query. As well, the token could
try to delete its program M or make it inaccessible but an adversarial receiver
could slow down that process or interrupt the deletion before it is complete, so
that several queries are possible before M becomes finally out of reach for him.
One can also imagine that security is only needed for some limited time (which is
usually the case for the binding property of commitments) and hence it suffices
to estimate the number of queries within this time. The latter seems particularly
feasible, because it relies on the minimum possible response time of an honestly
generated token.

Further note that our definition can be canonically extended to tokens that
can be queried more than once also by honest users. However, our approach has
the advantage to be trivially secure against tokens that maliciously change their
functionality depending on the input history.

Our model is weaker than the stateful-token model in the sense that no pre-
viously known protocol with stateful tokens can tolerate even a single reset.
They would be all completely broken. Therefore, none of the known positive
results for stateful tokens does carry over to our model (unless q = 1). In turn,
bounded-resettable tokens can be trivially implemented from unresettable state-
ful tokens. So, our results are strictly stronger than the corresponding results
for stateful tokens. On the other hand, bounded-resettable tokens are strictly
more powerful than arbitrarily resettable (i.e., standard stateless) tokens, since
non-interactive commitments and statistically secure OT are possible with the
former but impossible with the latter.

4.1 Commitments from the Token Sender to the Token Receiver

The basic idea how the token issuer can commit himself to some secret s is quite
simple. He stores a random degree-q polynomial p on the token and sends the
token together with r := s + p(0) to the receiver. The token lets the receiver
evaluate p on arbitrary challenges x, except for x = 0. To unveil s, the sender
sends a description of p. The scheme is perfectly hiding, because even a corrupted
receiver can query the token on at most q inputs, receiving only randomness that
is statistically independent of p(0). The scheme is statistically binding, because
for any two distinct unveil messages p, p′ and a uniformly random token input x
it holds with overwhelming probability (namely at least 1 − q

|IF|−1 , where IF is

the finite field in which all computations take place) that p(x) 6= p′(x) and thus
at least one unveil message will be inconsistent with the receiver’s view.

Unfortunately, the scheme as stated above is not UC-secure against a cor-
rupted sender. The reason for this is that the sender simulator must be able to
extract the secret s from the token program and the commit message r. If the
token is issued honestly and thus implements a degree-q polynomial p, the sim-
ulator can evaluate the token code on q+ 1 different inputs, then reconstruct p,
and compute s = r−p(0). However, a maliciously issued token can implement an
arbitrarily complicated function, which behaves like a degree-q polynomial only
on a vanishing but still non-negligible fraction of inputs. It is at the very least
unclear if one can extract the correct polynomial from such a token efficiently.
Therefore, we employ our oracle validation scheme from Section 3 to make the
token extractable. See Figure 3 for the resulting commitment protocol, which
even implements many commitments using only one token.

Lemma 2. The protocol Πs-o
COM (q.v. Figure 3) UC-implements F s-o

COM (q.v. Ap-
pendix A.2).

Proof (Sketch). We start with the case of a corrupted receiver. The main issue
in this case is that the simulator has to equivocate commitments in the unveil
phase. He can do so by picking polynomials p̂, p̂′ ∈ IFn2` [X] such that

Protocol Πs-o
COM

Implicitly parametrized by a token query bound q, a commitment number n, and a
commitment length `. The security parameter is `. For any vector v = (v1, . . . , vn)
and I ⊆ {1, . . . , n} let vI := (vi)i∈I .

Setup phase:

1. Sender: Pick two uniformly random polynomials p, p′ ∈ IFn
2` [X] of degree at most

q. Program a token T which on input x ∈ IF2` \{0} outputs
(
p(x), p′(x)

)
and

ignores input x = 0. Send T to the receiver.
2. Receiver: Pick λ ∈ IF2` uniformly at random and send it to the sender.
3. Sender: Compute p̃ := λ · p+ p′ and send it to the receiver.

Commit phase:

4. Sender: Let s := (s1, . . . , sn) ∈ IFn
2` be the sender’s input. Send r := s + p(0) to

the receiver.
5. Receiver: Input a uniformly random x ∈ IF2` \{0} into T; let (y, y′) denote the

response.

Unveil phase:

6. Sender: Let I ⊆ {1, . . . , n} indicate the commitments to be opened. Send (I, pI)
to the receiver.

7. Receiver: If deg(p̃) ≤ q and λ · y + y′ = p̃(x) and pI(x) = yI , output ŝI :=
rI − pI(0); else reject.

Fig. 3. Statistically UC-secure commitments where the sender is the token issuer.

–
(
p̂(x), p̂′(x)

)
=
(
p(x), p′(x)

)
for all inputs x on which the simulated token

was queried so far,
– λ · p̂+ p̂′ = p̃, deg(p̂, p̂′) ≤ q, and
– p̂I(0) = ŝI , where ŝI is the desired result of the equivocation,

and reprogramming the token such that on input x it now outputs
(
p̂(x), p̂′(x)

)
.

The unveil message for equivocating the commitment to ŝI is just (I, p̂I). Since
the corrupted receiver can query the token at most q times, this is in his view
perfectly indistinguishable from a proper commitment.

Now we show security against a corrupted sender. The simulator has to ex-
tract commitments in the unveil phase. He can do so by running the extractor
Ext from Lemma 1 on the transcript of the setup phase and with rewindable
access to the token code T∗. The extracted polynomial p allows the simulator
to reconstruct the committed secret s from the corrupted sender’s commit mes-
sage r as s = r − p(0). Note that Ext may have exponential runtime, but only
needs to be run if by the end of the commit phase it is not already clear that
the receiver will reject anyway. Therefore, the simulator must first check that
λ · y + y′ = p̃(x) and then run Ext only if the check is passed. Since Ext has

complexity
(
` · |T∗|

)O(1) · ρ−1, where ρ is just the probability that this check is

passed, we end up with an expected simulation complexity of
(
` · |T∗|

)O(1)
. ut

Remark 1. The commitment scheme Πs-o
COM is statistically binding, even if λ is

fixed and known to the sender. This yields a statistically secure non-interactive
commitment scheme in the bounded-resettable hardware model, which was proven
impossible in the stateless-token model [28].

4.2 Commitments from the Token Receiver to the Token Sender

For a commitment from the token receiver to the token sender we need a slightly
more sophisticated approach. As in our previous commitment scheme, the token
implements a random degree-q polynomial p. The token receiver can then commit
to some secret s by inputting a random x into the token, thus learning p(x), and
announcing a commit message that consists of

– a fraction of bits of p(x), say the first quarter of its bit-string representation,
– a 2-universal hash function h, and
– m := s+ h(x).

To unveil s, he just needs to announce the used token input x. We briefly sketch
now why this scheme is hiding and binding. We start with the latter. Due to
the query-bound q, the token acts just like a perfectly random function. Thus,
a corrupted commitment sender may only with negligible probability find two
distinct unveil messages x, x′ such that p(x) and p(x′) agree on the first quarter
of their bit-string representation. This establishes the binding property. The
token issuer, however, learns only several bits of information about x during the
commit phase, so that from his view x has still linear entropy afterwards. Since
h is a 2-universal hash function, this means that he cannot predict h(x) and
thus the commitment is hiding. Still, we need to employ our oracle validation
scheme from Section 3 again to make the token extractable, as otherwise we have
no UC-security against a corrupted commitment receiver. See Figure 4 for the
resulting protocol.

Lemma 3. The protocol Πrev
COM (q.v. Figure 4) implements FCOM (q.v. Ap-

pendix A.1) UC-secure against a corrupted commitment sender.

Proof (Sketch). We just have to exploit that the simulator sees all token inputs.
As the number of token queries by the commitment sender is upper bounded by
q, the token acts from his views like a perfectly random function. Hence, with
overwhelming probability his announcement of ỹ in the commit phase either
corresponds to a unique input x already sent to the token or he is caught cheating
in the unveil phase. In the former case, the simulator can find x just by scanning
through the token’s input history, compute the correct secret s = m− 〈h |σ(x)〉
and send it to the ideal commitment functionality FCOM. In the other case, the
simulator can just send anything to the ideal functionality, because only with
negligible probability he might need to unveil it later. ut

Protocol Πrev
COM

Implicitly parametrized by a token query bound q and a commitment length `. The
security parameter is `. Let σ : IF24` → IF4

2` , x 7→
(
σ1(x), . . . , σ4(x)

)
be the canonical

IF2` -vector space isomorphism.

Setup phase:

1. Receiver: Pick two uniformly random polynomials p, p′ ∈ IF24` [X] of degree at
most q and program a token T which on input x ∈ IF24` outputs

(
p(x), p′(x)

)
.

Send T to the sender.
2. Sender: Pick λ ∈ IF24` uniformly at random and send it to the receiver.
3. Receiver: Compute p̃ := λ · p+ p′ and send it to the sender.

Commit phase:

4. Sender: Let s ∈ IF2` be the sender’s input. Input a uniformly random x ∈ IF24`

into the token T; let (y, y′) denote the response. If λ·y+y′ = p̃(x) and deg(p̃) ≤ q,
pick a uniformly random h ∈ IF4

2` and compute m := s+〈h |σ(x)〉 and ỹ := σ1(y)
and send (m,h, ỹ) to the receiver; otherwise abort.

Unveil phase:

5. Sender: Send x to the receiver.
6. Receiver: Verify that ỹ = σ1(p(x)). If so, output ŝ := m − 〈h |σ(x)〉; otherwise

reject.

Fig. 4. Statistically UC-secure commitment where the receiver is the token issuer.

Proving UC-security against a corrupted commitment receiver, i.e. providing
a simulator that equivocates commitments, is more challenging. Note that even
after extracting a polynomial p that approximates the token functionality, it is
still nontrivial to find a token input x̂ such that the first quarter of bits of p(x̂)
matches the given commit message (m,h, ỹ) while m−h(x) = ŝ for a new secret
ŝ. This problem can be expressed as a polynomial equation system. Here the
efficient algorithm of [9] for sampling random solutions comes into play. (See
Appendix B for a brief explanation that all preconditions of [9, Theorem 1.1]
are met.) In addition, the simulator has to make sure that the sampled solution
x̂ is actually possible in the real model: He has to (re)sample x̂ until p(x̂) agrees
with the token functionality and the consistency check in Step 4 of the commit
phase of Πrev

COM is passed. See Figure 5 for the detailed simulator description.
The resampling of x̂ imposes some extra difficulty for the runtime estimation,
but we refer to the full version [22] for the technical calculation. Next, we show
that our scheme is statistically hiding. This is needed for the UC proof and has
further application later in our construction of resettable zero-knowledge.

Lemma 4. The protocol Πrev
COM is statistically hiding, even if λ is fixed.

Simulator for a corrupted token issuer that receives commitments

Setup phase: Simulated straightforwardly, using a simulated version of the complete
real model where the simulated adversary is wired to the ideal model’s environment
in the canonical way. Store (λ, p̃) and the token program T∗ sent by the corrupted
commitment receiver to the simulated functionality Fb-r

wrap.

Commit phase: Simulated straightforwardly, with random sender input s. Store
(m,h, ỹ).

Unveil phase: If the simulated commitment sender has already aborted, do noth-
ing. Otherwise, upon receiving (opened, ŝ) from FCOM replace the stored unveil in-
formation x in the simulated sender’s memory with x̂, computed by the following
equivocation program, and let him then proceed with the protocol.

1. Setup the extractor Ext from Lemma 1 with parameters IF := IF24` , n := 1, and
k := q + 1. Provide Ext with the transcript τ := (λ, p̃) and rewindable access to
the token code T∗.

2. Start Ext. If Ext queries T∗ more than 2` times, give up; otherwise let p denote
Ext’s output.

3. Compute the unique polynomial p1 ∈ IF2` [X1, . . . , X4] such that deg(p1) ≤
deg(p) and σ1 ◦ p = p1 ◦σ, where “◦” denotes the function composition operator.
Then pick a uniformly random solution x̂ ∈ IF24` of the following polynomial
equation system, using the efficient algorithm of [9]:

p1(σ(x̂)) = ỹ

〈h |σ(x̂)〉 = m− ŝ

Resample x̂ until p(x̂) = t(x̂) and p̃(x̂) = λ · t(x̂)+ t′(x̂), where t, t′ : IF24` → IF24`

such that T∗(x̂) =
(
t(x̂), t′(x̂)

)
. Give up, if more than 2

√
` iterations are required.

4. Replace x in the simulated sender’s memory by x̂.

Fig. 5. Simulator for a corrupted token issuer in the protocol Πrev
COM (q.v. Figure 4).

Proof. Let λ and p̃ be arbitrary but fixed. Let t, t′ : IF24` → IF24` represent
the (possibly) corrupted token functionality in the sense that the token maps
x 7→

(
t(x), t′(x)

)
. Moreover, let Z := IF2` ∪ {⊥} and for each z ∈ Z let Mz

denote the set of all token inputs x that lead to a commit message (m,h, ỹ) with
ỹ = z. I.e., Mz = {x ∈ IF24` |λ · t(x) + t′(x) = p̃(x) ∧ σ1(t(x)) = z} for z ∈ IF2`

and M⊥ = {x ∈ IF24` |λ · t(x) + t′(x) 6= p̃(x)}. For uniformly random x ∈ IF24`

and the corresponding ỹ (meaning that ỹ = σ1(t(x)) if λ · t(x)+ t′(x) = p̃(x) and
else ỹ = ⊥) it holds:

max
e:Z→IF

24`

Pr[x=e(ỹ)] = E(|Mỹ|−1) =
∑
z∈Z

Pr[x∈Mz] · |Mz|−1

=
∑
z∈Z

1

|IF24` |
= 2−3` + 2−4`

Hence, for uniformly random u ∈ IF2` we can conclude by the Generalized left-
over hash lemma [20, Lemma 2.4]:

∆
(
(〈h |σ(x)〉, h, ỹ) , (u, h, ỹ)

)
≤ 1

2

√
max

e:Z→IF
24`

Pr[x=e(ỹ)] · |IF2` |

=
1

2

√
2−2` + 2−3` < 2−`

It directly follows now that the statistical distance between a commitment on
any secret s and a commitment on uniform randomness is also upper bounded
by 2−`. ut

Corollary 1. The protocol Πrev
COM implements FCOM (q.v. Appendix A.1) UC-

secure against a corrupted receiver. The simulation depicted in Figure 5 is in-
distinguishable from the real model.

Proof. Consider the following sequence of experiments.

Experiment 1: This is the real model.
Experiment 2: The same as Experiment 1, except that the commitment sender

commits to pure randomness in the commit phase and runs in the unveil
phase a complete search over all token inputs to equivocate the commit-
ment to his real input (which requires to reset the token exponentially many
times).

Experiment 3: The same as Experiment 2, except that the complete search
in the equivocation step is only over token inputs x on which the token
functionality x 7→

(
t(x), t′(x)

)
coincides with the mapping x 7→

(
p(x), t′(x)

)
,

where p denotes the polynomial computed by Ext from the token program
and the transcript of the setup phase.

Experiment 4: The ideal model, conditioned on the event that the simulator
does not give up.

Experiment 5: This is the ideal model.

Experiment 1 and Experiment 2 are indistinguishable, because the commit-
ment is statistically hiding (Lemma 4). Indistinguishability between Experi-
ment 2 and Experiment 3 follows from the negligibility of Ext’s failure prob-
ability ρ′ (Lemma 1). Experiment 3 and Experiment 4 are indistinguishable by
construction of the simulator—here we need that by [9] one finds solutions for
a polynomial equation system that are statistically close to random solutions
(cf. Appendix B). Experiment 4 and Experiment 5 are indistinguishable, since
the simulator has polynomial expected runtime complexity (see full version [22])
and thus gives up only with negligible probability. ut

5 Multiple OT from O(1) Tokens

5.1 Multiple OT with Combined Abort

We adapt and enhance a protocol idea by [28] for a single OT instance in the
stateless-token model. It works as follows. The OT-receiver first commits to his

Protocol Πc-ab
MOT

Implicitly parametrized by the number n of single OTs to be implemented. Based
upon our commitment schemes Πs-o

COM and Πrev
COM and a statistically secure message

authentication scheme MAC, e.g. from [44].

1. Sender: Let (s
(1)
0 , s

(1)
1), . . . , (s

(n)
0 , s

(n)
1) be the sender’s n OT-inputs. Sample a key

k for the message authentication scheme MAC. Commit to the 2n values s
(i)
0 , s

(i)
1

via Πs-o
COM and prepare a hardware token TOT with the following functionality

and send it to the receiver:
– On input (c, w, τ, σ), verify that c ∈ {0, 1}n, σ = MACk(τ), and w is a

correct Πrev
COM-unveil of c with commit phase transcript τ . If so, return the

Πs-o
COM-unveil messages for s

(1)
c1 , . . . , s

(n)
cn .

2. Receiver: Let c = (c1, . . . , cn) be the receiver’s choice bits. Commit to c via
Πrev

COM.
3. Sender: Take the message transcript τ of Step 2, compute σ = MACk(τ), and

send σ to the receiver.
4. Receiver: Let w be the Πrev

COM-unveil message for c. Input (c, w, τ, σ) into TOT; let
(r1, . . . , rn) denote the response. Verify that r1, . . . , rn are correct unveil messages
for the corresponding Πs-o

COM-commitments from Step 1 indexed by c. If so, output
the unveiled values; otherwise abort.

Fig. 6. Reduction of multiple OT with combined abort to our commitment protocols.

choice bit. The OT-sender then programs a token TOT and provides it with all
his random coins and the message transcript of the commitment protocol. The
token implements the following functionality. Upon receiving an unveil message
for a bit c, the token checks if the unveil is correct; if so, it will provide an OT
output sc. The token TOT is transferred to the receiver, he unveils to it his choice
bit and learns the corresponding OT output.

Since the commitments of [28] in the stateless-token model require the com-
mitment receiver to access some token in the unveil phase, they need the OT-
sender to encapsulate tokens into each other. We can circumvent this by our
commitment scheme Πrev

COM, where the commitment receiver does not access any
tokens at all. So far, we can implement one OT instance with two tokens. Now,
if we implement many OT instances in parallel the straightforward way, i.e. let-
ting the receiver unveil all his choice bits to the token TOT, we run into trouble:
Each of the many OT outputs by TOT can arbitrarily depend on all choice bits.
Therefore, we let the sender first commit to the OT outputs via our construction
Πs-o

COM. The token TOT then merely unveils the requested OT outputs. Still, TOT

can abort depending on all the choice bits, but we are fine with this for the mo-
ment and deal with it in the next section. Thus, our OT construction implements
a flawed version of the ideal multiple-OT functionality, where a corrupted sender
can additionally upload a predicate that decides whether the receiver’s choice
bits are accepted (cf. Appendix A.3). A similar level of security was achieved by
[33] in the context of non-interactive secure computation.

There is one further refinement of the protocol, by which we achieve that all
tokens can be issued independently of the parties’ OT inputs. So far, the program
code of TOT depends on the message sent by the OT-receiver for the Πrev

COM-
commitment on his choice bits. Instead, the token sender can give the receiver
an information-theoretic MAC for this message, the receiver can input it together
with the unveil message into TOT, and the code of TOT thus needs to depend
only on the MAC-key—note that by construction of Πs-o

COM, the unveil messages
that TOT outputs are independent of the committed secrets. The complete OT
protocol is given in Figure 6.

Lemma 5. The protocol Πc-ab
MOT (q.v. Figure 6) UC-implements Fc-ab

MOT (q.v. Ap-
pendix A.3).

Proof (Proof-sketch). We first show UC-security against a corrupted OT-receiver.
In this case, the simulator can fake a real protocol run, exploiting extractability
of Πrev

COM-commitments and equivocality of Πs-o
COM-commitments. The simulation

basically works as follows. Step 1 of Πc-ab
MOT is simulated straightforwardly with

random input for the simulated sender. In Step 2, the corrupted receiver’s choice
bits (c1, . . . , cn) can be extracted (using the sender simulator for Πrev

COM) and
sent to the ideal functionality Fc-ab

MOT. Then, Step 3 again is simulated straight-
forwardly. Finally, in Step 4, the unveil messages output by the simulated token
TOT are replaced (using the receiver simulator for Πs-o

COM) such that the com-

mitments from Step 1 are equivocated to the OT-outputs ŝ
(1)
c1 , . . . , ŝ

(n)
cn received

from Fc-ab
MOT. Indistinguishability of the simulation from the real model follows

from the UC-security of Πs-o
COM and Πrev

COM and the unforgeability of the message
authentication scheme MAC.

Next, we show UC-security against a corrupted OT-sender. The simula-
tor works as follows. In Step 1 of Πc-ab

MOT, the corrupted sender’s OT inputs

(s
(1)
0 , s

(1)
1), . . . , (s

(n)
0 , s

(n)
1) can be extracted (using the sender simulator forΠs-o

COM).
Step 2 and Step 3 of Πc-ab

MOT are simulated straightforwardly with random in-
put for the simulated receiver. Then the simulator has to send the extracted

OT inputs (s
(1)
0 , s

(1)
1), . . . , (s

(n)
0 , s

(n)
1) together with an abort predicate Q to the

ideal functionality Fc-ab
MOT. The predicate Q is defined by the following program,

parametrized with the Πs-o
COM-commitments and the token code T∗OT obtained

in Step 1 of Πc-ab
MOT, the transcript τ of Step 2, and σ from Step 3:

1. Upon input c ∈ {0, 1}n, use the receiver simulator for Πrev
COM to obtain an

unveil message ŵ that equivocates τ to c.
2. Run T∗OT on input (c, ŵ, τ, σ); let (r1, . . . , rn) denote the response.
3. Simulate the check in Step 4 of Πc-ab

MOT, i.e., verify that r1, . . . , rn are correct
unveil messages for the corresponding Πs-o

COM-commitments indexed by c. If
so, accept; otherwise reject.

Indistinguishability of the simulation from the real model just follows from the
UC-security of Πs-o

COM and Πrev
COM. ut

Remark 2. Though stated as a three-token construction, our protocol Πc-ab
MOT

can as well be implemented with two tokens, if one allows a token to be queried

twice. In particular, the token TOT gets with w a complete transcript of the
messages sent to the token used in the subprotocol Πrev

COM anyway. Hence, even
if maliciously issued tokens can keep a complex state, it does not compromise
security if these two tokens are combined into one query-twice token.

5.2 How to Get Rid of the Combined-Abort Flaw

The question of how to implement ideal oblivious transfer from the flawed version
Fc-ab

MOT is closely related to the research field of OT combiners. However, an
OT combiner needs access to independent OT instances, some of which may be
corrupted. In contrast, Fc-ab

MOT leaks a predicate over the receiver’s joint inputs for
the multiple OT instances. Therefore we need an OT extractor, as defined in [34],
rather than an OT combiner. However, the scope of [34] is skew to ours. They
consider semi-honest parties, which follow the protocol, and only the leakage
function is chosen maliciously. In this setting they aim at a constant extraction
rate. In contrast, we consider malicious parties that may try to cheat in the
extraction protocol, but we do not care much about the rate. For our purpose it
suffices to implement n ideal OT instances from nO(1) flawed instances.

Our solution follows the basic idea of [36] to take an outer protocol with
many parties and emulate some of the parties by an inner protocol, such that
the security features of both protocols complement each other. However, before
we describe our solution, we briefly sketch why a more classic OT combiner based
on 2-universal hashing would be insecure in our case. Such combiners are usually
built such that the receiver’s ideal-OT choice bits are basically 2-universal hash
values of his flawed-OT inputs, which are uniformly random, and similarly for
the outputs. In the Fc-ab

MOT-hybrid model, such an approach is susceptible to the
following generic attack. The sender just follows the protocol, except that he

randomly chooses two of his Fc-ab
MOT-input tuples, say

(
s̃
(i)
0 , s̃

(i)
1

)
and

(
s̃
(j)
0 , s̃

(j)
1

)
,

and flips the bits of s̃
(i)
1 and s̃

(j)
1 . Furthermore, he defines the abort predicate

Q such that it rejects the receiver’s choice bits c̃ := (c̃1, c̃2, . . .) if and only if
c̃i = c̃j = 1. This attack has the following effect. With non-negligible probability,
the 2-universal hash functions are chosen such that

– the receiver’s i-th flawed-OT input-output tuple (c̃i, r̃i) influences the calcu-
lation of an ideal-OT input-output tuple (ck, rk), but not (cl, rl), where l is
an index such that

– the receiver’s j-th flawed-OT input-output tuple (c̃j , r̃j) influences (cl, rl),
but not (ck, rk).

In such a case, it happens with probability 1
2 that (ck, rk) is affected by the bit-

flip of s̃
(i)
1 , namely if c̃i = 1. Likewise, (cl, rl) is affected by the bit-flip of s̃

(j)
1 if

c̃j = 1. Both events are statistically independent of each other, but by definition
of the abort predicate Q it will never happen that the receiver produces regular
output while (ck, rk) and (cl, rl) are both affected by the attack. This correlation
between the joint distribution of the receiver’s ideal-OT inputs and outputs and
the event of an abort is not simulatable with an ideal OT.

Our construction is at an abstract level very similar to the OT combiner of
[32]. We believe that the constructions of [32] can also be proven secure when
based on Fc-ab

MOT, but we prefer to present a simple combination of results from
the literature as opposed to tampering with the proof details. Our final OT
construction consists of three ingredients:

1. Our Fc-ab
MOT implementation,

2. a construction for general, statistically UC-secure two-party computation in
the OT-hybrid model, e.g. from [36], and

3. a statistically UC-secure protocol for multiple OT based on a single untrusted
stateful tamper-proof hardware token, which we take from [21].

We take the token functionality from [21] and implement it by secure two-party
computation from [36], based on Fc-ab

MOT instead of ideal OT. Note that OT can
be stored and reversed [4,45] and therefore it suffices to query Fc-ab

MOT just once in
the beginning with the token receiver being also the OT-receiver. The “emulated
token” then replaces all token queries in the otherwise unchanged protocol of [21].
Now, any specification of the abort predicate in Fc-ab

MOT directly corresponds to a
maliciously programmed token that stops functioning depending on its inputs.
Since the construction of [21] is UC-secure against any malicious token behavior,
we finally obtain UC-secure OT.

Remark 3. Notice that this directly provides an impossibility result for commit-
ments in the stateless-token model where the unveil phase consists only of a
single message from the sender to the receiver and local computations (without
accessing any tokens) by the receiver. Otherwise our OT construction could be
implemented in the stateless-token model (without encapsulation), contradicting
the impossibility result for OT given in [28].

6 Bounded-Resettable Zero-Knowledge Proofs of
Knowledge

We modify the constant-round zero-knowledge protocol of [26] for 3-COLOR
such that the prover becomes resettable and only two tokens have to be sent
to the verifier. In the protocol of [26], the verifier first commits to his challenge
(the edges determining the vertices that are to be revealed), then the prover
commits to permutations of the colored vertices. The verifier then reveals the
challenge and the prover opens the specified commitments. The main problem
imposed by a resettable prover is that a malicious verifier could try to run the
same protocol several times, each time with different challenges, and hence step
by step learn the prover’s witness. The standard technique to deal with this is
to let the prover’s color permutations depend on the verifier’s commitment in a
pseudorandom way. Since we aim for statistical zero-knowledge, we cannot use
a pseudorandom function, but need to replace it by a random polynomial of
sufficient degree.

For our construction, we replace the computational commitments in [26] with
the statistical commitments presented in the previous sections. Though, our

Protocol Πb-r
SZK

Implicitly parametrized by a simple 3-colorable graph G = (V,E) and a query bound
q in the sense that a malicious verifier can reset the prover at most q − 1 times. Let
n := |V |, t := n · |E|, and V := {1, . . . , n}.

Auxiliary input for prover: A 3-coloring of G, denoted ϕ : V → {1, 2, 3}.

Setup phase:

– Prover: Select a random degree-q polynomial f ∈ F2l [X], where l is the number
of random bits needed for token generation in Πs-o

COM for n · t commitments.
Further, select a random degree-q polynomial g ∈ F2k [X], where k is the number
of random bits needed to generate t random permutations over {1, 2, 3}. W.l.o.g.,

l and k are larger than the commit message length in Π̃rev
COM. Create two tokens

Trev and Ts-o with the following functionalities and send them to the receiver:
• Trev: Just implement the token functionality of Π̃rev

COM.
• Ts-o: Upon input (x, crev), simulate the token generation procedure of Πs-o

COM

with randomness f(crev‖0 . . . 0), evaluate the generated token program on
input x, and output the result.

Proof phase:

1. Verifier: Uniformly and independently select a random value λs-o according to
the setup phase of Πs-o

COM and a t-tuple of edges Ē = ({u1, v1}, . . . , {ut, vt}) as

a challenge for the zero-knowledge proof. Use Π̃rev
COM to commit to (Ē, λs-o) and

send the corresponding commit message crev to the prover.
2. Prover: Compute r = f(crev‖0 . . . 0) and r′ = g(crev‖0 . . . 0). Use r′ to select t

random permutations π1, . . . , πt over {1, 2, 3} and set φi(v) = πi(ϕ(v)) for each
v ∈ V and i ∈ {1, . . . , t}. Use r to simulate the token generation of Πs-o

COM and
compute the corresponding Πs-o

COM-commit message cs-o to commit to φi(v) for
all v ∈ V and i ∈ {1, . . . , t}. Send cs-o to the verifier.

3. Verifier: Send crev and the corresponding Π̃rev
COM-unveil message to the prover,

thus unveiling (Ē, λs-o).
4. Prover: If the unveil was not correct, abort. Else, compute r = f(crev‖0 . . . 0)

and simulate the token generation of Πs-o
COM as in Step 2. Compute the response

p̃s-o for λs-o according to the setup phase of Πs-o
COM. Let ws-o be the Πs-o

COM-unveil
message for the commitments indexed by Ē. Send (p̃s-o, ws-o) to the verifier.

5. Verifier: Check the unveiled commitments according to the unveil phase of Πs-o
COM.

Also verify for each edge {ui, vi} ∈ Ē that φi(ui) 6= φi(vi). If all checks are passed,
accept the proof; if not, reject.

Fig. 7. Construction of a bounded-resettable statistical zero-knowledge proof of knowl-
edge.

commitment schemes have an interactive setup phase and become insecure if
the token issuer is resettable. However, by fixing λ in the setup phase of Πrev

COM,

the resulting commitment scheme Π̃rev
COM becomes resettable and remains statis-

tically hiding (cf. Lemma 4). Making all the prover’s random choices dependent

on the verifier’s first Π̃rev
COM-commit message crev is the lever we use to obtain

resettability. This particularly has to include the randomness used in Πs-o
COM for

token generation. Therefore, we need to use a modified token in Πs-o
COM with

input domain X×C, where C is the set of all possible commit messages crev in
Π̃rev

COM and X is the input space for the original token program in Πs-o
COM. On

input (x, crev), the modified Πs-o
COM-token first simulates the token generation

of Πs-o
COM with randomness crev and then runs the generated token program on

input x. See Figure 7 for all further details.

Lemma 6. The protocol Πb-r
SZK UC-implements FZK (q.v. Appendix A.4).

Proof (Sketch). We first show UC-security against a corrupted verifier, i.e., the
simulator must fake a protocol run without knowing a witness. In Step 1 of Πb-r

SZK,

we exploit that Π̃rev
COM is still UC-secure against a corrupted commitment sender

and thus the challenge Ē can be extracted. Then, in Step 2, the simulated prover
can commit to different colorings for each challenged vertex pair {ui, vi} ∈ Ē
and to arbitrary colorings otherwise. The remaining protocol is just simulated
straightforwardly. Indistinguishability from a real protocol run follows, because
Πs-o

COM is statistically hiding.
We move on to show UC-security against a corrupted prover, i.e., the sim-

ulator has to extract a witness. The complete simulation just follows the real
protocol. If in the end the simulated verifier accepts, the sender simulator for
Πs-o

COM (provided with the corresponding message transcript and the token code
Ts-o) is used to extract the commitments from Step 2 of Πb-r

SZK, which yields
t colorings for the graph G. If none of them is a valid 3-coloring, the simula-
tor gives up; otherwise he sends a valid one to the ideal functionality FZK. It
remains to show that the simulator gives up only with negligible probability.
However, if none of the committed colorings is a valid 3-coloring, then the proof
is accepted by the simulated verifier at most with the following probability (ab-
stracting from the negligible case that some commitment is successfully broken
by the corrupted prover):(

1− 1
|E|
)t

=
(
1− 1

|E|
)n·|E|

= exp
(
n · |E| · log

(
1− 1

|E|
))

≤ exp
(
n · |E| ·

(
− 1
|E|
))

= exp(−n) ut

Remark 4. Furthermore, Πb-r
SZK is bounded-resettably zero-knowledge. The re-

settability of the prover follows from two facts. Firstly, the prover’s randomness
(r, r′) depends deterministically but otherwise unpredictable by the verifier on

his first message crev. Secondly, by the binding property of Π̃rev
COM, a corrupted

verifier cannot cheat in Step 3 of Πb-r
SZK other than switch to another instance of

the zero-knowledge protocol with unrelated prover randomness (r, r′).

Remark 5. Our construction Πb-r
SZK can directly be used to obtain a non-inter-

active zero-knowledge proof of knowledge scheme in the bounded-resettable
hardware model by storing the prover functionality in another token (or two
other tokens, if each token should be queried only once).

References

1. Arora, S., Safra, S.: Probabilistic checking of proofs; a new characterization of NP.
In: Foundations of Computer Science - Proceedings of FOCS 1992. pp. 2–13. IEEE
Computer Society (1992)

2. Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-
knowledge and its applications. In: Foundations of Computer Science - Proceedings
of FOCS 2001. pp. 116–125. IEEE Computer Society (2001)

3. Barak, B., Lindell, Y., Vadhan, S.P.: Lower bounds for non-black-box zero knowl-
edge. J. Comput. Syst. Sci. 72(2), 321–391 (2006)

4. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) Advances
in Cryptology - Proceedings of CRYPTO ’95. Lecture Notes in Computer Science,
vol. 963, pp. 97–109. Springer (1995)

5. Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and
applications to resettable cryptography. In: Boneh, D., Roughgarden, T., Feigen-
baum, J. (eds.) Symposium on Theory of Computing - Proceedings of STOC 2013.
pp. 241–250. ACM (2013)

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Foundations of Computer Science - Proceedings of FOCS 2001. pp.
136–145. IEEE Computer Society (2001), revised full version online available at
http://eprint.iacr.org/2000/067

7. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: Yao, F.F., Luks, E.M. (eds.) Symposium on Theory of
Computing - Proceedings of STOC 2000. pp. 235–244. ACM (2000)

8. Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computa-
tion using tamper-proof hardware. In: Smart, N.P. (ed.) Advances in Cryptology -
Proceedings of EUROCRYPT 2008. Lecture Notes in Computer Science, vol. 4965,
pp. 545–562. Springer (2008)

9. Cheraghchi, M., Shokrollahi, A.: Almost-uniform sampling of points on high-
dimensional algebraic varieties. In: Albers, S., Marion, J.Y. (eds.) Symposium on
Theoretical Aspects of Computer Science - Proceedings of STACS 2009. LIPIcs,
vol. 3, pp. 277–288. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
(2009)

10. Cho, C., Ostrovsky, R., Scafuro, A., Visconti, I.: Simultaneously resettable argu-
ments of knowledge. In: Cramer, R. (ed.) Theory of Cryptography - Proceedings
of TCC 2012. Lecture Notes in Computer Science, vol. 7194, pp. 530–547. Springer
(2012)

11. Choi, S.G., Katz, J., Schröder, D., Yerukhimovich, A., Zhou, H.S.: (Efficient) uni-
versally composable oblivious transfer using a minimal number of stateless tokens.
In: Lindell, Y. (ed.) Theory of Cryptography - Proceedings of TCC 2014. Lecture
Notes in Computer Science, vol. 8349, pp. 638–662. Springer (2014)

12. Chung, K.M., Ostrovsky, R., Pass, R., Visconti, I.: Simultaneous resettability from
one-way functions. In: Foundations of Computer Science - Proceedings of FOCS
2013. pp. 60–69. IEEE Computer Society (2013)

13. Chung, K.M., Pass, R., Seth, K.: Non-black-box simulation from one-way functions
and applications to resettable security. In: Boneh, D., Roughgarden, T., Feigen-
baum, J. (eds.) Symposium on Theory of Computing - Proceedings of STOC 2013.
pp. 231–240. ACM (2013)

14. Crescenzo, G.D., Persiano, G., Visconti, I.: Constant-round resettable zero knowl-
edge with concurrent soundness in the bare public-key model. In: Franklin, M.K.

http://eprint.iacr.org/2000/067

(ed.) Advances in Cryptology - Proceedings of CRYPTO 2004. Lecture Notes in
Computer Science, vol. 3152, pp. 237–253. Springer (2004)

15. Crescenzo, G.D., Persiano, G., Visconti, I.: Improved setup assumptions for 3-round
resettable zero knowledge. In: Lee, P.J. (ed.) Advances in Cryptology - Proceedings
of ASIACRYPT 2004. Lecture Notes in Computer Science, vol. 3329, pp. 530–544.
Springer (2004)

16. Damg̊ard, I., Scafuro, A.: Unconditionally secure and universally composable com-
mitments from physical assumptions. In: Sako, K., Sarkar, P. (eds.) Advances in
Cryptology - Proceedings of ASIACRYPT 2013. Lecture Notes in Computer Sci-
ence, vol. 8270, pp. 100–119. Springer (2013)

17. Deng, Y., Feng, D., Goyal, V., Lin, D., Sahai, A., Yung, M.: Resettable cryptog-
raphy in constant rounds - the case of zero knowledge. In: Lee, D.H., Wang, X.
(eds.) Advances in Cryptology - Proceedings of ASIACRYPT 2011. Lecture Notes
in Computer Science, vol. 7073, pp. 390–406. Springer (2011)

18. Deng, Y., Goyal, V., Sahai, A.: Resolving the simultaneous resettability conjecture
and a new non-black-box simulation strategy. In: Foundations of Computer Science
- Proceedings of FOCS 2009. pp. 251–260. IEEE Computer Society (2009)

19. Deng, Y., Lin, D.: Resettable zero knowledge with concurrent soundness in the
bare public-key model under standard assumption. In: Pei, D., Yung, M., Lin, D.,
Wu, C. (eds.) Information Security and Cryptology - Proceedings of Inscrypt 2007.
Lecture Notes in Computer Science, vol. 4990, pp. 123–137. Springer (2008)

20. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

21. Döttling, N., Kraschewski, D., Müller-Quade, J.: Unconditional and composable
security using a single stateful tamper-proof hardware token. In: Ishai, Y. (ed.)
Theory of Cryptography - Proceedings of TCC 2011. Lecture Notes in Computer
Science, vol. 6597. Springer (2011), extended full version online available at http:
//eprint.iacr.org/2012/135

22. Döttling, N., Kraschewski, D., Müller-Quade, J., Nilges, T.: General statistically
secure computation with bounded-resettable hardware tokens. IACR Cryptology
ePrint Archive 2014, Report 555 (2014), http://eprint.iacr.org/2014/555

23. Döttling, N., Mie, T., Müller-Quade, J., Nilges, T.: Implementing resettable UC-
functionalities with untrusted tamper-proof hardware-tokens. In: Theory of Cryp-
tography - Proceedings of TCC 2013 (2013)

24. Dziembowski, S., Kazana, T., Wichs, D.: Key-evolution schemes resilient to space-
bounded leakage. In: Rogaway, P. (ed.) Advances in Cryptology - Proceedings
of CRYPTO 2001. Lecture Notes in Computer Science, vol. 6841, pp. 335–353.
Springer (2011)

25. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Approximating clique
is almost NP-complete (preliminary version). In: Foundations of Computer Science
- Proceedings of FOCS 1991. pp. 2–12. IEEE Computer Society (1991)

26. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. J. Cryptology 9(3), 167–190 (1996)

27. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) Advances in Cryptology - Proceedings of CRYPTO 2008. Lecture Notes in
Computer Science, vol. 5157, pp. 39–56. Springer (2008)

28. Goyal, V., Ishai, Y., Mahmoody, M., Sahai, A.: Interactive locking, zero-knowledge
PCPs, and unconditional cryptography. In: Rabin, T. (ed.) Advances in Cryptology
- Proceedings of CRYPTO 2010. Lecture Notes in Computer Science, vol. 6223,
pp. 173–190 (2010)

http://eprint.iacr.org/2012/135
http://eprint.iacr.org/2012/135
http://eprint.iacr.org/2014/555

29. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) Theory of Cryptography
- Proceedings of TCC 2010. Lecture Notes in Computer Science, vol. 5978, pp. 308–
326. Springer (2010)

30. Goyal, V., Maji, H.K.: Stateless cryptographic protocols. In: Ostrovsky, R. (ed.)
Foundations of Computer Science - Proceedings of FOCS 2011. pp. 678–687. IEEE
(2011)

31. Goyal, V., Sahai, A.: Resettably secure computation. In: Joux, A. (ed.) Advances
in Cryptology - Proceedings of EUROCRYPT 2009. Lecture Notes in Computer
Science, vol. 5479, pp. 54–71. Springer (2009)

32. Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-combiners via secure com-
putation. In: Canetti, R. (ed.) Theory of Cryptography - Proceedings of TCC 2008.
Lecture Notes in Computer Science, vol. 4948, pp. 393–411. Springer (2008)

33. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient non-
interactive secure computation. In: Paterson, K.G. (ed.) Advances in Cryptology -
Proceedings of EUROCRYPT 2011. Lecture Notes in Computer Science, vol. 6632,
pp. 406–425. Springer (2011)

34. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Extracting correlations. In:
Foundations of Computer Science - Proceedings of FOCS 2009. pp. 261–270. IEEE
Computer Society (2009)

35. Ishai, Y., Mahmoody, M., Sahai, A.: On efficient zero-knowledge PCPs. In: Cramer,
R. (ed.) Theory of Cryptography - Proceedings of TCC 2012. Lecture Notes in
Computer Science, vol. 7194, pp. 151–168. Springer (2012)

36. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious trans-
fer - efficiently. In: Wagner, D. (ed.) Advances in Cryptology - Proceedings of
CRYPTO 2008. pp. 572–591. Lecture Notes in Computer Science, Springer (2008)

37. Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) Automata, Languages,
and Programming - Proceedings of ICALP 2008, Part II. Lecture Notes in Com-
puter Science, vol. 5126, pp. 536–547. Springer (2008)

38. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) Advances in Cryptology - Proceedings of EURO-
CRYPT 2007. Lecture Notes in Computer Science, vol. 4515. Springer (2007)

39. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) Advances in Cryptology - Proceedings of ASIACRYPT 2009,
Lecture Notes in Computer Science, vol. 5912, pp. 703–720. Springer (2009)

40. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In: Vitter, J.S., Spirakis, P.G., Yannakakis, M. (eds.) Sym-
posium on Theory of Computing - Proceedings of STOC 2001. pp. 560–569. ACM
(2001)

41. Kilian, J., Petrank, E., Tardos, G.: Probabilistically checkable proofs with zero
knowledge. In: Leighton, F.T., Shor, P.W. (eds.) Symposium on Theory of Com-
puting - Proceedings of STOC 1997. pp. 496–505. ACM (1997)

42. Micali, S., Reyzin, L.: Min-round resettable zero-knowledge in the public-key
model. In: Pfitzmann, B. (ed.) Advances in Cryptology - Proceedings of EURO-
CRYPT 2001. Lecture Notes in Computer Science, vol. 2045, pp. 373–393. Springer
(2001)

43. Moran, T., Segev, G.: David and Goliath commitments: UC computation for asym-
metric parties using tamper-proof hardware. In: Smart, N.P. (ed.) Advances in
Cryptology - Proceedings of EUROCRYPT 2008, Lecture Notes in Computer Sci-
ence, vol. 4965, pp. 527–544. Springer (2008)

44. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

45. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.)
Advances in Cryptology - Proceedings of EUROCRYPT 2006. Lecture Notes in
Computer Science, vol. 4004. Springer (2006)

46. Yung, M., Zhao, Y.: Generic and practical resettable zero-knowledge in the bare
public-key model. In: Naor, M. (ed.) Advances in Cryptology - Proceedings of
EUROCRYPT 2007. Lecture Notes in Computer Science, vol. 4515, pp. 129–147.
Springer (2007)

47. Zhao, Y., Deng, X., Lee, C.H., Zhu, H.: Resettable zero-knowledge in the weak
public-key model. In: Biham, E. (ed.) Advances in Cryptology - Proceedings of
EUROCRYPT 2003. Lecture Notes in Computer Science, vol. 2656, pp. 123–139.
Springer (2003)

A Ideal Functionalities

In this section we provide the ideal functionalities for our security proofs in the
UC-framework. For better readability, we omit session identifiers and cover only
the two-party case for each protocol.

A.1 Ideal Functionality for a Single Commitment

Functionality FCOM

Implicitly parametrized by a domain of secrets S.

Commit phase:

1. Await an input (commit, s) with s ∈ S from the sender. Then, store s and send
(committed) to the adversary.

2. Await a message (notify) from the adversary. Then send (committed) to the
receiver.

Unveil phase:

3. Await an input (unveil, ŝ) with ŝ ∈ S from the sender. Then, store ŝ and send
(opened) to the adversary.

4. Await a message (output) from the adversary. Then, if ŝ = s, send ŝ to the
receiver; otherwise, send a special reject message ⊥.

A.2 Ideal Functionality for Commitments with Selective Opening

Functionality F s-o
COM

Implicitly parametrized by a domain of secrets S and the number n of commitments
to be implemented.

Commit phase:

1. Await an input (commit, s) with s = (s1, . . . , sn) ∈ Sn from the sender. Then,
store s and send (committed) to the adversary.

2. Await a message (notify) from the adversary. Then send (committed) to the
receiver.

Unveil phase:

3. Await an input (unveil, I, ŝ) with I ⊆ {1, . . . , n} and ŝ = (ŝi)i∈I ∈ S|I| from the
sender. Then, store (I, ŝ) and send (opened) to the adversary.

4. Await a message (output) from the adversary. Then, if ŝ = (si)i∈I , send (I, ŝ)
to the receiver; otherwise, send a special reject message ⊥.

A.3 Ideal Functionality for Multiple Oblivious Transfer with
Combined Abort

Functionality Fc-ab
MOT

Implicitly parametrized by a sender input domain S and the number n of single OTs
to be implemented.

– Upon input
(
create, (s

(1)
0 , s

(1)
1), . . . , (s

(n)
0 , s

(n)
1)
)

with (s
(i)
0 , s

(i)
1) ∈ S×S from the

sender, verify that the sender is uncorrupted; otherwise ignore that input. Next,
store (s

(0)
0 , s

(0)
1), . . . , (s

(n)
0 , s

(n)
1), send (sent) to the adversary, and henceforth

ignore any further input from the sender.
– Upon input

(
mal create, (s

(1)
0 , s

(1)
1), . . . , (s

(n)
0 , s

(n)
1), Q

)
with (s

(i)
0 , s

(i)
1) ∈ S ×

S and a predicate Q : {0, 1}n → {accept, reject} from the sender, ver-
ify that the sender is corrupted; otherwise ignore that input. Next, store
(s

(0)
0 , s

(0)
1), . . . , (s

(n)
0 , s

(n)
1) and Q, send (sent) to the adversary, and henceforth

ignore any further input from the sender.
– Upon input (choice, c) with c = (c1, . . . , cn) ∈ {0, 1}n from the receiver, store
c, send (chosen) to the adversary, and henceforth ignore any further input from
the receiver.

– Upon receiving a message (output) from the adversary, check that there are

stored inputs (s
(1)
0 , s

(1)
1), . . . , (s

(n)
0 , s

(n)
1) from the sender and c from the receiver;

else ignore this message. If the sender is corrupted, compute Q(c) and abort if

Q(c) = reject. Next, send (s
(1)
c1 , . . . , s

(n)
cn) to the receiver and ignore any further

(output)-messages from the adversary.
– Upon receiving a message (notify) from the adversary, check that there are

stored inputs (s
(1)
0 , s

(1)
1), . . . , (s

(n)
0 , s

(n)
1) from the sender and c from the receiver;

else ignore this message. Next, send an empty output to the sender and ignore
any further (notify)-messages from the adversary.

A.4 Ideal Functionality for Zero-Knowledge

Functionality FZK

Implicitly parametrized with an NP-language L and a corresponding NP-problem
instance x.

1. Await an input w from the sender. Then, store w and send (sent) to the adver-
sary.

2. Await a message (verify) from the adversary. Then, if w is a witness for x ∈ L,
send (accept) to the verifier; else send (reject).

B Sampling Uniformly from Varieties of Constant
Codimension

We briefly state the main theorem of [9], which is used in the proof of Corollary 1.

Theorem 1 ([9, Theorem 1.1]). Let k > 0 be a constant integer, n > k
and d > 0 be integers, let p` be a sufficiently large prime power and ε > 0
be an arbitrarily small constant. Suppose that f1, . . . , fk ∈ IFp` [x1, . . . , xn] are
polynomials, each of total degree at most d, and let

V = V (f1, . . . , fk) = {ξ ∈ IFnp` | f1(ξ) = . . . = fk(ξ) = 0}

be the variety defined by f1, . . . , fk. There exists a randomized algorithm that,
given the description of f1, . . . , fk as a list of their nonzero monomials, outputs
a random point v ∈ IFnp` such that the distribution of v is 6

p`(1−ε)
-close to the

uniform distribution on V . The worst-case runtime complexity of this algorithm
is polynomial in n, d, ` log(p) and the description of f1, . . . , fk.

Concretely, in Corollary 1 the field is IF2` and n = 4, as elements of IF24`

are interpreted as 4-dimensional vectors over IF2` . The variety V is given by the
polynomials (in x = (x1, . . . , x4))

p1(x)− ỹ = 0

〈h |x〉 −m+ ŝ = 0

where p1(x)− ỹ ∈ IF2` [x1, . . . , x4] is a polynomial of degree q and 〈h |x〉−m+ ŝ ∈
IF2` [x1, . . . , x4] is trivially a polynomial of degree 1. Thus the parameters are
k = 2, n = 4, p = 2, and d = q. We can set ε = 1

2 and Theorem 1 yields an
efficient algorithm that samples 6

2`/2
-close to uniform from V .

	General Statistically Secure Computation with Bounded-Resettable Hardware Tokens

